
N e v e r s t o p t h i n k i n g .

Microcontrol lers

Appl icat ion Note, V 1.0, Feb. 2002

Boot ROM Code
TC11IB

AP3230

TC11IB

Revision History: 2002-02 V 1.0

Previous Version: V0.3

Page Subjects (major changes since last revision)

6 Boot ROM version number for new device step added.

8 New features, updated to Table 2 : Boot ROM Options

11 Updated Figure 2: Boot Mode Selection

30 Correction at Section 5.1: Read is done at 0xA0000004-0xA0000006

Chapter 5: Changes to NAND Flash boot modes, figure 11 etc.

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

AP3230
TC11IB Boot ROM Code

Table of Contents Page

Application Note 3 V 1.0, 2002-02

1 TC11IB Boot Versioning . 6

2 TC11IB Boot Options . 7
2.1 Reset and Boot . 7
2.2 Boot Options . 7
2.3 Boot ROM Startup Code . 9
2.3.1 Watchdog Handling . 9
2.3.2 Other Startup Conditions . 10
2.3.3 Boot Mode Selection . 10

3 The SSC Bootstrap Loader . 12
3.1 Initialization . 12
3.2 Entering the SSC Bootstrap Loader . 12
3.3 Loading the Startup Code . 12
3.4 Exiting the SSC Bootstrap Loader . 14
3.5 SSC Boot Algorithm . 14
3.6 Software Description . 17
3.6.1 Assumptions . 17
3.6.2 Software Overview . 18

4 The ASC Bootstrap Loader . 22
4.1 PC host program - loader.exe . 22
4.2 ASC Initialization in Bootstrap Loader . 22
4.3 Entering the ASC Bootstrap Loader . 22
4.4 Loading the Startup Code . 23
4.5 Exiting the ASC Bootstrap Loader . 23
4.6 ASC Boot Algorithm . 23
4.7 Software Description . 25
4.7.1 Assumptions . 25
4.7.2 Software Overview . 26

5 L_EBU Boot Options . 30
5.1 External Memory Boot on Boot Chip Select CS1 30
5.2 Bootstrap Loading from NAND Flash . 30
5.2.1 Common . 30
5.2.2 Supported NAND Flash Devices . 32
5.2.3 NAND Read Algorithm . 32

6 Peripheral Mode - Upload via PCI Interface . 35
6.1 Reset State of PCI2FPI Interface . 35
6.2 PCI Boot . 36
6.3 Power Management Setup of PCI2FPI Interface . 36
6.4 Subvendor ID, Subvendor Device ID and Registry Entries 36
6.5 Routines Loaded via SSC . 37

AP3230
TC11IB Boot ROM Code

Table of Contents Page

Application Note 4 V 1.0, 2002-02

7 Peripheral Mode - Upload via L_EBU Interface 38

8 Bootstrap Loading from MMC via ROSA . 39
8.1 ROSA Register Set . 39
8.2 MMC Boot Algorithm . 39

9 Error Handling . 42

AP3230
TC11IB Boot ROM Code

Application Note 5 V 1.0, 2002-02

About this document

The ASC/ SSC boot routines expect some initialization, executed by a global initialization
routine at the beginning of the boot ROM code. The routines expect to load executable
code.

The context save areas are not initialized by the boot loader. If the user code makes use
of CSAs, then the user must set up the CSA memory area. The boot loader subroutines
do not use function calls, instead the JL ’Jump and Link’ command is used.

For further information please refer to the TriCore Architecture Manual.

AP3230
TC11IB Boot ROM Code

TC11IB Boot Versioning

Application Note 6 V 1.0, 2002-02

1 TC11IB Boot Versioning
The TC11IB boot code follows a standard versioning at boot location 0xDFFFFFF8 as
described here.

Bits 31-16 are used as device revision, where:

31-28= reserved

27-16=design step

Bits 15-0 are used as code revision of ROM program:

15-12= reserved

11-8= incremented each time the is a change in program spec, eg. new routine.

7-4= incremented each time a bug fix release is made.

3-0= a-b for intermediate release

The boot rom version with respect to Stepping is listed in Table 1.

Table 1 Boot ROM Version Identification

Device Step Marking Boot ROM Version (at 0xDFFFFFF8)

EES-AA 0x00000000

ES-BA 0x00000000

ES-BB / BB 0x0B15001B

AP3230
TC11IB Boot ROM Code

TC11IB Boot Options

Application Note 7 V 1.0, 2002-02

2 TC11IB Boot Options

2.1 Reset and Boot

This chapter describes the different boot options which are provided by the boot ROM.
The Reset Status Register (RST_SR) indicates the cause of a reset and the power-on
reset latched boot configuration. The Reset Request Register (RST_REQ) defines the
boot configuration for a software reset request. These registers are accessed in the
beginning of the boot ROM code to determine the boot mode selected.

Both registers contain the status or setting of CFG[3:0], GPIO[2:0] (P0.13, P0.12, P0.11),
OCDSE and BRKIN. Register RST_SR is read-only, but the boot configuration bits
SW_CFG[3:0] within the RST_REQ register can be rewritten. Thus another boot option
is configurable with a soft reset.

Note: Boot configuration is latched on rising edge of PORST (power-on reset). If
boot is due to power-on reset, the contents of the memories are undefined.
Depending on the type of memory, they could be defined after a wake-up
reset from deep sleep, HRST or software reset.

Note: Boot code will not distinguish a wake-up reset from deep sleep. Boot code
only differentiates hard reset (hard, watchdog, power down, power-on) and
soft reset.

2.2 Boot Options

Table 2 gives the complete list of TC11IB boot rom modes with entry requirements. On
boot ROM entry, Program Counter points to 0xDFFF FFFC. Depending on whether it is
a hardware PORST reset or software reset, the status of pins or bits of RST_REQ
register: OCDSE, BRKIN, CFG[3:0] and GPIO[2:0] are stored. GPIO[2] is reserved for
future use.

