
N e v e r s t o p t h i n k i n g .

Microcontrol lers

User’s Manual, V1.0, Mar. 2002

TC11IB
System Units

32-Bi t Single-Chip Microcontrol ler

Edition 2002-03

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München, Germany

© Infineon Technologies AG 1988.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

Microcontrol lers

User ’s Manual, V1.0, Mar. 2002

N e v e r s t o p t h i n k i n g .

TC11IB
System Units

32-Bi t Single-Chip Microcontrol ler

TC11IB System Units User’s Manual
Revision History: 2002-03 V1.0

Previous Version:

Page Subjects (major changes since last revision)

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

TC11IB
System Units

1 Introduction . 1-1
1.1 About this Document . 1-1
1.1.1 Related Documentations . 1-1
1.1.2 Textual Conventions . 1-1
1.1.3 Reserved, Undefined, and Unimplemented Terminology 1-3
1.1.4 Register Access Modes . 1-3
1.1.5 Abbreviations . 1-4
1.2 System Architecture Features of the TC11IB . 1-6
1.3 Block Diagram . 1-10
1.4 On-Chip Peripheral Units of the TC11IB . 1-11
1.4.1 Serial Interfaces . 1-12
1.4.1.1 Asynchronous/Synchronous Serial Interface 1-12
1.4.1.2 High-Speed Synchronous Serial Interface 1-14
1.4.1.3 Asynchronous Serial Interface (16X50) . 1-16
1.4.2 Timer Units . 1-18
1.4.2.1 General Purpose Timer Unit . 1-18
1.4.3 MultiMediaCard Interface (MMCI) . 1-21
1.4.4 Ethernet Controller . 1-22
1.4.5 PCI . 1-24
1.5 Pin Definitions and Functions . 1-26

2 TC11IB Processor Architecture . 2-1
2.1 Central Processing Unit . 2-2
2.1.1 Instruction Fetch Unit . 2-3
2.1.2 Execution Unit . 2-4
2.1.3 General Purpose Register File . 2-5
2.1.4 Program State Registers . 2-6
2.1.5 Data Types . 2-7
2.1.6 Addressing Modes . 2-7
2.1.7 Instruction Formats . 2-7
2.1.8 Tasks and Contexts . 2-7
2.1.8.1 Upper and Lower Contexts . 2-8
2.1.8.2 Context Save Areas . 2-9
2.1.8.3 Fast Context Switching . 2-9
2.1.9 Interrupt System . 2-10
2.1.10 Trap System . 2-10
2.1.11 Protection System . 2-11
2.1.11.1 Permission Levels . 2-11
2.1.11.2 Memory Protection Model . 2-11
2.1.11.3 Watchdog Timer and ENDINIT Protection 2-12
2.1.12 Reset System . 2-12
2.2 Processor Registers . 2-13
2.2.1 Program State Information Registers . 2-16
User’s Manual I-1 V1.0, 2002-03

TC11IB
System Units

2.2.1.1 Program Counter (PC) . 2-16
2.2.1.2 Program Status Word (PSW) . 2-17
2.2.1.3 Previous Context Information Register (PCXI) 2-21
2.2.2 Context Management Registers . 2-23
2.2.2.1 Free Context List Head Pointer (FCX) . 2-23
2.2.2.2 Previous Context Pointer (PCX) . 2-24
2.2.3 Free Context List Limit Pointer (LCX) . 2-25
2.2.4 Stack Management . 2-26
2.2.4.1 Interrupt Stack Pointer (ISP) . 2-26
2.2.5 Interrupt and Trap Control . 2-27
2.2.5.1 Interrupt Vector Table Pointer (BIV) . 2-27
2.2.5.2 Trap Vector Table Pointer (BTV) . 2-28
2.2.6 System Control Register . 2-29
2.2.7 Memory Protection Registers . 2-30
2.2.8 Debug Registers . 2-30
2.2.9 CSFR Address Table . 2-31
2.3 Instruction Set Overview . 2-34
2.3.1 Arithmetic Instructions . 2-34
2.3.1.1 Integer Arithmetic . 2-35
2.3.1.2 DSP Arithmetic . 2-42
2.3.2 Compare Instructions . 2-45
2.3.3 Bit Operations . 2-48
2.3.4 Address Arithmetic . 2-50
2.3.5 Address Comparison . 2-51
2.3.6 Branch Instructions . 2-51
2.3.6.1 Unconditional Branch . 2-52
2.3.6.2 Conditional Branch . 2-52
2.3.6.3 Loop Instructions . 2-53
2.3.7 Load and Store Instructions . 2-54
2.3.7.1 Load/Store Basic Data Types . 2-55
2.3.7.2 Load Bit . 2-57
2.3.7.3 Store Bit and Bit Field . 2-57
2.3.8 Context Related Instructions . 2-58
2.3.8.1 Context Saving and Restoring . 2-58
2.3.8.2 Context Loading and Storing . 2-58
2.3.9 System Instructions . 2-59
2.3.9.1 System Call . 2-59
2.3.9.2 Synchronization Primitives . 2-59
2.3.9.3 Access to the Core Special Function Registers 2-60
2.3.9.4 Enabling/Disabling the Interrupt System . 2-60
2.3.9.5 RET and RFE . 2-61
2.3.9.6 Trap Instructions . 2-61
2.3.9.7 No Operation . 2-61
User’s Manual I-2 V1.0, 2002-03

TC11IB
System Units

2.3.10 16-Bit Instructions . 2-61
2.4 CPU Pipelines . 2-62
2.4.1 CPU Pipeline Overview . 2-62
2.4.2 Integer and Load/Store Pipelines . 2-62
2.4.3 Loop Pipeline . 2-64
2.4.4 Context Operations . 2-65

3 Clock System . 3-1
3.1 Clock Generation Unit . 3-3
3.1.1 Oscillator Circuit . 3-3
3.1.2 Phase-Locked Loop (PLL) . 3-4
3.1.2.1 N-Divider . 3-5
3.1.2.2 VCO Frequency Ranges . 3-5
3.1.2.3 Lock Detection . 3-5
3.1.2.4 K-Divider . 3-5
3.1.2.5 Enable/Disable Control . 3-5
3.1.3 Determining the System Clock Frequency . 3-5
3.1.4 PLL Clock Control and Status Register . 3-6
3.1.5 Startup Operation . 3-7
3.1.6 PLL Loss of Lock Operation . 3-8
3.2 Power Management and Clock Gating . 3-8
3.2.1 Clock Control . 3-9
3.2.2 Module Clock Generation . 3-10
3.2.3 Clock Control Registers . 3-11
3.2.4 CLC Register Implementations . 3-16

4 System Control Unit . 4-1
4.1 Overview . 4-1
4.2 Registers Overview . 4-2
4.3 Trace Control . 4-3
4.4 Identification Registers . 4-5

5 Reset and Boot Operation . 5-1
5.1 Overview . 5-1
5.2 Reset Registers . 5-2
5.2.1 Reset Status Register (RST_SR) . 5-2
5.2.2 Reset Request Register (RST_REQ) . 5-4
5.3 Reset Operations . 5-6
5.3.1 Power-On Reset . 5-6
5.3.2 External Hardware Reset . 5-6
5.3.3 Software Reset . 5-7
5.3.4 Watchdog Timer Reset . 5-8
5.3.4.1 Watchdog Timer Reset Lock . 5-8
5.3.4.2 Deep-Sleep Wake-Up Reset . 5-9
User’s Manual I-3 V1.0, 2002-03

TC11IB
System Units

5.3.5 LMU eDRAM Reset . 5-10
5.3.6 State of the TC11IB After Reset . 5-11
5.4 Booting Scheme . 5-13
5.4.1 Hardware Booting Scheme . 5-13
5.4.2 Software Booting Scheme . 5-13
5.4.3 Boot Options . 5-14
5.4.4 Boot Configuration Handling . 5-15
5.4.5 Normal Boot Options . 5-15
5.4.6 Debug Boot Options . 5-16

6 Power Management . 6-1
6.1 Power Management Overview . 6-1
6.2 Power Management Control Registers . 6-2
6.2.1 Power Management Control Register PMG_CON 6-3
6.2.2 Power Management Control and Status Register PMG_CSR 6-5
6.3 Power Management Modes . 6-6
6.3.1 Idle Mode . 6-6
6.3.2 Sleep Mode . 6-6
6.3.2.1 Entering Sleep Mode . 6-6
6.3.2.2 TC11IB State During Sleep Mode . 6-7
6.3.2.3 Exiting Sleep Mode . 6-7
6.3.3 Deep Sleep Mode . 6-7
6.3.3.1 Entering Deep Sleep Mode . 6-8
6.3.3.2 TC11IB State During Deep Sleep Mode . 6-8
6.3.3.3 Exiting Deep Sleep Mode . 6-8
6.3.3.4 Exiting Deep Sleep Mode With A Power-On Reset Signal 6-9
6.3.3.5 Exiting Deep Sleep Mode With an NMI Signal 6-9
6.3.4 Summary of TC11IB Power Management States 6-10

7 Memory Map of On-Chip Local Memories . 7-1
7.1 TC11IB Address Map . 7-2
7.2 Memory Segment 15 - Peripheral Units . 7-6

8 Program Memory Unit . 8-1
8.1 Memories Controlled by PMU . 8-2
8.2 Functions . 8-2
8.3 Scratch-Pad RAM, SPRAM . 8-3
8.4 Instruction Cache, ICACHE . 8-4
8.4.1 Cache Organization . 8-4
8.4.2 Cache Bypass Control . 8-4
8.4.3 Refill Sequence for Cache . 8-4
8.4.4 Instruction Streaming . 8-5
8.4.5 Cache Coherency, Cache Invalidation . 8-5
8.5 PMU Registers . 8-6
User’s Manual I-4 V1.0, 2002-03

TC11IB
System Units

8.5.1 PMU Control Registers . 8-7

9 Data Memory Unit . 9-1
9.1 DMU Trap Generation . 9-3
9.1.1 LMB Bus Error . 9-3
9.1.2 Range Error . 9-3
9.1.3 DMU Register Access Error . 9-4
9.1.4 Cache Management Error . 9-4
9.2 DMU Registers . 9-5
9.2.1 Control Register . 9-6
9.2.2 Synchronous Trap Flag Register . 9-6
9.2.3 Asynchronous Trap Flag Register . 9-9

10 Memory Management Unit . 10-1
10.1 Address Spaces . 10-2
10.1.1 Address Translation . 10-4
10.1.2 Translation Lookaside Buffers . 10-4
10.1.3 Cacheability . 10-5
10.1.3.1 Cacheability for Direct Translation . 10-5
10.1.3.2 Cacheability for PTE-Based Translation . 10-6
10.1.4 Memory Protection . 10-6
10.1.4.1 Protection for Direct Translation . 10-6
10.1.4.2 Protection for PTE-Based Translation . 10-7
10.1.5 Multiple Address Spaces . 10-7
10.1.6 MMU Traps . 10-7
10.1.7 MMU Instructions . 10-10
10.1.7.1 MAP Command (TLB Map) . 10-10
10.1.7.2 DEMAP Command (TLB Demap) . 10-10
10.1.7.3 FLUSH Command (TLB Flush) . 10-11
10.1.7.4 PROBE Command (TLB Probe) . 10-11
10.2 MMU Registers . 10-11
10.2.1 Configuration Register . 10-12
10.2.2 Address Space Identifier Register . 10-13
10.2.3 Translation Virtual Address Register . 10-14
10.2.4 Translation Physical Address Register . 10-15
10.2.5 Translation Page Index Register . 10-16
10.2.6 Translation Fault Address Register . 10-17

11 On-Chip Local Memories . 11-1
11.1 Local Memory Unit . 11-1
11.1.1 eDRAM Overview . 11-2
11.1.2 eDRAM Address Map . 11-2
11.1.3 LMU Operation Overview . 11-2
11.1.3.1 LMB Slot Condition . 11-6
User’s Manual I-5 V1.0, 2002-03

TC11IB
System Units

11.1.3.2 Read Data Scratch Registers . 11-6
11.1.3.3 Prefetch Mechanism . 11-7
11.1.3.4 Refresh Modes of Operation . 11-7
11.1.3.5 Error . 11-9
11.1.3.6 LMU Reset . 11-9
11.1.4 LMU Registers . 11-10
11.1.4.1 LMU MODE Register . 11-11
11.1.4.2 REFRATE Register . 11-12
11.2 ComDRAM . 11-13
11.2.1 ComDRAM Registers . 11-13
11.2.1.1 ComDRAM Clock Register . 11-14
11.2.1.2 ComDRAM OCDS Suspend Register . 11-15
11.2.1.3 ComDRAM Reset Register . 11-16
11.2.1.4 ComDRAM Refresh Register . 11-16
11.2.1.5 ComDRAM MODE Register . 11-17
11.3 Boot ROM . 11-18
11.3.1 Bootstrap Loader Support . 11-18

12 Memory Protection System . 12-1
12.1 Memory Protection Overview . 12-1
12.2 Memory Protection Registers . 12-3
12.2.1 PSW Protection Fields . 12-7
12.2.2 Data Memory Protection Register . 12-11
12.2.3 Code Memory Protection Register . 12-14
12.3 Sample Protection Register Set . 12-17
12.4 Memory Access Checking . 12-18
12.4.1 Permitted versus Valid Accesses . 12-18
12.4.2 Crossing Protection Boundaries . 12-19

13 Parallel Ports . 13-1
13.1 General Port Operation . 13-2
13.2 Port Kernel Registers . 13-4
13.2.1 Data Output Register . 13-5
13.2.2 Data Input Register . 13-5
13.2.3 Direction Register . 13-7
13.2.4 Open Drain Control Register . 13-8
13.2.5 Pull-Up/Pull-Down Device Control . 13-8
13.2.6 Alternate Input Functions . 13-8
13.2.6.1 Alternate Output Functions . 13-9
13.3 Port 0 . 13-9
13.3.1 Features . 13-9
13.3.2 Registers . 13-9
13.3.3 Port Configuration and Function . 13-10
13.4 Port 1 . 13-11
User’s Manual I-6 V1.0, 2002-03

TC11IB
System Units

13.4.1 Features . 13-11
13.4.2 Registers . 13-12
13.4.3 Port Configuration and Function . 13-13
13.5 Port 2 . 13-16
13.5.1 Features . 13-16
13.5.2 Registers . 13-17
13.5.3 Port Configuration and Function . 13-17
13.6 Port 3 . 13-21
13.6.1 Features . 13-21
13.6.2 Registers . 13-21
13.6.3 Port Configuration and Function . 13-22
13.7 Port 4 . 13-23
13.7.1 Features . 13-23
13.7.2 Registers . 13-23
13.7.3 Port Configuration and Function . 13-24
13.8 Port 5 . 13-25
13.8.1 Features . 13-25
13.8.2 Registers . 13-25
13.8.3 Port Configuration and Function . 13-26

14 External Bus Unit . 14-1
14.1 Overview . 14-2
14.2 EBU Features . 14-3
14.3 Basic EBU Operation . 14-4
14.3.1 Internal to External Operation . 14-6
14.3.2 External to Internal Operation . 14-6
14.4 EBU Signal Description . 14-7
14.4.1 Address Bus, A[23:0] . 14-9
14.4.2 Address/Data Bus, AD[31:0] . 14-9
14.4.3 Read/Write Strobes, RD and RD/WR . 14-9
14.4.4 Address Latch Enable, ALE . 14-9
14.4.5 Byte Control Signals, BCx . 14-10
14.4.6 External Extension of the Command Delay,CMDELAY 14-10
14.4.7 Variable Wait State Control, WAIT . 14-11
14.4.8 Chip Select Lines, CSx, CSGLB . 14-12
14.4.9 EBU Arbitration Signals, HOLD, HLDA and BREQ 14-13
14.4.10 EBU Chip Select, CSFPI . 14-13
14.4.11 Emulation Support Signals, CSEMU and CSOVL 14-13
14.5 Detailed Internal to External EBU Operation (Master Mode) 14-13
14.5.1 EBU Address Regions . 14-14
14.5.1.1 Address Region Selection . 14-15
14.5.1.2 Address Region Parameters . 14-18
14.5.2 Driver Turn-Around Wait States . 14-23
User’s Manual I-7 V1.0, 2002-03

TC11IB
System Units

14.5.3 Data Buffering . 14-24
14.5.4 Data Width of External Devices . 14-26
14.5.5 Basic Access Timing . 14-26
14.5.5.1 Standard Access Phases . 14-26
14.5.5.2 Access to Demultiplexed Devices . 14-28
14.5.5.3 Access to Multiplexed Devices . 14-30
14.5.6 Interfacing to Asynchronous Devices . 14-33
14.5.6.1 Interfacing to INTEL-style Devices . 14-35
14.5.6.2 Interfacing to Motorola-Style Devices . 14-36
14.6 Detailed External to Internal EBU Operation (Slave Mode) 14-39
14.6.1 EBU Signal Direction . 14-39
14.6.2 Address Translation . 14-40
14.6.3 External to Internal Access Control . 14-41
14.6.4 Basic Access Timing . 14-42
14.7 Arbitration . 14-44
14.7.1 Arbitration Modes . 14-44
14.7.1.1 Arbitration Signals . 14-44
14.7.1.2 Arbitration Sequence . 14-46
14.7.2 Locking the External Bus . 14-49
14.7.3 EBU Reaction to an LMB Access to the External Bus 14-49
14.8 EBU Boot Process . 14-50
14.9 Emulation Support . 14-52
14.9.1 Emulation Boot . 14-53
14.9.2 Overlay Memory . 14-53
14.10 External Instruction Fetches . 14-55
14.10.1 Signal List . 14-55
14.10.2 Basic Functions . 14-55
14.10.3 Cycle Definitions of Burst Mode Timing . 14-57
14.10.4 External Cycle Control via the WAIT Input 14-59
14.10.4.1 Asynchronous Wait for Page Load Mode (Intel) 14-59
14.10.4.2 Synchronous Terminate and Start New Burst Mode (AMD) 14-61
14.10.5 Termination of a Burst Access . 14-62
14.11 SDRAM Interface . 14-62
14.11.1 Signal List . 14-64
14.11.2 External Interface . 14-64
14.11.3 Supported SDRAM commands . 14-66
14.11.4 Power Up sequence . 14-67
14.11.5 Initialization sequence . 14-67
14.11.6 SDRAM Accesses . 14-69
14.11.7 Multibanking Operation . 14-70
14.11.7.1 Bank-Page Tag Structure . 14-71
14.11.7.2 Bank Mask and Page Mask . 14-71
14.11.7.3 Decisions over Page_hit and Bank_hit . 14-72
User’s Manual I-8 V1.0, 2002-03

TC11IB
System Units

14.11.8 Banks Precharge . 14-74
14.11.9 Refresh Cycles . 14-75
14.11.10 Power Down Support . 14-76
14.11.11 SDRAM Addressing Scheme . 14-76
14.12 EBU Registers . 14-81
14.12.1 Clock Control Register . 14-84
14.12.2 Address Select Registers . 14-85
14.12.3 Bus Configuration Registers . 14-86
14.12.4 Emulator Configuration Registers . 14-91
14.12.5 EBU Configuration Register . 14-98
14.12.6 Burst Flash Control Register . 14-100
14.12.7 SDRAM Configuration Registers . 14-101
14.12.8 External Access Configuration Register . 14-106
14.12.9 EBU Register Address Range . 14-108

15 Interrupt System . 15-1
15.1 Overview . 15-1
15.2 Service Request Nodes . 15-4
15.2.1 Service Request Control Registers . 15-4
15.2.2 Service Request Flag (SRR) . 15-6
15.2.2.1 Request Set and Clear Bits (SETR, CLRR) 15-6
15.2.2.2 Enable Bit (SRE) . 15-6
15.2.3 Type-of-Service Control (TOS) . 15-7
15.2.4 Service Request Priority Number (SRPN) . 15-7
15.3 Interrupt Control Units . 15-8
15.3.1 Interrupt Control Unit (ICU) . 15-8
15.3.1.1 ICU Interrupt Control Register (ICR) . 15-8
15.3.1.2 Operation of the Interrupt Control Unit (ICU) 15-10
15.3.2 PCP Interrupt Control Unit (PICU) . 15-11
15.3.2.1 PICU Interrupt control Register . 15-11
15.4 Arbitration Process . 15-13
15.4.1 Controlling the Number of Arbitration Cycles 15-13
15.4.2 Controlling the Duration of Arbitration Cycles 15-14
15.5 Entering an Interrupt Service Routine . 15-14
15.6 Exiting an Interrupt Service Routine . 15-15
15.7 Interrupt Vector Table . 15-16
15.8 Usage of the TC11IB Interrupt System . 15-18
15.8.1 Spanning Interrupt Service Routines Across Vector Entries 15-18
15.8.2 Configuring Ordinary Interrupt Service Routines 15-19
15.8.3 Interrupt Priority Groups . 15-20
15.8.4 Splitting Interrupt Service Across Different Priority Levels 15-21
15.8.5 Using different Priorities for the same Interrupt Source 15-22
15.8.6 Software Initiated Interrupts . 15-22
User’s Manual I-9 V1.0, 2002-03

TC11IB
System Units

15.8.7 Interrupt Priority 1 . 15-23
15.9 CPU Service Request Nodes . 15-24
15.10 External Interrupts . 15-25
15.10.1 Register Description . 15-26
15.11 PCI Interrupts . 15-32
15.11.1 PCI Interrupt . 15-32
15.11.2 PCI Software Interrupt . 15-33
15.11.3 PCI SRC Registers . 15-35
15.12 Fast FPI Bus Control Unit Interrupt (BCU0) . 15-36
15.12.1 BCU0 SRC Register . 15-37
15.13 Ethernet Controller Interrupts . 15-38
15.13.1 Ethernet Controller SRC Registers . 15-39
15.14 Service Request Register Table . 15-40

16 Trap System . 16-1
16.1 Trap System Overview . 16-1
16.2 Trap Classes . 16-3
16.2.1 Synchronous Traps . 16-5
16.2.2 Asynchronous Traps . 16-5
16.2.3 Hardware Traps . 16-5
16.2.4 Software Traps . 16-5
16.2.5 Trap Descriptions . 16-6
16.3 Trap Vector Table . 16-10
16.3.1 Entering a Trap Service Routine . 16-11
16.4 Non-Maskable Interrupt . 16-12
16.4.1 NMI Status Register . 16-12
16.4.2 External NMI Input . 16-13
16.4.3 Phase-Locked Loop NMI . 16-13
16.4.4 Watchdog Timer NMI . 16-14

17 Peripheral Control Processor . 17-1
17.1 Peripheral Control Processor Overview . 17-1
17.2 PCP Architecture . 17-1
17.2.1 PCP Processor . 17-2
17.2.2 PCP Code Memory . 17-3
17.2.3 PCP Parameter RAM . 17-4
17.2.4 Slow FPI Bus Interface . 17-4
17.2.5 PCP Interrupt Control Unit and Service Request Nodes 17-4
17.3 PCP Programming Model . 17-5
17.3.1 General Purpose Register Set of the PCP . 17-5
17.3.1.1 Register R0 . 17-6
17.3.1.2 Registers R1, R2, and R3 . 17-6
17.3.1.3 Registers R4 and R5 . 17-6
17.3.1.4 Register R6 . 17-6
User’s Manual I-10 V1.0, 2002-03

TC11IB
System Units

17.3.1.5 Register R7 . 17-7
17.3.2 Contexts and Context Models . 17-8
17.3.2.1 Context Models . 17-10
17.3.2.2 Context Save Area . 17-12
17.3.2.3 Context Restore Operation for CR6 and CR7 17-15
17.3.2.4 Context Save Operation for CR6 and CR7 17-18
17.3.2.5 Initialization of the Contexts . 17-21
17.3.2.6 Context Save Optimization . 17-22
17.3.3 Channel Programs . 17-22
17.3.3.1 Channel Restart Mode . 17-23
17.3.3.2 Channel Resume Mode . 17-23
17.4 PCP Operation . 17-25
17.4.1 PCP Initialization . 17-25
17.4.2 Channel Invocation and Context Restore Operation 17-25
17.4.3 Channel Exit and Context Save Operation 17-26
17.4.3.1 Normal Exit . 17-26
17.4.3.2 Exit as a Result of an Interrupt . 17-27
17.4.3.3 Error Condition Channel Exit . 17-28
17.4.4 Debug Exit . 17-28
17.5 PCP Interrupt Operation . 17-29
17.5.1 Issuing Service Requests to CPU or PCP . 17-30
17.5.2 PCP Interrupt Control Unit . 17-31
17.5.3 PCP Service Request Nodes (PSRN) . 17-31
17.5.4 Issuing PCP Service Requests . 17-32
17.5.4.1 Service Request on EXIT Instruction . 17-32
17.5.4.2 Service Request on Suspension of Interrupt 17-33
17.5.4.3 Service Request on Error . 17-33
17.5.5 Queue Management Control and Status Logic 17-34
17.5.5.1 Queue Full Operation . 17-34
17.6 PCP Error Handling . 17-35
17.6.1 Enforced PRAM Partitioning . 17-35
17.6.2 Channel Watchdog . 17-36
17.6.3 Invalid Opcode . 17-37
17.6.4 Instruction Address Error . 17-37
17.7 PCP Reset . 17-37
17.7.1 Hard Reset . 17-37
17.7.2 Soft Reset . 17-37
17.8 Instruction Set Overview . 17-38
17.8.1 DMA Primitives . 17-38
17.8.2 Load and Store . 17-39
17.8.3 Exchange Instructions . 17-40
17.8.4 Arithmetic and Logical Instructions . 17-40
17.8.5 Bit Manipulation . 17-42
User’s Manual I-11 V1.0, 2002-03

TC11IB
System Units

17.8.6 Flow Control . 17-42
17.8.7 Addressing Modes . 17-43
17.8.7.1 FPI Bus Addressing . 17-43
17.8.7.2 PRAM Addressing . 17-44
17.8.7.3 Bit Addressing . 17-44
17.8.7.4 Flow Control Destination Addressing . 17-44
17.9 Accessing PCP Resources from the FPI Bus 17-45
17.9.1 Access to the PCP Control Registers . 17-45
17.9.2 Access to the PRAM . 17-45
17.9.3 Access to the PCODE . 17-46
17.10 Debugging the PCP . 17-47
17.11 PCP Registers . 17-49
17.11.1 PCP Clock Control Register, PCP_CLC . 17-51
17.11.2 PCP Control and Status Register, PCP_CS 17-51
17.11.3 PCP Error/Debug Status Register, PCP_ES 17-54
17.11.4 PCP Interrupt Control Register, PCP_ICR 17-56
17.11.5 PCP Interrupt Threshold Register, PCP_ITR 17-57
17.11.6 PCP Interrupt Configuration Register, PCP_ICON 17-59
17.11.7 PCP Stall Status Register, PCP_SSR . 17-60
17.11.8 PCP Feature Test/Disable Register, PCP_FTD 17-62
17.11.9 PCP Service Request Control Register 0 . 17-63
17.11.10 PCP Service Request Control Register 1 . 17-64
17.11.11 PCP Service Request Control Register 2 . 17-65
17.11.12 PCP Service Request Control Register 3 . 17-66
17.11.13 PCP Service Request Control Register 4 . 17-67
17.11.14 PCP Service Request Control Register 5 . 17-68
17.11.15 PCP Service Request Control Register 6 . 17-69
17.11.16 PCP Service Request Control Register 7 . 17-70
17.11.17 PCP Service Request Control Register 8 . 17-71
17.11.18 PCP Service Request Control Register 9 . 17-72
17.11.19 PCP Service Request Control Register 10 17-74
17.11.20 PCP Service Request Control Register 11 17-76
17.12 PCP Instruction Set Details . 17-78
17.12.1 Instruction Codes and Fields . 17-78
17.12.1.1 Conditional Codes . 17-79
17.12.1.2 Instruction Encoding . 17-80
17.12.2 Counter Operation for COPY Instruction . 17-83
17.12.3 Counter Operation for BCOPY Instruction . 17-84
17.12.4 Divide and Multiply Instructions . 17-85
17.12.4.1 Divide Instructions. . 17-87
17.12.4.2 Multiply Instructions. . 17-87
17.12.5 ADD, 32-Bit Addition . 17-88
17.12.6 AND, 32-Bit Logical AND . 17-89
User’s Manual I-12 V1.0, 2002-03

TC11IB
System Units

17.12.7 BCOPY, DMA Instruction . 17-90
17.12.8 CHKB, Check Bit . 17-91
17.12.9 CLR, Clear Bit . 17-91
17.12.10 COMP, 32-Bit Compare . 17-91
17.12.11 COPY, DMA Instruction . 17-93
17.12.12 DEBUG, Debug Instruction . 17-94
17.12.13 DINIT, Divide Initialization Instruction . 17-94
17.12.14 DSTEP, Divide Instruction . 17-95
17.12.15 EXIT, Exit Instruction . 17-96
17.12.16 INB, Insert Bit . 17-96
17.12.17 JC, Jump Conditionally . 17-97
17.12.18 JL, Jump Long Unconditional . 17-98
17.12.19 LD, Load . 17-98
17.12.20 LDL, Load 16-bit Value . 17-99
17.12.21 PRAM Bit Instructions . 17-99
17.12.22 Multiply Initialization Instruction . 17-100
17.12.23 MOV, Move Register to Register . 17-100
17.12.24 Multiply Instructions . 17-101
17.12.25 NEG, Negate . 17-102
17.12.26 NOP, No Operation . 17-102
17.12.27 NOT, Logical NOT . 17-102
17.12.28 OR, Logical OR . 17-103
17.12.29 PRI, Prioritize . 17-104
17.12.30 RL, Rotate Left . 17-104
17.12.31 RR, Rotate Right . 17-105
17.12.32 SET, Set Bit . 17-105
17.12.33 SHL, Shift Left . 17-106
17.12.34 SHR, Shift Right . 17-106
17.12.35 ST, Store . 17-107
17.12.36 SUB, 32-Bit Subtract . 17-108
17.12.37 XCH, Exchange Instructions . 17-109
17.12.38 XOR, 32-Bit Logical Exclusive OR . 17-110
17.12.39 Flag Updates of Instructions . 17-111
17.13 Programming of the PCP . 17-112
17.13.1 Initial PC of a Channel Program . 17-112
17.13.1.1 Channel Entry Table . 17-113
17.13.1.2 Channel Resume . 17-113
17.13.2 Channel Management for Small and Minimum Contexts 17-114
17.13.3 Unused Registers as Globals or Constants 17-115
17.13.4 Dispatch of Low Priority Tasks . 17-115
17.13.5 Code Reuse Across Channels (Call and Return) 17-115
17.13.6 Case-like Code Switches (Computed Go-To) 17-116
17.13.7 Simple DMA Operation . 17-116
User’s Manual I-13 V1.0, 2002-03

TC11IB
System Units

17.13.7.1 COPY Instruction . 17-116
17.13.7.2 BCOPY Instruction (Burst Copy) . 17-117
17.14 PCP Programming Notes and Tips . 17-118
17.14.1 Notes on PCP Configuration . 17-118
17.14.2 General Purpose Register Use . 17-118
17.14.3 Use of Channel Interruption . 17-119
17.14.3.1 Dynamic Interrupt Masking . 17-120
17.14.3.2 Control of Channel Priority (CPPN) . 17-120
17.14.4 Implementing Divide Algorithms . 17-120
17.14.5 Implementing Multiply Algorithms . 17-122
17.15 PCP Implementation in TC11IB . 17-124
17.15.1 PCP Memories . 17-124
17.15.2 PCP Register Address Range . 17-124

