The Parabola and the Dish Worksheet

In order to solve for width, height, and angle of the dish using Excel follow the procedure below:

1. Create a spreadsheet with seven columns:										
X value	Y value	Е	V	alpha	Slope	theta				

- 2. For the column X value start at zero. Then make a counter that increases by 0.01.
- 3. For the column Y value insert equation $= x^2 / 4.16$ for each x value.
- 4. For the column E insert equation = $\sqrt{(x^2 + (y 1.04)^2)}$
- 5. For the column V insert equation= $\sqrt{(x^2 + y^2)}$

6. For the column alpha insert equation
$$= \cos^{-1} \left(\frac{V^2 - E^2 - 1.04^2}{-2E \cdot 1.04} \right)$$

7. For the column Slope insert equation =
$$\frac{2}{4.16}x$$

8. For the column theta insert equation $= \tan^{-1}(slope)$

X value	Y value	Е	V	alpha	Slope	theta
0	0	1.04	0	0	0	0
0.01	2.4E-05	1.040024	0.01	0.550917	0.004808	0.275458
0.02	9.62E-05	1.040096	0.02	1.101808	0.009615	0.550904
0.03	0.000216	1.040216	0.030001	1.652648	0.014423	0.826324

Your table should have the same entries as shown below.

Problems

- 1. Calculate the y value for x = .5 by hand to see if it is the same as the Excel spreadsheet.
- 2. Calculate E and V at the same point above and compare with the Excel values.
- 3. Use the value you got for E and V to find alpha.
- 4. At what x and y value will alpha be 66°?
- 5. When x = 1 find the slope and use it to calculate theta.
- 6. Find the focal point for this equation: $y = 2x^2$
- 7. What would the dish look with this focal point?