AP3230
TC11IB Boot ROM Code

TC11IB Boot Options

Application Note 8 V 1.0, 2002-02

Table 2 Boot ROM Options

OCDSE BRKIN CFG[3:0]
GPIO[2:0]
= P0.x Mode

13 12 11

1 1 X 0 0 1 0 X X Reserved INFINEON (Factory
test)

1 1 X 0 1 0 0 X X ASC0

1 1 X 0 1 1 0 X X SSC SPI

1 1 0 1 0 1 0 0 0 EBU as slave, CS1, buffered
Mem-Area

1 1 1 1 0 1 0 0 0 EBU as master, CS1, buffered
Mem-Area

1 1 0 1 0 1 0 0 1 EBU as slave, CS1, direct
connected Mem-Area

1 1 1 1 0 1 0 0 1 EBU as master, CS1, direct
connected Mem-Area

1 1 0 1 0 1 0 1 0 EBU as slave, NAND Flash
<=512MBit, CS1, buffered

1 1 1 1 0 1 0 1 0 EBU as master, NAND Flash
<=512MBit, CS1, buffered

1 1 0 1 0 1 0 1 1 EBU as slave, NAND Flash
<=512MBit, CS1, direct
connected

1 1 1 1 0 1 0 1 1 EBU as master, NAND Flash
<=512MBit, CS1, direct
connected

1 1 X 1 1 0 0 X X Reserved INFINEON

1 1 X 1 1 1 0 0 0 Peripheral Mode, Upload via
PCI

1 1 X 1 1 1 0 0 1 Peripheral Mode, Upload via
EBU (slave mode)

1 1 X 1 1 1 0 1 0 Bootstrap Load from MMC via
ROSA

1 1 X 1 1 1 0 1 1 EBU as master, NAND Flash
>= 1GBit, CS1, buffered

AP3230
TC11IB Boot ROM Code

TC11IB Boot Options

Application Note 9 V 1.0, 2002-02

The bit combinations of CFG3, CFG0 and GPIO[1:0] give hardware designers the
possibility to choose between different boot options by changing just one bit and not the
whole combination, which is important for the very first boot:

• GPIO0 (P0.11) offers the direct connected/buffered option
• GPIO1 (P0.12) offers the NOR/NAND option
• CFG0 offers the CS0/CS1 option
• CFG3 offers the master/slave option

2.3 Boot ROM Startup Code

2.3.1 Watchdog Handling

After RESET the watchdog will be automatically enabled and set to Time-Out mode.

Time-out Mode is indicated by WDTSR.WDTTO = 1. As the name suggests, Time-out
Mode lasts for a particular duration, called the Time-out Period. Time-out Mode must be
exited before this period is over, or the system is reset. After reset, the time-out period
always is 65536 clocks with an input frequency of SYSCLK/16384.

As the watchdog therefore is activated at the hardwired boot options, the loaded code
has to trigger the watchdog within the Time-out Period. Some of the boot ROM options
will not be able to fulfil this requirement in any case (there is for example no chance to
determine, when the PCI system comes up). Thus the first action of the boot ROM
startup code is to disable the watchdog within this period of time.

After reset the EndInit protected registers are not protected. With disabling the watchdog
the EndInit protected registers are protected again. So all accesses to EndInit protected
registers within the boot code routines must be enabled via a password and a modify
access to the WDTCON0 register. With disabling the EndInit protection the watchdog
automatically starts again and must be disabled after the access to the EndInit protected
registers via another modify- and password access to register WDTCON0.

AP3230
TC11IB Boot ROM Code

TC11IB Boot Options

Application Note 10 V 1.0, 2002-02

Figure 1 Watchdog Handling

2.3.2 Other Startup Conditions

Supervisor mode has to be activated, as some of the needed registers can only be
accessed this way.

2.3.3 Boot Mode Selection

Boot mode selection is done with reference to the registers RST_SR and RST_REQ,
according to Figure 2.

Start boot

Disable Watchdog

Disable EndInit protection

Access to EndInit protected register

Enable EndInitprotection & Disable Watchdog

AP3230
TC11IB Boot ROM Code

TC11IB Boot Options

Application Note 11 V 1.0, 2002-02

Figure 2 Boot Mode Selection

Start boot mode selection

read RST_SR

Soft reset ?

(Hard reset)
RST_SELECT =
RST_SR

No Yes

Soft reset, but use latched
hardware configuration

Yes

No

read RST_REQ

(Soft reset)
RST_SELECT =
RST_REQ

BOOT_MODE =
RST_SELECT &&
0x00070000

BOOT_MODE == ?

factory test

0x00010000

ASC0

0x00020000

SSC0 SPI boot

0x00030000 0x00050000

reserved INFINEON

0x00060000 0x00070000

Master mode?

(Master mode)
EBUCON = 0x00020068

Yes No

Yes

No

direct
connected?

(buffered)
EBUCON = EBUCON ||
0x02000000

BOOT_MODE =
RST_SELECT &&

0x00002000

NAND boot

YesNo
BOOT_MODE ==

0x00002000

Normal boot EBU

BOOT_MODE == ?

BOOT_MODE =
RST_SELECT &&

0x00003000

PCI boot

0x00000000

Upload via EBU

0x00001000

MMC boot via ROSA

0x00002000

(Slave mode)
EBUCON = 0x000200A8

direct
connected

write EBUCON

End

EBUCON = 0x02020068

0x00003000

Mark to support NAND
>=1Gbit

Mark to support NAND
<=512Mbit

AP3230
TC11IB Boot ROM Code

The SSC Bootstrap Loader

Application Note 12 V 1.0, 2002-02

3 The SSC Bootstrap Loader
The built-in SSC bootstrap loader of the TC11IB boot ROM provides a mechanism to
load a program, which is executed after reset, via the SSC interface. In this case no
external (ROM) memory or an internal ROM is required for the program code. The
bootstrap loader moves code/ data into the internal LMU DRAM.

The SSC bootstrap loader expects external non volatile memory (e.g. EEPROM) at the
SSC interface. The loader is compatible with memory devices complying with the Serial
Peripheral Interface (SPI) industry standard. The protocol was chosen because it offers
a wide range of memory densities and guarantees high speed data transmission as well
as noise immunity. The SSC bootstrap loader supports memory devices with 8-bit or 16-
bit addressing.

3.1 Initialization

The loader initializes the SSC in the following way:

• CPU is master (serial memory is the slave)
• 8 data bits
• Transmit / Receive MSB first
• Idle clock line = 0
• data latched on leading/ shifted on trailing clock edge
• baud rate defined as 1 M-bit
• SPI memory chip-select via port pin P5.0

3.2 Entering the SSC Bootstrap Loader

The SSC bootstrap loader code is part of the TC11IB boot ROM. The TC11IB enters
SSC BSL mode according to configuration of Table 2.

3.3 Loading the Startup Code

After entering SSC BSL mode and the respective initialization of the SSC, the TC11IB
sends an SPI-read command (0x03) with a memory start address of zero via the SSC.
The bootstrap loader determines the type of memory (8- or /16-bit addressing) by
checking at which location the memory identifier byte ’ID_OK’ was read from the serial
memory.

For memory types with 8-bit addressing this will happen after the first address byte, for
types with 16-bit addressing after the second address byte (see Figure 6). If the correct
memory identifier byte ’ID_OK’ cannot be received, the program hangs in an endless
loop (see “Software Overview” on Page 18).