18 LMB Bus, FPI Buses, and Bus Control . 18-1
18.1 Fast FPI Bus and Slow FPI Bus Overview . 18-1
18.2 Local Memory Bus Overview (LMB) . 18-3
18.3 FPI-FPI Bridge . 18-4
18.3.1 FFI Bridge Control Register . 18-6
18.4 LMB-FPI Bridge . 18-7
18.4.1 LFI Configuration Register . 18-8
18.5 Bus Control Units . 18-8
18.5.1 FPI Bus Arbitration . 18-10
18.5.1.1 Arbitration Priority . 18-10
18.5.1.2 Bus Starvation Protection (not LMB Bus) 18-12
18.5.2 Error Handling . 18-12
18.5.3 BCU Power Saving Mode . 18-16
18.5.4 F_FPI Bus Address Map . 18-17
18.5.5 S_FPI Bus Address Map . 18-18
18.5.6 BCU Registers . 18-19
18.5.6.1 BCU Control Register . 18-20
18.5.6.2 BCU Debug Registers . 18-23
18.5.6.3 LCU Debug Registers . 18-25
18.5.6.4 BCU Service Request Control Register . 18-28

19 System Timer . 19-1
19.1 Overview . 19-1
19.2 Kernel Functions . 19-1
19.3 Kernel Registers . 19-4
19.4 External Register . 19-7
19.5 STM Register Address Ranges . 19-8

20 Watchdog Timer . 20-1
20.1 Watchdog Timer Overview . 20-1
User’s Manual I-14 V1.0, 2002-03

TC11IB
System Units

20.2 Features of the Watchdog Timer . 20-2
20.3 The EndInit Function . 20-3
20.4 Watchdog Timer Operation . 20-4
20.4.1 WDT Register Overview . 20-5
20.4.2 Modes of the Watchdog Timer . 20-6
20.4.2.1 Time-Out Mode . 20-7
20.4.2.2 Normal Mode . 20-7
20.4.2.3 Disable Mode . 20-8
20.4.2.4 Prewarning Mode . 20-8
20.4.3 Password Access to WDT_CON0 . 20-9
20.4.4 Modify Access to WDT_CON0 . 20-10
20.4.5 Term Definitions for WDT_CON0 Accesses 20-10
20.4.6 Detailed Descriptions of the WDT Modes . 20-11
20.4.6.1 Time-Out Mode Details . 20-11
20.4.6.2 Normal Mode Details . 20-12
20.4.6.3 Disable Mode Details . 20-13
20.4.6.4 Prewarning Mode Details . 20-14
20.4.6.5 WDT Operation During Power-Saving Modes 20-15
20.4.6.6 WDT Operation in OCDS Suspend Mode 20-15
20.4.6.7 Double Watchdog Error. . 20-16
20.4.7 Determining WDT Periods . 20-16
20.4.7.1 Time-out Period . 20-17
20.4.7.2 Normal Period . 20-18
20.4.7.3 WDT Period During Power-Saving Modes 20-19
20.5 Handling the Watchdog Timer . 20-19
20.5.1 System Initialization . 20-19
20.5.2 Re-opening Access to Critical System Registers 20-20
20.5.3 Servicing the Watchdog Timer . 20-21
20.5.4 Handling the User-Definable Password Field 20-21
20.5.5 Determining the Required Values for a WDT Access 20-25
20.6 Watchdog Timer Registers . 20-26
20.6.1 Watchdog Timer Control Register 0 . 20-27
20.6.2 Watchdog Timer Control Register 1 . 20-29
20.6.3 Watchdog Timer Status Register . 20-30

21 On-Chip Debug Support . 21-1
21.1 TriCore CPU Debug Support . 21-2
21.1.1 Basic Concepts . 21-2
21.1.2 Debug Event Generation . 21-2
21.1.2.1 External Debug Break Input . 21-3
21.1.2.2 Software Debug Event Generation . 21-3
21.1.2.3 Execution of a MTCR or MFCR Instruction 21-3
21.1.2.4 Debug Event Generation from Debug Triggers 21-4
User’s Manual I-15 V1.0, 2002-03

TC11IB
System Units

21.1.3 Debug Triggers . 21-4
21.1.3.1 Protection Mechanism . 21-4
21.1.3.2 Combination of Triggers . 21-5
21.1.4 Actions Taken on a Debug Event . 21-6
21.1.4.1 Assert an External Pin BRKOUT . 21-6
21.1.4.2 Halt . 21-6
21.1.4.3 Breakpoint Trap . 21-6
21.1.4.4 Software Breakpoint . 21-7
21.1.5 OCDS Registers . 21-8
21.2 PCP Debug Support . 21-16
21.3 Multi-Core Debug Support . 21-16
21.3.1 Break and Suspend Control . 21-17
21.3.1.1 Break Bus Switch . 21-19
21.3.1.2 Suspend Signal Generation . 21-20
21.3.2 Registers . 21-23
21.4 Trace Module . 21-25
21.4.1 Overview . 21-25
21.4.2 Pipeline Status Signals . 21-25
21.4.2.1 Synchronizing with the Status and Indirect Streams 21-27
21.4.3 Indirect Addresses . 21-28
21.4.3.1 Indirect Sync . 21-28
21.4.3.2 Example . 21-29
21.4.3.3 Breakpoint Qualification . 21-30
21.4.4 Trace Output Control . 21-31
21.5 Debugger Interface (Cerberus) . 21-32
21.5.1 RW Mode . 21-33
21.5.1.1 Entering RW Mode . 21-33
21.5.1.2 Data Type Support . 21-33
21.5.1.3 FPI Bus Master Interface . 21-33
21.5.2 Communication Mode . 21-34
21.5.3 System Security . 21-34
21.5.4 Triggered Transfers . 21-34
21.5.4.1 Tracing of Memory Locations . 21-35
21.5.5 Trace with External Bus Address . 21-35
21.5.6 Reset Behavior . 21-36
21.5.7 Power Saving . 21-36
21.5.8 Registers . 21-36
21.5.8.1 IOCONF Register . 21-38
21.5.8.2 IOSR Register . 21-40
21.5.8.3 TRADDR Register . 21-41
21.5.8.4 IOADDR, COMDATA and RWDATA Registers 21-41
21.6 OCDS Register Address Ranges . 21-41
User’s Manual I-16 V1.0, 2002-03

TC11IB
System Units

22 Register Overview . 22-1
22.1 Segments 0 - 14 . 22-2
22.1.1 Address Map . 22-2
22.2 Segment 15 (Peripheral Units) . 22-5
22.2.1 Address Map . 22-5
22.2.2 Registers . 22-9

23 Index . 23-1
23.1 Keyword Index . 23-1
23.2 Register Index . 23-9
User’s Manual I-17 V1.0, 2002-03

TC11IB
System Units

Introduction
1 Introduction
This User’s Manual describes the Infineon TC11IB, a 32-bit microcontroller DSP for
industrial communication applications, based on the Infineon TriCore Architecture.

1.1 About this Document

This document is designed to be read primarily by design engineers and software
engineers who need a detailed description of the interactions of the TC11IB functional
units, registers, instructions, and exceptions.

This TC11IB User’s Manual describes the features of the TC11IB with respect to the
TriCore Architecture. Because TC11IB directly implements TriCore architectural
functions, this manual simply refers to those functions as features of the TC11IB. In all
cases where this manual describes a TC11IB feature without referring to the TriCore
Architecture, this means that the TC11IB is a direct embodiment the TriCore
Architecture.

Since TC11IB implements a subset of TriCore architectural features, this manual
describes the TC11IB implementation, and then describes how it differs from the TriCore
Architecture. For example, the TriCore Architecture specifies up-to four Memory
Protection Register Sets, the TC11IB implements but two. Such differences between the
TC11IB and the TriCore Architecture are documented in the text covering each such
subject.

1.1.1 Related Documentations

A complete description of the TriCore architecture is found in the document titled
“TriCore Architecture Manual”. The architecture of the TC11IB is described separately
this way because of the configurable nature of the TriCore specification: different
versions of the architecture may contain a different mix of systems components. The
TriCore architecture, however, remains constant across all derivative designs in order to
preserve compatibility.

Additionally to this “TC11IB System Units User’s Manual”, a second document, the
“TC11IB Peripheral Units User’s Manual”, is available. These two User’s Manuals
together with the “TriCore Architecture Manual” are required for the understanding the
complete TC11IB microcontroller functionality.

Implementation-specific details such as electrical characteristics and timing parameters
of the TC11IB can be found in the “TC11IB Data Sheet”.

1.1.2 Textual Conventions

This document uses the following textual conventions for named components of the
TC11IB:
User’s Manual 1-1 V1.0, 2002-03

TC11IB
System Units

Introduction
• Functional units of the TC11IB are given in plain UPPER CASE. For example: “The
EBU provides an interface to external peripherals”.

• Pins using negative logic are indicated by an overbar. For example: “The BYPASS pin
is latched with the rising edge of the PORST pin”.

• Bit fields and bits in registers are in general referenced as “Register name.Bit field” or
“Register name.Bit”. For example: “The Current CPU Priority Number bit field
ICR.CCPN is cleared”. Most of the register names contain a module name prefix,
separated by a underscore character “_” from the real register name (for example,
“ASC_CON”, where “ASC” is the module name prefix, and “CON” is the real register
name). In chapters describing peripheral modules the real register name is referenced
also as kernel register name.

• Variables used to describe sets of processing units or registers appear in mixed-case
font. For example, register name “MSGCFGn” refers to multiple “MSGCFG” registers
with variable n. The bounds of the variables are always given where the register
expression is first used (for example, “n = 31 - 0”), and is repeated as needed in the
rest of the text.

• The default radix is decimal. Hexadecimal constants are suffixed with a subscript letter
“H”, as in 100H. Binary constants are suffixed with a subscript letter “B”, as in: 111B.

• When the extent of register fields, groups of signals, or groups of pins are collectively
named in the body of the document, they are given as “NAME[A:B]“, which defines a
range for the named group from B to A. Individual bits, signals, or pins are given as
“NAME[C]” where the range of the variable C is given in the text. For example:
CLKSEL[2:0], and TOS[0].

• Units are abbreviated as follows:
– MHz = Megahertz
– µs = Microseconds
– kBaud, kBit = 1000 characters/bits per second
– MBaud, MBit = 1,000,000 characters/bits per second
– KByte = 1024 bytes of memory
– MByte = 1048576 bytes of memory
In general, the k prefix scales a unit by 1000 whereas the K prefix scales a unit by
1024. Hence, the KByte unit scales the expression preceding it by 1024. The kBaud
unit scales the expression preceding it by 1000. The M prefix scales by 1,000,000 or
1048576, and µ scales by .000001. For example, 1 KByte is 1024 bytes, 1 MByte is
1024 × 1024 bytes, 1 kBaud/kBit are 1000 characters/bits per second, 1 MBaud/MBit
are 1000000 characters/bits per second, and 1 MHz is 1,000,000 Hz.

• Data format quantities are defined as follows:
– Byte = 8-bit quantity
– Half-word = 16-bit quantity
– Word = 32-bit quantity
– Double-word = 64-bit quantity
User’s Manual 1-2 V1.0, 2002-03

TC11IB
System Units

Introduction
1.1.3 Reserved, Undefined, and Unimplemented Terminology

In tables where register bit fields are defined, the following conventions are used to
indicate undefined and unimplemented function. Further, types of bits and bit fields are
defined using the abbreviations as shown in Table 1-1.

1.1.4 Register Access Modes

Read and write access to registers and memory locations are sometimes restricted. In
memory and register access tables, the following terms are used.

Table 1-1 Bit Function Terminology

Function of Bits Description

Unimplemented Register bit fields named 0 indicate unimplemented functions
with the following behavior.
– Reading these bit fields returns 0.
– Writing these bit fields has no effect.
These bit fields are reserved. When writing, software should
always set such bit fields to 0 in order to preserve compatibility
with future products.

Undefined Certain bit combinations in a bit field can be labeled “Reserved”,
indicating that the behavior of the TC11IB is undefined for that
combination of bits. Setting the register to undefined bit
combinations may lead to unpredictable results. Such bit
combinations are reserved. When writing, software must always
set such bit fields to legal values as given in the tables.

rw The bit or bit field can be read and written.

r The bit or bit field can only be read (read-only).

w The bit or bit field can only be written (write-only).

h The bit or bit field can also be modified by hardware (such as a
status bit). This symbol can be combined with ‘rw’ or ‘r’ bits to
‘rwh’ and ‘rh’ bits.

Table 1-2 Access Terms

Symbol Description

U Access permitted in User Mode 0 or 1.

SV Access permitted in Supervisor Mode.

R Read-only register.

32 Only 32-bit word accesses are permitted to that register/address range.
User’s Manual 1-3 V1.0, 2002-03

TC11IB
System Units

Introduction
1.1.5 Abbreviations

The following acronyms and termini are used within this document:

ADC Analog-to-Digital Converter
AGPR Address General Purpose Register
ALE Address Latch Enable
ALU Arithmetic and Logic Unit
ASC Asynchronous/Synchronous Serial Controller
BCU Bus Control Unit
CISC Complex Instruction Set Computing
CPS CPU Slave Interface Registers
CPU Central Processing Unit
CSFR Core Special Function Registers
DGPR Data General Purpose Register
DMU Data Memory Unit
DRAM Dynamic Random Access Memory
EBU External Bus Unit
FFI FPI to FPI Interface
FPI Flexible Peripheral Interconnect (Bus)
GPR General Purpose Register
GPTU General Purpose Timer Unit
ICACHE Instruction Cache
I/O Input / Output
LFI LMB to FPI Interface
LMB Local Memory Bus

E Endinit protected register/address.

PW Password protected register/address.

NC No change, indicated register is not changed.

BE Indicates that an access to this address range generates a Bus Error.

nBE Indicates that no Bus Error is generated when accessing this address
range, even though it is either an access to an undefined address or the
access does not follow the given rules.

nE Indicates that no Error is generated when accessing this address or
address range, even though the access is to an undefined address or
address range. True for CPU accesses (MTCR/MFCR) to undefined
addresses in the CSFR range.

X Undefined value or bit.

Table 1-2 Access Terms (cont’d)

Symbol Description
User’s Manual 1-4 V1.0, 2002-03

TC11IB
System Units

Introduction
LMU Local Memory Unit
MMCI MultiMediaCard Interface
MMU Memory Management Unit
NMI Non-Maskable Interrupt
OCDS On-Chip Debug Support
OVRAM Code Overlay Memory
PCP Peripheral Control Processor
PMU Program Memory Unit
PLL Phase Locked Loop
PCODE PCP Code Memory
PMU Program Memory Unit
PRAM PCP Parameter RAM
RAM Random Access Memory
RISC Reduced Instruction Set Computing
SCU System Control Unit
SFR Special Function Register
SPRAM Scratch-Pad Code Memory
SRAM Static Data Memory
SSC Synchronous Serial Controller
STM System Timer
WDT Watchdog Timer
User’s Manual 1-5 V1.0, 2002-03

TC11IB
System Units

Introduction
1.2 System Architecture Features of the TC11IB

The TC11IB combines three powerful technologies within one silicon die, achieving new
levels of power, speed, and economy for embedded applications:

• Reduced Instruction Set Computing (RISC) processor architecture
• Digital signal processing (DSP) operations and addressing modes
• On-chip memories and peripherals

DSP operations and addressing modes provide the computational power necessary to
efficiently analyze complex real-world signals. The RISC load/store architecture
provides high computational bandwidth with low system cost. On-chip memory and
peripherals are designed to support even the most demanding high-bandwidth real-time
embedded control-systems tasks.

Additional high-level features of the TC11IB include:

• Program Memory Unit — instruction memory and instruction cache
• Data Memory Unit — data memory and data cache
• Embedded DRAM — 12Mbit code / data DRAM memory.
• Memory Management Unit — Windows CE compliant.
• Two FPI buses — flexible interconnection with peripherals with different performance.
• One LMB Bus — Optimized for memory access speed.
• Serial communication interfaces — flexible synchronous and asynchronous modes
• Multiple industrial communication interfaces — PCI v2.2, Fast Ethernet Interfaces.
• MultiMediaCard Interface
• Peripheral Control Processor — DMA operations and interrupt servicing
• General purpose timers
• On-chip debugging and emulation facilities
• Flexible interconnections to external components
• Flexible power-management

The TC11IB is a high performance microcontroller with TriCore CPU, program and data
memories, buses, bus arbitration, an interrupt controller, a peripheral control processor,
several on-chip peripherals, an external bus interface, and two industrial communication
interfaces. Except meeting true real-time, deterministic operation features of Industrial
controllers, TC11IB is designed as a platform for new industrial control systems that are
migrating from specialized interface and communications architectures to standards
pioneered in the computer industry, such as PCI and Ethernet communications,
standard PC-type memories, and real-time operating systems such as Microsoft’s
Windows™ CE. To meet the needs of the most demanding embedded control systems
applications, the competing issues of price/performance, real-time responsiveness,
computational power, data bandwidth, and power consumption are key design elements.

The TC11IB offers several versatile on-chip peripheral units such as serial controllers,
timer units, PCI and Fast Ethernet. Within the TC11IB, all these peripheral units are
connected to the TriCore CPU/system via the Slow Flexible Peripheral Interconnect Bus
(S_FPI) and/or Fast Flexible Peripheral Interconnect Bus (F_FPI) and Local Memory
User’s Manual 1-6 V1.0, 2002-03

TC11IB
System Units

Introduction
Bus (LMB). Special I/O lines and Several I/O lines on the TC11IB ports are reserved for
these peripheral units to communicate with the external world.

High Performance 32-Bit CPU

• 32-bit architecture with 4 GBytes unified data, program, and input/output address
space

• Fast automatic context-switch
• Multiply-accumulate unit
• Saturating integer arithmetic
• Fast response local memory bus
• Two high performance on-chip peripheral buses (S_FPI Bus and F_FPI Bus)
• Register based design with multiple variable register banks
• Bit handling
• Packed data operations
• Zero overhead loop
• Precise exceptions
• Flexible power management

Instruction Set with High Efficiency

• 16/32-bit instructions for reduced code size
• Data types include: Boolean, array of bits, character, signed and unsigned integer,

integer with saturation, signed fraction, double word integers, and IEEE-754 single
precision floating-point

• Data formats include: Bit, 8-bit byte, 16-bit half word, 32-bit word, and 64-bit double
word data formats

• Powerful instruction set
• Flexible and efficient addressing mode for high code density

External Bus Interface

• Programmable external bus interface for low cost system implementation (Intel-style
and Motorola-style device/peripheral support)

• Glueless interface to a wide selection of external memories (ROM, EPROM, SRAM,
SDRAM, Burst Flash and PC 100 SDRAM)

• 8/16/32 bit data transfer
• Support for big and little endian byte ordering at bus interface
• Flexible address generation and access timing

Integrated On-Chip Memory

• Main core code memory
– 24 KBytes Scratch-pad RAM (SPRAM)
– 8 KByte Instruction Cache (ICache) for external code memory accesses
User’s Manual 1-7 V1.0, 2002-03

TC11IB
System Units

Introduction
• Main core data memory
– 24 KBytes data memory (SRAM)
– 8 KBytes Data Cache memory

• Local code/data memory
– 512 KBytes LMU eDRAM
– 1 Mbytes ComDRAM

• 16 KBytes boot ROM (BROM)
• Peripheral Control Processor memory

– 16 KBytes volatile code memory (PCODE)
– 4 KBytes volatile parameter memory (PRAM)

Interrupt System

• 110 Service Request Nodes (SRNs)
• Flexible interrupt prioritizing scheme with 256 interrupt priority levels
• Fast interrupt response
• Service requests are serviced either by CPU (= interrupt) or by PCP

Peripheral Control Processor (PCP)

• Data move between any two memory or I/O locations
• Data move until predefined limit reached supported
• Read - Modify - Write capabilities
• Full computation capabilities including basic MUL/DIV

– Read/move data and accumulate it to previously read data
– Read two data values and perform arithmetic or logically operation and store result
– Bit handling capabilities (testing, setting, clearing)
– Flow control instructions (conditional/unconditional jumps, breakpoint)

I/O Lines With Individual Bit Addressability

• Push/pull or selectable open drain output mode
• TTL input thresholds
• Fixed Pull-up/Pull-down devices

Plastic Ball Grid Array (P-BGA) Package

• The TC11IB is packaged in a P-BGA-338 package

Temperature Ranges

• Ambient temperature: -25 °C to +85 °C
• Max. junction temperature: +125 °C
User’s Manual 1-8 V1.0, 2002-03

TC11IB
System Units

Introduction
System Clock Frequency

• Maximum System Clock Frequency: 96MHz

Complete Development Support

A variety of software and hardware development tools for the 32-bit microcontroller
TC11IB is available from experienced international tool suppliers. The development
environment for the Infineon 32-bit microcontroller includes the following tools:

• Embedded Development Environment for TriCore Products
• The TC11IB On-chip Debug Support (OCDS) provides a JTAG port for

communication between external hardware and the system.
• The Flexible Peripheral Interconnect Buses (F_FPI Bus and S_FPI Bus) for on-chip

interconnections and the FPI Bus control units (BCU0 and BCU1).
• The System Timer (STM) with high-precision, long-range timing capabilities.
• The TC11IB includes a power management system, a watchdog timer as well as a

reset logic.
User’s Manual 1-9 V1.0, 2002-03

T
C

11IB
S

ystem
 U

n
its

In
tro

d
u

ctio
n

U
ser’s M

anual
1-10

V
1.0, 2002-03

 1.3
B

lo
ck D

iag
ram

F
ig

u
re

1

MCB04939

PTU1
 Timers

GPTU0
3 Timers

Cerberus JTAG

PLL
96 & 48 MHz

LMU
512 KB
eDRAM

JTAG I/O

XTAL2

XTAL1

5

Control

BRKOUT

BRKIN

8

OCDSE

OCDS2
16

88

PORT0

LMB (Local Memory Bus) 96 MHz, 64 Bit

16

V
DD

1.8-3.3 V

V
SS

rface) 48 MHz, 32 Bit

 TC11IB
Block Diagram
-1
T

C
11IB

 B
lo

ck D
iag

ram

PCP

Interrupt

4 K Data SRAM

16 K Code SRAM

O
C

D
S

F
P

I
In

te
rf

a
c
e

Boot-ROM
16 Kbytes

MMCI
16x50
XON/
XOFF

ASC
FIFO,
IrDA

SSC
G
3

SCU
(PWR)
Power

Management,
Watchdog Timer,

Reset

BCU1
Slow FPI BUS

TriCore 1.3
CPU

Interrupt
Trace &
OCDS

PMU
(Program Memory Unit)
24 KB Scratch Pad RAM
8 KB Instruction Cache

FFI
Bridge

DMU
(Data Memory Unit)

24 KB Scratch Pad RAM
8 KB Data Cache

ComDRAM
1 MB, 96 MHz

BCU0
Fast FPI BUS

Fast FPI Bus 96 MHz, 32 Bit

LFI
Bridge

EBU_LMB

Fast
Ethernet

PCI V2.2 33 MHz
(DMA Support) +

Power Management

32831

PORT1PORT2

MDIO

TxCLK

RxCLK

15

32

20

P_AD[31:0]

P_Control

PORT3PORT4PORT5

9

32

33

AD[31:0]

EBU_Control

MMU

24
A[23:0]

3

16 16 16

External
Interrupts

External
Interrupts

16 16

128 64

Slow FPI Bus (Flexible Peripheral Inte

TC11IB
System Units

Introduction
1.4 On-Chip Peripheral Units of the TC11IB

The following peripherals are all described in detail in the “TC11IB Peripheral Units
User’s Manual”:

• One Asynchronous/Synchronous Serial Channels with baud rate generator, parity,
framing, and overrun error detection

• One High Speed Synchronous Serial Channels with programmable data length and
shift direction

• One Asynchronous Serial Interface with programmable XON/XOFF characters
software flow control and hardware flow control

• Two Multifunctional General Purpose Timer Units with three 32-bit timer/counter each
• One MultiMediaCard Interface with pointer based data transfer and CRC protection
• One Ethernet Controller with Media Access Controller (MAC) fully compliant with IEEE

802.3 and Media Independent Interface (MII)
• One PCI Interface with PCI command support and PCI power management

The next sections within this chapter provide an overview of these peripheral units

Note: Additionally to the “TC11IB System Units User’s Manual”, a 2nd document, the
“TC11IB Peripheral Units User’s Manual”, is available. These two User’s Manuals
together with the “TriCore Architecture Manual” are required for the understanding
the complete TC11IB microcontroller functionality.
User’s Manual 1-11 V1.0, 2002-03

TC11IB
System Units

Introduction
1.4.1 Serial Interfaces

The TC11IB includes three serial peripheral interface units:

– Asynchronous/Synchronous Serial Interface (ASC)
– High-Speed Synchronous Serial Interface (SSC)
– Asynchronous Serial Interface (16X50)

1.4.1.1 Asynchronous/Synchronous Serial Interface

Figure 1-2 shows a global view of the functional blocks of the Asynchronous/
Synchronous Serial interface ASC.

Figure 1-2 General Block Diagram of the ASC Interfaces

ASC Module communicates with the external world via one pair of I/O lines. The RXD
line is the receive data input signal (in Synchronous Mode also output). TXD is the
transmit output signal. Clock control, address decoding, and interrupt service request
control are managed outside the ASC Module kernel.

The Asynchronous/Synchronous Serial Interface provides serial communication
between the TC11IB and other microcontrollers, microprocessors or external
peripherals.

The ASC supports full-duplex asynchronous communication and half-duplex
synchronous communication. In Synchronous Mode, data is transmitted or received
synchronous to a shift clock which is generated by the ASC internally. In Asynchronous
Mode, 8-bit or 9-bit data transfer, parity generation, and the number of stop bits can be
selected. Parity, framing, and overrun error detection are provided to increase the
reliability of data transfers. Transmission and reception of data are double-buffered. For
multiprocessor communication, a mechanism is included to distinguish address bytes
from data bytes. Testing is supported by a loop-back option. A 13-bit baud rate generator

M C B 04938

C lock
C on tro l

A dd ress
D ecod e r

In te rru p t
C on tro l

fAS C

A S C
M o du le

P o rt
C o n tro l

P 1 .6 /
A S C _R xD

R xD

T xD
P 1 .7 / A S C _ T xD
User’s Manual 1-12 V1.0, 2002-03

TC11IB
System Units

Introduction
provides the ASC with a separate serial clock signal that can be very accurately adjusted
by a prescaler implemented as a fractional divider.

Features:

• Full duplex asynchronous operating modes
– 8- or 9-bit data frames, LSB first
– Parity bit generation/checking
– One or two stop bits
– Baudrate from 3 MBaud to 0.71 Baud (@ 48 MHz clock)

• Multiprocessor mode for automatic address/data byte detection
• Loop-back capability
• Support for IrDA data transmission up to 115.2 KBaud maximum
• Half-duplex 8-bit synchronous operating mode

– Baudrate from 6 MBaud to 488.3 Baud (@ 48 MHz clock)
• Double buffered transmitter/receiver
• Interrupt generation

– On a transmitter buffer empty condition
– On a transmit last bit of a frame condition
– On a receiver buffer full condition
– On an error condition (frame, parity, overrun error)

• FIFO
– 8 bytes receive FIFO (RXFIFO)
– 8 bytes transmit FIFO (TXFIFO)
– Independent control of RXFIFO and TXFIFO
– 9-bit FIFO data width
– Programmable Receive/Transmit Interrupt Trigger Level
– Receive and transmit FIFO filling level indication
– Overrun error generation
User’s Manual 1-13 V1.0, 2002-03

TC11IB
System Units

Introduction
1.4.1.2 High-Speed Synchronous Serial Interface

Figure 1-3 shows a global view of the functional blocks of the High-Speed Synchronous
Serial interface SSC.

Figure 1-3 General Block Diagram of the SSC Interfaces

The SSC Module has three I/O lines, located at Port 1. The SSC Module is further
supplied by separate clock control, interrupt control, address decoding, and port control
logic.

The SSC supports full-duplex and half-duplex serial synchronous communication up to
24 MBaud (@ 48 MHz module clock). The serial clock signal can be generated by the
SSC itself (master mode) or can be received from an external master (slave mode). Data
width, shift direction, clock polarity, and phase are programmable. This allows
communication with SPI-compatible devices. Transmission and reception of data are
double-buffered. A 16-bit baud rate generator provides the SSC with a separate serial
clock signal.

M C B04952

C lock
C o n tro l

A dd ress
D ecod e r

In te rrup t
C o n tro l

fSSC

S S C
M o d u le

P o rt
C o n tro l

P 1 .2 / M T S RT xD
R xD

T xD
R xD

M a ste r
S la ve

S
la

ve
S

C
LK

M
as

te
r

P 1 .1 / M R S T

P 1 .0 / S C L K
User’s Manual 1-14 V1.0, 2002-03

TC11IB
System Units

Introduction
Features:

• Master and slave mode operation
– Full-duplex or half-duplex operation

• Flexible data format
– Programmable number of data bits: 2 to 16 bit
– Programmable shift direction: LSB or MSB shift first
– Programmable clock polarity: idle low or high state for the shift clock
– Programmable clock/data phase: data shift with leading or trailing edge of the shift

clock
• Baud rate generation from 24 MBaud to 366.2 Baud (@ 48 MHz module clock)
• Interrupt generation

– On a transmitter empty condition
– On a receiver full condition
– On an error condition (receive, phase, baud rate, transmit error)

• Three-pin interface
– Flexible SSC pin configuration
User’s Manual 1-15 V1.0, 2002-03

TC11IB
System Units

Introduction
1.4.1.3 Asynchronous Serial Interface (16X50)

The 16X50 is a universal asynchronous receiver/transmitter (UART) which is fully
prorammable.It supports word lengths from five to eight bits, an optional parity bit and
one or two stop bits.If enabled, the parity can be odd, even or forced to a defined state.
The 16X50 includes a 16-bit programmable baud rate generator and an 8-bit scratch
register, together with two 16-byte FIFOs -one for transmit and one for receive. It has six
modem control lines and supports a diagnostic loop-back mode. An interrupt can be
generated from any one of 10 sources. Figure 1-4 shows a global view of the functional
blocks of the Asynchronous Serial Interface (16X50).

Figure 1-4 General Block Diagram of the 16X50 Interface

The 16X50 Module communicates with the external world via five input and three output
lines located at Port 1.

The 16X50 provides serial asynchronous receive data synchronization, parallel-to-serial
and serial-to-parallel data conversions for both the transmitter and receiver sections.
These functions are necessary for converting the serial data stream into parallel data
that is required with digital data systems. Synchronization for the serial data stream is
accomplished by adding start and stops bits to the transmit data to form a data character
(character orientated protocol). Data integrity is insured by attaching a parity bit to the
data character. The parity bit is checked by the receiver for any transmission bit errors.
The electronic circuitry to provide all these functions is fairly complex especially when
manufactured on a single integrated silicon chip. The 16X50 represents such an
integration with greatly enhanced features.

The 16X50 is an upward solution that provides 16 bytes of transmit and receive FIFO
memory, instead of 1 byte provided in the 16C450. The 16X50 is designed to work with
high speed modems and shared network environments, that require fast data processing

M C B 04937

C lock
C on tro l

A dd ress
D ecod e r

In te rru p t
C on tro l

f16x50

1 6 x50
M o du le

P o rt
C o n tro l

P 1 .15 / 1 6x50 _ R I

P 1 .14 / 1 6x50 _ C T S

P 1 .13 / 1 6x50 _ D T R

P 1 .12 / 1 6x50 _ D S R

P 1 .11 / 1 6x50 _ D C D

P 1 .10 / 1 6x50 _ R T S

P 1 .9 / 16 x5 0_ T xD

P 1 .8 / 16 x5 0_ R xD
User’s Manual 1-16 V1.0, 2002-03

TC11IB
System Units

Introduction
time. Increased performance is realized in the 16X50 by the larger transmit and receive
FIFO’s. This allows the external processor to handle more networking tasks within a
given time. The 4 selectable levels of FIFO trigger provided for maximum data
throughput performance especially when operating in a multi-channel environment. The
combination of the above greatly reduces the bandwidth requirement of the external
controlling CPU, increases performance, and reduces power consumption.

The 16X50 is capable of operation to 3 Mbps with a 48 MHz clock input (f16X50).

Features:

• Software upward compatible with the NS16550A
• Standard modem interface
• Programmable word length, stop bits and parity
• Programmable baud rate generator
• Interrupt generation
• Diagnostic loop-back mode
• Scratch register
• Automatic hardware/software flow control
• Programmable XON/XOFF characters
• Independent transmit and receive control
• FIFO

– 16 byte transmit FIFO
– 16 byte receive FIFO with error flags
– Four selectable receive FIFO interrupt trigger levels
User’s Manual 1-17 V1.0, 2002-03

TC11IB
System Units

Introduction
1.4.2 Timer Units

The TC11IB includes two timer units:

– General Purpose Timer Units, GPTU0 and GPTU1.

1.4.2.1 General Purpose Timer Unit

Figure 1-5 shows a global view of all functional blocks of the two General Purpose Timer
Unit (GPTU0 & GPTU1) Modules.

Figure 1-5 General Block Diagram of the GPTU Interface

M C B 04943

C lo ck
C on tro l

A d d ress
D e co de r

In te rru p t
C on tro l

fG P TU0

G P T U 0
M od u le

P o rt
C on tro l

P 0 .0 / G P T U 0 _ IO 0

P 0 .1 / G P T U 0 _ IO 1

P 0 .2 / G P T U 0 _ IO 2

P 0 .3 / G P T U 0 _ IO 3

P 0 .4 / G P T U 0 _ IO 4

P 0 .5 / G P T U 0 _ IO 5

P 0 .6 / G P T U 0 _ IO 6

P 0 .7 / G P T U 0 _ IO 7

S R 0

S R 1

S R 2

S R 3

S R 4

S R 5

S R 6

S R 7

IN 0

IN 1

IN 2

IN 3

IN 4

IN 5

IN 6

IN 7

O U T 0

O U T 1

O U T 2

O U T 3

O U T 4

O U T 5

O U T 6

O U T 7

C lo ck
C on tro l

A d d ress
D e co de r

In te rru p t
C on tro l

fG P TU1

G P T U 1
M od u le

P o rt
C on tro l

P 0 .8 / G P T U 1_ IO 0

P 0 .9 / G P T U 1_ IO 1

P 0 .1 0 / G P T U 1 _ IO 2

P 0 .1 1 / G P T U 1 _ IO 3

P 0 .1 2 / G P T U 1 _ IO 4

P 0 .1 3 / G P T U 1 _ IO 5

P 0 .1 4 / G P T U 1 _ IO 6

P 0 .1 5 / G P T U 1 _ IO 7

S R 0

S R 1

S R 2

S R 3

S R 4

S R 5

S R 6

S R 7

IN 0

IN 1

IN 2

IN 3

IN 4

IN 5

IN 6

IN 7

O U T 0

O U T 1

O U T 2

O U T 3

O U T 4

O U T 5

O U T 6

O U T 7
User’s Manual 1-18 V1.0, 2002-03

TC11IB
System Units

Introduction
Each GPTU module, GPTU0 and GPTU1, consists of three 32-bit timers designed to
solve such application tasks as event timing, event counting, and event recording. And
each GPTU module communicates with the external world via eight I/O lines located at
Port 1.

The three timers in each GPTU Module T0, T1, and T2, can operate independently from
each other or can be combined:

General Features:

• All timers are 32-bit precision timers with a maximum input frequency of fGPTU.
• Events generated in T0 or T1 can be used to trigger actions in T2
• Timer overflow or underflow in T2 can be used to clock either T0 or T1
• T0 and T1 can be concatenated to form one 64-bit timer

Features of T0 and T1:

• Each timer has a dedicated 32-bit reload register with automatic reload on overflow
• Timers can be split into individual 8-, 16-, or 24-bit timers with individual reload

registers
• Overflow signals can be selected to generate service requests, pin output signals, and

T2 trigger events
• Two input pins can determine a count option

Features of T2:

• Count up or down is selectable
• Operating modes:

– Timer
– Counter
– Quadrature counter (incremental/phase encoded counter interface)

• Options:
– External start/stop, one-shot operation, timer clear on external event
– Count direction control through software or an external event
– Two 32-bit reload/capture registers

• Reload modes:
– Reload on overflow or underflow
– Reload on external event: positive transition, negative transition, or both transitions

• Capture modes:
– Capture on external event: positive transition, negative transition, or both

transitions
– Capture and clear timer on external event: positive transition, negative transition, or

both transitions
• Can be split into two 16-bit counter/timers
User’s Manual 1-19 V1.0, 2002-03

TC11IB
System Units

Introduction
• Timer count, reload, capture, and trigger functions can be assigned to input pins. T0
and T1 overflow events can also be assigned to these functions.

• Overflow and underflow signals can be used to trigger T0 and/or T1 and to toggle
output pins

• T2 events are freely assignable to the service request nodes.
User’s Manual 1-20 V1.0, 2002-03

TC11IB
System Units

Introduction
1.4.3 MultiMediaCard Interface (MMCI)

The MultiMediaCard Interface module provides interface to MultiMediaCard bus. It
supports the full MultiMediaCard bus protocol as defined in MultiMediaCard system
specification version 1.3. Figure 1-6 shows a global view of the MMCI module with the
module specific interface connections.

Figure 1-6 General Block Diagram of MMCI Interface

The MMCI module communicates with external world via two IO lines and five output
lines which are located at Port 1, 2 and 5. Clock control, interrupt service and address
decoding are managed outside the MMCI module Kernel.

MMCI handles the data transfer on CMD and DAT of the MMC Bus. It performs the
transfer from bit serial to byte parallel or vice versa and sustains a 16 Mbps data rate. To
fulfil the MMC Bus protocol, special bytes are modified via inserting start and stop bits or
CRC bits. A clock controller is implemented to divide the clock to the necessary MMC
Bus clock frequency.

Features

• 3 line serial interface --- Glueless interface to MultiMediaCard Bus
• Pointer based data transfer
• Block and sequential card access
• 16MHz MultiMediaCard bus clock generation
• CRC protection for the MultiMediaCard bus communication
• Optional programming voltage control
• Buffered data transfer
• Power management
• Data communication with a data rate up to 2 Mbyte/s

M C B 04946

C lock
C ontro l

A ddress
D ecoder

In te rrup t
C ontro l

fM M CI

M M C I
M odu le

P ort
C on tro l

P 5.15 / M M C I_R O D

P 5.2 / M M C I_C M D _R W

P 5.0 / M M C I_D A T_R W

P 2.7 / M M C I_VD D EN

P 1.5 / M M C I_D A T

P 1.4 / M M C I_C M D

P 1.3 / M M C I_C LK
User’s Manual 1-21 V1.0, 2002-03

TC11IB
System Units

Introduction
1.4.4 Ethernet Controller

The MAC controller implements the IEEE 802.3 and operates either at 100 Mbps or 10
Mbps. Figure 1-7 shows a global view of the Ethernet Controller module with the module
specific interface connections.

Figure 1-7 General Block Diagram of the Ethernet Controller

The Ethernet controller comprises the following functional blocks:

1. Media Access Controller (MAC)
2. Receive Buffer (RB)
3. Transmit Buffer (TB)
4. Data Management Unit in Receive Direction (DMUR)
5. Data Management Unit in Transmit Direction (DMUT)

M C B 04942

P o rt
C on tro l

P 2 .15 / M II_R xE R

F A S T
F P I

(M /S)

P 2 .14 /
M II_R xD [3]
P 2 .13 /
M II_R xD [2]
P 2 .12 /
M II_R xD [1]
P 2 .11 /
M II_R xD [0]

P 2 .10 / M II_C O L

P 2 .9 / M II_ C R S

P 2 .8 / M II_ R xD V

P 2 .6 / M II_ M D C

P 2 .5 / M II_ T xE N

P 2 .4 / M II_ T xE R

P 2 .3 / M II_ T xD [3]

P 2 .2 / M II_ T xD [2]

P 2 .1 / M II_ T xD [1]

P 2 .0 / M II_ T xD [0]

M II_T xC LK

M II_R xC LK

M II_T D IO

M IIM A C

E thernet
C ontro lle r

R B

T B

D M U R

D M U T

In te rru p t
C on tro l

M A C R X 0S R C
M A C R X 1S R C
M A C T X 0 S R C
M A C T X 1 S R C

R B S R C 1
R B S R C 0
T B S R C
D R S R C
D T S R C
User’s Manual 1-22 V1.0, 2002-03

TC11IB
System Units

Introduction
RB as well as TB provides on-chip data buffering whereas DMUR and DMUT perform
data transfer from/to the shared memory.

Two interfaces are provided by the Ethernet Controller Module:

1. MII interface for connection of Ethernet PHYs via eighteen Input / Output lines
2. Master/slave FPI bus interface for connection to the on-chip system bus for data

transfer as well as configuration.

Features

• Media Independent Interface (MII) according to IEEE 802.3
• Support 10 or 100 Mbps MII-based Physical devices.
• Support Full Duplex Ethernet.
• Support data transfer between Ethernet Controller and COM-DRAM.
• Support data transfer between Ethernet Controller and SDRAM via EBU.
• 256 x 32 bit Receive buffer and Transmit buffer each.
• Support burst transfers up to 8 x 32 Byte.

Media Access Controller (MAC)

• 100/10-Mbps operations
• Full IEEE 802.3 compliance
• Station management signaling
• Large on-chip CAM (Content Addressable Memory)
• Full duplex mode
• 80-byte transmit FIFO
• 16-byte receive FIFO
• PAUSE Operation
• Flexible MAC Control Support
• Support Long Packet Mode and Short Packet Mode
• PAD generation

Media Independent Interface (MII)

• Media independence.
• Multi-vendor point of interoperability.
• Support connection of MAC layer and Physical (PHY) layer devices.
• Capable of supporting both 100 Mbps and 10 Mbps data rates.
• Data and delimiters are synchronous to clock references.
• Provides independent four bit wide transmit and receive data paths.
• Support connection of PHY layer and Station Management (STA) devices.
• Provides a simple management interface.
• Capable of driving a limited length of shielded cable.
User’s Manual 1-23 V1.0, 2002-03

TC11IB
System Units

Introduction
1.4.5 PCI

The PCI Interface module of the TC11IB basically is a bus bridge between the on-chip
FPI bus and the external PCI bus of the system. The PCI Interface is fully compliant to
PCI Local Bus Specification Rev. 2.2. Figure 1-8 shows a global view of the PCI module
with the module specific pin connections.

Figure 1-8 General Block Diagram of the PCI Interface

The PCI-FPI bridge is able to execute a number of various data transfers between the
FPI bus and the PCI bus. Beside the standard PCI functions (configuration transactions),
there are two main types of transfers which the bridge supports. Firstly, it will forward a
transaction that any PCI initiator directs to the PCI interface of the TC11IB to the on-chip
FPI bus. Secondly the bridge will forward certain transactions that a FPI master initiates
on the FPI bus to the PCI bus. Depending on configuration, these transfers may be a

M C B 04949

P C I
M o d u le

P _ A D [3 1 :0]

P _ C /B E [3 :0]

P _ P A R

P _ S E R R

P _ P E R R

P _ S T O P

P _ D E V S E L

P _ T R D Y

P _ F R A M E

P _ IR D Y

P _ L O C K

P _ IN T A

P _ IN T B

P _ P M E

P _ R E Q

P _ G N T

P _ ID S E L

P _ C L K 3 3

F A S T
F P I

(M /S)
User’s Manual 1-24 V1.0, 2002-03

TC11IB
System Units

Introduction
single data or burst transfers on both PCI and FPI bus. In addition, the bridge is able to
handle a direct data transfer between PCI bus and FPI bus utilizing it’s programmable
DMA channel. The DMA channel can only be activated by a FPI master. In order to work
as a PCI host bridge on the PCI bus, the variety of PCI transactions issued by the bridge
includes configuration transactions of type 0 and type 1 when acting as a PCI master.

Features

• PCI V2.2 compliant, 32 bit, 33 MHz
• Multifunction Device, Support both PCI Master/Host functions. These functions can be

activated by:
– TriCore
– Fast Ethernet
– DMA Channel

• Support Burst Transfer from PCI to ComDRAM, SDRAM and Code DRAM.
• Support DMA Channel data transfers between PCI and FPI
• Loading of PCI Configuration Registers done by TriCore via FPI Bus access
• Support PCI Command
• Support Card-Bus.
• Power management

– according to PCI Bus Power Management Interface Specification V1.1
– Support Multiple PCI power management states D0, D1, D2, D3cold
– PME#-Signalling from Fast Ethernet in D1, D2.

• PCI Reset
– All tristatable PCI outputs of the bridge are set to “Tristate” upon PCI Reset,

compliant to PCI Local Bus Specification V2.2
User’s Manual 1-25 V1.0, 2002-03

TC11IB
System Units

Introduction
1.5 Pin Definitions and Functions

Figure 1-9 TC11IB Pin Configuration

M C B 0 49 45

TC11IB

P ort 0 16-B it

S V M
W A IT

R D /W R
R D

C P U C LK
C FG [0:3]

N M I
H D R S T
P O R S T

V S S

V D D O S C

H O LD

R A S
A LE

B R E Q
H LD A

E B U C ontrol

A lterna te F unctions

D igita l C ircuitry
P ow er S upply

4
G enera l C ontro l

C A S
C S [0:6]

7

C SE M U
C S G LB
C S O V L
C S FP I

C K E
M R _W

R M W

E B U C LK
B A A
A D V

A C LK
C M D E LA Y
M II_T xC LK
M II_R xC LK

M II_M D IO
TE S TM O D E
T M _C TR L1
T M _C TR L2

C LK 42
P LL96_C trl
P LL42_C trl

X T A L1
X T A L2

E thernet C lock

TE S T

V S S O S C

V D D P L L 9 6

V S S P L L 9 6

V D D P L L 4 2

V S S P L L 4 2

O scilla tor / P LL

52
21

V D D

V D D P
20

V D D D R A M
2

V C O M R E F

V L M U R E F

P _C LK 33
P _ID S E L
P _G N T
P _R E Q
P _P M E
P _IN TB
P _IN TA
P _LO C K
P _IR D Y
P _FR A M E
P _TR D Y
P _D E V S E L
P _S TO P
P _P E R R
P _S E R R
P _P A R

P _C /B E [0 :3]

P _A D [0:31]

O C D S 2B R K [0 :2]

O C D S 2P C [0 :7]

O C D S 2P S [0:4]

O C D S /
JT A G
C ontro l

A [0:23]

B C [0 :3]

A D [0 :31]

P ort 1 16-B it

P ort 2 16-B it

P ort 3 16-B it

P ort 4 16-B it

P ort 5 16-B it

G P TU 0/1

S S C , M M C I,
A S C , 16x50

E thernet, M M C I

E xternal
Inte rrupts

M M C I

E B U C ontro l

O C D S / JTA G
C ontrol

P C I
User’s Manual 1-26 V1.0, 2002-03

TC11IB
System Units

Introduction
Figure 1-10 TC11IB Pinning: P-BGA-338 Package (top view)

M C P 04950

AF

1 2 3 4 5 6 7 8 9

M II_
M D IO

10 11 12 13

XT AL2

14 15

XT AL1

16 17

P2.3

18 19 20 21

BAA

22 23

R es er
vedP1.15

H D
R ST

A

B PLL96
C TR L P2.2

V D D

O SC

C C PU
C LK

A

B

C

D

V S S

D

E

F

G

H

J

K

L

M

N

P

R

T

U

P3.7V P3.8 P3.9

W

F

G

H

J

K

L

M

N

P

R

T

U

V

W

AC

E

AD AD

AE AE

P5.0AF R es er
ved

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 25 26

V S SV S S V S S V S S

V S SV S SV S SV S SV S S

V S S V S SV S SV S SV S S

V S S V S S V S S V S S V S S

V S SV S S V S S V S S V S S

P1.13 P1.11 P1.7 P1.4 P1.0 P2.12 P2.10
M II_

T xC LK
V D D

PLL42
V S S

PLL96
V LM U

R EF
V D D

D R AM
P2.1 ALE

24 25 26

C S
G LB

H LD A A[20] AD [31]

AD [30] AD [29]A[21] AD [23]BR EQ
C M D E

LAY
C SF PIAD VP2.5P2.7

V D D

PLL96
PLL42
C T R L

V D DP2.8P2.11P2.14P1.1P1.5P1.8V D DP1.14O C D S
2PS[2] N M I

O C D S
2PC [7]

PO
R ST

P1.12 P1.9 P1.6 P1.2 P2.15 P2.13 P2.9 M II_
R xC LK

T M
C T R L2

V S S

PLL42
V S S

T M
C T R L1

P2.6 P2.4 P2.0 W AIT
C S

O VL
M R _W H O LD A[22] AD [22] AD [21] AD [28]

AD [26]AD [27]AD [20]V S SA[23]V D DSVMV D D PV S SV D DV D D P
R es er

ved
V D D PV S SC LK42V D D PV D DV S SV D D PP1.3V D DP1.10V S S

O C D S
2PC [4]

O C D S
2PS[1]

O C D S
2PS[4]

O C D S
2PC [3]

O C D S
2P C [6]

O C D S
2PS[0]

O C D S
2P S[3]

O C D S
2PC [1]

O C D S
2P C [2]

O C D S
2P C [5]

V D D

O C D S
2PC [0]

O C D S
2B R K

[0]

O C D S
2B R K

[1]

O C D S
2BR K

[2]

V D D
O C D S

_EN
BR K
_IN

V D D P

V S S
BR K

_O U T
C F G

[3]
C FG

[2]

P0.0 C FG
[1]

C F G
[0]

V D D

P0.3 P0.2 P0.1 V D D P

P0.4 P0.5 P0.6 P0.7

P0.8 P0.9 P0.10 V D D P

P0.11 P0.12 P0.13 V S S

P0.14 P0.15 P3.0 P3.1

P3.2 V D D P3.3 V D D P

P3.4 P3.5 P3.6 V D D

P3.10 P3.11 V D D P

Y

P4.0 P4.1 P4.2

P3.12 P3.13 P3.14

P4.4 P4.5

AA

AB

AC

P3.15

P4.3 P4.6

P4.8 P4.9P4.7 P5.3 P5.10 V D D P V D D P
P_

PM E
V D D P

P_
ID SEL

V D D PV S S V D D V S S V D D

V S S

V D DV S S

V D D

V D D

V S S V D D P
P_

ST O P
V D D

P _AD
[13]

V S S
P_

C BE[0]
C S

EM U
C S[1]

Y

AA

AB

AD [24]AD [25]AD [18]AD [19]

V D D AD [15]AD [16]AD [17]

V D D P BC [2]AD [0]AD [1]

AD [13]AD [14]AD [6]AD [7]

V D D P AD [11]AD [12]AD [5]

V S S AD [9]AD [10]AD [4]

V D D AD [8]AD [3]AD [2]

AC LK BC [3] BC [0] BC [1]

V S S
R D /
W R

C AS EBU
C LK

V D D P R ASC S[6] C KE

A[17] A[18] A [19] C S[5]

V D D P A[16] A [15] A [14]

V D D A[12] A [11] A [13]

V S S A[1] A[9] A [10]

V D D P A[2] A[7] A[8]

C S[4] A[3] A[4] A[6]

V D D C S[3] A[5] A[0]

C S[0] C S[2]R M W R D

21 22 23

P4.10 P4.11 P4.14 P5.2 P5.6 P5.9 P5.13 T M S T D I VC O M
R EF

P_
G N T

P_AD
[30]

P_AD
[28]

P_AD
[26]

P_AD
[22]

P_AD
[20]

P_AD
[18]

P _
FR A M E

P _
T R D Y

P_
PAR

P_AD
[15]

P_AD
[11]

P_AD
[9]

P_AD
[6]

P_AD
[2]

P_AD
[0]

P4.12 P4.13 P5.1 P5.5 P5.8 P5.12 P5.15 TR ST T EST
M O D E

P_
IN T A

P_
R EQ

P_AD
[29]

P_AD
[27]

P_AD
[24]

P_AD
[23]

P_AD
[19]

P_AD
[16]

P_
IR D Y

P _
LO C K

P_
SER R

P_AD
[14]

P_AD
[10]

P_AD
[7]

P_AD
[4]

P_AD
[1]

R es er
ved

P_C B E
[1]

P_AD
[12]

P_AD
[8]

P_AD
[5]

P_AD
[3]

P_
PER R

P _D EV
SEL

P_C BE
[2]

P_AD
[25]

P_AD
[21]

P_AD
[17]

P_C B E
[3]

V D D
D R AM

P_AD
[31]

P_C LK
33

P_
IN T B

R eser
vedTD OTC KP4.15 P5.4 P5.7 P5.11 P5.14

V S S

V S S

V S S

V S S

V S S

V S SV S S V S S V S S V S S V S S

388-P in P -BG A P ackage P in C onfigura tion (top v iew)
for TC 11IB
User’s Manual 1-27 V1.0, 2002-03

TC11IB
System Units

Introduction
Table 1-3 Pin Definitions and Functions

Symbol Pin In
Out

PU/
PD1)

Functions

P0

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
P0.8
P0.9
P0.10
P0.11
P0.12
P0.13
P0.14
P0.15

K1
L3
L2
L1
M1
M2
M3
M4
N1
N2
N3
P1
P2
P3
R1
R2

I/O

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

PUB
PUB
PUB
PUB

PUC
PDC
PDC
PUC
PUC
PUC
PUC
PUC

Port 0
Port 0 serves as 16-bit general purpose I/O port, which
is also used as input/output for the General Purpose
Timer Units (GPTU0 & GPTU1)
GPTU0_IO0 GPTU0 I/O line 0
GPTU0_IO1 GPTU0 I/O line 1
GPTU0_IO2 GPTU0 I/O line 2
GPTU0_IO3 GPTU0 I/O line 3
GPTU0_IO4 GPTU0 I/O line 4
GPTU0_IO5 GPTU0 I/O line 5
GPTU0_IO6 GPTU0 I/O line 6
GPTU0_IO7 GPTU0 I/O line 7
GPTU1_IO0 GPTU1 I/O line 0
GPTU1_IO1 GPTU1 I/O line 1
GPTU1_IO2 GPTU1 I/O line 2
GPTU1_IO3 GPTU1 I/O line 3
GPTU1_IO4 GPTU1 I/O line 4
GPTU1_IO5 GPTU1 I/O line 5
GPTU1_IO6 GPTU1 I/O line 6
GPTU1_IO7 GPTU1 I/O line 7
User’s Manual 1-28 V1.0, 2002-03

TC11IB
System Units

Introduction
P1

P1.0
P1.1

P1.2

P1.3
P1.4
P1.5
P1.6
P1.7
P1.8
P1.9
P1.10
P1.11
P1.12
P1.13
P1.14
P1.15

A7
B7

C7

D7
A6
B6
C6
A5
B5
C5
D5
A4
C4
A3
B3
A2

I/O

I/O
I/O

I/O

O
I/O
I/O
I/O
O
I
O
O
I
I
O
I
I

PUC
PUC

PUC

PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC

Port 1
Port 1 serves as 16-bit general purpose I/O port, which
also is used as input/output for the serial interfaces
(SSC,ASC,16X50) and MultiMediaCard Interface
(MMCI)
SCLK SSC clock input/output line
MRST SSC master receive / slave transmit
 input/output
MTSR SSC master transmit / slave receive
 input/output
MMCI_CLK MMCI clock output line
MMCI_CMD MMCI command input/output line
MMCI_DAT MMCI data input/output line
ASC_RXD ASC receiver input/output line
ASC_TXD ASC transmitter output line
16X50_RXD 16X50 receiver input line
16X50_TXD 16X50 transmitter output line
16X50_RTS 16X50 request to send output line
16X50_DCD 16X50 data carrier detection input line
16X50_DSR 16X50 data set ready input line
16X50_DTR 16X50 data terminal ready output line
16X50_CTS 16X50 clear to send input line
16X50_RI 16X50 ring indicator input line

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-29 V1.0, 2002-03

TC11IB
System Units

Introduction
P2

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

P2.8

P2.9
P2.10
P2.11

P2.12

P2.13

P2.14

P2.15

C18

A19

B18

A18

C17

B17

C16

B16

B10

C10
A9
B9

A8

C9

B8

C8

I/O

O

O

O

O

O

O

O

O

I

I
I
I

I

I

I

I

PUC

PDC

PDC
PUC
PDC

PDC

PDC

PDC

PDC

Port 2
Port 2 serves as 16-bit general purpose I/O port, which
is also used as input/output for Ethernet controller and
MultiMediaCard (MMCI).
MII_TXD0 Ethernet controller transmit data output

line 0
MII_TXD1 Ethernet controller transmit data output

line 1
MII_TXD2 Ethernet controller transmit data output

line 2
MII_TXD3 Ethernet controller transmit data output

line 3
MII_TXER Ethernet controller transmit error

output line
MII_TXEN Ethernet controller transmit enable

output line
MII_MDC Ethernet controller management data

clock output line
MMCI_VDDEN

MMCI power supply enable output line
MII_RXDV Ethernet Controller receive data valid

input line
MII_CRS Ethernet Controller carrier input line
MII_COL Ethernet Controller collision input line
MII_RXD0 Ethernet Controller receive data input

line 0
MII_RXD1 Ethernet Controller receive data input

line 1
MII_RXD2 Ethernet Controller receive data input

line 2
MII_RXD3 Ethernet Controller receive data input

line 3
MII_RXER Ethernet Controller receive error input

line

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-30 V1.0, 2002-03

TC11IB
System Units

Introduction
P3

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P3.8
P3.9
P3.10
P3.11
P3.12
P3.13
P3.14
P3.15

R3
R4
T1
T3
U1
U2
U3
V1
V2
V3
W2
W3
Y1
Y2
Y3
Y4

I/O

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Port 3
Port 3 serves as 16-bit general purpose I/O port, which
is also used as input for external interrupts.
INT0 External interrupt input line 0
INT1 External interrupt input line 1
INT2 External interrupt input line 2
INT3 External interrupt input line 3
INT4 External interrupt input line 4
INT5 External interrupt input line 5
INT6 External interrupt input line 6
INT7 External interrupt input line 7
INT8 External interrupt input line 8
INT9 External interrupt input line 9
INT10 External interrupt input line 10
INT11 External interrupt input line 11
INT12 External interrupt input line 12
INT13 External interrupt input line 13
INT14 External interrupt input line 14
INT15 External interrupt input line 15

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-31 V1.0, 2002-03

TC11IB
System Units

Introduction
P4

P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7
P4.8
P4.9
P4.10
P4.11
P4.12
P4.13
P4.14
P4.15

AA1
AA2
AA3
AB1
AB2
AB3
AB4
AC1
AC2
AC3
AD1
AD2
AE1
AE2
AD3
AF2

I/O

I
I
I
I
I
I
I
I
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

PDC
PDC
PDC
PDC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC

Port 4
Port 4 is used as general purpose I/O port, 8 pins of
which (P4.0 ~ P4.7) also serve as inputs for external
interrupts.
INT16 External interrupt input line 16
INT17 External interrupt input line 17
INT18 External interrupt input line 18
INT19 External interrupt input line 19
INT20 External interrupt input line 20
INT21 External interrupt input line 21
INT22 External interrupt input line 22
INT23 External interrupt input line 23

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-32 V1.0, 2002-03

TC11IB
System Units

Introduction
P5

P5.0

P5.1
P5.2

P5.3
P5.4
P5.5
P5.6
P5.7
P5.8
P5.9
P5.10
P5.11
P5.12
P5.13
P5.14
P5.15

AF1

AE3
AD4

AC5
AF3
AE4
AD5
AF4
AE5
AD6
AC7
AF5
AE6
AD7
AF6
AE7

I/O

O

I/O
O

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
O

PUC

PUC
PUC

PUC
PUC
PDC
PUC
PUC
PDC
PUC

PUC

Port 5
Port 5 serves as 16-bit general purpose I/O port, 3 pins
of which (P5.0, P5.2 and P5.15) serve as output lines
for MultiMediaCard Interface (MMCI) also.
MMCI_DATRWMMCI data direction indicator output

line

MMCI_CMDRWMMCI command direction indicator
output line

MMCI_ROD MMCI command line mode indicator

output line

HDRST A1 I/O Hardware Reset Input/Reset Indication Output
Assertion of this bidirectional open-drain pin causes a
synchronous reset of the chip through external
circuitry. This pin must be driven for a minimum
duration.
The internal reset circuitry drives this pin in response
to a power-on, hardware, watchdog, power-down
wake-up reset and eDRAM reset for a specific period
of time. For a software reset, activation of this pin is
programmable.

PORST C3 I PUC Power-on Reset Input
A low level on PORST causes an asynchronous reset
of the entire chip. PORST is a fully asynchronous level
sensitive signal.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-33 V1.0, 2002-03

TC11IB
System Units

Introduction
NMI B2 I PUB Non-Maskable Interrupt Input
A high-to-low transition on this pin causes a NMI-Trap
request to the CPU.

CFG0
CFG1
CFG2
CFG3

K2
K3
J1
J2

I
I
I
I

PDC
PDC
PUC
PUC

Operation Configuration Inputs
The configuration inputs define the boot options of the
TC11IB after a hardware-invoked reset operation.

CPU
CLK

C2 O PUC Clock Output

TRST AE8 I PDC JTAG Module Reset/Enable Input
A low level at this pin resets and disables the JTAG
module. A high level enables the JTAG module.

TCK AF7 I PUC JTAG Module Clock Input

TDI AD9 I PUC JTAG Module Serial Data Input

TDO AF8 O JTAG Module Serial Data Output

TMS AD8 I PUC JTAG Module State Machine Control Input

OCDSE H2 I PUC OCDS Enable Input
A low level on this pin during power-on reset
(PORST = 0) enables the on-chip debug support
(OCDS). In addition, the level of this pin during power-
on reset determines the boot configuration.

BRKIN H3 I PUC OCDS Break Input
A low level on this pin causes a break in the chip’s
execution when the OCDS is enabled. In addition, the
level of this pin during power-on reset determines the
boot configuration.