After reception of the memory identifier byte the bootstrap loader reads an index for the
number of bytes to be received and stores the received data bytes sequentially into

AP3230
TC11IB Boot ROM Code

The SSC Bootstrap Loader

Application Note 13 V 1.0, 2002-02

locations ’RAM_START’ (default = 0xAFC00004) through ’RAM_START’ + blocksize
(variable, see note) of the internal LMU DRAM. Up to 2040 (16-bit) instructions may be
placed into the RAM area. After the code is loaded, chip-select line CS is set to ’1’
(inactive) and the bootstrap loader executes a jump to start address ’RAM_START’ in
the internal LMU DRAM.

The expected memory identifier ’ID_OK’ has to be programmed as the first data byte into
the external memory (start address: 0x0000) by the user and is expected to be 0x5A.
The second byte has to be the ’size_index’ byte which informs the loader about the
number of bytes to be received: number of bytes = size_index X 16. With this a block of
up to 2040 (16-bit) instructions can be defined, unless limited by the size of the serial
memory.

Note: Be aware that the block size is always a multiple of 16 bytes.

Figure 3 SPI EEPROM: Clockphase Equals Zero Transfer Format

Note: In SSC BSL, SSC is set up with bit PH set to ’1’ and bit PO set to ’0’ in register
SSCx_CON.

Table 3 Content of the EEPROM

EEPROM Address Data value Meaning

0x0000 0x5A Memory identifier ’ID_OK’

0x0001 0x01...0xFF size_index

0x0002...0x0FF2 0x00...0xFF User code/data

SCK

SCK Cycle # 1 2 3 4 5 6 7 8

MTSR MSB 6 5 4 3 2 1 LSB

data latched

a b

a

b data shifted

CS

AP3230
TC11IB Boot ROM Code

The SSC Bootstrap Loader

Application Note 14 V 1.0, 2002-02

3.4 Exiting the SSC Bootstrap Loader

The SSC bootstrap loader will be terminated by a jump to address ’RAM_START’ in the
LMU DRAM. A user program may re-initialize system settings which are different to reset
state (e.g. Watchdog Timer, System Timer).

3.5 SSC Boot Algorithm

Figure 4 and Figure 5 show a flowchart of the SSC boot algorithm.

AP3230
TC11IB Boot ROM Code

The SSC Bootstrap Loader

Application Note 15 V 1.0, 2002-02

Figure 4 SSC Boot Algorithm (Sheet 1/2)

B

Start

Calculate Operating Freqency
Initialize SSC

(port, mode, baud rate)
Initialize Serial EEPROM /CS pin

Jump to ReadEEPROM Function
(read 6 bytes, discard first two bytes)

RxData[0]
 =

ID_OK

RxData[1]
=

ID_OK

No

Endless
Loop

No

RxData[2] is size_index
Byte_count = (size_index * 16)

RxData[1] is size_index
Byte count =

(size_index * 16)

Yes

Call ReadEEPROM Function
(read EEPROM bytes = byte_count, discard first 4 or 5

bytes)

Yes

Jump to RAM_START
(0xAFC00004)

Main SSC Boot Routine

A

B

A

size_index = 0 ?Yes

No

CS_TOG = 3

CS_TOG = 2

A&D Vendor
ID ?

Check Vendor ID
in PCI header

Yes

Jump to
UNKNOWN_BOOT

Function
(global boot fault indication;

only valid for A&D-like IBC32)

No

Toggle /CS
according to CS_TOG

AP3230
TC11IB Boot ROM Code

The SSC Bootstrap Loader

Application Note 16 V 1.0, 2002-02

Figure 5 SSC Boot Algorithm (Sheet 2/2)

Parameters
Data pointer, RxCount and ByPass

All bytes
received?

Tx buffer
clear?

Write halfword to
Program memory

No

TxCount > 0

Yes

Clear TxSRR bit
Transmit one byte

Decrement TxCount

No

No Yes

Received Rx
Byte?

Clear TxSRR bit

Even byte?

Read SSC_RB

ByPass > 0

Keep reading even Look for an odd byte
Decrement ByPass

Decrement RxCount

Yes

Yes

No

Yes

No

Subroutine ReadEEPROM

Read SSC_RB

Transmit Loop

Receive Loop

B

A

Send Read Command

No

Yes

Deselect EEPROM
(/CS to '1')

Select EEPROM (/CS to '0')

AP3230
TC11IB Boot ROM Code

The SSC Bootstrap Loader

Application Note 17 V 1.0, 2002-02

3.6 Software Description

The programmer must pay special attention to enable/ disable specific equates in the
assembly file ‘sscboot.asm’. For users, this is otherwise transparent.

3.6.1 Assumptions

The code has been tested with TC11IB. Support for other chips as listed is not tested.
The watchdog has been disabled. The code is executing fast enough that prevents a
receiver overrun.

Note: No SSC errors are monitored or checked by the software.

Table 4 EEPROM Connection and SSC Routing

TC11IB The EEPROM chip select CS is connected to port 5.0 and the SSC
is connected to port 1 (P1.0/ SCLK, P1.1/ MRST, P1.2/ MTSR).

TC1775 The EEPROM chip select CS is connected to port 11.14 and the
SSC0 is connected to port 13 (P13.6/ SCLK, P13.7/ MRST, P13.8/
MTSR).

Table 5 Software Defines

CHIP_TC11IB If this define is set true, then the SSC base address is set to
0xF000 0A00. The port address of the SSC is set to 0xF000 2900
and the chip select port is set to 0xF000 2D00.

CHIP_TC1775 If this define is set true, then the SSC base address is set to
0xF000 0A00. The port address of the SSC is set to 0xF000 3500
and the chip select port is set to 0xF000 3300.

SSC_MIN_BAUD Attempts to limit the SSC baud rate at lower operating frequencies.

AP3230
TC11IB Boot ROM Code

The SSC Bootstrap Loader

Application Note 18 V 1.0, 2002-02

3.6.2 Software Overview

The software is straight forward and does not use interrupts. Once the SSC boot routine
is entered, an access to WDT_CONx registers is performed to clear EndInit. After writing
the CLC register, EndInit is set again.

The SSC clock is enabled and the divider is set to ’1’ so that the SSC clock frequency is
equal to the slow FPI frequency = fSYSCLK/2 (48MHz). The system clock frequency for
TC11IB is determined from the following formula and is fixed for all except K:

Note: The system clock frequency for TC1775 is determined by removing P and ’2’ from
the denominator. In TC11IB, P is fixed to ’1’, N is fixed to ’16’ and the default value
for K is ’2’.

The calculation of the reload value for SSC baud rate generation is done by:

Table 6 Software Equates

BAUD_RATE This is the baud rate at which the SSC will be configured. For
the TC11IB it is defined as 1 Mbaud.

CLK_FREQ This should be defined in MHz to the clock frequency of the
crystal being used (i.e. 12 MHz clock oscillator should be
defined as 12000000).