BRKOUT J3 O OCDS Break Output
A low level on this pin indicates that a programmable
OCDS event has occurred.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-34 V1.0, 2002-03

TC11IB
System Units

Introduction
OCDS2
PS0
OCDS2
PS1
OCDS2
PS2
OCDS2
PS3
OCDS2
PS4

E3

D2

B1

E4

D3

O

O

O

O

O

PUC

PUC

PUC

PUC

PUC

Pipeline Status Signal Outputs

OCDS2
PC0
OCDS2
PC1
OCDS2
PC2
OCDS2
PC3
OCDS2
PC4
OCDS2
PC5
OCDS2
PC6
OCDS2
PC7

G1

F1

F2

E1

D1

F3

E2

C1

O

O

O

O

O

O

O

O

PUC

PUC

PUC

PUC

PUC

PUC

PUC

PUC

Indirect PC Address Outputs

OCDS2
BRK0
OCDS2
BRK1
OCDS2
BRK2

G2

G3

G4

O

O

O

PUC

PUC

PUC

Break Qualification Lines outputs

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-35 V1.0, 2002-03

TC11IB
System Units

Introduction
P_AD0
P_AD1
P_AD2
P_AD3
P_AD4
P_AD5
P_AD6
P_AD7
P_AD8
P_AD9
P_AD10
P_AD11
P_AD12
P_AD13
P_AD14
P_AD15
P_AD16
P_AD17
P_AD18
P_AD19
P_AD20
P_AD21
P_AD22
P_AD23
P_AD24
P_AD25
P_AD26
P_AD27
P_AD28
P_AD29
P_AD30
P_AD31

AD26
AE25
AD25
AF25
AE24
AF24
AD24
AE23
AF23
AD23
AE22
AD22
AF22
AC22
AE21
AD21
AE17
AF17
AD17
AE16
AD16
AF16
AD15
AE15
AE14
AF14
AD14
AE13
AD13
AE12
AD12
AF12

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

PCI Interface Address /Data Bus Input / Output
Lines
PCI Interface Address / Data Bus Line 0
PCI Interface Address / Data Bus Line 1
PCI Interface Address / Data Bus Line 2
PCI Interface Address / Data Bus Line 3
PCI Interface Address / Data Bus Line 4
PCI Interface Address / Data Bus Line 5
PCI Interface Address / Data Bus Line 6
PCI Interface Address / Data Bus Line 7
PCI Interface Address / Data Bus Line 8
PCI Interface Address / Data Bus Line 9
PCI Interface Address / Data Bus Line 10
PCI Interface Address / Data Bus Line 11
PCI Interface Address / Data Bus Line 12
PCI Interface Address / Data Bus Line 13
PCI Interface Address / Data Bus Line 14
PCI Interface Address / Data Bus Line 15
PCI Interface Address / Data Bus Line 16
PCI Interface Address / Data Bus Line 17
PCI Interface Address / Data Bus Line 18
PCI Interface Address / Data Bus Line 19
PCI Interface Address / Data Bus Line 20
PCI Interface Address / Data Bus Line 21
PCI Interface Address / Data Bus Line 22
PCI Interface Address / Data Bus Line 23
PCI Interface Address / Data Bus Line 24
PCI Interface Address / Data Bus Line 25
PCI Interface Address / Data Bus Line 26
PCI Interface Address / Data Bus Line 27
PCI Interface Address / Data Bus Line 28
PCI Interface Address / Data Bus Line 29
PCI Interface Address / Data Bus Line 30
PCI Interface Address / Data Bus Line 31

P_PAR AD20 I/O PCI Interface Parity Input / Output

P_SERR AE20 I/O PCI Interface System Error Input / Output

P_PERR AF20 I/O PCI Interface Parity Error Input / Output

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-36 V1.0, 2002-03

TC11IB
System Units

Introduction
P_STOP AC20 I/O PCI Interface Stop Input / Output

P_C/BE0
P_C/BE1
P_C/BE2
P_C/BE3

AC24
AF21
AF18
AF15

I/O
I/O
I/O
I/O

PCI Interface Command / Byte Enable Inputs /
Outputs

P_IDSEL AC15 I PCI Interface ID Select Input

P_CLK33 AF11 I PCI Interface Clock Input

P_REQ AE11 O PCI Interface Bus Request Output

P_GNT AD11 I PCI Interface Bus Grant Input

P_DEVS
EL

AF19 I/O PCI Interface Device Select Input / Output

P_TRDY AD19 I/O PCI Interface Target Ready Input / Output

P_FRAM
E

AD18 I/O PCI Interface Frame Input / Output

P_IRDY AE18 I/O PCI Interface Initiator Ready Input / Output

P_LOCK AE19 I PCI Interface Lock Input

P_INTA AE10 O PCI Interface Interrupt A Output

P_INTB AF10 O PCI Interface Interrupt B Output

P_PME AC12 O PCI Interface Power Management Event Output

MII_
TXCLK

A11 I PDC Ethernet Controller Transmit Clock
MII_TXD[3:0] and MII_TXEN are driven off the rising
edge of the MII_TXCLK by the core and sampled by
the PHY on the rising edge of the MII_TXCLK.

MII_
RXCLK

C11 I PDC Ethernet Controller Receive Clock
MII_RXCLK is a continuous clock. Its frequency is 25
MHz for 100 Mbps operation, and 2.5 MHz for 10
Mbps. MII_RXD[3:0], MII_RXDV and MII_EXER are
driven by the PHY off the falling edge of MII_RXCLK
and sampled on the rising edge of MII_RXCLK.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-37 V1.0, 2002-03

TC11IB
System Units

Introduction
MII_
MDIO

A10 I/O PDA Ethernet Controller Management Data Input /
Output
When a read command is being executed, data which
is clocked out of the PHY will be presented on the input
line. When the Core is clocking control or data onto the
MII_MDIO line, the signal will carry the information.

CS0

CS1

CS2

CS3

CS4

CS5

CS6

AB24
AC26
AB25
AA24
Y23
R26
P24

O
O
O
O
O
O
O

PUC
PUC
PUC
PUC
PUC
PUC
PUC

EBU_LMB Chip Select Output Line 0
EBU_LMB Chip Select Output Line 1
EBU_LMB Chip Select Output Line 2
EBU_LMB Chip Select Output Line 3
EBU_LMB Chip Select Output Line 4
EBU_LMB Chip Select Output Line 5
EBU_LMB Chip Select Output Line 6
Each corresponds to a programmable region. Only
one can be active at one time.

CSEMU AC25 O PUC EBU_LMB Chip Select Output for Emulator Region

CSGLB A21 O PUC EBU_LMB Chip Select Global Output

CSOVL C20 O PUC EBU_LMB Chip Select Output for Overlay Memory

CSFPI B20 I PUC EBU_LMB Chip Select Input for Internal FPI Bus
For external master to select EBU_LMB as target in
the slave mode

EBUCLK N26 O EBU_LMB External Bus Clock Output
Derived from LMBCLK as equal, half or one-fourth of
the frequency.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-38 V1.0, 2002-03

TC11IB
System Units

Introduction
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23
AD24
AD25
AD26
AD27
AD28
AD29
AD30
AD31

L25
L24
K24
K25
J24
H24
G24
G23
K26
J26
J25
H26
H25
G26
G25
F26
F25
F24
E24
E23
D24
C25
C24
B24
E26
E25
D26
D25
C26
B26
B25
A25

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC

EBU_LMB Address / Data Bus Input / Output Lines
EBU_LMB Address / Data Bus Line 0
EBU_LMB Address / Data Bus Line 1
EBU_LMB Address / Data Bus Line 2
EBU_LMB Address / Data Bus Line 3
EBU_LMB Address / Data Bus Line 4
EBU_LMB Address / Data Bus Line 5
EBU_LMB Address / Data Bus Line 6
EBU_LMB Address / Data Bus Line 7
EBU_LMB Address / Data Bus Line 8
EBU_LMB Address / Data Bus Line 9
EBU_LMB Address / Data Bus Line 10
EBU_LMB Address / Data Bus Line 11
EBU_LMB Address / Data Bus Line 12
EBU_LMB Address / Data Bus Line 13
EBU_LMB Address / Data Bus Line 14
EBU_LMB Address / Data Bus Line 15
EBU_LMB Address / Data Bus Line 16
EBU_LMB Address / Data Bus Line 17
EBU_LMB Address / Data Bus Line 18
EBU_LMB Address / Data Bus Line 19
EBU_LMB Address / Data Bus Line 20
EBU_LMB Address / Data Bus Line 21
EBU_LMB Address / Data Bus Line 22
EBU_LMB Address / Data Bus Line 23
EBU_LMB Address / Data Bus Line 24
EBU_LMB Address / Data Bus Line 25
EBU_LMB Address / Data Bus Line 26
EBU_LMB Address / Data Bus Line 27
EBU_LMB Address / Data Bus Line 28
EBU_LMB Address / Data Bus Line 29
EBU_LMB Address / Data Bus Line 30
EBU_LMB Address / Data Bus Line 31

BC0
BC1
BC2
BC3

M25
M26
L26
M24

I/O
I/O
I/O
I/O

PUC
PUC
PUC
PUC

EBU_LMB Byte Control Line 0
EBU_LMB Byte Control Line 1
EBU_LMB Byte Control Line 2
EBU_LMB Byte Control Line 3

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-39 V1.0, 2002-03

TC11IB
System Units

Introduction
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23

AA26
V24
W24
Y24
Y25
AA25
Y26
W25
W26
V25
V26
U25
U24
U26
T26
T25
T24
R23
R24
R25
A24
B23
C23
D22

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC
PUC

EBU_LMB Address Bus Input / Output Lines
EBU_LMB Address Bus Line 0
EBU_LMB Address Bus Line 1
EBU_LMB Address Bus Line 2
EBU_LMB Address Bus Line 3
EBU_LMB Address Bus Line 4
EBU_LMB Address Bus Line 5
EBU_LMB Address Bus Line 6
EBU_LMB Address Bus Line 7
EBU_LMB Address Bus Line 8
EBU_LMB Address Bus Line 9
EBU_LMB Address Bus Line 10
EBU_LMB Address Bus Line 11
EBU_LMB Address Bus Line 12
EBU_LMB Address Bus Line 13
EBU_LMB Address Bus Line 14
EBU_LMB Address Bus Line 15
EBU_LMB Address Bus Line 16
EBU_LMB Address Bus Line 17
EBU_LMB Address Bus Line 18
EBU_LMB Address Bus Line 19
EBU_LMB Address Bus Line 20
EBU_LMB Address Bus Line 21
EBU_LMB Address Bus Line 22
EBU_LMB Address Bus Line 23

RD AB26 I/O PUC EBU_LMB Read Control Line
Output in the master mode
Input in the slave mode.

RD/WR N24 I/O PUC EBU_LMB Write Control Line
Output in the master mode
Input in the slave mode.

WAIT C19 I/O PUC EBU_LMB Wait Control Line

SVM D20 O PUB EBU_LMB Supervisor Mode Output

ALE A20 O PDC EBU_LMB Address Latch Enable Output

RAS P25 O PUC EBU_LMB SDRAM Row Address Strobe Output

CAS N25 O PUC EBU_LMB SDRAM Column Address Strobe Output

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-40 V1.0, 2002-03

TC11IB
System Units

Introduction
CKE P26 O PUC EBU_LMB SDRAM Clock Enable Output

MR/W C21 O PUC EBU_LMB Motorola-style Read / Write Output

HOLD C22 I PUC EBU_LMB Hold Request Input
In External Master Mode:
While HOLD is high, Tricore is operating in normal
mode (is owner of the external bus). A high-to-low
transition indicates a hold request from an external
master.Tricore backs off the bus and activates HLDA
and goes into hold mode.
A low-to-high transitions causes an exit from hold
mode.Tricore deactivates HLDA and takes over the
bus and enters the normal operation again.
In External Slave Mode:
While both HOLD and HLDA are high, Tricore is in
hold mode, the external bus interface signals are
tristated. When Tricore is released out of hold mode
(HLDA =0) and has completely taken over control of
the external bus, a low level at this pin requests Tri-
core to go into hold mode again. But in any case Tri-
core will perform at least one external bus cycle
before going into hold mode again.

HLDA A23 I/O PUC EBU_LMB Hold Acknowledge Input / Output
In External Master Mode:
OutPut. High during normal operation.When Tricore
enters hold mode, it sets HLDA to low after releasing
the bus. On exit of hold mode, Tricore first sets HLDA
to high and then goes onto the bus again (to avoid
collisions).
In External Slave Mode:
Input. A high-to-low transition at this pin releases Tri-
core from hold mode.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-41 V1.0, 2002-03

TC11IB
System Units

Introduction
BREQ B22 O PUC EBU_LMB Bus Request Output
In External Master Mode:
High during normal operation.Tricore activates BREQ
earliest one clock cycle after activating HLDA, if it has
to perform an external bus access. If Tricore has
regained the bus, BREQ is set to high one clock cycle
after deactivation of HLDA.
In External Slave Mode:
This signal is high as long as Tricore operates from
internal memory. When it detects that an external
access is required, it sets BREQ to low and waits for
signal HLDA to become low. BREQ will go back to
high when the slave has backed off the bus after it
was requested to go into hold mode.

RMW AB23 I/O PUC EBU_LMB Read-Modify-Write Signal Line

BAA A22 O PUC EBU_LMB Burst Address Advance Output
For advancing address in a burst flash access

ADV B19 O PUC EBU_LMB Burst Flash Address Valid Output

ACLK M23 O EBU_LMB Additional Clock Output
Additional clock running equal, 1/2, 1/3 or 1/4 fre-
quency of EBUCLK

CMDELA
Y

B21 I PUC EBU_LMB Command Delay Input
For inserting delays between address and command.

TEST
MODE

AE9 I PDC Test Mode Select Input
For normal operation of the TC11IB, this pin should be
connected to Vss.

TM
CTRL1

C15 I PUB Test Mode Control Input 1
For normal operation of the TC11IB, this pin should be
connected to VDDP.

TM
CTRL2

C12 I PUB Test Mode Control Input 2
For normal operation of the TC11IB, this pin should be
connected to VDDP.

CLK42 D12 I PDC Test Clock 42 MHz Input
For normal operation of the TC11IB, this pin should be
connected to Vss.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-42 V1.0, 2002-03

TC11IB
System Units

Introduction
PLL96
CTRL

B15 O Test PLL96 Analog Output
For normal operation of the TC11IB, this pin must not
be connected.

PLL42
CTRL

B12 O Test PLL42 Analog Output
For normal operation of the TC11IB, this pin must not
be connected.

XTAL1
XTAL2

A15
A14

I
O

Oscillator/PLL/Clock Generator Input/Output Pins
XTAL1 is the input to the main oscillator amplifier and
input to the internal clock generator. XTAL2 is the
output of the main oscillator amplifier circuit. For
clocking the device from an external source, XTAL1 is
driven with the clock signal while XTAL2 is left
unconnected. For crystal oscillator operation XTAL1
and XTAL2 are connected to the crystal with the
appropriate recommended oscillator circuitry.

VDDOSC B14 Main Oscillator Power Supply (1.8V)

VSSOSC C14 Main Oscillator Ground

VDDPLL96 B13 PLL96 Power Supply (1.8V)

VSSPLL96 A13 PLL96 Ground

VDDPLL42 A12 Test PLL42 Power Supply (1.8V)
For normal operation of the TC11IB, this pin must not
be connected.

VSSPLL42 C13 Test PLL42 Ground
For normal operation of the TC11IB, this pin must be
connected to Vss.

VLMUREF A16 LMU Reference Voltage

VCOMREF AD10 ComDRAM Reference Voltage

VDDDRAM A17,
AF13

 eDRAM Power Supply (1.8V)

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-43 V1.0, 2002-03

TC11IB
System Units

Introduction
VDD H1
W1
T2,B4
B11
D6,F4
D10
D17
D21
F23
K4
K23
U4
U23
AA4
AA23
AC6
AC10
AC17
AC21

 Core and Logic Power Supply (1.8V)

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-44 V1.0, 2002-03

TC11IB
System Units

Introduction
VDDP D8,
D11,
D14,
D16,
D19,
H4,
H23,
L4,
L23,
N4,
P23,
T4,
T23,
W4,
W23,
AC8,
AC11,
AC13,
AC16,
AC19

 Ports Power Supply (3.3V)

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-45 V1.0, 2002-03

TC11IB
System Units

Introduction
VSS D4
D9
D13
D18
D23
J4
J23
N23
P4,V4
V23
AC4
AC9
AC14
AC18
AC21
L14 to
L16,
M11
to
M16,
N11
to
N16,
P11
to
P16,
R11
to
R16,
T11 to
T16

 Ground

N.C. D15,
A26,
AE26,
AF9,
AF26

 Not Connected
These pins must not be connected.

1) Refers to internal pull-up or pull-down device connected and corresponding type. The notation ‘ ’ indicates
that the internal pull-up or pull-down device is not enabled.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

PU/
PD1)

Functions
User’s Manual 1-46 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2 TC11IB Processor Architecture
The Central Processing Unit (CPU) of the TC11IB is based on the Infineon TriCore 32-bit
microcontroller-DSP processor core architecture. It is optimized for real-time embedded
systems, and combines:

• Reduced Instruction Set Computing (RISC) architecture
• Digital signal processing (DSP) operations and data structures
• Real-time responsiveness

The RISC load/store architecture provides high computational bandwidth with low
system cost. Its superscalar design has three pipelines.

The TC11IB CPU is a Harvard-style architecture, with separate address and data buses
for program and data memories. There are special instructions for common DSP
operations and hardware-assisted data structure index generation for circular buffers
(useful for filters) and bit-reversed indexing (useful for Fast Fourier Transforms). These
features make it possible to efficiently analyze complex real-world signals. With the
implementation of MMU (Memory Management Unit) in CPU, an embedded system
based on Windows CE operating system is easier to build.

The CPU’s interrupt-processing architecture combines the quick responsiveness
associated with microcontrollers with a high degree of interrupt-service flexibility. The
architecture of the CPU minimizes interrupt latency by having few uninterruptable multi-
cycle instructions, by supporting fast context switching, and supporting task-based
memory protection. The combination of the interrupt-processing capabilities of the CPU
and the Peripheral Control Processor (PCP) provide the system designer with tools to
meet even the most demanding hard-deadline real-time scheduling requirements simply
and efficiently.

While the TriCore architecture employs 32-bit Instruction formats, frequently-used
instructions have an optional 16-bit instruction format. This results in smaller code size,
and faster code bandwidth. Additional benefits of this approach include lowered program
memory requirements, lower system cost, and less power consumption.
User’s Manual 2-1 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.1 Central Processing Unit

This section provides an overview of the TC11IB Central Processing Unit (CPU)
architecture. The basic features include the following.

• Data paths: 32 bits throughout
• Address space: 4 Gigabytes, unified, for data, program, and I/O
• Instruction formats: mixed 32-bit and 16-bit formats
• Low interrupt latency and flexible interrupt prioritization scheme
• Fast automatic context switching
• Separate multiply-accumulate unit
• Saturating integer arithmetic
• Bit-handling operations
• Packed-data operations
• Zero-overhead looping
• Flexible power management
• Byte and bit addressing
• Little-endian byte ordering
• Precise exceptions

Figure 2-1 illustrates the architecture of the TC11IB’s Central Processing Unit (CPU). It
is comprised of an Instruction Fetch Unit, an Execution Unit, a General Purpose Register
File, and several peripheral interfaces.

Figure 2-1 Central Processing Unit (CPU) Block Diagram

M C B04686

P rogram M em ory U n it (P M U)

In teger P ipe line Loop P ipe line Load /S tore P ipe line

Execution Unit

G enera l P urpose R egis ter F ile (G P R)

Ins truction Fetch
U nit

TriCore CPU

6464

D ata M em ory U n it (D M U)

64

C ore R egis te r
A ccess

In terrup ts

S ystem
C ontro l

D ebug/
E m u la tion

Test
User’s Manual 2-2 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.1.1 Instruction Fetch Unit

Figure 2-2 shows the Instruction Fetch Unit. It prefetches and aligns incoming
instructions from the 64-bit wide Program Memory Unit (PMU). The Issue Unit directs the
instruction to the appropriate pipeline. The Instruction Protection Unit checks the validity
of accesses to the PMU and also checks for instruction breakpoint conditions. The PC
Unit is responsible for updating the issue and prefetch program counters.

Figure 2-2 Instruction Fetch Unit

M C A04687

Issue Un it

To Loop
P ipeline

In jec tion

P C U nit A lign

Pre fetchIns truction
P rotec tion

To Load/S tore
P ipe line

To In teger
P ipe line

64

P rogram M em ory U n it

Debug
User’s Manual 2-3 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.1.2 Execution Unit

As shown in Figure 2-3, the Execution Unit contains the Integer Pipeline, the Loop
Pipeline, and the Load/Store Pipeline.

The Integer Pipeline and Load/Store Pipeline have four stages: Fetch, Decode, Execute,
and Write-back. The Execute stage may extend beyond one cycle to accommodate
multi-cycle operations such as load instructions.

The Loop Pipeline has two stages: Decode and Write-back.

All three pipelines operate in parallel, permitting up to three instructions to execute in one
clock cycle.

Figure 2-3 Execution Unit

Figure 2-3 introduces the following acronyms and abbreviations:

• IP Decode - Instruction Prefetch and Decode
• MAC - Multiply-Accumulate Unit
• ALU - Arithmetic/Logic Unit
• Loop Exec. - Loop Execution Unit
• EA - Effective Address

M C A04688

Loop E xec .

To R eg is ter F ile

E A

A ddress A LU

A LU

B it P rocessor

M A C

Load/S tore
D ecodeIP D ecode

Integer P ipe line Loop P ipe line Load/S tore P ipe line

D ecode

E xecu te
User’s Manual 2-4 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.1.3 General Purpose Register File

The CPU has a General Purpose Register (GPR) file, divided into an Address Register
File (registers A0 through A15) and a Data Register File (registers D0 through D15).

The data flow for instructions issued to/from the Load/Store Pipeline is steered through
the Address Register File. The data flow for instructions issued to/from the Integer
Pipeline and for data load/store instructions issued to/from the Load/Store Pipeline is
steered through the Data Register File.

Figure 2-4 General Purpose Register File

M C A04689

G enera l P urpose
R eg iste r F ile

D ata R eg ister F ile A ddress R eg ister F ile

To P ipe lines

64

D ata A lignm ent

64

128

To D ata M em ory U nit
User’s Manual 2-5 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.1.4 Program State Registers

The program state registers consist of 32 General Purpose Registers (GPRs), two 32-bit
registers with program status information (PCXI and PSW), and a Program Counter
(PC). PCXI, PSW, and PC are Core Special Function Registers (CSFRs).

As shown in Figure 2-5, the 32 General Purpose Registers are divided into sixteen
32-bit data registers (D0 through D15) and sixteen 32-bit address registers (A0 through
A15).

Figure 2-5 Program State Registers

Four GPRs have special functions: D15 is used as an implicit data register, A10 is the
Stack Pointer (SP), A11 is the return address register, and A15 is the implicit address
register.

Registers 0-7 are called the lower registers and 8-15 are called the upper registers.

Registers A0 and A1 in the lower address registers and A8 and A9 in the upper address
registers are defined as system global registers. These registers are not included in
either context partition, and are not saved and restored across calls or interrupts.The
operating system normally uses them to reduce system overhead.

The PCXI and PSW registers contain status flags, previous execution information, and
protection information.

M C A 04683

General Purpose Registers Program Status Information

D 15 (Im plic t D ata)
D 14

Address Registers Data Registers

D 13
D 12
D 11
D 10
D 9
D 8
D 7
D 6
D 5
D 4
D 3
D 2
D 1
D 0

A 15 (Im plic t A ddr.)
A 14
A 13
A 12

A 10A 10A 10A 10A 10A 10A 10

A 11 (R eturn A ddr.)
A 10 (S tack P o in ter)
A 9 (G loba l A ddr.)
A 8 (G loba l A ddr.)

A 7
A 6
A 5
A 4
A 3
A 2

A 1 (G loba l A ddr.)
A 0 (G loba l A ddr.)

P C
P S W
P C X I
User’s Manual 2-6 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.1.5 Data Types

The TriCore instruction set supports operations on booleans, bit-strings, characters,
signed fractions, addresses, signed and unsigned integers, integers with saturation and
single-precision floating-point numbers. Most instructions work on a specific data type,
while others are useful for manipulating several data types.

2.1.6 Addressing Modes

Addressing modes allow load and store instructions to efficiently access simple variables
and data elements within data structures such as records, randomly and sequentially
accessed arrays, stacks, and circular buffers. Simple variables and data elements are 1,
8, 16, 32 or 64 bits wide.

Addressing modes provide efficient compilation of programs written in the C
programming language, easy access to peripheral registers, and efficient
implementation of typical DSP data structures. Hardware-assisted DSP data structures
include circular buffers for filters and bit-reversed indexing for FFTs. The following seven
addressing modes are supported in the TriCore architecture:

• Absolute
• Base + Short Offset
• Base + Long Offset
• Pre-increment or pre-decrement
• Post-increment or post-decrement
• Circular (modulo)
• Bit-Reverse

2.1.7 Instruction Formats

The CPU architecture supports both 16-bit and 32-bit instruction formats. All instructions
have a 32-bit format. The 16-bit instructions are a subset of the 32-bit instructions,
chosen because of their frequency of use and included to reduce code space.

2.1.8 Tasks and Contexts

Throughout this document, the term task refers to an independent thread of control:
Software-Managed Tasks (SMTs) and Interrupt Service Routines (ISRs).

Software-Managed Tasks are created through the services of a real-time kernel or
operating system and dispatched under the control of scheduling software. Interrupt
Service Routines (ISRs) are dispatched by hardware in response to an interrupt. An ISR
is the code that is invoked by the processor directly on receipt of an interrupt. Software-
Managed Tasks are sometimes referred to as user tasks, assuming that they will
execute in User Mode.
User’s Manual 2-7 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Each task is allocated its own permission level. The individual permissions are enabled
or disabled primarily by I/O mode bits in the Program Status Word (PSW).

The processor state associated with a task is called the task’s context. The context
includes everything the processor needs in order to define the current state of the task.
The system saves the current task’s context when another task is about to run, and
restores the task’s context when the task is to be resumed. The context includes the
Program State Registers. The CPU efficiently manages and maintains the contexts of
the tasks through hardware.

2.1.8.1 Upper and Lower Contexts

The context is subdivided into the Upper Context and the Lower Context, as illustrated
in Figure 2-6. The Upper Context consists of the upper address registers, A10 – A15,
and the upper data registers, D8 – D15. These registers are designated as non-volatile,
for purposes of function calling. The Upper Context also includes the PCXI and PSW
registers. The Lower Context consists of the lower address registers, A2 through A7, the
lower data registers, D0 through D7, and saved PC, and again the PCXI register.

Both Upper and Lower Contexts include a Link Word contained in register PCXI.
Contexts are saved in fixed-size memory areas (see Section 2.1.8.2); they are linked
together via the link word.

The Upper Context is saved automatically on Interrupts. It is also saved on CALL
instructions and restored on RETURN instructions. The Lower Context must be saved
and restored by the ISR if the ISR needs to use more registers than are available in the
Upper Context.
User’s Manual 2-8 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Figure 2-6 Upper and Lower Contexts

2.1.8.2 Context Save Areas

The architecture uses linked lists of fixed-size Context Save Areas (CSAs) which
accommodate systems with multiple interacting threads of control. A CSA is sixteen
words of memory storage, aligned on a 16-word boundary. A single CSA can hold
exactly one Upper or one Lower Context. Unused CSAs are linked together on a free list.
They are allocated from the free list as needed and returned to it when no longer needed.
Allocation and freeing are handled transparently by the processor. They are transparent
to the applications code. Only system initialization code and certain operating system
exception-handling routines need to access the CSAs or their lists explicitly. The number
of CSAs that can be used is limited only by the size of the available data memory.

2.1.8.3 Fast Context Switching

The TC11IB CPU uses a uniform context-switching method for function calls, interrupts,
and traps. In all cases, Upper Context of the task is automatically saved and restored by
hardware. Saving and restoring of the Lower Context is left as an option for the new task.
An explanation of CPU management of the contexts can be found in Section 2.2.2.

Fast context switching is further enhanced by the TriCore’s unique memory subsystem
design, which allows a complete Upper or Lower Context to be saved in as little as two
clock cycles.

M C A04684

Lower Context Upper Context

D 7
D 6
D 5
D 4
A 7
A 6
A 5
A 4
D 3
D 2
D 1
D 0
A 3
A 2

saved P C
P C X I

D 15
D 14
D 13
D 12
A 15
A 14
A 13
A 12
D 11
D 10
D 9
D 8

A 11 (R A)
A 10 (S P)

P S W
P C X I (L ink W ord)
User’s Manual 2-9 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.1.9 Interrupt System

An interrupt request can be generated by the TC11IB on-chip peripheral units or it can
be generated by external events. Requests can be targeted to either the CPU, or to the
Peripheral Control Processor (PCP).

In order to better differentiate the programmable stages of interrupt processing available
in the TC11IB, this document refers to an interrupt-triggering event as an Interrupt
Service Request. The TC11IB interrupt system evaluates service requests for priority
and to identify whether the CPU or PCP should receive the request. The highest-priority
service request is then presented to the CPU (or PCP) by way of an interrupt.

In specific contexts where this level of formality is not required, the term Interrupt is used
generally to mean an event directed to the CPU, while the term service request
describes an event that can be directed to either the CPU or the PCP.

For a CPU interrupt, the entry code for the Interrupt Service Routine (ISR) is contained
in an Interrupt Vector Table. Each entry in this table corresponds to a fixed-size code
block. (If an ISR requires more code than fits in an entry, it must include a jump
instruction to vector it to the rest of the ISR elsewhere in memory.) Each interrupt source
is assigned an interrupt priority number. All priority numbers are programmable. The ISR
uses the priority number to determine the location of the entry code block.

The prioritization of service routines enables nested interrupts and the use of interrupt
priority groups. See Chapter 15 for more information.

2.1.10 Trap System

Trap events break the normal execution of code much like interrupts. But traps are
different from interrupts in these ways:

• Trap Service Routines (TSR) reside in the Trap Vector Table, separate from the
Interrupt Vector Table.

• A trap does not change the CPU’s interrupt priority.
• Traps cannot be disabled by software, and are always active.

A trap occurs as a result of an exception within one of the following classes of events.

• Reset
• Internal protection
• Instruction errors
• Context management
• Internal bus and peripheral errors
• Assertion
• System call
• Non-maskable interrupt

Each entry in the Trap Vector Table corresponds to a fixed-size code block. (If a TSR
requires more code than fits in an entry, it must include a jump instruction to vector it to
User’s Manual 2-10 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
the rest of the TSR located elsewhere in memory.) When a trap is taken, its Trap
Identification Number (TIN) is placed in data register D15. The trap handler uses the TIN
to identify the cause of the trap. During trap arbitration, the pending trap with the lowest
TIN will be chosen to execute. See Chapter 16 for more information.

2.1.11 Protection System

There are two protection systems in the TC11IB. A memory-access protection system
protects code and data memory regions, as described in Section 2.1.11.1 and
Section 2.1.11.2. Access to sensitive system registers is protected by hardware against
system malfunctions, as described in Section 2.1.11.3.

2.1.11.1 Permission Levels

Each task can be assigned a specific permission level. Individual permissions are
enabled through the I/O Mode bits in the Program Status Word (PSW). The three
permission levels are listed here, in decreasing order of restrictiveness.

• User-0 Mode
– Used for tasks that do not access peripheral devices.
– Tasks at this level do not have permission to enable or disable interrupts.

• User-1 Mode
– Used for tasks that access common, unprotected peripherals.
– Accesses typically include read/write accesses to serial ports and read accesses to

timers and most I/O status registers.
– Tasks at this level may disable interrupts.

• Supervisor Mode
– Permits read/write access to system registers and all peripheral devices.
– Tasks at this level may disable interrupts.

2.1.11.2 Memory Protection Model

The Memory Protection Model of the CPU is based on address ranges, where each
address range has an associated permission setting. Address ranges and their
associated permissions are specified in identical sets of tables residing in the Core
Special Function Register (CSFR) space. Each set is referred to as a Protection Register
Set (PRS).

The TC11IB incorporates two sets of Protection Register Sets each for code and data
memory. The number of sets is implementation-specific. Other TriCore products may
have implemented a different number (up to four) of Protection Register Sets.

When the protection system is enabled, the CPU checks every load/store or instruction
fetch address before performing the access. Legal addresses must fall within one of the
ranges specified in the currently selected PRS, and permission for that type of access
must be present in the matching range.
User’s Manual 2-11 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.1.11.3 Watchdog Timer and ENDINIT Protection

Registers that control basic TC11IB configuration and operation can be protected via a
special End-of-Initialization (ENDINIT) bit. The ENDINIT bit globally protects those
TC11IB registers that control basic system configuration against unintentional
modification. Write accesses to registers protected via this ENDINIT-bit are prohibited as
long as this bit is set to 1. To clear the bit and to enable access to these registers again,
a special password-protected access sequence to the Watchdog Timer registers must
be performed. The bit must be set to 1 again within a defined time-out period, otherwise
a system malfunction is assumed to have occurred, and the Watchdog Timer triggers a
reset of the TC11IB. See Chapter 20 for more details.