DIAGNOSTICS Toggles the CS pin if faults occur (see Chapter 3.6.2)

RAM_START This is the start address where the code from the EEPROM is
loaded to. After all of the bytes are written a jump is performed
to this address and program execution begins (default to
0xAFC0 0004).

SSC_CLC_CONTROL This enables the clock driver circuit and sets the SSC clock to
the same frequency as the system clock.

SSC_CONFIG This is the SSC configuration value which sets the mode to
MSB first, 8-bits data and the data is latched on the rising edge
of the clock and shifted on the falling edge of the clock.

WAIT_RECEIVE When enabled, another byte is not transmitted until a byte has
been received from the previous transmission.

KP
fN

f OSC
SYSCLK ⋅⋅

⋅
=

2

AP3230
TC11IB Boot ROM Code

The SSC Bootstrap Loader

Application Note 19 V 1.0, 2002-02

For TC11IB the following values are true: baud_rateSSC = 1 M-bit and fSSC = 48 MHz.
The result of BR is taken as an 16-bit integer value. The actual baud_rateSSC value is
determined from the following formula:

The SSC is configured as defined before, followed by the ports for the SSC and CS are
setup.

Now everything has been configured for the SSC to properly read the boot code from
either an 8-bit or 16-bit serial EEPROM (SPI compatible). A 6-byte read cycle is made to
the serial EEPROM (see Figure 6) to read the ID_OK and size_index bytes.

The EEPROM only starts sending valid data after the second (8-bit addressable) or third
byte (16-bit addressable). If the ID_OK value is found in the third byte then an 8-bit
addressable serial EEPROM is assumed. If the ID_OK byte is found in the fourth byte
then a 16-bit addressable serial EEPROM is assumed.

If the ID_OK byte is not found in either of the byte positions a fault is assumed. If a fault
has been found the program enters an endless loop and hangs from there. The only way
to exit this loop is for the user to perform a reset.

1
_2

−








⋅
=><

SSC

SSC

ratebaud
f

BR

()12
_

+><⋅
=

BR
f

ratebaud SSC
SSC

AP3230
TC11IB Boot ROM Code

The SSC Bootstrap Loader

Application Note 20 V 1.0, 2002-02

Figure 6 Serial Data Transfer

READ
Command

CS

Address Byte
High

Address Byte
Low

Dummy
Transmit

Dummy
Transmit

ID Byte
1

Count Byte
2

Data Byte
3

ID Byte
1

Count Byte
2

16-bit type

8-bit type

CLK

Tx

Rx

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

CS

16-bit type

8-bit type

CLK

Tx

Rx

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

Dummy
Transmit

Data Byte
n = size_index*16

Data Byte
n = size_index*16

Dummy
Transmit

Data Byte
n=size_index*16-1

Address Byte
High

Address Byte
Low

Dummy
Transmit

Dummy
Transmit

ID Byte
1

Count Byte
2

Data Byte
n

ID Byte
1

Count Byte
2

Dummy
Transmit

Dummy
Transmit

Data Byte
n+1

Data Byte
n+2

Data Byte
n

Data Byte
n+1

READ
Command

Last Byte
16-bit

Last Byte
8-bitByte 6 Byte 7

Data Serial Transfer

ID_OK and SIZE_INDEX Serial Transfer

AP3230
TC11IB Boot ROM Code

The SSC Bootstrap Loader

Application Note 21 V 1.0, 2002-02

If the ID_OK byte was read correctly, then the byte that follows is taken as the
size_index. The size_index relates to the number of 16-bit instructions to load. The
size_index is multiplied by 16 to represent the number of bytes (Byte_count) to be loaded
into the internal program memory space (default location is 0xAFC0 0004).

The software then begins reading the serial EEPROM at address zero and discards the
first four or five bytes, depending on whether it is an 8-bit or 16-bit addressable serial
EEPROM.

To conserve code space a subroutine is added to read the serial EEPROM since the
read subroutine has to be able to read either an 8-bit or 16-bit addressable serial
memory.

To distinguish between an 8-bit or 16-bit addressable EEPROM two features were
added in the subroutine. The first is the ability to detect if one is currently reading an even
or odd data byte from the serial memory. The reason for needing to detect an even or
odd byte is because the routine writes half-word-wise data into the internal program
memory. The half-words are written to program memory whenever an odd byte has been
received. The odd and even byte detection is used in conjunction with the bypass
feature. The bypass feature serves two purposes: one being to align the instruction to
the correct position within the half-word; secondly it elliminates any bytes read from the
serial memory that are not program instructions.

The subroutine writes half-words to program memory starting at address RAM_START
(0xAFC0 0004). This process continues until all bytes have been read from the serial
memory.

Once all bytes have been received and written to program memory, program execution
is transferred to the loaded program via a ’Jump Indirect’ command to RAM_START.

AP3230
TC11IB Boot ROM Code

The ASC Bootstrap Loader

Application Note 22 V 1.0, 2002-02

4 The ASC Bootstrap Loader
The built-in ASC bootstrap loader of the TC11IB provides a mechanism to load a
program code, which is to be executed after reset, via the serial interface. In this case
no external (ROM) memory or an internal ROM is required for the code. The bootstrap
loader moves code/ data into the internal LMU DRAM.

A PC DOS-based host program loader.exe is available from Infineon for this purpose.

4.1 PC host program - loader.exe

To load code (not exceeding 128 bytes) from the PC via the ASC BSL to LMU DRAM,
TC11IB must be in the ASC Boot mode. The zipped files in AP323010.exe should be
copied to the same directory on PC. At DOS-prompt, go to the directory where
loader.exe and cw3230.dll are stored and input the command:

loader hexfilename.hex

The HEX file is to be in INTEL HEX format and contain only lines of Record Type Data.
As an example, bootled2.hex can be loaded this way. If loaded correctly, P0.7 will toggle
continously.

4.2 ASC Initialization in Bootstrap Loader

The loader initializes the ASC in the following way:

• baud rate depends on host (auto baud rate detection)
• 8 data bits
• one stop bit
• no parity

4.3 Entering the ASC Bootstrap Loader

After entering ASC BSL mode, the TC11IB scans the RxD line to receive a zero byte, i.e.
one start bit and eight ’0’ data bits. From the duration of this zero byte it calculates the
corresponding baud rate factor with respect to the current CPU clock. Then, the serial
interface ASC is initialized accordingly. Using this baud rate, an identification byte 0xD5
is returned as acknowledgment to the host. This identification byte identifies the device
(TC11IB) to download code to.

Note: After entering the bootstrap loader sequence a period of time must pass to allow
the internal software to begin looking for zero byte transmission from the host.

AP3230
TC11IB Boot ROM Code

The ASC Bootstrap Loader

Application Note 23 V 1.0, 2002-02

Note: After reception of the zero byte a period of time must pass to allow calculation of
the baud rate. After calculation is completed then the idendification byte is sent
and the device is ready to receive the upload.

Note: After sending the identification byte the ASC receiver is enabled and is ready to
receive the 128 bytes from the host. A half duplex connection is sufficient to feed
the BSL.

4.4 Loading the Startup Code

After sending the identification byte the ASC BSL enters a loop to receive 128 bytes (32
words) via ASC. These bytes are stored sequentially into locations ’RAM_START’
(default = 0xAFC0 0004) through ’RAM_START’ + 128 bytes of the internal LMU DRAM.
So up to 64 (16-bit) instructions may be placed into the RAM area. To execute the loaded
code the BSL then jumps to location ’RAM_START’, ie. the first loaded instruction. The
bootstrap loading sequence is now terminated.

It is possible that this loaded routine will load additional code or data. This second
receive loop may directly use the already initialized ASC interface to receive data and
store it to arbitrary user-defined locations.

Note: The ASC bootstrap loader expects a blocksize of exactly 128 bytes (32 words).

4.5 Exiting the ASC Bootstrap Loader

The ASC bootstrap loader will be terminated by a jump to address ’RAM_START’ in the
LMU DRAM. A user program may re-initialize system settings which are different to reset
state (e.g. Watchdog Timer, System Timer).

4.6 ASC Boot Algorithm

Figure 7 shows a flowchart of the ASC boot algorithm.

AP3230
TC11IB Boot ROM Code

The ASC Bootstrap Loader

Application Note 24 V 1.0, 2002-02

Figure 7 ASC Boot Algorithm

Start

Wait for Rx Pin high

Read system timer

Read system timer
Calculate timer value

Unlock EndInit
Enable ASC Clock

Lock EndInit
Initialize ASC port pins

Calculate baud rate
(search for best values for

FDV and BG)

Transmit Acknowledge byte

Ack. byte sent ?

Enable Receiver
Init. Receive Data pointer

Set Word receive counter = 4
Set Data receive counter = 32

Word receive
counter = 0?

No

Yes

Store data byte to temp
RAM buffer

Write Data word to Memory
Increment Receive Data pointer
Decrement Data receive counter

Yes

All program data
words loaded ?

Jump to RAM_START
(0xAFC0 0004)

End

Yes

No

Wait for falling edge on
Rx pin

Yes

Wait for rising edge on
Rx pin

No

Yes

No

Yes

Initialize ASC
Set Fractional divider and BG

Data byte
received ?

Decrement receive counter

No

Yes

No

No

Clear Receive Flag

AP3230
TC11IB Boot ROM Code

The ASC Bootstrap Loader

Application Note 25 V 1.0, 2002-02

4.7 Software Description

The programmer must pay special attention to enable/ disable specific equates in the
assembly file ‘ascboot.asm’. For users, this is otherwise transparent.

4.7.1 Assumptions

The code has been tested with TC11IB. Support for other chips as listed is not tested.
The watchdog has been disabled. The code is executing fast enough that prevents a
receiver overrun (the receiver is being polled via software for new data, no interrupts are
used).

Note: No ASC errors are monitored or checked by the software.

Table 7 ASC0 Routing

TC11IB ASC0 is selected and is connected to port 1 (P1.6/ RXD, P1.7/
TXD).

TC1775 ASC0 is selected and is connected to port 12 (P12.12/ RXD,
P12.13/ TXD).

Table 8 Software Defines

CHIP_TC11IB If this define is set true, then the ASC base address is set to
0xF000 0800. The port address of the ASC is set to 0xF000 2900.

CHIP_TC1775 If this define is set true, then the ASC base address is set to
0xF000 0800. The port address is set to 0xF000 3400.

Table 9 Software Equates

ASCM_8ASYNC This is the ASC configuration value that sets the mode to 8-bit data,
1 start bit, 1 stop bit and asynchronous operation.

RAM_START This is the address where the data (code) received from the ASC
receive buffer is loaded to. After all of the bytes are written to
program memory a jump is performed to this address and program
execution begins (default to 0xAFC0 0004).

AP3230
TC11IB Boot ROM Code

The ASC Bootstrap Loader

Application Note 26 V 1.0, 2002-02

4.7.2 Software Overview

The software is straight forward and does not use interrupts. The first task the ASC boot
routine must perform is to determine the baud rate in which the host wants to
communicate at.

This is done by capturing the time period to measure a zero byte (one start bit and eight
’0’ data bits) received at the serial receive pin. Therefore, a polling loop begins by first
waiting for the ASC receive pin to be at a high level.

After this the software waits to detect a falling edge. After a falling edge has been
detected the system timer is read and the software now waits for a rising edge.

When the rising edge is detected at the pin, the system timer is read again and the time
difference between the two reading is calculated. This value represents the time period
for one zero byte transmitted by the host and is the basis for calculating the host baud
rate with respect to the fSYSCLK clock.

The next step is to enable the ASC clock generator. This requires a password unlock
sequence to be performed to the WDT to gain write access to the ASC CLC Control
register (fASC = fSYSCLK / 2 = 48MHz). After writing the ASC CLC register the WDT is
then locked again.

The ASC bootstrap loader then initialize the respective port pins for ASC serial function,
followed with calculating the baud rate. The baud rate is calculated by searching for the
best values for the Fraction Divide Value (FDV) and Baud rate Generator (BG) registers.

Figure 8 ASC Baud Rate Generator

The values for FDV and BG are derived using an iterative approach with the following
formulas:

Fractional
Divider

13-bit Reload Register

13-bit Baud Rate Timer

 16

FDV BG

fASC

fDIV

fBRT

fBR
Baud Rate Clock

Sample Clock

ASC Baud-Rate Generator Circuitry for Boot Mode Asynchronous Operation

AP3230
TC11IB Boot ROM Code

The ASC Bootstrap Loader

Application Note 27 V 1.0, 2002-02

TimerValue = Measured system timer tick for a zero byte transmission (with start bit)

Therefore substituting for baud_rateASC in the equations and solving for BG:

TimerValue
f

ratebaud ASC
ASC

⋅
=

9
_

()116512
_

+⋅
⋅=

BG
fFDV

ratebaud ASC
ASC

()()116512
9

+⋅⋅
=

BG
FDV

TimerValue

1
165129

+
=

⋅⋅
BG
FDV

TimerValue

TimerValueTimerValue
BG

FDV
7372873728

+
⋅

=

TimerValue
FDV

TimerValue
BG 7372873728

−=
⋅

7372873728 −⋅=⋅ TimerValueFDVBG

AP3230
TC11IB Boot ROM Code

The ASC Bootstrap Loader

Application Note 28 V 1.0, 2002-02

Now one can derive the best-fit values for BG and FDV by checking min/ max boundaries
for BG.