2.1.12 Reset System

Several events will cause the TC11IB system to be reset:

• Power-On Reset
– Activated through an external pin when the power to the device is turned on (also

called cold reset)
• Hard Reset

– Activated through an external pin (HDRST) during run time (also called warm reset)
• Soft Reset

– Activated through a software write to a reset-request register, which has a special
protection mechanism to prevent accidental access

• Watchdog Timer Reset
– Activated through an error condition detected by the Watchdog Timer

• Wake-up Reset
– Activated through an external pin to wake the device from a power saving mode

A status register allows the CPU to check which of the triggers caused the reset.
User’s Manual 2-12 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2 Processor Registers

The processor contains general purpose registers to store instruction operands. It has
special purpose registers for managing the state of the processor itself.

The CPU’s operations are controlled by a set of Core Special Function Registers
(CSFRs). These registers also provide status information about its operation. The
CSFRs are split into the following groups:

• Program State Information
• Context Management
• Stack Management
• Interrupt and Trap Control
• System Control
• Memory Protection
• Debug Control

The following sections summarize these registers. The CSFRs are complemented by a
set of General Purpose Registers (GPRs). Table 2-1 shows all CSFRs and GPRs.

Table 2-1 Core Register Map

Register Name Description

D0 – D15 General Purpose Data Registers

A0 – A15 General Purpose Address Registers

PSW Program Status Word

PCXI Previous Context Information Register

PC Program Counter

FCX Free CSA List Head Pointer

LCX Free CSA List Limit Pointer

ISP Interrupt Stack Pointer

ICR ICU Interrupt Control Register

BIV Interrupt Vector Table Pointer

BTV Trap Vector Table Pointer

SYSCON System Configuration Register

DPRx_0 – DPRx_3 Data Segment Protection Registers for Set x (x = 0, 1)

CPRx_0 – CPRx_1 Code Segment Protection Registers for Set x (x = 0, 1)

DPMx_0 – DPMx_3 Data Protection Mode Register for Set x (x = 0, 1)

CPMx_0 – CPMx_1 Code Protection Mode Register for Set x (x = 0, 1)

DBGSR Debug Status Register
User’s Manual 2-13 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
The CPU accesses the CSFRs through two instructions: MFCR and MTCR. The MFCR
instruction (Move From Core Register) moves the contents of the addressed CSFR into
a data register. MFCR can be executed on any privilege level. The MTCR instruction
(Move To Core Register) moves the contents of a data register to the addressed CSFR.
To prevent unauthorized writes to the CSFRs, the MTCR instruction can be executed on
Supervisor privilege level only.

The CSFRs are also mapped into the top of Segment 15 in the memory address space.
This mapping makes the complete architectural state of the CPU visible in the address
map. This feature provides efficient debug and emulator support.

Note: The CPU is not allowed to access the CSFRs through this mechanism — it must
use the MFCR and MTCR instructions. Trying to access the CSFRs through
normal load and store instructions results in a MEM trap.

The instruction set provides no single-bit, bit field, or load-modify-store accesses to the
CSFRs. The only other instruction affecting a CSFR, is the RSTV instruction (Reset
Overflow Flags), which resets only the overflow flags in the PSW, without modifying any
of the other PSW bits. This instruction can be executed at any privilege level.

Note: Access to the Core SFRs through their mapped addresses in segment 15 is
implemented primarily for debug purposes. Special attention needs to be paid
when accessing these registers. It is strongly advised to not write to the CSFRs
while the core is executing. Reading the registers while the core is running does
not guarantee coherent status information.
A mid-range or high-range emulator can use the external bus as a fast route to the
internal FPI Bus. However, certain restrictions are placed on this mode of
operation regarding access to the CSFRs and GPRs: The external bus cannot be
used to access state in the core (GPRs and CSFRs) while the core is running (not
halted) and is configured to perform accesses to the external bus.

Figure 2-7 shows the General Purpose Registers (GPRs). The 32-bit wide GPRs are
split evenly into sixteen data registers, or DGPRs, (D0 to D15) and sixteen address
registers, or AGPRs, (A0 to A15). Separation of data and address registers facilitates
efficient performance of arithmetic and memory operations in parallel. Several
instructions interchange information between data and address registers in order, for
example, to create or derive table indexes. 64-bit values can be represented by

EXEVT External Break Input Event Specifier

SWEVT Software Break Event Specifier

CREVT Core SFR Access Event Specifier

TRnEVT Trigger Event n Specifier (n = 0, 1)

Table 2-1 Core Register Map (cont’d)

Register Name Description
User’s Manual 2-14 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
concatenating two consecutive double-word-aligned data registers. Eight such
extended-size registers (E0, E2, E4, E6, E8, E10, E12, and E14) are available.

Figure 2-7 General Purpose Registers (GPRs)

As shown in Figure 2-7, registers A0, A1, A8, and A9 are defined as System Global
Registers. Their contents are not saved and restored across calls, traps, or interrupts.
Register A10 is used as the Stack Pointer (SP) register. A11 is used to store the return
address (RA) for calls and linked jumps and to store the return program counter (PC)
value for interrupts and traps as part of the Upper Context.

The 32-bit instructions have unlimited use of the GPRs. However, many 16-bit
instructions implicitly use A15 as their address register and D15 as their data register to
make the encoding of these instructions into 16 bits possible.

There are no separate floating-point registers — the data registers are used to perform
floating-point operations. Floating-point data is saved and restored automatically using
the fast context-switching capabilities of the TC11IB.

The GPRs are an essential part of a task’s context. When saving or restoring a task’s
context to and from memory, the context is split into the Upper Context and Lower
Context as shown in Figure 2-6. Registers A2 through A7 and D0 through D7 are part
of the Lower Context. Registers A10 through A15 and D8 through D15 are part of the
Upper Context.

M C A04685

A 15 (im plic it address) D 15 (im p lic it data)

General Purpose
Address Registers
(AGPR)

General Purpose
Data Registers
(DGPR)

A 14 D 14
D 13
D 12
D 11
D 10
D 9
D 8
D 7
D 6
D 5
D 4
D 3
D 2
D 1
D 0

E 14

E 12

E 10

E 8

E 6

E 4

E 2

E 0

64-B it E x tended
D ata R eg isters

A 13
A 12

A 11 (re turn address)
A 10 (s tack po in ter)
A 9 (g lobal address)
A 8 (g lobal address)

A 7
A 6
A 5
A 4
A 3
A 2

A 1 (g lobal address)
A 0 (g lobal address)
User’s Manual 2-15 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2.1 Program State Information Registers

The PC, PSW, and PCXI registers hold and reflect Program State Information. When
saving and restoring a task’s context, the contents of these registers are saved and
restored or modified during this process.

2.2.1.1 Program Counter (PC)

The Program Counter (PC) holds the address of the instruction which is currently fetched
and forwarded to the CPU pipelines. The CPU handles updates of the PC automatically.

Software can use the current value of the PC for various tasks, such as performing code
address calculations. Reading the PC through software executed by the CPU must only
be done with an MFCR instruction. Explicit writes to the PC through an MTCR instruction
must not be done due to possible unexpected behavior of the CPU.

Note: The CPU must not perform Load/Store instructions to the mapped address of the
PC in Segment 15. A MEM trap will be generated in such a case.

Note: Reading the PC while the Core is executing, either through an MFCR instruction
or via its mapped address in Segment 15 (see below), will return a value which is
representative of where the code is currently executed from, however, it is not
guaranteed that the value returned will always correspond to an instruction that
has been or will be executed. For example, it is possible for the PC to point to the
target of a predicted branch which is subsequently resolved as mispredicted.
Thus, the branch target instruction will not be executed; however, it should be
possible to implement a statistical profile/coverage report with some degree of
error by sampling the PC value while the CPU is running.

In Debug Mode, explicit read and write operations to the PC can be performed using its
mapped address in Segment 15. This must only be done through an LMB Bus master
other than the CPU itself (through the DMU). Several restrictions apply to this operation:

• Writing to the PC while the Core is executing is non-deterministic and the user is
strongly advised not to do so. The correct sequence the user should adopt is: halt the
Core, modify the PC, remove Core from Halt mode.

• Reading the PC while the Core is halted will return the PC of the first instruction to be
executed once the Core is released from Halt mode. The only exception to this is if an
interrupt or asynchronous trap is received by the Core immediately after it is removed
from Halt mode prior to the first instruction being executed.

• Writing to the PC while the Core is halted will modify the PC in a deterministic way.
the new value will be the PC of the first instruction to be executed once the Core is
released from Halt mode. The only exception to this is if an interrupt or asynchronous
trap is received by the Core immediately after it is removed from Halt mode prior to
the first instruction being executed.
User’s Manual 2-16 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Note: Bit 0 of the PC register is a read-only bit, hard-wired to 0. This ensures that only
half-word aligned addresses can be placed into the PC (instructions can only be
aligned to half-word addresses).

2.2.1.2 Program Status Word (PSW)

The Program Status Word (PSW) register holds the instruction flags and the control bits
for a number of options of the overall protection system.

A special instruction is available that affects only the overflow flag bits in register PSW.
The RSTV (Reset Overflow Flags) instruction clears bits V, SV, AV and SAV in PSW
without modifying any other PSW bit.

PC
Program Counter Reset Values: Boot ROM Boot: BFFF FFFCH

 External Memory Boot: A000 0000H
Emulator Boot: BE00 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PC[31:16]

rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC[15:1] 0

rwh r

Field Bits Type Description

PC [31:1] rwh Program Counter

0 0 r Reserved
User’s Manual 2-17 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
PSW
Program Status Word Reset Value: 0000 0B80H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

C V SV AV SAV 0

rwh rwh rwh rwh rwh r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRS IO IS GW CDE CDC

r rwh rwh rwh rwh rwh rwh

Field Bits Type Description

CDC [6:0] rwh Call Depth Counter Field
The CDC field consists of two variable-width fields.
The first is a mask field, consisting of a string of zero
or more initial 1 bits, terminated by the first 0 bit. The
remaining bits of the field are the call depth counter.
0ccccccB 6-bit counter; trap on overflow
10cccccB 5-bit counter; trap on overflow
110ccccB 4-bit counter; trap on overflow
1110cccB 3-bit counter; trap on overflow
11110ccB 2-bit counter; trap on overflow
111110cB 1-bit counter; trap on overflow
1111110B Trap every call (call trace mode)
1111111B Disable call depth counting
When the call depth counter overflows, a trap is
generated. Depending on the width of the mask field,
the call depth counter can be set to overflow at any
power of two boundary, from 1 to 64. Setting the mask
field to 1111110B allows no bits for the counter, and
causes every call to be trapped. This is used for call
tracing. Setting the field to mask field to 1111111B
disables call depth counting altogether.
User’s Manual 2-18 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
CDE 7 rwh Call Depth Count Enable
The CDE bit enables call-depth counting, provided that
the CDC mask field is not all 1’s. CDE is set to 1 by
default, but should be cleared by the SYSCALL
instruction Trap Service Routine to allow a trapped
SYSCALL instruction to execute without producing
another trap upon return from the trap handler. It is
then set again when the next SYSCALL instruction is
executed.
0 Call depth counter disabled
1 Call depth counter enabled

GW 8 rwh Global Register Write Permission
GW controls whether the current execution thread has
permission to modify the global address registers.
Most tasks and ISRs will use the global address
registers as “read only” registers, pointing to the global
literal pool and key data structures. However, a task or
ISR can be designated as the “owner” of a particular
global address register, and is allowed to modify it.
The system designer must determine which global
address variables are used with sufficient frequency
and/or in sufficiently time-critical code to justify
allocation to a global address register. By compiler
convention, global address register A0 is reserved as
the base register for short form loads and stores.
Register A1 is also reserved for compiler use.
Registers A8 and A9 are not used by the compiler, and
are available for holding critical system address
variables.
0 Write permission to global registers A0, A1, A8,

and A9 is disabled
1 Write permission to global registers A0, A1, A8,

and A9 is enabled

Field Bits Type Description
User’s Manual 2-19 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
IS 9 rwh Interrupt Stack Control
Determines whether the current execution thread is
using the shared global (interrupt) stack or a user
stack.
0 User Stack. If an interrupt is taken when the IS

bit is 0, then the stack pointer register is loaded
from the ISP register before execution starts at
the first instruction of the Interrupt Service
Routine.

1 Shared Global Stack. If an interrupt is taken
when the IS bit is 1, then the current value of the
stack pointer register is used by the Interrupt
Service Routine.

IO [11:10] rwh Access Privilege Level Control
This 2-bit field selects determines the access level to
special function registers and peripheral devices.
00B User-0 Mode: No peripheral access. Access to

segments 14 and 15 is prohibited and will result
in a trap. This access level is given to tasks that
need not directly access peripheral devices.
Tasks at this level do not have permission to
enable or disable interrupts.

01B User-1 Mode: regular peripheral access. This
access level enables access to common
peripheral devices that are not specially
protected, including read/write access to serial
I/O ports, read access to timers, and access to
most I/O status registers. Tasks at this level may
disable interrupts.

10B Supervisor Mode. This access level enables
access to all peripheral devices. It enables read/
write access to core registers and protected
peripheral devices. Tasks at this level may
disable interrupts.

11B Reserved; this encoding is reserved and is not
defined.

Field Bits Type Description
User’s Manual 2-20 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2.1.3 Previous Context Information Register (PCXI)

This register holds information about the previous task’s context, and is saved and
restored together with both the Upper and the Lower Context. It also contains the
Previous Context Pointer (PCX), which holds the address of the previous task’s context
save area (CSA).

PRS [13:12] rwh Protection Register Set Selection
The PRS field selects one of two possible sets of
memory protection register values controlling load and
store operations and instruction fetches within the
current process. This field indicates the current
protection register set.
00 Protection register set 0 selected
01 Protection register set 1 selected
10 Reserved; don’t use this combination
11 Reserved; don’t use this combination

0 [26:14] r Reserved; read as 0; should be written with 0;

SAV 27 rwh Sticky Advance Overflow Flag
This flag is set whenever the advanced overflow flag is
set. It remains set until it is explicitly cleared by an
RSTV (Reset Overflow bits) instruction.

AV 28 rwh Advance Overflow Flag
This flag is updated by all instructions that update the
overflow flag and no others. This flag is determined as
the boolean exclusive of the two most significant bits of
the result.

SV 29 rwh Sticky Overflow Flag
This flag is set when an overflow occurs. This flag
remains set until it is explicitly reset by an RSTV
(Reset Overflow bits) instruction.

V 30 rwh Overflow Flag
This flag is set when an overflow occurs.

C 31 rwh Carry Flag
This flag is set when a carry occurs.

Field Bits Type Description
User’s Manual 2-21 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
PCXI
Previous Context Information Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PCPN PIE UL 0 PCXS

rwh rwh rwh r rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCXO

rwh

Field Bits Type Description

PCXO [15:0] rwh Previous Context Pointer Offset Field
The combined PCXO and PCXS fields form the
pointer PCX, which points to the CSA of the previous
context.

PCXS [19:16] rwh PCX Segment Address
This field contains the segment address portion of
the PCX.

0 20, 21 r Reserved; read as 0; should be written with 0;

UL 22 rwh Upper/Lower Context Tag
The UL context tag bit identifies the type of context
saved.
0 Lower Context
1 Upper Context
If the type does not match the type expected when a
context restore operation is performed, a trap is
generated.

PIE 23 rwh Previous Interrupt Enable
PIE indicates the state of the interrupt enable bit
(ICR.IE) for the interrupted task.

PCPN [31:24] rwh Previous CPU Priority Number
This bit field contains the priority level number of the
interrupted task.
User’s Manual 2-22 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2.2 Context Management Registers

The Context Management Registers (CMR) are comprised of three pointer registers,
FCX, PCX, and LCX. These pointers handle context management and are used during
context save/restore operations.

Each pointer register consists of two fields: a 16-bit offset and a 4-bit segment specifier.
A Context Save Area (CSA) is an address range containing sixteen word locations
(64 bytes). Each CSA can save one Upper Context or one Lower Context. Incrementing
a CMR pointer offset value by 1 will point it at the CSA that is sixteen word locations
above the previous one.

The FCX pointer register points to the head of the CSA free list. The previous context
pointer (PCX) points to the CSA of the previous task. PCX is part of the previous context
information register PCXI. The LCX pointer register is used to recognize impending CSA
list underflows. If the value of FCX used on an interrupt or CALL instruction matches the
limit value, the context-save operation will be completed, but the target address will be
forced to the trap vector address that handles CSA list depletion.

2.2.2.1 Free Context List Head Pointer (FCX)

The FCX register points to the address of the next available context save area (CSA) in
the linked list of CSAs. It is automatically updated on a context save operation to point
to the next available CSA.

FCX
Free Context List Head Pointer Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 FCXS

R rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FCXO

rwh
User’s Manual 2-23 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2.2.2 Previous Context Pointer (PCX)

The Previous Context Pointer (PCX) holds the address of the CSA of the previous task.
PCX is part of PCXI. It is shown for easy reference. The bits not relevant to the pointer
function are shaded.

Note: The shaded bit fields are described at register PCXI.

Field Bits Type Description

FCXO [15:0] rwh FCX Offset Address Field
The combined FCXO and FCXS fields form the FCX
pointer, which points to the next available CSA.

FCXS [19:16] rwh FCX Segment Address Field
This bit field is used in conjunction with the FCXO
field.

0 [31:20] r Reserved; read as 0; should be written with 0;

PCX
Previous Context Pointer Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PCPN PIE UL 0 PCXS

rwh rwh rwh r rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCXO

rwh

Field Bits Type Description

PCXO [15:0] rwh Previous Context Pointer Offset Field
The combined PCXO and PCXS fields form the
pointer PCX, which points to the CSA of the previous
context.

PCXS [19:16] rwh PCX Segment Address
This field is used in conjunction with the PCXO field-

0 20, 21 r Reserved; read as 0; should be written with 0;
User’s Manual 2-24 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2.3 Free Context List Limit Pointer (LCX)

The LCX register points to the last context save area (CSA) in the linked list of free CSAs.
The value is used on a context save operation to detect the usage of the last entry, and
to trigger a trap to the CPU to allow proper software reaction.

LCX
Free Context List Limit Pointer Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 LCXS

R rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCXO

rw

Field Bits Type Description

LCXO [15:0] rw Previous Context Pointer Offset Field
The LCXO and LCXS fields form the pointer LCX,
which points to the last available CSA.

LCXS [19:16] rw LCX Segment Address
This bit field is used in conjunction with the LCXO field.
User’s Manual 2-25 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2.4 Stack Management

General purpose address register A10 is designated as the Stack Pointer (SP). The
initial contents of this register are usually set by an RTOS instruction when a task is
created. This allows a private stack area to be assigned to individual tasks.

When entering Interrupt Service Routines (ISRs), the Stack Pointer is loaded with the
contents of a separate register — the Interrupt Stack Pointer (ISP) — after saving its
previous contents with the Upper Context. This helps to prevent interrupt service
routines from accessing the private stack areas and possibly interfering with the context
of software-managed tasks.

2.2.4.1 Interrupt Stack Pointer (ISP)

To separate the private stack of software managed tasks from the stack used for
interrupt service routines (ISRs), an automatic switch is implemented in the TC11IB to
use the Interrupt Stack Pointer (ISP) when entering ISRs. After saving the Upper
Context, and with it register A10 (used as the stack pointer), register A10 is loaded with
the contents of register ISP. When returning from the ISR, the previous value of the
Stack Pointer is restored through the Upper Context restore operation.

Note: Register ISP is EndInit-protected!

ISP
Interrupt Stack Pointer Reset Value: 0000 0100H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ISP[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISP15:1] 0

rw r

Field Bits Type Description

ISP [31:1] rw Interrupt Stack Pointer

0 0 r Reserved; read as 0; should be written with 0;
User’s Manual 2-26 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2.5 Interrupt and Trap Control

Three CSFRs support interrupt and trap handling: the Interrupt Control Register (ICR),
the Interrupt Vector Table Pointer (BIV), and the Trap Vector Table Pointer (BTV).

The ICR holds the current CPU priority number (CCPN), the enable/disable bit for the
interrupt system, the pending interrupt priority number, and an implementation-specific
control for the interrupt arbitration scheme. The other two registers hold the base
addresses for the interrupt (BIV) and trap vector tables (BTV).

2.2.5.1 Interrupt Vector Table Pointer (BIV)

The BIV register points to the start address of the Interrupt Vector Table in code memory.
More detailed information on the functions associated with this register and the Interrupt
Vector Table can be found in Chapter 15.

Note: Register BIV is EndInit-protected!

BIV
Interrupt Vector Table Pointer Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BIV[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BIV[15:1] 0

rw r

Field Bits Type Description

BIV [31:1] rw Base Address of Interrupt Vector Table

0 0 r Reserved; read as 0; should be written with 0;
User’s Manual 2-27 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2.5.2 Trap Vector Table Pointer (BTV)

The BTV register points to the start address of the Trap Vector Table in code memory.
More detailed information on the functions associated with this register and the Trap
Vector Table can be found in Chapter 16.

Note: Register BTV is EndInit-protected,

BTV
Trap Vector Table Pointer Reset Value: A000 0100H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BTV[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BTV[15:1] 0

rw r

Field Bits Type Description

BTV [31:1] rw Base Address of Trap Vector Table

0 0 r Reserved; read as 0; should be written with 0;
User’s Manual 2-28 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2.6 System Control Register

The System Configuration Control Register (SYSCON) provides the enable/disable bit
for the memory protection system and a status flag for a Free Context List Depletion
condition.

SYSCON
System Configuration Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRO
TEN

FCD
SF

r rw rwh

Field Bits Type Description

FCDSF 0 rwh Free Context List Depletion Sticky Flag
This sticky bit indicates that a FCD trap occurred since
the bit was last cleared by software.
0 No FCD trap occurred since the last clear
1 An FCD trap occurred since the last clear

PROTEN 1 rw Memory Protection Enable
PROTEN enables the memory protection system.
Memory protection is controlled through the memory
protection register sets. Note that it is required to
initialize the protection register sets prior to setting
PROTEN to 1.
0 Memory Protection is disabled
1 Memory Protection is enabled

0 [31:2] r Reserved; read as 0; should be written with 0;
User’s Manual 2-29 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2.7 Memory Protection Registers

As described in Section 2.1.11.2, memory ranges are protected from unauthorized
read-, write-, or instruction-fetch accesses. The TC11IB contains register sets (PRSs)
that specify the addresses and the access permissions for a number of memory ranges.
The TC11IB incorporates two sets each for data and code memory protection. See
Chapter 12 for detailed register descriptions.

2.2.8 Debug Registers

Six registers are implemented in the CPU to support debugging. These registers define
the conditions under which a debug event is generated, the actions taken on the
assertion of a debug event, and the status information supplied to the debug functions.
See Chapter 21 for detailed register descriptions.
User’s Manual 2-30 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.2.9 CSFR Address Table

Table 2-2 lists all CSFRs of the TC11IB and their physical addresses. Except for the
General Purpose Registers (GPRs), two addresses are given for each of the CSFRs.
The 32-bit address represents the mapped address of the register in segment 15.
Access to these mapped locations can be performed through the CPU’s Slave Interface
(CPS) by any LMB Bus master other than the CPU itself. The 16-bit address given for a
register is the associated address when performing an access by the CPU through the
MTCR and MFCR instructions.

Access modes to the CSFRs are described in the following notes and, therefore, are not
contained in Table 2-2.

Note: The General Purpose Registers (GPRs) cannot be accessed by the CPU through
MTCR and MFCR instructions. Therefore, they do not have a 16-bit address.

Note: Write accesses to CSFRs through the CPS interface by an LMB Bus master while
the CPU is running might lead to unexpected behavior. It is strongly advised to
write to these registers only when the CPU is halted.

Note: Read and write accesses from the LMB Bus must only be made with word-aligned
word accesses. Any access not following this rule will be flagged with a bus error.
The read or write operation will not be performed.

Note: Read accesses from the LMB Bus can be performed in User or Supervisor Mode.
Write accesses from the LMB Bus must be performed in Supervisor Mode. A write
attempt in User Mode will be flagged with a bus error. The write operation will not
be performed.

Note: Registers ISP, BIV, and BTV are EndInit-protected. To write successfully to these
registers, the ENDINIT bit in register WDT_CON0 of the Watchdog Timer must be
cleared. See Chapter 20 for detailed information on the EndInit-protection.
User’s Manual 2-31 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Table 2-2 CSFR Register Table

Register
Short Name

Register Long Name Address

Core Special Function Registers (CSFRs)

PCXI Previous Context Information Register F7E1 FE00H

PSW Program Status Word F7E1 FE04H

PC Program Counter F7E1 FE08H / FE08H

SYSCON System Configuration Register F7E1 FE14H / FE14H

BIV Interrupt Vector Table Pointer F7E1 FE20H / FE20H

BTV Trap Vector Table Pointer F7E1 FE24H / FE24H

ISP Interrupt Stack Pointer F7E1 FE28H / FE28H

ICR ICU Interrupt Control Register F7E1 FE2CH / FE2CH

FCX Free CSA List Head Pointer F7E1 FE38H / FE38H

LCX Free CSA List Limit Pointer F7E1 FE3CH / FE3CH

General Purpose Registers (GPRs)

D0 Data Register D0 (DGPR) F7E1 FF00H

D1 Data Register D1 (DGPR) F7E1 FF04H

D2 Data Register D2 (DGPR) F7E1 FF08H

D3 Data Register D3 (DGPR) F7E1 FF0CH

D4 Data Register D4 (DGPR) F7E1 FF10H

D5 Data Register D5 (DGPR) F7E1 FF14H

D6 Data Register D6 (DGPR) F7E1 FF18H

D7 Data Register D7 (DGPR) F7E1 FF1CH

D8 Data Register D8 (DGPR) F7E1 FF20H

D9 Data Register D9 (DGPR) F7E1 FF24H

D10 Data Register 10 (DGPR) F7E1 FF28H

D11 Data Register 11 (DGPR) F7E1 FF2CH

D12 Data Register 12 (DGPR) F7E1 FF30H

D13 Data Register 13 (DGPR) F7E1 FF34H

D14 Data Register 14 (DGPR) F7E1 FF38H

D15 Data Register 15 (DGPR) F7E1 FF3CH

A0 Address Register 0 (AGPR)
Global Address Register

F7E1 FF80H
User’s Manual 2-32 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
A1 Address Register 1 (AGPR)
Global Address Register

F7E1 FF84H

A2 Address Register 2 (AGPR) F7E1 FF88H

A3 Address Register 3 (AGPR) F7E1 FF8CH

A4 Address Register 4 (AGPR) F7E1 FF90H

A5 Address Register 5 (AGPR) F7E1 FF94H

A6 Address Register 6 (AGPR) F7E1 FF98H

A7 Address Register 7 (AGPR) F7E1 FF9CH

A8 Address Register 8 (AGPR)
Global Address Register

F7E1 FFA0H

A9 Address Register 9 (AGPR)
Global Address Register

F7E1 FFA4H

A10 (SP) Address Register 10 (AGPR)
Stack Pointer

F7E1 FFA8H

A11 (RA) Address Register 11 (AGPR)
Return Address

F7E1 FFACH

A12 Address Register 12 (AGPR) F7E1 FFB0H

A13 Address Register 13 (AGPR) F7E1 FFB4H

A14 Address Register 14 (AGPR) F7E1 FFB8H

A15 Address Register 15 (AGPR) F7E1 FFBCH

Table 2-2 CSFR Register Table (cont’d)

Register
Short Name

Register Long Name Address
User’s Manual 2-33 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.3 Instruction Set Overview

This section provides an overview of the TriCore instruction set architecture. The basic
properties and uses of each instruction type are described, as well as the selection and
use of the 16-bit (short) instructions.

Note: The “TriCore Architecture Manual” describes each instruction more detailed.

2.3.1 Arithmetic Instructions

Arithmetic instructions operate on data and addresses in registers. Status information
about the result of the arithmetic operations is recorded in the five status flags in the
Program Status Word (PSW) register. The status flags are described in Table 2-3.

The two signed overflow conditions (overflow and advance overflow) are calculated for
all arithmetic instructions. In the case of packed instructions, the conditions are the OR
of the conditions for each byte or half-word (parallel) operation. In the case of the
multiply-accumulate instructions, the conditions are calculated after the accumulate
operation. The unsigned overflow condition is carry for addition or borrow (no carry) for
subtraction.

Table 2-3 PSW Status Flags

Status
Flag

Description

C Carry Flag
This flag is set as the result of a carry out from an addition or subtraction
instruction. Carry out can result from either signed or unsigned operations. It is
also set by arithmetic shift.

V Overflow Flag
This flag is set when the signed result cannot be represented in the data size
of the result; for example, when the result of a signed 32-bit operation is greater
than 231 - 1.

SV Sticky Overflow Flag
This flag is set when the overflow flag is set. It remains set until it is explicitly
cleared by an RSTV (Reset Overflow bits) instruction.

AV Advance Overflow Flag
This flag is updated by all instructions that update the overflow flag and no
others. This flag is determined as the Boolean exclusive-or of the two most-
significant bits of the result.

SAV Sticky Advance Overflow Flag
This flag is set whenever the advanced overflow flag is set. It remains set until
it is explicitly cleared by an RSTV (Reset Overflow bits) instruction.
User’s Manual 2-34 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Numerically, overflow for signed 32-bit values occurs when a positive result is greater
than 7FFFFFFFH or a negative result is smaller than 80000000H. Overflow for unsigned
32-bit values occurs when the result is greater than FFFFFFFFH or less than
00000000H.

The status flags can be read by software using the Move From Core Register (MFCR)
instruction and can be written using the Move to Core Register (MTCR) instruction. The
Trap on Overflow (TRAPV) and Trap on Sticky Overflow (TRAPSV) instructions can be
used to cause a trap if the V and SV bits, respectively, are set. The overflow bits can be
cleared using the Reset Overflow Bits instruction (RSTV).

Individual arithmetic operations can be checked for overflow by reading and testing V. If
it is necessary to know only if an overflow occurred somewhere in an entire block of
computation, then the SV bit is reset before the block (using the RSTV instruction) and
is tested after completion of the block (using MFCR). Jumping based on the overflow
result can be done using a MFCR followed by a JZ.T or JNZ.T (conditional jump on the
value of a bit).

The AV and SAV bits are set as a result of the exclusive OR of the two most-significant
bits of the particular data type (byte, half-word, word, or double-word) of the result, which
indicates that an overflow almost occurred.

Because most signal-processing applications can handle overflow by simply saturating
the result, most of the arithmetic instructions have a saturating version for signed and
unsigned overflow. Note that saturating versions of all instructions can be synthesized
using short code sequences.

When saturation is used for 32-bit signed arithmetic overflow, if the true result of the
computation is greater than (231 - 1) or less than -231, the result is set to (231 - 1) or -231,
respectively. The bounds for 16-bit signed arithmetic are (215 - 1) and -215. The bounds
for 8-bit signed arithmetic are (27 - 1) and -27. When saturation is used for unsigned
arithmetic, the lower bound is always zero and the upper bounds are (232 - 1), (216 - 1),
and (28 - 1). Saturation is indicated in the instruction mnemonic by an “S”, and unsigned
is indicated by a “U” following the period (.). For example, the instruction mnemonic for
a signed saturating addition is ADDS, and the mnemonic for an unsigned saturating
addition is ADDS.U. Saturation is also used for signed fractions in DSP operations.