See Figure 9 for details on how this is performed.

Now that the ASC is initialized (receive remains disabled) to the baud rate of the host,
an identification byte (0xD5) is returned to the host indicating the device is ready to
accept a 128-byte transfer. After the identification byte has been transmitted, the
receiver is enabled.

The software word data pointer is initialized to the address RAM_START
(0xAFC0 0004). The ASC receive loop waits until it has received four bytes and then
makes one write (word) access to the LMU DRAM. This process repeats until all 32
words have been written.

Once all bytes have been received and written to program memory a ’Jump Indirect’
command (JI) is performed to the memory location indicated by the RAM_START equate
and program execution begins.

1
73728

−
⋅

=
TimerValueFDV

BG

AP3230
TC11IB Boot ROM Code

The ASC Bootstrap Loader

Application Note 29 V 1.0, 2002-02

Figure 9 Calculation of FDV and BG to generate Baud Rate

Result > 0

 Variables Used
Max = 0
Min = 73728
MaxFDV = 0
MinFDV = 0
(FDV)Count= 1
MaxCnt = 512
Timer = measured value
Result = 0

Yes

Result Remainder < Min

Min = Remainder
MinFDV = Count

Result Remainder > Max

Max = Remainder
MaxFDV = Count

Yes

Yes

No

No

Count > MaxCnt

Initialize ASC

Yes

No

(Max-73728) > Min

FDV register = MinFDV

Yes

A

No

Result = Timer x Count / 73728

FDV register = MaxFDV

(Max-73728) > Min

BG = FDV x Timer / 73728

BG -= 1

Yes

Store BG value to register

No

B

Max = Remainder
MaxFDV = Count

No

AP3230
TC11IB Boot ROM Code

L_EBU Boot Options

Application Note 30 V 1.0, 2002-02

5 L_EBU Boot Options

5.1 External Memory Boot on Boot Chip Select CS1

This boot option reproduces the hardwired external memory boot mechanism (OCDSE
= 1, BRKIN = 1, CFG[2:0] = 100). There is in principle no difference in behaviour with
two exceptions:

In addition to the first 32-bit access on 0xA000 0004 to read the EBU configuration, there
is a second 16-bit access on address 0xA000 0006 to test a connection key value
0x6789. This is to ensure that there is really a memory connected and not only the bus
default state read. So the boot memory must contain this key value to ensure the boot
code will accept the other memory contents. Otherwise boot code will jump to the error
handling routine; see Chapter 9 of this specification for further information.

Therefore, if an EBU boot memory will be plugged in a memory adapter at an unknown
state, possibly a long time after power on, the bootcode will not be able to read the
connection key value, but the bus default state. Thus no deadlock condition will occur.

Note: The bus default state of D15:D0 must not be 0x6789.

Besides of that there is a buffered as well as a direct connected version. The buffered
version supports CSGLOBAL coincident with boot chip select CS1, whereas at the direct
connected version only CS1 will be set.

Distinction between master and slave boot is done via CFG3 as with the hardwired boot
option.

5.2 Bootstrap Loading from NAND Flash

5.2.1 Common

The NAND Flash boot options support bootstrap loading from NAND Flash devices on
CS1 of L_EBU. Figure 10 shows the wiring of TC11IB L_EBU and the NAND Flash
device. The direct connected as well as the buffered mode will be supported. Only an 8-
bit device connected to D7:D0 can be used. As 8-bit devices are not known by L_EBU,
the boot ROM code has to assemble the data read from the 16-bit interface. 16-bit
applications using NAND Flash devices are possible, of course, but boot code will
always just take the information of the low byte and ignore the high byte data.

AP3230
TC11IB Boot ROM Code

L_EBU Boot Options

Application Note 31 V 1.0, 2002-02

The following signals are not supported by the NAND Flash boot option:

• WP (write protect, boot code will not change NAND Flash data)
• SE (Spare Area Enable. The spare area of the NAND Flash does not contain any boot

information. In addition, the boot code does not support ECC-mechanism to qualify
the read data. The routines that write the NAND Flash are responsible for qualifying
the data. Besides of that not every NAND Flash contains this Spare Area, so it will not
be supported by boot code)

• RY/BY (Ready/Busy Output; Ready/Busy detection of the NAND Flash is also
possible by reading a status byte within NAND Flash; therefore the GPIO P3.8 can be
reserved)

Figure 10 NAND Flash Circuitry

TC11IB NAND-Flash

G
P

IO
L

_E
B

U
1

CLE

R/
BY#

SPE#

XWP#

XCE#

ALE

XRE#

XWE#

D(0..7)

P0.5

P3.8

P0.7/nc

P0.7/nc

P0.4

P0.6

XRD

D(0..7)

XWR

XCS1

P P

AP3230
TC11IB Boot ROM Code

L_EBU Boot Options

Application Note 32 V 1.0, 2002-02

5.2.2 Supported NAND Flash Devices

Due to the fact that there are different NAND Flash devices available, boot code uses
only a subset of possible instructions to support as much devices as possible. In addition
an algorithm is defined, which will support almost all of the existing block architectures.

Boot code assumes that the connected NAND Flash device has a page size of 256 bytes
minimum (virtual page size). Therefore all devices with larger page sizes are also
supported. Boot code reads one virtual page with 256 bytes and stores the data in the
internal DRAM at address 0xAFC0 0004. After that TC11IB will start from internal DRAM
at address 0xAFC0 0004.

5.2.3 NAND Read Algorithm

The NAND boot options supports devices of 1G-bit and bigger (see Table 2). There are
four NAND boot modes with four address cycles for a read command, supporting
devices up to 512 M-bit. A fifth NAND boot mode supports devices of 1G-bit and more
(first read command + five address cycles + second read command).

First, a Reset command 0xff is passed to the device. After a delay of 500 us (to be sure
that internal NAND Flash reset is finished), the read command + address is passed,
followed by a delay of 50 µs (to be sure that NAND Flash is ready for dataread). After
this, the 256 data bytes are read. From the 256 bytes which are read, the first six byte
are ecc bytes, the next 249 bytes are data bytes (in reversed order) and the last byte is
not use.

Because bit error is always a possibility when reading NAND Flash, an error detection
and correction algorithm is included. This Reed-Solomon Code can detect minimum 4
bit errors and correct maximum 3 bit errors. If more than 3 errors are detected which
cannot be corrected, then the watchdog is activated while the program jumps to an
endless loop. The watchdog will generate a soft reset and the Boot sequence starts
again.

Table 10 Data in NAND Flash

Address Data

0x00...0x05 RSC(0)...RSC(5)

0x06...0xFE Data(248)...D(0)

0xFF Not used

AP3230
TC11IB Boot ROM Code

L_EBU Boot Options

Application Note 33 V 1.0, 2002-02

The 249 bytes are stored to DMU for error checking and correction, so the following
addresses are reserved:

Finally, the 249 bytes are stored sequentially into locations ‘RAM_ADDRESS’
(=0xAFC0 0004) through ‘RAM_ADDRESS’ + 248 bytes of the internal LMU DRAM. To
execute the loaded code the BSL then jumps to location ‘RAM_ADDRESS’, ie. the first
loaded instruction. The bootstrap loading sequence is now terminated.

The loaded code can be used to load additional code or data, probably by accessing the
same NAND Flash at another address. It is possible to use the boot code routine
rsdecode located at 0xDFFF E000 for error detection and correction. To make use of
this Reed-Solomon algorithm, the code or data must first be read from Flash and stored
to DMU at NANDI. Before the CALL to rsdecode routine, register D4 should be updated
with the new base address (e.g. RAM_ADDRESS + 248) to copy to.

The following EBU access parameters (AP = Address Phase, CP = Command Phase,
DH = Data Hold) are specified, based on an EBU clock of ¼ LMB clock, this means a 42
ns clock period (@fCPU= 12 MHz).

Table 11 Data Space Allocation for NAND Flash Boot Mode

Name Address Size Comments

bss.rs_code 0xD000 0800 0x01C variable

NANDI 0xD000 2000 0x100 data read from NAND Flash

ARRAYS 0xD000 2100 0x308 variable

ECC_DATA 0xD000 2800 0x010 variable

Table 12 EBU Access Parameters

Access Type Address Phase Command Phase Data Hold

Read cycle 3 clk 5 clk -/-

Write cycle 3 clk 5 clk 4 clk

AP3230
TC11IB Boot ROM Code

L_EBU Boot Options

Application Note 34 V 1.0, 2002-02

Figure 11 NAND Read Algorithm

NAND-Boot-Start

Write (READ-Cmd. = 0x00)

Write Start Adress = 0x000000,
(A7-A0, A16-A8, A23 - A17, A31 - A24)

Read Page (256 Byte, virtual page) and
copy to DMU

NAND-Boot-End

Activate ports P0.4, P0.5 and P0.6 as
output ports. Setup BUSCON1 (0x0052

8010), BUSAP1 (0x8048 400F) and
ADDRSEL1 (0xA000 0001)

XCE# low, CLE high, ALE low

XCE# low, CLE low, ALE high

50us Delay

RESET the NAND

500us Delay

XCE# low, CLE low, ALE high

Bit Errors?

No

Copy 249 bytes to 0xAFC00004

Jump and start from 0xAFC00004

Yes

Error Correction

More than 3 bit
errors?

No

Yes

Wait for Soft Reset

Activate Watchdog

AP3230
TC11IB Boot ROM Code

Peripheral Mode - Upload via PCI Interface

Application Note 35 V 1.0, 2002-02

6 Peripheral Mode - Upload via PCI Interface

6.1 Reset State of PCI2FPI Interface

The Boot routines included in boot ROM have to install the PCI2FPI Interface and turn
on the PCI interface for configuration by the PCI host. As the boot code does not know
which external interfaces of the TC11IB are used, only a basic configuration, which
releases distinct parts of the TC11IB internal memory for PCI accesses, will be
supported. This basic PCI configuration is the RESET state of the PCI2FPI interface. So
the boot code just has to release the PCI interface for configuration accesses of the PCI
host.

Reset state of PCI2FPI interface supports function 1 and function 2. The following BARs
are activated:

Note: BAR 3,5 and 6 are disabled.

Note: BAR 1 and 3 are disabled

Table 13 Function 1

BAR # Address
Space

Mapped at internal Address BAR points to...

1 2 M-byte 0xBFE0 0000 COMDRAM

2 8 M-byte 0xE800 0000 EDRAM & Scratchpad TriCore

4 4 M-byte 0xF000 0000 Peripherals, svm mode

Table 14 Function 2

BAR # Address
Space

Mapped at internal Address BAR points to...

2 512 K-byte 0xE800 0000 EDRAM TriCore

4 2 M-byte 0xF000 0000 Peripherals, svm mode

5 4 K-byte 0xF800 0000 EBU setup, LMU setup, svm
mode

6 32 byte I/O 0xA000 0000 Memory mapped I/O on EBU

AP3230
TC11IB Boot ROM Code

Peripheral Mode - Upload via PCI Interface

Application Note 36 V 1.0, 2002-02

6.2 PCI Boot

Bootcode resets UPLOAD KEY value at address 0xAFC0 0000 to 0x0000 0000.
Afterwards the PCI2FPI bridge will be activated to accept accesses via PCI bus (Clock
Control = 1, PCI Mode = 0x0100 010B).

The PCI host has to install the BAR2 memory region of function 1 in his internal address
map A_BAR2 (Alternatively, also BAR2 of function 2 can be selected). Afterwards the
PCI host has to load the boot routines in the internal DRAM starting at the mapped
address of BAR2 (host memory map) A_BAR2 + 4. Internally this address corresponds
to 0xE800 0004 (FPI address map). Loaded code has a maximum size of 512 K-bytes.
Following the PCI host will write the 32-bit upload key (0x1234 5678)) at address
A_BAR2 which corresponds to an access at 0xE800 0000 (FPI address map). TC11IB
will poll and wait for a change of the PCI UPLOAD key at address 0xAFC0 0000 (TC11IB
memory map) to become the upload key value. After that TC11IB will start from internal
DRAM at address 0xAFC0 0004.

Boot code will not support any error handling on PCI2FPI bridge of TC11IB. The PCI host
is responsible for a correct completion of the PCI access.

Note: The PCI reset behaviour after a soft reset is programmable. As the bootcode does
not change the default settings of the PCIBCR registers, any changes within this
registers will not be corrected by the boot code routines. So if the PCI2FPI reset
values have been changed during runtime, RREXT of RST_REQ has to be set to
’1’ to bring the PCI2FPI reset values to it’s default values for PCI boot.

6.3 Power Management Setup of PCI2FPI Interface

Every FPI agent can force TriCore in power down states via the PMG_CSR register. This
register is part of the Infineon peripherals and can be accessed via BAR 4, function 2.
So the essential power management setup can be done by the according PC driver. PCI
boot does not change the default value of the PMG_CSR register.

6.4 Subvendor ID, Subvendor Device ID and Registry Entries

The Vendor ID, Device ID and Subvendor ID (which is identical with the Vendor ID) will
determine which function to activate. The PC registry entry of an add-in- card depends
on this information. The registry entry allows to distinguish different PCI devices, so that
PC drivers will not interfere. In addition, Subvendor Device ID - SID1 (0x0001) and SID2
(0x0002) allow two registry entries (one for each function) and thus an additional
diversification of the according PC drivers.