2.3.1.1 Integer Arithmetic

Move

Move instructions move a value in a data register or a constant value in the instruction
to a destination data register. Move can be used to quickly load a large constant into a
data register. A 16-bit constant is created using MOV (which sign-extends the value to
32 bits) or MOV.U (which zero-extends to 32 bits). The MOVH (Move Highword)
instruction loads a 16-bit constant into the most-significant sixteen bits of the register and
zero fills the least significant sixteen bits, which is useful for loading a left-justified
User’s Manual 2-35 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
constant fraction. Loading a 32-bit constant can be done using a MOVH instruction
followed by an ADDI (Add Immediate), or by a MOV.U followed by ADDIH (Add
Immediate High Word).

Addition and Subtraction

There are three types of addition instructions: no saturation (ADD), signed saturation
(ADDS), and unsigned saturation (ADDS.U). For extended precision addition, the ADDX
(Add Extended) instruction sets the PSW carry bit to the value of the ALU carry out. The
ADDC (Add with Carry) instruction uses the PSW carry bit as the carry in, and updates
the PSW carry bit with the ALU carry out. For extended precision addition, the least
significant word of the operands is added using the ADDX instruction, and the remaining
words are added using the ADDC instruction. The ADDC and ADDX instructions do not
support saturation.

Often it is necessary to add 16-bit or 32-bit constants to integers. The ADDI (Add
Immediate) and ADDIH (Add Immediate High) instructions add a 16-bit, sign-extended
constant or a 16-bit constant, left-shifted by 16. Addition of any 32-bit constant can be
done using ADDI followed by an ADDIH.

All add instructions except those with constants have similar corresponding subtract
instructions. Because the large immediate of ADDI is sign-extended, it may be used for
both addition and subtraction.

The RSUB (Reverse Subtract) instruction subtracts a register from a constant. Using
zero as the constant yields negation as a special case.

Multiply and Multiply-Add

Multiplication of two 32-bit integers that produce a 32-bit result can be handled using
MUL (Multiply Signed), MULS (Multiply Signed with Saturation), and MULS.U (Multiply
Unsigned with Saturation). The MULM (Multiply with Multiword Result) and MULM.U
(Multiply with Multiword Result Unsigned) instructions produce the full 64-bit result,
which is stored to a register pair; MULM is for signed integers, and MULM.U is for
unsigned integers. Special multiply instructions are used for DSP operations.

The Multiply-Add instruction (MADD) multiplies two signed operands, adds the result to
a third operand, and stores the result in a destination. Because the third operand and the
destination do not use the same registers, the intermediate sums of a multi-term multiply-
add instruction can be saved without requiring any additional register moves. The
MADD, MADDS (Multiply-Add with Saturation), and MADDS.U (Multiply-Add with
Saturation Unsigned) instructions operate on and produce 32-bit integers; MADDS and
MADDS.U will saturate on signed and unsigned overflow, respectively. The instructions
MADDM (Multiply-Add with Multiword Result), MADDM.U (Multiply-Add with Multiword
Result Unsigned), MADDMS (Multiply-Add Multiword with Saturation), and MADDMS.U
(Multiply-Add Multiword with Saturation Unsigned) can be used to add the 64-bit product
to a 64-bit source and produce a 64-bit result.
User’s Manual 2-36 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
The set of Multiply-Subtract (MSUB) instructions that supports the accumulation of
products using subtraction instead of addition provides the same set of variations as the
MADD instructions.

Division

Division of 32-bit by 32-bit integers is supported for both signed and unsigned integers.
Because an atomic divide instruction would require an excessive number of cycles to
execute, a divide-step sequence is used to reduce interrupt latency. The divide step
sequence allows the divide time to be proportional to the number of significant quotient
bits expected.

The sequence begins with a Divide-Initialize instruction (DVINIT(.U), DVINIT.H(U), or
DVINIT.B(U), depending on the size of the quotient and whether the operands are to be
treated as signed or unsigned). The divide initialization instruction extends the 32-bit
dividend to 64 bits, then shifts it left by 0, 16, or 24 bits. Simultaneously it shifts in that
many copies of the quotient sign bit to the low-order bit positions. Then follows 4, 2, or
1 Divide-Step instructions (DVSTEP or DVSTEP.U). Each divide step instruction
develops eight bits of quotient.

At the end of the divide step sequence, the 32-bit quotient occupies the low-order word
of the 64-bit dividend register pair and the remainder is held in the high-order word. If the
divide operation was signed, the Divide-Adjust instruction (DVADJ) is required to
perform a final adjustment of negative values. If the dividend and the divisor are both
known to be positive, the DVADJ instruction can be omitted.

Absolute Value, Absolute Difference

A common operation on data is the computation of the absolute value of a signed
number or the absolute value of the difference between two signed numbers. These
operations are provided directly by the ABS and ABSDIF instructions and there is a
version of each instruction which saturates when the result is too large to be represented
as a signed number.

Min, Max, Saturate

Instructions are provided that directly calculate the minimum or maximum of two
operands. The MIN and MAX instructions are used for signed integers, MIN.U and
MAX.U are used for unsigned integers. The SAT instructions can be used to saturate the
result of a 32-bit calculation before storing it in a byte or half-word in memory or a
register.

Conditional Arithmetic Instructions

The conditional instructions — Conditional Add (CADD), Conditional Subtract (CSUB),
and Select (SEL) — provide efficient alternatives to conditional jumps around very short
User’s Manual 2-37 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
sequences of code. All of the conditional instructions use a condition operand that
controls the execution of the instruction. The condition operand is a data register with
any non-zero value interpreted as TRUE and a zero value interpreted as FALSE. For the
CADD and CSUB instructions, the addition/subtraction is performed if the condition is
TRUE. For the CADDN and CSUBN instructions it is performed if the condition is FALSE.

The SEL instruction copies one of its two source operands to its destination operand,
with the selection of source operands determined by the value of the condition operand
(This operation is the same as the C language “?” operation). A typical use might be to
record the index value yielding the larger of two array elements:

index_max = (a[i] > a[j]) ? i : j;

If one of the two source operands in a Select instruction is the same as the destination
operand, then the Select instruction implements a simple conditional move. This occurs
fairly often in source statements of the general form:

if (<condition>) then <variable> = <expression>;

Provided that <expression> is simple, it is more efficient to evaluate it unconditionally
into a source register, using a SEL instruction to perform the conditional assignment,
rather than conditionally jumping around the assignment statement.

Logical

The TriCore architecture provides a complete set of 2-operand, bit-wise logic operations.
In addition to the AND, OR, and XOR functions, there are the negations of the output —
NAND, NOR, and XNOR — and negations of one of the inputs — ANDN and ORN (the
negation of an input for XOR is the same as XNOR).

Count Leading Zeroes, Ones, and Signs

To provide efficient support for normalization of numerical results, prioritization, and
certain graphics operations, three Count Leading instructions are provided: CLZ (Count
Leading Zeros), CLO (Count Leading Ones), and CLS (Count Leading Signs). These
instructions are used to determine the amount of left shifting necessary to remove
redundant zeros, ones, or signs.

Note that the CLS instruction returns the number of leading redundant signs, which is the
number of leading signs minus one. Furthermore, the following special cases are
defined: CLZ(0) = 32, CLO(-1) = 32, and CLS(0) = CLS(-1) = 31.

For example, CLZ returns the number of consecutive zeros starting from the most-
significant bit of the value in the source data register. In the example shown below
(Table 2-8), there are seven zeros in the most-significant portion of the input register. If
the most-significant bit of the input is a 1, CLZ returns 0.
User’s Manual 2-38 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Figure 2-8 Operation of CLZ Instruction

The Count Leading instructions are useful for parsing certain Huffman codes and bit
strings consisting of Boolean flags because the code or bit string can be quickly
classified by determining the position of the first one (scanning from left to right).

Shift

The shift instructions support multi-bit shifts. The shift amount is specified by a signed
integer (n), which may be the contents of a register or a sign-extended constant in the
instruction. If n ≥ 0, the data is shifted left by n[4:0]; otherwise, the data is shifted right by
(-n)[4:0]. The (logical) shift instruction, SH, shifts in zeroes for both right and left shifts;
the arithmetic shift instruction, SHA, shifts in sign bits for right shifts and zeroes for left
shifts. The arithmetic shift with saturation instruction, SHAS, will saturate (on a left shift)
if the sign bits that are shifted out are not identical to the sign bit of the result.

Bit Field Extract and Insert

The TriCore architecture supports three bit field extract instructions. The EXTR.U and
EXTR instructions extract w (width) consecutive bits from the source, beginning with the
bit number specified by the pos (position) operand. The width and position can be
specified by two immediate values, by an immediate value and a data register, or by a
data register pair. The EXTR.U instruction (Figure 2-9) zero-fills the most significant
(32-w) bits of the result.

1 10

M C A 04690

0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0

D ata R egis te r

Count Lead ing Zero Logic

1 1 100
User’s Manual 2-39 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Figure 2-9 Operation of EXTR.U Instruction

The EXTR instruction (Figure 2-10) fills the most-significant bits of the result by sign-
extending the bit field extracted (thus duplicating the most-significant bit of the bit field).

Figure 2-10 Operation of EXTR Instruction

The DEXTR instruction (Figure 2-11), concatenates two data register sources to form a
64-bit value from which 32 consecutive bits are extracted. The operation can be thought
of as a left shift by pos bits, followed by the truncation of the least significant 32 bits of
the result. The value of pos is contained in a data register or is an immediate value in the
instruction.

The DEXTR instruction can be used to normalize the result of a DSP filter accumulation
in which a 64-bit accumulator is used with several guard bits. The value of pos can be
determined by using the CLS (Count Leading Signs) instruction. The DEXTR instruction
can also be used to perform a multi-bit rotation by using the same source register for both
of the sources that are concatenated.

M C A04691

S ource R egis ters

31 0

0D estination R eg isters

31 0

Zero F ill
W idth

Pos

M C A04692

S ource R egis te rs

31 0

SD estination R eg is ters

31 0

S ign F ill
W id th

P os

S

S

User’s Manual 2-40 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Figure 2-11 Operation of DEXTR Instruction

The INSERT instruction (Figure 2-12) takes the w least significant bits of a source data
register, shifted left by pos bits and substitutes them into the value of another source
register. All other (32-w) bits of the value of the second register are passed through. The
values of width and pos are specified in the same way as for EXTR(.U). There is also an
alternative form of INSERT that allows a zero-extended 4-bit constant to be the value
which is inserted.

Figure 2-12 Operation of INSERT Instruction

M C A04693

S ource R egis te rs

D es tination R eg is ters

P os
63 32 31 0

31 0

M C A04694

W idth

31 0
D estination R eg is ters

31

S ource R egis te rs
0

P os
User’s Manual 2-41 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.3.1.2 DSP Arithmetic

DSP arithmetic instructions operate on 16-bit, signed fractional data in the 1.15 format
(also known as Q15) and 32-bit signed fractional data in 1.31 format (also known as Q31).
Data values in this format have a single high-order sign bit with a value of 0 or -1, followed
by an implied binary point and fraction. Their values are in the range [-1, 1].

16-bit DSP data is loaded into the most significant half of a data register, with the 16 least
significant bits set to zero. The left alignment of 16-bit data allows it to be added directly
to 32-bit data in 1.31 format. All other fractional formats can be synthesized by explicitly
shifting data as required.

Operations created for this format are multiplication, multiply-add, and multiply-subtract.
The signed fractional formats 1.15 and 1.31 are supported with the MUL.Q and MULR.Q
instructions. These instructions operate on two left-justified signed fractions and return
a 32-bit signed fraction.

Scaling

The multiplier result can be shifted in two ways:

• Left shifted by 1
– One sign bit is suppressed and the result is left-aligned, conserves the input format.

• Not shifted
– The result retains its two sign bits (2.30 format).
– This format can be used with IIR filters, in which some of the coefficients are

between 1 and 2, and to have one guard bit for accumulation.

Special Case = -1 × -1 = +1

When multiplying the two maximum negative values (-1), the result should be the
maximum positive number (+1). For example,

0x8000 * 0x8000 = 0x4000 0000

is correctly interpreted in Q format as:

-1(1.15 format) * -1(1.15 format) = +1 (2.30 format)

However, when the result is shifted left by one, the result is 0x8000 0000, which is
incorrectly interpreted as:

-1(1.15 format) * -1(1.15 format) = -1 (1.31 format)

To avoid this problem, the result of a Q format operation (-1 * -1) that has been left-
shifted by one (left-justified), is saturated to the maximum positive value. Thus,

0x8000 * 0x8000 = 0x7FFF FFFF

is correctly interpreted in Q format as:

-1(1.15 format) * -1(1.15 format) = (nearest representation of)+1 (1.31
format)
User’s Manual 2-42 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
This operation is completely transparent to the user and does not set the overflow flags.

Guard Bits

When accumulating sums (for example, in filter calculations) guard bits are often
required to prevent overflow. The instruction set directly supports the use of one guard
bit when using a 32-bit accumulator. When more guard bits are required, a register pair
(64 bits) can be used.

Rounding

Rounding is used to retain the 16-bit most-significant bits of a 32-bit result. Rounding is
combined with the MUL, MADD, MSUB instructions, and is implemented by adding 1 to
bit 15 of a 32-bit register.

Overflow and Saturation

Saturation on signed and unsigned overflow is implemented as part of the MUL, MADD,
and MSUB instructions.

Sticky Advance Overflow and Block Scaling in FFT

The Sticky Advance Overflow (SAV) bit is set whenever an overflow “almost” occurs. It
can be used in block scaling of intermediate results during an FFT calculation. Before
each pass of applying a butterfly operation, the SAV bit is cleared, and after the pass the
SAV bit is tested. If it is set, all of the data is scaled (using an arithmetic right shift) before
starting the next pass. This procedure gives the greatest dynamic range for intermediate
results without the risk of overflow.

Packed Arithmetic

The packed arithmetic instructions partition a 32-bit word into several identical objects,
which can then be fetched, stored, and operated on in parallel. These instructions, in
particular, allow the full exploitation of the 32-bit word of the TriCore architecture in signal
and data processing applications.

The TriCore architecture supports two packed formats. The first format (Figure 2-13)
divides the 32-bit word into two, 16-bit (half-word) values. Instructions which operate on
data in this way are denoted in the instruction mnemonic by the “.H” and “.HU” data type
modifiers.
User’s Manual 2-43 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Figure 2-13 Packed Half-word Data Format

The second packed format (Figure 2-14) divides the 32-bit word into four, 8-bit values.
Instructions that operate this way are denoted by the “.B” and “.BU” data type modifiers.

Figure 2-14 Packed Byte Data Format

The loading and storing of packed values into data registers is supported by the normal
Load Word (LD.W) and Store Word (ST.W) instructions. The packed objects can then be
manipulated in parallel by a set of special packed arithmetic instructions that perform
such arithmetic operations as addition, subtraction, multiplication, etc.

Addition is performed on individual packed bytes or half-words using the ADD.B and
ADD.H instructions and their saturating variations ADDS.B and ADDS.H. ADD.B ignores

M C A04695

H a lf-w ord 1 Ha lf-w ord 0 O perand m

H a lf-w ord 1 Ha lf-w ord 0 O perand n

Destination 1 D es tination 0 R esult

O pera tion

M C A04696

B yte 3 O perand m

B yte 3 O perand n

D estina tion 3 R esult

O pera tion

D estination 2

B yte 2

D es tination 1

B yte 1

D es tination 0

B yte 0

B yte 2 B yte 1 B yte 0
User’s Manual 2-44 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
overflow/underflow within individual bytes, while ADDS.B will saturate individual bytes to
the most positive, 8-bit signed integer (127) on individual overflow, or to the most
negative, 8-bit signed integer (-128) on individual underflow. Similarly, the ADD.H
instruction ignores overflow/underflow within individual half-words, while the ADDS.H
will saturate individual half-words to the most positive 16-bit signed integer (215 - 1) on
individual overflow, or to the most negative 16-bit signed integer (- 215) on individual
underflow. Saturation for unsigned integers is also supported by the ADDS.BU and
ADDS.HU instructions. Arithmetic on packed data also includes subtraction,
multiplication, absolute value, and absolute difference.

2.3.2 Compare Instructions

The compare instructions use a perform operation on the contents of two registers. The
Boolean result (1 = true and 0 = false) is stored in the least significant bit of a data
register, and the remaining bits in the register are cleared to zero. Figure 2-15 illustrates
the operation of the LT (Less Than) compare instruction.

Figure 2-15 LT Comparison

The comparison instructions are: equal (EQ), not equal (NE), less than (LT), and greater
than or equal to (GE), with versions for both signed and unsigned integers.

Comparison conditions not explicitly provided in the instruction set can be obtained by
either swapping the operands when comparing two registers, or by incrementing the
constant by one when comparing a register and a constant (Table 2-4).

Table 2-4 Equivalent Comparison Operations

“Missing” Comparison Operation TriCore Equivalent Comparison Operation

LE Dc, Da, Db GE Dc, Db, Da

LE Dc, Da, const LT Dc, Da, (const + 1)

M C A04697

AD a D b

A < B ?

B

31 0 31 0

0D c

031
User’s Manual 2-45 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
To accelerate the computation of complex conditional expressions, the accumulation of
versions of the comparison instructions are supported. These instructions — as
indicated in the instruction mnemonic by “op” preceding the “.” (for example, op.LT) —
combine the result of the comparison with a previous comparison result. The
combination is a logic AND, OR, or XOR; for example, AND.LT, OR.LT, and XOR.LT.
Figure 2-16 illustrates combining the LT instruction with a Boolean operation.

Figure 2-16 Combining LT Comparison with Boolean Operation

The evaluation of the following C expression can be optimized using the combined
compare-Boolean operation:

d5 = (d1 < d2) || (d3 == d4);

Assuming all variables are in registers, two instructions will compute the value in d5:

lt d5,d1,d2 ; compute (d1 < d2)
or.eq d5,d3,d4 ; or with (d3 == d4)

Certain control applications require that several Booleans be packed into a single
register. These packed bits can be used as an index into a table of constants or a jump
table, which permits complex Boolean functions and/or state machines to be evaluated
efficiently. To facilitate the packing of Boolean results into a register, compound
Compare with Shift instructions (for example, SH.EQ) are supported. The result of the
comparison is placed in the least significant bit of the result after the contents of the

GT Dc, Da, Db LT Dc, Db, Da

GT Dc, Da, const GE Dc, Da, (const + 1)

Table 2-4 Equivalent Comparison Operations

M C A04698

AD a D b

A < B ?

B

D c

31 0 31 0

031

D c

031

op op = A N D , O R or X O R
User’s Manual 2-46 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
destination register have been shifted left by one position. Figure 2-17 illustrates the
operation of the SH.LT (Shift Less Than) instruction.

Figure 2-17 SH.LT Instruction

For packed bytes, there are special compare instructions that perform four individual
byte comparisons and produce a 32-bit mask consisting of four “extended” Booleans.
For example, EQ.B yields a result where individual bytes are FFH for a match or 00H for
no match. Similarly, for packed half-words there are special compare instructions that
perform two individual half-word comparisons and produce two extended Booleans. The
EQ.H instruction results in two extended Booleans: FFFFH for a match and 0000H for no
match. There are even abnormal packed-word compare instructions that compare two
words in the normal way but produce a single extended Boolean. The EQ.W instruction
results in the extended Boolean FFFFFFFFH for match and 00000000H for no match.

Extended Booleans are useful as masks, that can be used by subsequent bit-wise logic
operations. Also, CLZ (count leading zeros) or CLO (count leading ones) can be used
on the result to quickly find the position of the left-most match. Figure 2-18 shows an
example of the EQ.B instruction.

M C A 04699

AD a D b

A < B ?

B

D c

0

D c

31 0 31 0

031

D iscarded Le ft S hift 1
User’s Manual 2-47 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Figure 2-18 EQ.B Instruction Operation

2.3.3 Bit Operations

Instructions are provided that operate on single bits, denoted in the instruction mnemonic
by the “T” data type modifier (for example, AND.T). There are eight instructions for
combinatorial logic functions with two inputs, eight instructions with three inputs, and
eight with two inputs and a shift. The one-bit result of a two-input function (for example,
AND.T) is stored in the least significant bit of the destination data register, and the most-
significant 31 bits are set to zero. The source bits can be any bit of any data register. This
is illustrated in Figure 2-19. The available Boolean operations are: AND, NAND, OR,
NOR, XOR, XNOR, ANDN, and ORN.

M C A 04700

AD a B C D E F G H D b

A = E ? B = F? C = G ? D = H ?

D c
User’s Manual 2-48 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Figure 2-19 Boolean Operations

Evaluation of complex Boolean equations can use the 3-input Boolean operations in
which the output of a two-input instruction is combined with the least significant bit of a
third data register to form the input to a further operation. The result is written to bit 0 of
the third data register, with the remaining bits unchanged (Figure 2-20).

Figure 2-20 Three-Input Boolean Operation

Of the many possible three-input operations, eight have been singled out for the efficient
evaluation of logical expressions. The eight instructions provided are: AND.AND.T,
AND.ANDN.T, AND.NOR.T, AND.OR.T, OR.AND.T, OR.ANDN.T, OR.NOR.T, and
OR.OR.T.

Just as for the comparison instructions, the results of bit operations often need to be
packed into a single register for controller applications. For this reason, the basic two-
input instructions can be combined with a shift prefix (for example, SH.AND.T). These

M C A04701

D a D b

B oo lean op

p1 p2

0D c

0

31 031 0

31 0

M C A04702

D a D b

Boo lean op

p1

D c

p2

Boo lean op

D c

op = A N D or O R

31 0

31 0

31 0

31 0
User’s Manual 2-49 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
operations first perform a single-bit left shift on the destination register and then store the
result of the two-input logic function into its least significant bit (Figure 2-21).

Figure 2-21 Shift Plus Boolean Operation

2.3.4 Address Arithmetic

The TriCore architecture provides selected arithmetic operations on the address
registers. These operations supplement the address calculations inherent in the
addressing modes used by the load and store instructions.

Initialization of base pointers requires loading a constant into an address register. When
the base pointer is in the first 16 KBytes of each segment, this can be done using the
Load Effective Address (LEA) instruction, using the absolute addressing mode. Loading
a 32-bit constant into an address register can be accomplished using MOVH.A followed
by an LEA that uses the base plus 16-bit offset addressing mode. For example,

movh.a a5, ((ADDRESS+0x8000)>>16) & 0xffff
lea a5, [a5](ADDRESS & 0xffff)

The MOVH.A instruction loads a 16-bit immediate into the most-significant 16-bits of an
address register and zero-fills the least significant 16-bits. Adding a 16-bit constant to an
address register can be done using the LEA instruction with the base plus offset
addressing mode. Adding a 32-bit constant to an address register can be done in two
instructions: an Add Immediate High Word (ADDIH.A), which adds a 16-bit immediate to
the most-significant 16 bits of an address register, followed by an LEA using the base
plus offset addressing mode. For example,

addih.a a8, ((OFFSET+0x8000)>>16) & 0xffff
lea a8, [a8](OFFSET & 0xffff)

M C A 04703

D a D b

B oo lean op

p1

D c

0

p2

D c

31 0 31 0

31

031

D iscarded Le ft S hift 1
User’s Manual 2-50 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
The Add Scaled (ADDSC.A) instruction directly supports the use of a data variable as an
index into an array of bytes, half-words, words, or double-words.

2.3.5 Address Comparison

As with the comparison instructions that use the data registers (see Section 2.3.2), the
comparison instructions using the address registers put the result of the comparison in
the least significant bit of the destination data register and clear the remaining register
bits to zeros. An example of the Less Than (LT.A) instruction is shown in Figure 2-22.

Figure 2-22 LT.A Comparison Operation

There are comparison instructions for equal (EQ.A), not equal (NE.A), less than (LT.A),
and greater than or equal to (GE.A). As with the comparison instructions using the data
registers, comparison conditions not explicitly provided in the instruction set can be
obtained by swapping the two operand registers (Table 2-5).

In addition to these instructions, instructions that test whether an address register is
equal to zero (EQZ.A), or not equal to zero (NEZ.A) are supported. These instructions
are useful to test for null pointers — a frequent operation when dealing with linked lists
and complex data structures.

2.3.6 Branch Instructions

Branch instructions change the flow of program control by modifying the value in the PC
register. There are two types of branch instructions: conditional and unconditional.
Whether or not a conditional branch is taken depends on the result of a Boolean compare
operation (see Section 2.3.2) rather than on the state of condition codes.

Table 2-5 Comparison Operations

“Missing” Comparison Operation TriCore Equivalent Comparison Operation

LE.A Dc, Aa, Ab GE.A Dc, Ab, Aa

GT.A Dc, Aa, Ab LT.A Dc, Ab, Aa

M C A04704

AA a A b

A < B ?

B

0D c

True
Fa lse

1
0

031

031

031
User’s Manual 2-51 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.3.6.1 Unconditional Branch

There are three groups of unconditional branch instructions: Jump instructions, Jump
and Link instructions, and Call and Return instructions.

A Jump instruction simply loads the Program Counter with the address specified in the
instruction. A Jump and Link instruction does the same, and also stores the address of
the next instruction in the “return address register” A11/RA. A Jump and Link instruction
can be used to implement a subroutine call when the called routine does not modify any
of the caller’s non-volatile registers. The Call instructions differ from a Jump and Link in
that they save the caller’s non-volatile registers in a dynamically-allocated save area.
The Return instruction, in addition to performing the return jump, restores the non-
volatile registers.

Each group of unconditional Jump instructions contains separate instructions that differ
in how the target address is specified. There are instructions using a relative 24-bit
signed displacement (J, JL, and CALL), instructions using 24 bits of displacement as an
absolute address (JA, JLA, and CALLA), and instructions using the address contained
in an address register (JI, JLI, CALLI, RET, and RFE).

There are additional 16-bit instructions for a relative jump using an 8-bit displacement
(J), an instruction for an indirect jump (JI), and an instruction for a return (RET).

Both the 24-bit and 8-bit relative displacements are scaled by two before they are used,
because all instructions must be aligned on an even address. The use of a 24-bit
displacement is shown in Figure 2-23.

Figure 2-23 Displacement as Absolute Address

2.3.6.2 Conditional Branch

The conditional branch instructions use the relative addressing mode, with a
displacement value encoded in 4, 8, or 15 bits. The displacement is scaled by 2 before
it is used, because all instructions must be aligned on an even (half-word) address. The

M C A04705

20 19 0

20 0

D isp lacem ent

0 A ddress

23

21

0000000

272831
User’s Manual 2-52 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
scaled displacement is sign-extended to 32 bits before it is added to the program
counter, unless otherwise noted.

The Boolean test uses the contents of data registers, address registers, or individual bits
in data registers.

Conditional Jumps on Data Registers

Six of the Conditional Jump instructions use a 15-bit signed displacement field:
comparison for equality (JEQ), non-equality (JNE), less than (JLT), less than unsigned
(JLT.U), greater than or equal (JGE), and greater than or equal unsigned (JGE.U). The
second operand to be compared may be an 8-bit sign- or zero-extended constant. There
are two 16-bit instructions that test whether the implicit D15 register is equal to zero (JZ)
or not equal to zero (JNZ). The displacement is 8-bit in this case. Another two 16-bit
instructions compare the implicit D15 register with a 4-bit, sign-extended constant (JEQ,
JNE). The jump displacement field is limited to 4 zero-extended bits in this case.

There is a full set of 16-bit instructions that compare a data register to zero: JZ, JNZ,
JLTZ, JLEZ, JGTZ, and JGEZ. Because any data register may be specified, the jump
displacement is limited to 4-bit zero-extended constant in this case.

Conditional Jumps on Address Registers

The Conditional Jump instructions that use address registers are a subset of the data
register Conditional Jump instructions. Four Conditional Jump instructions use a 15-bit
signed displacement field: comparison for equality (JEQ.A), non-equality (JNE.A), equal
to zero (JZ.A), and non-equal to zero (JNZ.A).

Because testing pointers for equality to zero is so frequent, two 16-bit instructions are
provided (JZ.A and JNZ.A) with a displacement field limited to four zero-extended bits.

Conditional Jumps on Bits

Conditional jumps can be performed based on the value of any bit in any data register.
The JZ.T instruction jumps when the bit is clear, and the JNZ.T instruction jumps when
the bit is set. For these instructions, the jump displacement field is 15 bits.

There are two 16-bit instructions that test any of the lower 16 bits in the implicit register
D15 and have a displacement field of four zero-extended bits.

2.3.6.3 Loop Instructions

Four special versions of Conditional Jump instructions are intended for efficient
implementation of loops. The JNEI and JNED instructions are like a normal JNE
instruction, but with an additional increment or decrement operation of the first register
operand. The increment or decrement operation is performed unconditionally after the
comparison. The jump displacement field is 15 bits. For example, a loop that should be
executed for D3 = 3, …, 10 can be implemented as follows:
User’s Manual 2-53 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
lea d3,3
loop1:

...
jnei d3,10,loop1

The LOOP instruction is a special kind of jump that utilizes the special TriCore hardware
that implements “zero overhead” loops. The LOOP instruction only requires execution
time in the pipeline the first and last time it is executed (for a given loop). For all other
iterations of the loop, the LOOP instruction has zero execution time. For example, a loop
that should be executed 100 times may be implemented as:

mova a2,99
loop2:

...
loop a2,loop2

The LOOP instruction above requires execution cycles the first and 100th time it is
executed, but the other 98 executions require no cycles.

Note that the LOOP instruction differs from the other Conditional Jump instructions in
that it uses an address register for the iteration count, rather than a data register. This
allows it to be used in filter calculations in which a large number of data register reads
and writes occur each cycle. Using an address register for the LOOP instruction reduces
the need for an extra data register read port.

The LOOP instruction has a 32-bit version using a 15-bit displacement field (left-shifted
by one bit and sign-extended), and a 16-bit version that uses a 4-bit displacement field.
Unlike other 16-bit relative jumps, the 4-bit value is one-extended rather than zero-
extended, because this instruction is specifically intended for loops.

An unconditional variant of the LOOP instruction is provided (LOOPU) which utilizes the
zero overhead LOOP hardware. Such an instruction is used at the end of a while LOOP
body to optimize the jump back to the start of the while construct.

2.3.7 Load and Store Instructions

The Load and Store instructions use seven addressing modes to move data between
registers and memory (Table 2-6). The addressing mode determines the effective byte
address for the Load or Store instruction and any update of the base pointer address
register.

Table 2-6 Addressing Modes

Addressing Mode Syntax Effective Address Instruction
Format

Absolute constant {offset18[17:14], 14’bo, offset
18[13:0]}

ABS

Base + Short Offset [An]offset A[a]+sign_ext(offset10) BO
User’s Manual 2-54 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.3.7.1 Load/Store Basic Data Types

The TriCore architecture defines loads and stores for the basic data types —
corresponding to bytes, half-words, words and double-words — as well as for signed
fractions and addresses. The movement of data between registers and memory for the
basic data types is illustrated in Figure 2-24. Note that when the data loaded from
memory is smaller than the destination register (that is, 8- and 16-bit quantities), the data
is loaded into the least significant bits of the register (except for fractions which are
loaded into the most significant bits of a register), and the remaining register bits are
sign- or zero-extended to 32 bits, depending on the particular instruction.

Base + Long Offset [An]offset A[a]+sign_ext(offset16) BOL

Pre-increment [+An]offset A[a]+sign_ext(offset10) BO

Post-increment [An+]offset A[a] BO

Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 2-6 Addressing Modes
User’s Manual 2-55 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Figure 2-24 Load/Store Basic Data Types

M C A04706

m 1

015

m 1

07

m 1

015

m 1

07

s

m 1

07

m 1

015

m 1

015

s

m 1

015

m 1

031

m 1

063

M em ory D ata

LD .W /
LD .A

m 1

031

S T.W /
S T .A

LD .D /
LD .D A

S T.D /
S T .D A

m 1(63:32)

031

m 1(31 :0)

031

D n+1 / A n+1 D n / A n

D n0

31

m 1

01516

zero fill

LD .H U

s

31 16

sign fill

LD .H
m 1

015

s D n

S T.H
D nx

31

m 1

01516

0

31

zero fill

0

D nm 1

8 7
LD .B U

s

31

sign fill

0

D nm 1

8 7
LD .B

x

31 0

D nm 1

8 7
S T.B

LD .Q
D n0

31

m 1

01516

zero fill

S T.Q
D nx

31

m 1

01516

R eg iste rs

D n / A n
User’s Manual 2-56 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.3.7.2 Load Bit

The approach used to load individual bits depends on whether the bit within the word (or
byte) is given statically or dynamically.

Loading a single bit with a fixed bit offset from a byte pointer is accomplished with an
ordinary load instruction. One then can extract, logically operate on, or jump on any bit
in a register.

Loading a single bit with a variable bit offset from a word-aligned byte pointer is done
with a special scaled offset instruction. This offset instruction shifts the bit offset to the
right by three positions (producing a byte offset), adds this result to the byte pointer
above, and finally zeroes out the two lower bits, thus, aligning the access on a word
boundary. A word load can then access the word that contains the bit which can be
extracted with an extract instruction. The extract instruction uses only the lower five bits
of the bit pointer, that is, the bits that were either shifted out or masked out above. An
example is:

ADDSC.AT A8,A9,D8 ; A9 = byte pointer. D8 = bit offset.
LD.W D9,[A8]
EXTR.U D10,D9,D8,1 ; D10[0] = loaded bit.

2.3.7.3 Store Bit and Bit Field

The ST.T instruction can clear or set single memory or peripheral bits, resulting in
reduced code size. ST.T statically specifies a byte address and a bit number within that
byte, and indicates whether the bit should be set or cleared. The addressable range for
this instruction is the first 16 KBytes of each of the 16 memory segments.

Using any of the addressing modes, the Insert Mask (IMASK) instruction can be used in
conjunction with the Load-Modify-Store (LDMST instruction) to store a single bit or a bit
field to a location in memory. This operation is especially useful for reading and writing
memory-mapped peripherals. The IMASK instruction is very similar to the INSERT
instruction, but IMASK generates a data register pair that contains a mask and a value.
The LDMST instruction uses the mask to indicate which portion of the word to modify.
An example of a typical instruction sequence is:

imask E8,3,4,2 ; insert value = 3, position = 4, width = 2
ldmst _IOREG,E8 ; at absolute address "_IOREG"

To clarify the operation of the IMASK instruction, consider the following example. The
binary value 1011B is to be inserted starting at bit position 7 (the width is four). The
IMASK instruction would result in the following two values:

0000 0000 0000 0000 0000 0111 1000 0000 MASK
0000 0000 0000 0000 0000 0101 1000 0000 VALUE

To store a single bit with a variable bit offset from a word-aligned byte pointer, first the
word address is determined in the same way as for the load above. Next the special
scaled offset instruction shifts the bit offset to the right by three positions — which
User’s Manual 2-57 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
produces a byte offset — then adds this offset to the byte pointer above, and finally zeroes
out the two lower bits, thus aligning the access on a word boundary. An IMASK and
LDMST instruction can store the bit into the proper position in the word. An example is:

ADDSC.AT A8,A9,D8 ; A9 = byte pointer. D8 = bit offset.
IMASK E10,D9,D8,1 ; D9[0] = data bit.
LDMST [A8],E10

2.3.8 Context Related Instructions

As well as the instructions that implicitly save and restore contexts (such as Calls and
Returns), the TriCore instruction set includes instructions that allow a task’s contexts to
be explicitly saved, restored, loaded, and stored. These instructions are detailed in the
following sections.

2.3.8.1 Context Saving and Restoring

The Upper Context of a task is always automatically saved on a call, interrupt, or trap. It
is automatically restored on a return. However, the Lower Context of a task must be
saved/restored explicitly.

The SVLCX instruction (Save Lower Context) saves registers A2 through A7 and D0
through D7 together with the return address in register A11/RA and the PCXI. This
operation is performed when using the FCX and PCX pointers to manage the CSA lists.

The RSLCX instruction (Restore Lower Context) restores the Lower Context. It loads
registers A2 through A7 and D0 through D7 from the CSA. It also loads A11/RA from the
saved PC field. This operation is performed when using the FCX and PCX pointers to
manage the CSA lists.

The BISR instruction (Begin Interrupt Service Routine) enables the interrupt system
(ICR.IE is set to one), allows the modification of the CPU priority number (CCPN), and
saves the Lower Context in the same manner as the SVLCX instruction.

2.3.8.2 Context Loading and Storing

The effective address of the memory area in which the context is stored to or loaded from
is part of the Load or Store instruction. The effective address must resolve to a memory
location aligned on a 16-word boundary; otherwise a data address alignment trap (ALN)
is generated.

The STUCX instruction (Store Upper Context) stores the same context information that
is saved with an implicit Upper Context save operation: Registers A10 – A15 and D8 –
D15, and the current PSW and PCXI.

The LDUCX instruction (Load Upper Context) loads registers A10 – A15 and D8 – D15.
The PSW and link word fields in the saved context in memory are ignored. The PSW,
FCX, and PCXI are unaffected.
User’s Manual 2-58 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
The STLCX instruction (Store Lower Context) stores the same context information that
is saved with an explicit Lower Context save operation: Registers A2 – A7 and D0 – D7,
together with the return address (RA) in A11 and the PCXI. The LDLCX instruction (Load
Lower Context) loads registers A2 through A7 and D0 through D7. The saved return
address and the link word fields in the context stored in memory are ignored. Registers
A11/RA, FCX, and PCXI are not affected.

2.3.9 System Instructions

The system instructions allow user-mode and supervisor-mode programs to access and
control various system services, including interrupts, and the TriCore’s debugging
facilities. There are also instructions that read and write the core registers, for both user
and supervisor-only mode programs.

2.3.9.1 System Call

The SYSCALL instruction generates a system call trap, providing a secure mechanism
for user-mode application code to request supervisor services. The system call trap —
like other traps — vectors to the trap handler table, using the three-bit hardware-
furnished trap class ID as an index. The trap class ID for system call traps is six. The trap
identification number (TIN) is specified by an immediate constant in the SYSCALL
instruction, and serves to identify the specific supervisor service that is being requested.

2.3.9.2 Synchronization Primitives

The TriCore architecture provides two synchronization primitives. These primitives
provide a mechanism to software through which it can guarantee the ordering of various
events within the machine.

DSYNC

The first primitive, DSYNC, provides a mechanism through which a data memory barrier
can be implemented. The DSYNC instruction guarantees that all data accesses
associated with instructions semantically prior to the DSYNC instruction are completed
before any data memory accesses associated with an instruction semantically after
DSYNC are initiated. This includes all accesses to the system bus and local data
memory.

ISYNC

The second primitive, ISYNC, provides a mechanism through which the following can be
guaranteed:

• If an instruction semantically prior to ISYNC make a software visible change to a piece
of architectural state, then the effects of this change are seen by all instructions
semantically after ISYNC. For example, if an instruction changes a code range in the
User’s Manual 2-59 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
protection table, the use of an ISYNC will guarantee that all instructions after the
ISYNC are fetched and matched against the new protection table entry.

• All cached states in the pipeline, such as loop cache buffers, are invalidated.

Operation of the ISYNC instruction is thus described as follows:

1. Wait until all instructions semantically prior to the ISYNC have completed.
2. Flush the CPU pipeline and cancel all instructions semantically after the ISYNC.
3. Invalidate all cached state in the pipeline.
4. Prefetch the next instruction after the ISYNC.

2.3.9.3 Access to the Core Special Function Registers

The TriCore accesses the CSFRs through two instructions: MFCR and MTCR. The
MFCR instruction (Move From Core Register) moves the contents of the addressed
CSFR into a data register. MFCR can be executed at any privilege level. The MTCR
instruction (Move To Core Register) moves the contents of a data register to the
addressed CSFR. To prevent unauthorized writes to the CSFRs, the MTCR instruction
can only be executed at the supervisor privilege level.

The CSFRs are also mapped into the top of segment 15 in the memory address space.
This mapping makes the complete architectural state of the core visible in the address
map, which allows efficient debug and emulator support.

Note: It is not permitted for the core to access the CSFRs through this mechanism; it
must use MFCR and MTCR.

There are no instructions allowing bit, bit field, or load-modify store accesses to the
CSFRs. The RSTV instruction (Reset Overflow Flags) resets the overflow flags in the
PSW, without modifying any of the other bits in the PSW. This instruction can be
executed at any privilege level.

2.3.9.4 Enabling/Disabling the Interrupt System

For non-interruptible operations, the ENABLE and DISABLE instructions allow the
explicit enabling and disabling of interrupts in user and supervisor modes. While
disabled, an interrupt will not be taken by the CPU regardless of the relative priorities of
the CPU and the highest interrupt pending. The only “interrupt” that will be serviced while
interrupts are disabled is the NMI (non-maskable interrupt) since it is a trap.

If a user process accidentally disables interrupts for longer than a specified time, the
Watchdog Timer can be used to recover.

Programs executing in supervisor mode can use the 16-bit Begin ISR (BISR) instruction
to save the Lower Context of the current task, set the current CPU priority number, and
re-enable interrupts (which are disabled by the processor when an interrupt is taken).
User’s Manual 2-60 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.3.9.5 RET and RFE

The function return instruction (RET) is used to return from a function that was invoked
via a CALL instruction. The return from exception instruction (RFE) is used to return from
an interrupt or trap handler. The two instructions perform very similar operations; they
restore the Upper Context of the calling function or interrupted task, and branch to the
return address contained in register A11 (prior to the context restore operation). The
instructions differ in the error checking they perform for call depth management. Issuing
an RFE instruction when the current call depth (as tracked in the PSW) is nonzero
generates a context nesting error trap. Conversely, a context call depth underflow trap
is generated when an RET instruction is issued when the current call depth is zero.

2.3.9.6 Trap Instructions

The Trap on Overflow (TRAPV) and Trap on Sticky Overflow (TRAPSV) instructions can
be used to cause a trap if the PSW’s V and SV bits, respectively, are set (Section 2.3.1).

2.3.9.7 No Operation

Although there are many ways to represent a no-operation (for example, adding zero to
a register), an explicit NOP instruction is included so that it can be easily recognized,
allowing the CPU to minimize power consumption during its execution. For example, a
sequence of NOP instructions in a loop could be used as a low-power state that has a
very fast interrupt response time.

2.3.10 16-Bit Instructions

The 16-bit instructions are a subset of the 32-bit instruction set, chosen because of their
frequency of static use. They significantly reduce static code size and thus provide a
reduction in the cost of code memory and a higher effective instruction bandwidth.
Because the 16-bit and 32-bit instructions all differ in the primary opcode, the two
instruction sizes can be freely intermixed.

The 16-bit instructions are formed by imposing one or more of the following format
constraints: smaller constants, smaller displacements, smaller offsets, implicit source,
destination, or base address registers, and combined source and destination registers
(the 2-operand format). In addition, the 16-bit load and store instructions support only a
limited set of addressing modes.

The registers D15 and A15 are used as implicit registers in many 16-bit instructions. For
example, there is a 16-bit compare instruction (EQ) that puts a Boolean result in D15,
and a 16-bit conditional move instruction (CMOV) which is controlled by the Boolean in
D15.

The 16-bit load and store instructions are limited to the register indirect (base plus zero
offset), base plus offset (with implicit base or source/destination register), and post-
increment (with default offset) addressing modes.
User’s Manual 2-61 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
2.4 CPU Pipelines

This section describes the TC11IB CPU pipelines including the integer and load/store
pipelines, and the loop pipeline.

2.4.1 CPU Pipeline Overview

As specified by the TriCore architecture, the TC11IB implements a pipelined,
superscalar processor architecture that allows the execution of up to three instructions
in parallel. The processor pipeline design reduces branch latency, data dependencies,
and overall system complexity.

Two major pipelines perform integer operations and load/store operations. Each of these
has four stages: Fetch (common to both), Decode, Execute, and Write-back. A third
minor pipeline optimizes DSP loops. The three pipelines are illustrated in Figure 2-25.

2.4.2 Integer and Load/Store Pipelines

The Integer Pipeline executes the following operation types.

• Integer arithmetic and logical operations
• Bit-wise logical operations
• Multiply-accumulate (MAC) operations
• Integer division
• Conditional data jumps

The Load/Store Pipeline executes the following operation types.

• Load and Store operations
• Context-switch operations
• System operations
• Address arithmetic calculations
• Unconditional and conditional branch target calculations
User’s Manual 2-62 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Figure 2-25 Pipeline Architecture

The pipelines share a common fetch stage that can issue one instruction to each pipeline
per cycle. Certain issue constraints apply. For instance, when two instructions are issued
in parallel, the first instruction must be an integer pipeline instruction. An integer ADD
followed by a load instruction can be issued in parallel, but a load followed in the pair by
an integer ADD cannot.

For example, the following code sequence takes four cycles.

add d0, d1, d2
sub d0, d0, d3
ld.w d1, [a0]0
xor d2, d1, d0
st.w [a1]0, d2
ld.a a0, [a5]4

Cycle Integer Load/Store

1 add –

2 sub ld.w

3 xor st.w

4 – ld.a

Load / Store
Pipeline

Integer
Pipeline

M C B04711

In teger
D ecode

In teger
E xecu te

W rite -back

M AC
E xe. 1

M A C
E xe. 2

Load / S to re
E xecu te W rite -back

Loop
Pipeline

Loop
E xecu te W rite -back

Fe tch

Load / S tore
D ecode

Loop C ache
B uffe r
User’s Manual 2-63 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
Note that on the third cycle, the XOR instruction and dependent store are dual-issued.
The result from the XOR can be forwarded to the store instruction without any stall
penalty. In general, all required forwarding paths are implemented so that dependent
instructions can be executed without stall penalties.

All simple integer operations, bit operations, and address arithmetic instructions execute
in a single cycle. Divide instructions, such as DVSTEP, require eight uninterruptable
cycles to execute.

The multiply-accumulate (MAC) instructions are executed in a special two-stage MAC
pipeline. The first stage contains two 16 × 16-bit multipliers. The second stage contains
the accumulation, rounding and saturation logic. The MAC pipeline can perform a
32 × 32-bit multiply every two cycles with a latency of three cycles, or two 16 × 16-bit
multiplies every cycle with a latency of two cycles.

2.4.3 Loop Pipeline

The Loop Pipeline optimizes the execution of loops, such as those typically found in DSP
applications. This pipeline is driven by the Loop Cache Buffer (LCB), which stores the
location, target, and other required information. The loop instruction is executed in the
Load/Store Pipeline on its first iteration, and in the loop pipeline thereafter. If the loop is
single-issued, the LCB is updated when it is detected in the decode stage of the pipeline.
On subsequent iterations of the loop, when the LCB detects the end of the loop, it
automatically fetches the start of the loop body. Unlike a normal Branch Target Buffer
hit, the loop instruction itself is not fetched. It is injected from the LCB into the Loop
Pipeline during the last execute cycle.

For example, the following code will execute as shown below:

mov.a a0, number_of_iterations - 1
loop_start:

add d0, d0, d1
ld.w d1, [a0+]4
loop d0, loop_start

Cycle Integer Load/Store Loop

1 – mov.a –

2 add ld.w –

3 – loop –

4 – – –

5 add ld.w loop

6 add ld.w loop

7 add ld.w loop

8 add ld.w loop
User’s Manual 2-64 V1.0, 2002-03

TC11IB
System Units

TC11IB Processor Architecture
As can be seen, after the first pass through the loop, each subsequent iteration will take
only one clock cycle, thereby providing zero overhead loop capability.

2.4.4 Context Operations

Context save and context restore operations associated with calls, returns, interrupts,
and so on, use the 128-bit data bus between the register file and the local on-chip data
memory. The CPU contains dedicated hardware to optimize context switching, resulting
in a context-save time to the on-chip local memory of between two and four cycles.
User’s Manual 2-65 V1.0, 2002-03

TC11IB
System Units

Clock System
3 Clock System
This chapter describes the TC11IB’s clock system. Topics covered include clock gating,
clock domains, clock generation, the operation of clock circuitry, boot-time operation,
fail-safe operation, clock control registers, and power management.

The TC11IB clock system performs the following functions:

• Acquires and buffers incoming clock signals to create master clock frequencies
• Distributes in-phase synchronized clock signals throughout the TC11IB’s entire clock

tree
• Divides system master clock frequencies into lower frequencies required by the

different modules for operation.
• Dynamically reduces power consumption during operation in some functional units
• Statically reduces power consumption through programmable power-saving modes
• Reduces electromagnetic interference (EMI)

The clock system must be operational before the TC11IB can function, so it contains
special logic to handle power-up and reset operations. Its services are fundamental to
the operation of the entire system, so it contains special fail-safe logic.

Figure 3-1 shows the structure of the TC11IB clock system. The system clocks fSYS are
generated by the oscillator circuit and the phase-locked loop (PLL) unit. The module
clocks are all derived from the system clocks. Each peripheral module can define a
specific operation frequency of its module clock fMOD.

The functionality of the control blocks shown in Figure 3-1 varies depending on the
functional unit being controlled. Some functional units, such as the FPI Bus or the
watchdog timer, are directly driven by the system clocks. Detailed descriptions on the
clock control register options for each unit are described in Section 3.2.
User’s Manual 3-1 V1.0, 2002-03

TC11IB
System Units

Clock System
Figure 3-1 TC11IB Clocking System

M ain O scilla tor
 &

P LL

X TA L1

X TA L2 P LLC LC R eg is te r
fS Y S C LK = 48M H z

fS Y S C L K = 96M H z

S ystem _C LK

S ystem _C LK
W D T

: The m odu le c lock fo r these m odu le
 is sw itched o ff a fte r rese t (m odu le is
 d isab led).

: Fo r these m odu les fM O D = fS Y S C LK . Its m odule
 c lock can on ly be sw itched on o r o ff(no c lock
 d iv ider).

Fas t FP I B us
(B C U 0)

P C I

Fas t E thernet

LM B

C om D R A M

P M U

TriC ore
C P U

LM U

M M U

D M U

E B U _C LC
R eg is te rfE B U

E B U _C LK

A S C _C LC
R egis ter fA S C

A S C _C LK

S S C _C LC
R egis ter f SSC

S S C _C LK

16x50_C LC
R egis ter f 16 x50

16x50_C LK

G P TU 0_C LC
R egis ter fG P T U 0

G P TU 0_C LK

G P TU 1_C LC
R egis ter fG P T U 1

G P TU 1_C LK

M M C I_C LC
R egis ter fM M C I

M M C I_C LK

P C P _C LC
R egis ter fP C P

P C P _C LK

S TM _C LC
R egis ter f ST M

S TM _C LK

S low FP I B us
 (B C U 1)

S C U

E B U

S TM

P C P

M M C I

G P TU 1

G P TU 0

16x50

S S C

A S C
User’s Manual 3-2 V1.0, 2002-03

TC11IB
System Units

Clock System
3.1 Clock Generation Unit

The Clock Generation Unit in the TC11IB, shown in Figure 3-2, consists of an oscillator
circuit and a Phase-Locked Loop (PLL). The PLL can convert a low-frequency external
clock signal to a high-speed internal clock for maximum performance. The PLL also has
fail-safe logic that detects to degenerate external clock behavior such as abnormal
frequency deviations or a total loss of the external clock. It can execute emergency
actions if it looses its lock on the external clock. PLL can provide the 96MHz and 48MHz
clocks.

In general, the clock generation unit is controlled through the System Control Unit (SCU)
module of the TC11IB.

Figure 3-2 Clock Generation Unit Block Diagram

The following sections give descriptions of the various blocks of the clock generation
unit.

3.1.1 Oscillator Circuit

The oscillator circuit, designed to work with both, an external crystal oscillator or an
external stable clock source, basically consists of an inverting amplifier with XTAL1 as
input, and XTAL2 as output.

1>

M C A 04940

O sc illa to r
C ircu it

X T A L1

X T A L2

fO SC

P h ase
D e te ct. V C O

N
D iv ide r

P LL

fVC O

1

0

K :1
D iv id e r

fSY S =
9 6 M H z

S ys te m _
C LK

L ock
D e te cto r

O S C _F A IL P L L
L ocke d

D ee p
S lee p

N D IV
[5 :0]

V C O _
B Y P A S S

K D IV
[3 :0]

P LL _
B Y P A S S

System Control Unit
SCU

R eg is te r P L L_ C L C

M U X

1

0
M U X

K :2
D iv id e r

V C O _
S E L
[1 :0]

fSY S =
4 8 M H z

S ys te m _
C LK

1

0
M U X

P L L_
2E N

P LL _
2 S E L

Clock Generation Unit
CGU
User’s Manual 3-3 V1.0, 2002-03

TC11IB
System Units

Clock System
When using a crystal, a proper external oscillator circuitry must be used, connected to
both pins, XTAL1 and XTAL2. The on-chip oscillator frequency can be 12 MHz. When
using an external clock signal it must be connected to XTAL1. XTAL2 is left open
(unconnected).

Further specifications on the frequency limits of the clock circuitry are given in the
TC11IB device specifications (Data Sheet).

Figure 3-3 shows the recommended external oscillator circuitries for both operating
modes, external crystal mode and external input clock mode.

Figure 3-3 TC11IB Main Oscillator Circuitries

3.1.2 Phase-Locked Loop (PLL)

The PLL consists of a voltage controlled oscillator (VCO) with a feedback path. A divider
in the feedback path divides the VCO frequency down. The resulting frequency is then
compared to the externally applied frequency. The phase detection logic determines the
difference between the two clock signals and accordingly controls the frequency of the
VCO. During start-up, the VCO increases its frequency until the divided feedback clock
matches the external clock frequency. A lock detection logic monitors and signals this
condition. The phase detection logic continues to monitor the two clock signals and
adjusts the VCO clock if required.

Due to this operation, the VCO clock of the PLL has a frequency which is a multiple of
the externally applied clock. The factor for this operation is controlled through the value
applied to the divider in the feedback path. That is why this factor is often called a
multiplier, although it actually controls a divider.

TC11IB
O scilla to r

M C S 04948

TC11IB
O scilla to r

V D D O S C

V S S O S C

C 1

1 2
M H z

C 2

X T A L1

X T A L2

V D D O S C

V S S O S C

X T A L 1

X T A L 2

E xte rna l
C lo ck S ig na l
User’s Manual 3-4 V1.0, 2002-03

TC11IB
System Units

Clock System
3.1.2.1 N-Divider

The feedback N-divider is fixed at 16 by hardware in TC11IB.

3.1.2.2 VCO Frequency Ranges

Stable and reliable operation of the VCO, and minimization of the jitter (the frequency
variations of the VCO output between adjustment points), is critical for precise clock
generation. To provide optimum behavior, the following frequency range for fVCO must
be selected:

150 MHz ≤ fVCO ≤ 200 MHz [3.1]

3.1.2.3 Lock Detection

A lock detector circuit determines whether the PLL is locked appropriately to the external
clock signal, and indicates the PLL lock state to the SCU. If the PLL looses
synchronization to the external clock due to a failure of the external clock, the SCU
detects this case and shuts off the oscillator input to the VCO via activation of the
OSC_FAIL signal.

3.1.2.4 K-Divider

The K-Divider is a software controlled divider. The bit field KDIV is provided in register
PLL_CLC. Software can write to this field in order to change the system frequency fSYS.

The divider is designed such that a synchronous switching of the clock is performed
without spurious or shortened clock pulses when software changes the divider factor
KDIV. However, special attention has to be paid concerning the effect of such a clock
change to the various modules in the system. For instance, changing the clock frequency
while an external memory access is performed by the EBU could result in a failure of the
access. It is strongly recommended to perform clock frequency changes only when no
critical system operations are in progress to avoid hazardous effects.

3.1.2.5 Enable/Disable Control

If Deep Sleep Mode is selected, the PLL is shut off by the SCU via the DEEP_SLEEP
signal. In Deep Sleep Mode, also the main oscillator circuit is disabled.

3.1.3 Determining the System Clock Frequency

The system clocks, the 96MHz and 48MHz clock, are obtained from the first and second
outputs respectively via using the oscillator clock of 12MHz multiplied by the PLL and
optionally divided by the K-divider. The system clock frequency fSYS can be made
proportional to the ratio N / K, where the clock scale factor N = 16, and bit field
PLL_CLC.KDIV determines the clock scale factor K.
User’s Manual 3-5 V1.0, 2002-03

TC11IB
System Units

Clock System
The VCO output frequency is determined by

fVCO = 16 × fOSC [3.2]

and the resulting system clock is determined by

[3.3]

[3.4]

Both, VCO_BYPASS and PLL_BYPASS, must be inactive for this PLL operation.

3.1.4 PLL Clock Control and Status Register

The PLL Clock Control and Status Register PLL_CLC is located in the address range
reserved for the System Control Unit (SCU). It holds the hardware configuration bits of
the PLL, latched at the end of power-on reset, and provides the control for the K-Factor
as well as the PLL Lock status bit.

Note that register PLL_CLC is specially protected. In order to write to PLL_CLC, the
WDT_CON0.ENDINIT bit must be set to 0 through a password-protected access
mechanism to register WDT_CON0.

The indicator “U” in the reset value of PLL_CLC indicates that the reset values for these
bits are user-defined through the value applied to the PLL configuration pins.

PLL_CLC
PLL Clock Control Register Reset Value: 000F 01UUH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 NDIV

r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 KDIV VCOSEL VCO
BYP

PLL
BYP 0 2SE

L 2EN LOC
K

r rw r r r r r r r

Field Bits Type Description

LOCK 0 r PLL Lock Status Flag
0 PLL is not locked
1 PLL is locked

fSYS FIRST– fVCO K⁄ 16
K
------ fOSC×= =

fSYS SECOND– fVCO K⁄ 16
2K
------- fOSC×= =
User’s Manual 3-6 V1.0, 2002-03

TC11IB
System Units

Clock System
3.1.5 Startup Operation

When power is switched on to the TC11IB, a low level has to be applied to the power-on
reset pin, PORST. PLL begins operation at this time. The voltage controlled oscillator
(VCO) of the PLL will start up very quickly and generate an internal clock with the PLL
base frequency. As soon as the external crystal provides a stable clock frequency, PLL
will lock to this frequency according to the various PLL factors which are fixed by
hardware internally. This state is signalled by setting bit PLL_CLC.LOCK.

The low level at pin PORST has to be held long enough to make sure that a stable clock
is provided to the TC11IB. In case of an external crystal oscillator, it can take several ms
until the oscillator has started up and is stable. If the clock input is provided by another

2EN 1 r PLL 2nd Output Clock Enable
Fixed at ‘1b’, always enabled.

2SEL 2 r PLL 2nd Output Clock Ratio
Fixed at ‘0b’. Ratio is 1: 2.

PLLBYP 4 r PLL Bypass Status Flag
Indicates the state of the BYPASS control input line
latched with the signal decoded from the JTAG input
pins (for test only).
0 Normal operation
1 PLL bypass mode

VCOBYP 5 r VCO Bypass Status Flag
Indicates the state of the VCO_BYPASS control input
line latched with the signal decoded from the JTAG
input pins. (for test only)
0 Normal operation
1 VCO Bypass mode (PLL output clock is derived

from input clock divided by K-Divider)

VCOSEL [7:6] r VCO Range Select
Fixed at ‘01b’. (150 - 200MHz)

KDIV [11:8] rw PLL K-Factor Selection
The reset value is ‘0001b’. (K = 2)

NDIV [21:16] r PLL N-Factor Selection
Fixed at ‘001111b’. (N = 16)

0 3,
[15:12],
[31:22]

r Reserved;
Returns 0 if read; should be written with 0.

Field Bits Type Description
User’s Manual 3-7 V1.0, 2002-03

TC11IB
System Units

Clock System
clock source with faster startup characteristics, the requirements for the PORST low
level can be relaxed accordingly.

The TC11IB remains in power-on reset state until PLL is locked and the PORST pin has
been de-asserted. Two situations are possible when PORST becomes inactive (low-to-
high transition):

1. PLL is not locked (PLL_CLC.LOCK = 0):
The PLL provides an emergency clock at PLL base frequency. The system clock will
be at this PLL base frequency as long as the LOCK bit is not set. In this case, a
program should wait for bit LOCK to be set before it proceeds time critical initialization
procedures and operations.

2. PLL is locked (PLL_CLC.LOCK = 1):
The PLL is already at its nominal frequency.

3.1.6 PLL Loss of Lock Operation

The PLL provides mechanisms to detect a failure of the external clock and to bring the
TC11IB into a safe state in such a case. If the PLL loses the lock to the external clock,
either due to a break of the crystal or an external line, it resets its lock line PLL_LOCK.
The clock control circuitry then sets the PLL Loss of Clock NMI flag (PLLNMI) in register
NMISR and activates a NMI trap request to the CPU. In addition, it disables the oscillator
input clock fOSC to the PLL to avoid unstable operation due to noise or sporadic clock
pulses coming from the oscillator circuit and the PLL still trying to lock onto this invalid
clocks. Without having an input clock, the PLL gradually slows down to its base
frequency and remains there. While this frequency is defined within a certain frequency
range, emergency actions can be taken by the CPU since the TC11IB is still clocked.

The TC11IB remains in this state until the next power-on reset through pin PORST,
where then the PLL tries to restart and lock to the external clock again. No other reset
cause can terminate this loss-of-clock state to avoid unstable operation due to the PLL
trying to lock again.

Note that the loss of lock state does not refer to the start-up process during power-on or
wake-up from deep sleep mode. The oscillator input clock to PLL thus is not disabled at
such situations.

3.2 Power Management and Clock Gating

Because power dissipation is related to the frequency of gate transitions, the TC11IB
performs power management principally by clock gating - that is, controlling whether the
clock is supplied to its various functional units. Gating off the clock to unused functional
modules also reduces electromagnetic interference (EMI) since EMI is related to both
the frequency and the number of gate transitions.

Clock gating is done either dynamically or statically. Dynamic clock gating in this context
means that the TC11IB itself enables or disables clock signals within some functional
User’s Manual 3-8 V1.0, 2002-03

TC11IB
System Units

Clock System
modules to conserve power. Static gating means that software must enable or disable
clock signals to functional modules. Clock gating is performed differently at different
levels of system scope: dynamic gating is generally performed at the lowest levels, either
within a small region of logic, or at functional-unit boundaries for uncomplicated functions
where hardware can dynamically determine whether that functionality is required, and
can enable or disable it appropriately without software intervention. Static gating - which
requires software intervention - is used to enable or disable clock delivery to individual
high-level functional units, or to disable clock delivery globally at the clock’s source.
When the clock to individual functional units is gated off, they are said to be in Sleep
Mode. When the TC11IB’s clock is gated off at its source, the TC11IB as a whole is said
to be in Deep Sleep Mode.

The TC11IB implements four levels of clock gating:

1. Gated dynamically at the register
The clock is shut off to a particular local resource in a functional module when this
resource is not being used in that clock cycle. This operation is done primarily in the
CPU and the PCP data paths, where unused resources are easily identified and
controlled in each clock cycle.

2. Gated dynamically at the functional unit (Idle Mode)
The clock is shut off at the functional unit boundary when the unit has nothing useful
to do. This operation is done primarily in the CPU and the PCP. For the CPU, idle
mode is controlled via software. The PCP disables its own clock when no program is
running.