AP3230
TC11IB Boot ROM Code

Peripheral Mode - Upload via PCI Interface

Application Note 37 V 1.0, 2002-02

6.5 Routines Loaded via SSC

In some cases, the default PCI configuration described in the chapter above will not suit
in the chosen TC11IB design. This is for example, if additional memory is used on
L_EBU. In this case the PCI upload can be changed through booting from an EEPROM
connected to the SSC. This EEPROM contains the PCI default configuration of the
PCI2FPI interface. Please note that the loaded code via SSC is responsible for installing
the PCI interface. There is no support via the boot ROM code through any kind of
enhanced PCI boot option. Besides the SSC0 boot all other boot options can be used to
install a different reset state of the PCI2FPI bridge. Therefore an additional PCI boot
option can be installed.

Table 15 PCI Vendor ID Entries

SVID SID

Function 1 Vendor ID 0x0001

Function 2 Vendor ID 0x0002

AP3230
TC11IB Boot ROM Code

Peripheral Mode - Upload via L_EBU Interface

Application Note 38 V 1.0, 2002-02

7 Peripheral Mode - Upload via L_EBU Interface
Boot code resets UPLOAD KEY value at address 0xAFC0 0000 to 0x0000 0000.
Afterwards the EBU will be configured to accept accesses from an external master via
EBU (EBUCON = 0x0200 00AE).

The EBU master has to load the boot routines to the internal DRAM starting at the 24-bit
EBU address 0x00 0004 (A[23:22] = 00b-> aext0 [9:0] = 1110 1000 00b -> access to
TC11IB internal memory map 0xE800 0004). The loaded code has a maximum size of
512 Kbyte. Following the EBU master will write the 32-bit UPLOAD KEY (0x1234 5678))
at address 0x0000 0000 (external host memory map, internal memory FPI map 0xE800
0000). TC11IB will poll and wait for a change of the UPLOAD KEY at address 0xAFC0
0000 to get the upload key value. After that TC11IB will run from internal DRAM at
address 0xAFC0 0004.

AP3230
TC11IB Boot ROM Code

Bootstrap Loading from MMC via ROSA

Application Note 39 V 1.0, 2002-02

8 Bootstrap Loading from MMC via ROSA
This boot option supports bootstrap loading from MultiMediaCard “MMC” (see “The
MultiMediaCard System Specification”). The connection of the MMC-Bus with the
TriCore will be set-up with an MMC adapter named ’Record on Silicon Adapter’ ROSA
(see “MultimediaCard Adapter Specification and VHDL Reference”), which is connected
to the TC11IB slow FPI-bus. The loader reads 512 bytes from an MMC card and writes
it to the RAM_START address (default 0xAFC0 0004) in the internal DRAM. After that,
the loader jumps to this address to execute the loaded code.

Please note the following information and restrictions related to the MMC bootstrap
loader:

• only one MMC card will be supported
• MMC interrupts will not be supported
• only Flash- and ROM-cards will be supported
• data will be read per single block transfer mode of 512 bytes
• on any error condition, the loader will branch to “Error Handling”

8.1 ROSA Register Set

Table 16 shows the ROSA register set which is particularly described in “The
MultiMediaCard System Specification”.

8.2 MMC Boot Algorithm

The flow chart in Figure 12 shows the MMC boot algorithm.

Table 16 ROSA Registers

Register Address Comment

MMCI_CLC 0xF000 0B00 MMCI Interface Clock Control Register

MMCI_SRC 0xF000 0BFC MMCI Interface Service Request Control Register

MMCI_CMD 0xF000 0B14 MMCI Command Register

MMCI_DATA 0xF000 0B10 MMCI Data Register

MMCI_ID 0xF000 0B08 MMCI Interface Indentification Register

AP3230
TC11IB Boot ROM Code

Bootstrap Loading from MMC via ROSA

Application Note 40 V 1.0, 2002-02

Figure 12 MMC Boot Sequence

Initialize ROSA Interface

Initialize MMC Cards

CAM_SET_IRQMASK(x, x, x, x, x)
CAM_POWER_UP()
GO_IDLE_STATE()
SEND_OP_COND(255, 255, 255, 255)
ALL_SEND_CID()

Load Data from MMC in internal
DRAM at RAM_START

Jump to Error

SEND_CSD(1, 0)
CAM_SET_CLK_PERIOD(x)
SET_DSR(1, 4)
SELECT_CARD(1, 0)
SET_BLOCKLEN(0, 0, 2, 0)
READ_SINGLE_BLOCK(0, 0, 0, 0)

Read pending bytes

All 512 Bytes read ?

Jump at RAM_START to
execute the loaded code

Jump to Error

SELECT_CARD(0)

On any error

On any error

No

AP3230
TC11IB Boot ROM Code

Bootstrap Loading from MMC via ROSA

Application Note 41 V 1.0, 2002-02

Table 17 Command Overview

Command Meaning

ALL_SEND_CID() Send a broadcast to discover a card; The card
send it’s card ID (CID) back

CAM_POWER_UP() Power on; Set the MMC cards in idle state

CAM_SET_CLK_PERIOD(x) Set the MMC bus frequency

CAM_SET_IRQMASK(x, x, x, x, x) Set the IRQ mask register of the ROSA
interface

GO_IDLE_STATE() Reset all cards to idle state

READ_SINGLE_BLOCK(x, x, x, x) Read the block

SELECT_CARD(x) Bring the selected card in inactive state

SELECT_CARD(x, x) Select a card by it’s relative address and bring
it in transfer state

SEND_CSD(1, 0) Read the card specific register (CSD) from the
addressed card

SEND_OP_COND(x, x, x, x) Ask all cards in idle state to send their
operation condition register and bring it in
ready state; bit 31 in the response indicates,
that a minimum of one card is busy

SET_BLOCKLEN(x, x, x, x) Set the blocklength for the following block
transfer

SET_DSR(x, x) Programs the driver stage register (DSR) of all
cards

SET_RELATIVE_ADDR(x, x) Assign a relative address to the card

AP3230
TC11IB Boot ROM Code

Error Handling

Application Note 42 V 1.0, 2002-02

9 Error Handling
If an error occurs during some parts of the boot sequence, port 4.9 will be set up as
output port and will toggle permanently. There are exceptions e.g. during SSC bootstrap
loader mode or ASC bootstrap loader mode.

h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

Infineon goes for Business Excellence

“Business excellence means intelligent approaches and clearly
defined processes, which are both constantly under review and
ultimately lead to good operating results.
Better operating results and business excellence mean less
idleness and wastefulness for all of us, more professional
success, more accurate information, a better overview and,
thereby, less frustration and more satisfaction.”

Dr. Ulrich Schumacher