3. Gated statically at each functional unit (Sleep Mode)
Software can send a global sleep request to individual functional units requesting that
they enter Sleep Mode. Software must determine when conditions are such that
entering Sleep Mode is appropriate. The individual units can be programmed to ignore
or respond to this signal. If programmed to respond, units will first complete pending
operations, then will shut off their own clocks according to their own criteria.

4. Gated at the clock source (Deep Sleep Mode)
The PLL and oscillator are shut off, thereby gating the clock to all functional units. The
system can only be restored to operation by receiving a power-on reset signal from
the PORST pin or a non-maskable interrupt signal from the NMI pin. Entering Deep
Sleep Mode is under software control. Software must determine when conditions are
such that entering Deep Sleep Mode is appropriate.

3.2.1 Clock Control

The functionality of the clock control registers varies depending on the functional unit
being controlled. The clock for the CPU is controlled by the CPU hardware itself. The
clock is switched off to the CPU automatically during Idle and Sleep Mode.

The PCP also controls its own clock automatically. Whenever the PCP is idle - that is
when no channel program is running - the PCP shuts off its clock. It will automatically re-
User’s Manual 3-9 V1.0, 2002-03

TC11IB
System Units

Clock System
enable the clock again when a PCP interrupt is detected. The PCP also controls the
clocking of the PICU and PCP interrupt arbitration logic. The Peripheral Interrupt Control
Unit (PICU) arbitrates service requests for the PCP and administers the PCP Interrupt
Arbitration Bus.

The Slow FPI Bus, Fast FPI Bus and LMB Bus clocks have no clock control feature. They
always run at their own system clock frequencies fSYS. Slow FPI Bus runs at 48MHz.
Fast FPI Bus and LMB Bus run at 96MHz. However, these Buses are so designed that
no signal lines are switching when there is no activity on the bus. Hence, power
consumption of these buses is minimized by design.

Similar operation applies to the CPU interrupt system. It runs with the system clock
frequency fSYS, however, signal lines do only change when activity, such as an
arbitration round, is required.

The on-chip peripheral units of the TC11IB, including the GPTU0, GPTU1, ASC, SSC,
16X50, MMCI, and the System Timer (STM) each have dedicated clock-control
registers. The generic name of these registers is given in this chapter as CLC. All clock
control registers have the same bit field layout, however not all peripheral units
implement all functions of these registers. In general, these registers control on/off state,
clock frequency for Run Mode, operation in Sleep Mode, and operation during Debug
Suspend Mode.

PCI interface has its own power management.

3.2.2 Module Clock Generation

As shown in Figure 3-1 most of the of on-chip peripheral modules of the TC11IB have
clock control registers implemented. The generic name of these registers is “CLC”. This
section describes the general functionality of these CLC registers.

All CLC registers have basically the same bit and bit field layout. However, not all CLC
register functions are implemented for each peripheral unit. Table 3-1 defines in detail
which bits and bit fields of the CLC registers are implemented for each peripheral
module.

The CLC register basically controls the generation of the peripheral module clock which
is derived from the system clock. The following functions for the module are associated
with the CLC register:

• Peripheral clock static on/off control
• Peripheral clock frequency in Run Mode
• Peripheral clock frequency/behavior in Sleep Mode
• Operation during Debug Suspend Mode
User’s Manual 3-10 V1.0, 2002-03

TC11IB
System Units

Clock System
Figure 3-4 Module Clock Generation

3.2.3 Clock Control Registers

MOD_CLC
Clock Control Register Reset Value: Module Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RMC 0 0 FS
OE

SB
WE

E
DIS

SP
EN

DIS
S

DIS
R

rw r r rw w rw rw r rw

Field Bits Type Description

DISR 0 rw Module Disable Request Bit
Used for enable/disable control of the module.
0 Module disable is not requested
1 Module disable is requested

DISS 1 r Module Disable Status Bit
Bit indicates the current status of the module
0 Module is enabled
1 Module is disabled

M C A04715

fSYS

S ys tem
C lock M odu le C lock

G enera tion

C LC R eg is ter

fM O D

P eriphera l
M odu le C lock
User’s Manual 3-11 V1.0, 2002-03

TC11IB
System Units

Clock System
Module Enable/Disable Control

If a module is not used at all by an application, it can be completely shut off by setting bit
DISR in its clock control register. For peripheral modules with a run mode clock divider
field RMC, a second option to completely switch off the module is to set bit field RMC to
00H. This also disables the module’s operation.

SPEN 2 rw Module Suspend Enable
Used for enabling the suspend mode.
0 Module cannot be suspended

(suspend is disabled).
1 Module can be suspended (suspend is enabled).
This bit is writable only if SBWE is set to 1 during the
same write operation.

EDIS 3 rw Sleep Mode Enable Control
Used for module sleep mode control.
0 Sleep mode request is regarded. Module is

enabled to go into sleep mode.
1 Sleep mode request is disregarded: Sleep mode

cannot be entered on a request.

SBWE 4 w Module Suspend Bit Write Enable for OCDS
Defines whether SPEN and FSOE are write protected.
0 Bits SPEN and FSOE are write protected
1 Bits SPEN and FSOE are overwritten by

respective value of SPEN or FSOE
This bit is a write only bit. The value written to this bit is
not stored. Reading this bit returns always 0.

FSOE 5 rw Fast Switch Off Enable
Used for fast clock switch off in OCDS suspend mode.
0 Clock switch off in OCDS suspend mode via

Disable Control Feature (Secure Clock Switch
Off)

1 Fast clock switch off in OCDS suspend mode
This is writable only if SBWE is set to 1 during the same
write operation.

RMC [15:8] rw 8-Bit Clock Divider Value in Run Mode
Max. 8-bit divider value
If RMC is set to 0 the module is disabled.

0 7, 6,
[31:16]

r Reserved; returns 0 if read; should be written with 0;

Field Bits Type Description
User’s Manual 3-12 V1.0, 2002-03

TC11IB
System Units

Clock System
The status bit DISS always indicates whether a module is currently switched off
(DISS = 1) or switched on (DISS = 0). With a few exceptions (STM_CLC, EBU_CLC),
the default state of a peripheral module after reset is “module disabled” with DISS set.

Write operations to the registers of disabled modules are not allowed. However, the CLC
of a disabled module can be written. An attempt to write to any of the other writable
registers of a disabled module except CLC will cause the Bus Control Unit (BCU) to
generate a bus error.

A read operation of registers of a disabled module is allowed and does not generate a
bus error.

Note: A destructive read access occurring while a module is disabled is treated as a
normal read access. This means, if a module register or a bit of it is cleared as a
side-effect of a read access of an enabled module, it will not be cleared by this
read access while the module is disabled.

Sleep Mode Control

The EDIS bit in the CLC register controls whether a module is stopped during sleep
mode or not. If EDIS is 0 (default after reset), a sleep mode request can be recognized
by the module and, when received, its clock is shut off.

If EDIS is set to 1, a sleep mode request is disregarded by the module and the module
continues its operation.

Debug Suspend Mode Control

During emulation and debugging of TC11IB applications, the execution of an application
program can be suspended. When an application is suspended, normal operation of the
application’s program is halted, and the TC11IB begins (or resumes) executing a special
debug monitor program. When the application is suspended, a suspend signal is
generated by the TC11IB and sent to all modules. If bit SPEN is set to 1, the operation
of the peripheral module is stopped when the suspend signal is asserted. If SPEN is set
to 0, the module does not react to the suspend signal but continues its normal operation.
This feature allows each peripheral module to be adapted to the unique requirements of
the application being debugged. Setting SPEN bits is usually performed by a debugger.

This feature is necessary because application requirements typically determine whether
on-chip modules should be stopped or left running when an application is suspended for
debugging. For example, a peripheral unit that is controlling the motion of an external
device through motors in most cases must not be stopped so as to prevent damage of
the external device due to the loss of control through the peripheral. On the other hand,
it makes sense to stop the system timer while the debugger is actively controlling the chip
because it should only count the time when the user’s application is running.

Note that it is never appropriate for application software to set the SPEN bit. The debug
suspend mode should only be set by a debug software. To guard against application
User’s Manual 3-13 V1.0, 2002-03

TC11IB
System Units

Clock System
software accidently setting SPEN, bit SPEN is specially protected by the mask bit
SBWE. The SPEN bit can only be written if, during the same write operation, SBWE is
set, too. Application software should never set SBWE to 1. In this way, user software can
not accidentally alter the value of the SPEN bit that has been set by a debugger.

Note: The operation of the Watchdog Timer is always automatically stopped in debug
suspend mode.

Entering Disabled Mode

Software can request that a peripheral unit shall be put into Disabled Mode by setting
DISR. A module will also be put into Disabled Mode if the sleep mode is requested and
the module is configured to allow Sleep Mode.

In Secure Shut-off Mode, a module first finishes any operation in progress, then
proceeds with an orderly shut down. When all sub-components of the module are ready
to be shut down, the module signals its clock control unit, which turns off the clock to this
peripheral unit, that it is now ready for shut down. The status bit DISS is updated by the
peripheral unit accordingly.

The kernel logic of the peripheral unit and its FPI Bus interface must both perform shut-
down operations before the clock can be shut off in Secure Shut-off Mode. This is
performed as follows. The peripheral module’s FPI Bus interface provides an internal
acknowledge signal as soon as any current bus interface operation is finished. For
example, if there is a PCP write access to a peripheral in progress when a disable
request is detected, the access will be terminated correctly. Similarly, the peripheral’s
kernel provides an internal acknowledge signal when it has entered a stable state. The
clock control unit for that peripheral module shuts off the module’s clock when it receives
both acknowledge signals.

During emulation and debugging, it may be necessary to monitor the instantaneous state
of the machine - including all or most of its modules - at the moment a software
breakpoint is reached. In such cases, it may not be desired that the kernel of a module
finish whatever transaction is in progress before stopping, because that might cause
important states in this module to be lost. Fast Shut-off Mode, controlled by bit FSOE, is
available for this situation.

If FSOE = 0, modules are stopped as described above. This is called Secure Shut-off
Mode. The module kernel is allowed to finish whatever operation is in progress. The
clock to the unit is then shut off if both the bus interface and the module kernel have
finished their current activity. If Fast Shut-off Mode is selected (FSOE = 1), clock
generation to the unit is stopped as soon as any outstanding bus interface operation is
finished. The clock control unit does not wait until the kernel has finished its transaction.
This option stops the unit’s clock as fast as possible, and the state of the unit will be the
closest possible to the time of the occurrence of the software breakpoint.

Note: The Fast Shut-off Mode is the only shut down operating mode available in the
TC11IB, regardless of the state of the FSOE bit.
User’s Manual 3-14 V1.0, 2002-03

TC11IB
System Units

Clock System
Whether Secure Shut-off Mode or Fast Shut-off Mode is required depends on the
application, the needs of the debugger, and the type of unit. For example, the analog-to-
digital converter might allow the converter to finish a running analog conversion before
it can be suspended. Otherwise the conversion might be corrupted and a wrong value
could be produced when Debug Suspend Mode is exited and the unit is enabled again.
This would affect further emulation and debugging of the application’s program.

On the other hand, if a problem is observed to relate to the operation of the external
analog-to-digital converter itself, it might be necessary to stop the unit as fast as possible
in order to monitor its current instantaneous state. To do this, the Fast Shut-off Mode
option would be selected. Although proper continuation of the application’s program
might not be possible after such a step, this would most likely not matter in such a case.

Note that it is never appropriate for application software to set the FSOE bit. Fast Shut-
off Mode should only be set by debug software. To guard against application software
accidently setting FSOE, bit FSOE is specially protected by the mask bit SBWE. The
SPEN bit can only be written if, during the same write operation, SBWE is set, too.
Application software should never set SBWE to 1. In this way, user software can not
accidentally alter the value of the FSOE bit. Note that this is the same guard mechanism
used for the SPEN bit. In this way, user software can not accidentally alter the value of
the FSOE bit.

Module Clock Divider Control

Most of the TC11IB peripheral modules have an 8-bit or 2-bit control field in their CLC
registers for Run Mode clock control (RMC). The clock divider circuit is located in the bus
interface of these peripheral modules.

A value of 00H in RMC disables the clock signals to these modules (module clock is
switched off). If RMC is not equal to 00H, the module clock for a unit is generated

[3.5]

where “MOD” stands for the module name and “RMCMOD” is the content of its CLC
register RMC field with a range of 1..255.

Note: The number of module clock cycles (wait states) which are required for a
“destructive read” access (means: flags/bits are set/reset by a read access) to a
module register of a peripheral unit depends on the selected module clock
frequency.
Therefore, a slower module clock (selected via bit field RMC in the CLC register)
results in a longer read access time for peripheral units with “destructive read”
access (e.g. ASC, SSC).

fMOD = fSYS / RMCMOD
User’s Manual 3-15 V1.0, 2002-03

TC11IB
System Units

Clock System
3.2.4 CLC Register Implementations

Table 3-1 shows which of the CLC register bits/bit fields is implemented for each
peripheral module in the TC11IB.

Note: The ports of the TC11IB don’t provide CLC registers.

Table 3-1 CLC Registers in the TC11IB

Register Module DISS,
DISR,
Bit [1:0]

SPEN
Bit 2

EDIS
Bit 3

SBWE
Bit 4

FSOE
Bit 5

RMC
Bit
[15:8]

Name State after
Reset

SSC_CLC SSC disabled � � � � � �

ASC_CLC ASC disabled � � � � � �

16x50_CLC 16x50 disabled � � � � � �

GPTU0_CLC GPTU0 disabled � � � � � �

GPTU1_CLC GPTU1 disabled � � � � � �

EBU_CLC EBU enabled � – – – – –

STM_CLC STM enabled � � � � � –

MMCI_CLC MMCI enabled � � � � � –

PLL_CLC PLL enabled completely different bit definitions
(see Section 3.1.4)
User’s Manual 3-16 V1.0, 2002-03

TC11IB
System Units

System Control Unit
4 System Control Unit

4.1 Overview

The System Control Unit (SCU) of the TC11IB handles the system control tasks. All
these system functions are tightly coupled, thus, they are conveniently handled by one
unit, the SCU. The system tasks of the SCU are:

• Reset Control (described in Chapter 5)
– Generation of all internal reset signals
– Generation of external HDRST reset signal

• PLL Control (described in Chapter 3)
– PLL_CLC Clock Control Register

• Power Management Control (described in Chapter 6)
– Enabling of several power-down modes
– Control of the PLL in power-down modes

• Watchdog Timer (described in Chapter 20)
• Trace Control
• Device Identification

This chapter describes the last two tasks in this feature list. The other tasks are
described in other chapters of this document, as indicated.
User’s Manual 4-1 V1.0, 2002-03

TC11IB
System Units

System Control Unit
4.2 Registers Overview

The basic SCU registers can be divided into three types, as shown in Figure 4-1.
Table 4-1 provides the long name, offset address, and location details for each of the
basic registers.

Figure 4-1 SCU Registers

In the TC11IB, the registers of the SCU are located in the following address range:

– Module Base Address: F000 0000H
Module End Address: F000 00FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 4-1)

Table 4-1 SCU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

SCU_MCDTRC Trace Control Register 0054H Page 4-4

MANID Manufacturer Identification Register 0070H Page 4-5

CHIPID Chip Identification Register 0074H Page 4-6

RTID Redesign Tracing Identification Register 0078H Page 4-7

M C D TR C M A N ID

Trace Register Identification
Registers

C H IP ID

R TID
User’s Manual 4-2 V1.0, 2002-03

TC11IB
System Units

System Control Unit
4.3 Trace Control

This part of the SCU controls the interconnections of Trace Port with the trace interfaces
of the Trace Control Unit (TCU) and the Peripheral Control Processor (PCP) and CPU.

Figure 4-2 Trace Control within the SCU

Note: The trace features of the TC11IB are described in detail in Chapter 21 of this
User’s Manual.

CPU

PCP

 Port
M
U
X

16

16

SCU

ETSEL
[1:0] ETEN

MCDTRC
User’s Manual 4-3 V1.0, 2002-03

TC11IB
System Units

System Control Unit
SCU_MCDTRC
SCU Trace Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ETSEL ET
EN

r rw rw

Field Bits Type Description

ETEN 0 rw Emulation Trace Enable
0 Emulation trace disabled
1 Emulation trace enabled

ETSEL [2:1] rw Emulation Trace Select
00 CPU trace selected
01 PCP trace selected
10 Reserved
11 Reserved

0 [31:3] r Reserved; read as 0; should be written with 0.
User’s Manual 4-4 V1.0, 2002-03

TC11IB
System Units

System Control Unit
4.4 Identification Registers

The SCU includes four identification register: one for the SCU module identification and
three for device identification.

MANID
Manufacturer Identification Register Reset Value: 0000 1820H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MANUF DEPT

r r

Field Bits Type Description

DEPT [4:0] r Department Identification Number
= 00H: indicates the department AI MC within
Infineon Technologies.

MANUF [15:5] r Manufacturer Identification Number
This is a JEDEC normalized manufacturer code.
MANUF = C1H for Infineon Technologies.

0 [31:16] r Reserved; read as 0.
User’s Manual 4-5 V1.0, 2002-03

TC11IB
System Units

System Control Unit

CHIPID
Chip Identification Register Reset Value: 0000 85XXH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHID CHREV

r r

Field Bits Type Description

CHREV [7:0] r Chip Revision Number
01H = first revision

CHID [15:8] r Chip Identification Number
85H = TC11IB

0 [31:16] r Reserved; read as 0.
User’s Manual 4-6 V1.0, 2002-03

TC11IB
System Units

System Control Unit
RTID
Redesign Tracing Identification Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LC 0 RIX

r r r

Field Bits Type Description

RIX [2:0] r Redesign Index
0H Original revision
1H-7H Modified revisions

LC 15 r Laser Correction Flag
0 No laser correction
1 Laser correction

0 [14:3],
[31:16]

r Reserved; read as 0.
User’s Manual 4-7 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
5 Reset and Boot Operation
This chapter describes the conditions under which the TC11IB will be reset, the reset
and boot operations, and the available boot options.

5.1 Overview

When the TC11IB device is first powered up, several boot parameters must be defined
to enable proper start operation of the device, such as the start location of the code. To
accomplish parameter definition, the device has a separate Power-On Reset (PORST)
pin and a number of configuration pins that are sampled during the power-on reset
sequence. At the end of this sequence, the sampled values are latched, and cannot be
modified until the next power-on reset. This guarantees stable conditions during the
normal operation of the device.

There are two ways to reset the device while it is operating: a hardware reset or a
software reset. For reset causes coming from the external world, a reset input pin,
HDRST, is provided. If software detects conditions which require the device to be reset,
a software reset can be performed by writing to a special register, the Reset Request
(RST_REQ) register.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects
a malfunction in the system. If the WDT is not serviced correctly and/or in time, it first
generates an NMI request to the CPU (this allows the CPU to gather debug information),
and then resets the device after a predefined time-out period.

Another type of reset which needs to be detected in many applications is a reset while
the device is in Deep Sleep mode (Wake-Up reset). This makes it possible to distinguish
a wake-up reset from a power-on reset. For a power-on reset, the contents of the
memories are undefined; but, the memory contents are well defined after a wake-up
reset from deep sleep.

After a reset has been executed, the Reset Status (RST_SR) register provides
information on the type of the last reset and the selected boot configuration.

The external reset pin, HDRST, has a double-function. It serves as a reset input from the
external world to reset the device, and it serves as a reset output to the external world to
indicate that the device has executed a reset. For this purpose, pin HDRST is
implemented as a bidirectional open-drain pin with an internal weak pull-up device.

The boot configuration information required by the device to perform the desired start
operation after a power-up reset includes the start location for the code execution, and
the activation of special modes. Some of the special modes include: enabling the on-chip
debugging features or placing the pins of the chip into a high-impedance mode. This
information is supplied to the chip via a number of dedicated input pins which are
sampled and latched with a power-on reset. However, the software reset provides the
special option to alter these parameters to allow a different start configuration after the
software reset has finished.
User’s Manual 5-1 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
5.2 Reset Registers

The two reset registers are shown in Figure 5-1. The long name, offset address, and
location of detailed information are provided in Table 5-1.

Figure 5-1 Reset Registers

In the TC11IB, the reset registers are located in the address range of the SCU.

– Module Base Address. F000 0000H
Module End Address. F000 00FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 5-1)

5.2.1 Reset Status Register (RST_SR)

After a reset, the Reset Status Register RST_SR indicates the type of reset occurred and
indicates which parts of the TC11IB were affected by the reset. It also holds the state of
the boot configuration pins that are latched at power-on reset. Register RST_SR is a
read-only register.

Table 5-1 Reset Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

RST_REQ Reset Request Register 0010H Page 5-5

RST_SR Reset Status Register 0014H Page 5-3

M C A04719

R ST_R E Q R S T_S R

Control Register Status Register
User’s Manual 5-2 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation

RST_SR
Reset Status Register

Power-On Reset Value: 0000 1000 000U UUUU UUUU 0000 0000 0111B
Hardware Reset Value: 0001 0000 000U UUUU 0000 0000 0010B

Software Reset Value: 0010 0000 000U UUUU UUUU 0000 0000 0UUUB
Watchdog Timer Reset Value: 0100 0000 000U UUUU UUUU 0000 0000 0101B

Power-Down Wake-up Reset Value: 1000 0000 000U UUUU UUUU 0000 0000 0011B

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PWD
RST

WDT
RST

SFT
RST

HD
RST

PWO
RST 0

HW
BRK

IN

HW
OCD
SE

HWCFG

rh rh rh rh rh r rh rh rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HWC
FG CFGP0 0 RS

EXT X RS
STM

rh rh r rh rh rh

Field Bits Type Description

RSSTM 0 rh System Timer Reset Status
0 System Timer was not reset
1 System Timer was reset

X 1 rh Reserved; bit with no function; default after reset is 0.

RSEXT 2 rh HDRST Line State during Last Reset
0 HDRST was not activated as output by TC11IB
1 HDRST was activated as output by TC11IB

CFGP0 [14:12] rh Boot Software Configuration Bits Status
Status of general purpose IO pins P0.13 - P0.11 latched
with the rising edge of PORST. There is no automatic
evaluation of this information by hardware. It is for
software use only.

HWCFG [18:15] rh Boot Configuration Selection Status
Status of the configuration pins CFG[2:0], CFG[3]
latched with power-on reset.

HWOCDSE 19 rh State of OCDSE Pin
Value of the OCDS enable pin latched at the end of
power-on reset.
User’s Manual 5-3 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
5.2.2 Reset Request Register (RST_REQ)

The Reset Request Register RST_REQ is used to generate a software reset. Unlike the
other reset types, the software reset can exclude two functions from the reset. These are
the System Timer and the external reset output HDRST. In addition, it can change the
boot configuration.

A software reset is invoked by any write to register RST_REQ. This register is EndInit-
protected, meaning that bit WDT_CON0.ENDINIT must be set to 0 first through the
password-protected access scheme for WDT_CON0. Once access is gained through
the Endinit protection scheme, RST_REQ can be written, causing a software reset.

HWBRKIN 20 rh State of BRKIN Pin
Value of the break input pin latched at the end of power-
on reset.

PWORST 27 rh Power-On Reset Status Flag
0 The last reset was not a power-on reset
1 The last reset was a power-on reset

HDRST 28 rh Hardware Reset Status Flag
0 The last reset was not a hardware reset
1 The last reset was a hardware reset

SFTRST 29 rh Software Reset Status Flag
0 The last reset was not a software reset
1 The last reset was a software reset

WDTRST 30 rh Watchdog Reset Status Flag
0 The last reset was not a watchdog reset
1 The last reset was a watchdog reset

PWDRST 31 rh Power-Down/Wake-Up Reset Status Flag
0 The last reset was not a wake-up from power-

down reset
1 The last reset was a wake-up from power-down

reset

0 [11:3],
[26:21]

r Reserved; returns 0 if read.

Field Bits Type Description
User’s Manual 5-4 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation

RST_REQ
Reset Request Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0
SW

BOO
T

0
SW

BRKI
N

SW
OCD
SE

SWCFG

r rw r rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWC
FG BTSWCFG 0 RR

EXT X RR
STM

rw rh r rw rw rw

Field Bits Type Description

RRSTM 0 rw Reset Request for the System Timer
0 Do not reset the System Timer
1 Reset the System Timer

X 1 rw Reserved; bit with no function; writing to this bit stores
the value which is written; default after reset is 0.

RREXT 2 rw Reset Request for External Devices
0 Do not activate reset output HDRST and do not

reset the PCI interface.
1 Activate reset output HDRST and reset the PCI

interface.

BTSWCFG [14:12] rh Boot Software Configuration Value
Different boot options can be distinguished via the
value here. If bit SWBOOT is set, the value here is used
instead of the latched information from P0.13 - P0.11.

SWCFG [18:15] rw Software Boot Configuration
A software boot configuration different from the external
applied hardware configuration can be specified with
these bits. The configuration encoding is equal to the
CFG[2:0], CFG[3]encoding.

SWOCDSE 19 rw Software OCDS Enable Signal Boot Value
Determines the desired value for the OCDS enable
input signal to be used for software boot.

SWBRKIN 20 rw Software Break Signal Boot Value
Determines the desired value for the break input signal
to be used for software boot.
User’s Manual 5-5 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
5.3 Reset Operations

A detailed description of each of the reset options is given in the following sections.

5.3.1 Power-On Reset

The PORST pin performs a power-on reset, also called cold reset. Driving the PORST
pin low causes an asynchronous reset of the entire device. The device then enters its
power-on reset sequence.

The external configuration input pins for the PLL are sampled in order to select the
proper operating mode of the PLL. The PLL itself has its own power-on reset circuitry,
and is not affected by any other reset condition other than a low signal transition on the
PORST pin.

Simultaneously, the reset circuitry drives the HDRST pin low, and then waits for the
following two conditions to occur:

1. The PLL is locked and the system clock is active
2. Pin PORST is negated (driven high)

When both of these conditions are met, the power-on reset sequence is terminated
synchronously with the next system clock transition. The power-on reset indication flag
PWORST in the Reset Status Register RST_SR is set, while all other reset cause
indication flags are cleared. (Fields in this register that are set include the power-on reset
indication flag (PWORST), as well as the reset status flags for the System Timer
(RSSTM) and the reset output pin (RSEXT)). The rising edge of the signal at pin PORST
causes the state of the configuration pins for the boot options to be latched into the
appropriate registers.

5.3.2 External Hardware Reset

The external hardware reset pin HDRST serves as an external reset input as well as a
reset output. It is an active-low, bidirectional open-drain pin with an internal weak pull-
up. An active-low signal at this pin causes the chip to enter its hard-reset sequence
synchronously with the next system clock transition. The HDRST pin is held low by the
reset circuitry until its internal reset sequence is terminated.

SWBOOT 24 rw Software Boot Configuration Selection
0 Use the previously latched hardware

configuration
1 Use the programmed software configuration

0 [11:3],
[23:21]
[31:25]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 5-6 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
When the sequence is terminated, the reset circuitry then releases HDRST (that is, it
does not actively drive this pin anymore, so the weak pull-up can try to drive the pin high).
It then begins monitoring the level of the pin. If the pin is still low (indicating that it is still
being driven low externally), the reset circuitry holds the chip in hardware reset until a
high level is detected on HDRST. The hardware reset sequence is then terminated. The
following flags in the Reset Status Register are then set: HDRST, RSSTM and RSEXT.
Other reset cause indication flags are cleared.

Note: A hardware reset does not cause the configuration pins for the boot options to be
latched. The configuration state that was latched at the end of the last power-on
reset still controls these functions. Also, the PLL is not affected by an external
hardware reset, but continues to operate according to its selected mode.

5.3.3 Software Reset

A software reset is invoked by writing the appropriate bits in the Reset Request Register
(RST_REQ). Unlike the other forms of reset, the software reset can exclude two system
functions from being reset. These are the System Timer and the external reset output
HDRST. Also, a software reset can change the boot configuration as a side-effect.

Excluding some system functions from a software reset offers these potential
advantages:

• The System Timer can continue to clock accumulated elapsed time.
• The external components of a system can continue to operate while only the TC11IB

is reset.

To perform a software reset, the Reset Request Register RST_REQ must be written.
However, RST_REQ is EndInit-protected to avoid an unintentional software reset. The
ENDINIT bit in the Watchdog Timer control register WDT_CON0 must be cleared via the
password-protected access scheme. When this is done, a write access to RST_REQ
can then be performed.

To exclude system functions from software reset, the appropriate bits in RST_REQ must
be set to 0:

• Set RREXT to 0 to avoid activating the reset output HDRST and the PCI interface.
• Set RRSTM to 0 to avoid resetting the System Timer.

To change the boot configuration latched at the end of power-on reset, the software boot
selection bit SWBOOT must be set, and the desired boot configuration must be written
to bits SWBRKIN, SWOCDSE, and SWCFG. In addition, a configuration selection for the
Boot Software can be placed in the bit field BTSWCFG.

When the software reset is terminated, bit RST_SR.SFTRST is set, indicating that the
last reset was a software reset. All other reset cause indication flags are cleared. The
reset status of the System Timer (RSSTM) and HDRST pin (RSEXT) are set according
to the bits in RST_REQ at the time the software reset was initiated.
User’s Manual 5-7 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
The PLL is not affected by a software reset; it continues to operate according to its
previous mode.

Note: The boot configuration bits in the Reset Request Register RST_REQ are only
used on software reset. In particular, the SWCFG bits that can be set to cause the
TC11IB to boot using internal memory (if SWCFG is set to 0) are not effective on
hardware boot. Regardless of the state of RST_REQ, any reset other than a
software reset always uses the hardware configuration.

5.3.4 Watchdog Timer Reset

A Watchdog Timer overflow or access error occurs only in response to severe and/or
unknown malfunctions of the TC11IB, caused by software or hardware errors. Therefore,
the entire TC11IB is given a Watchdog Timer reset whenever the Watchdog Timer
overflows.

Before the Watchdog Timer generates its reset, it first signals a non-maskable interrupt
(NMI) and enters a time-out mode. The NMI invokes a Trap Service Routine (NMI is
really a trap, not an interrupt). The trap handler can save critical state of the machine for
subsequent examination of the cause of the Watchdog Timer failure. However, it is not
possible to stop or terminate the Watchdog Timer’s time-out mode or prevent the
pending watchdog reset.

However, software can preempt the Watchdog Timer by issuing a software reset on its
own. Because the cause of the system failure is presumably unknown at that time, and
it is presumably uncertain which functions of the TC11IB are operating properly, it is
recommended that the software reset be configured to reset all system functions
including the System Timer and external reset output HDRST, and to use the hardware
boot configuration.

Eventually, if the NMI trap handler does not perform a software reset, or if the system is
so compromised that the trap handler cannot be executed, the Watchdog Timer will
cause a Watchdog Timer reset to occur at the end of its time-out mode period. The
actions performed on a Watchdog Timer reset sequence are the same as are performed
for an external hardware reset. At the end of the Watchdog Timer reset sequence, bits
WDTRST, RSSTM and RSEXT are set in register RST_SR. All other reset cause
indication flags are cleared.

Bit RST_REQ.RREXT can also be used to exclude some system functions from a
Watchdog Timer reset. If bit RST_REQ.RREXT is cleared to 0, then the HDRST output
and the reset to the PCI interface will not be asserted by Watchdog Timer reset.

5.3.4.1 Watchdog Timer Reset Lock

When the system emerges from any reset condition, the Watchdog Timer becomes
active, and, — unless prevented by initialization software — will eventually time out.
Ordinarily, initialization software will configure the Watchdog Timer and commence
User’s Manual 5-8 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
servicing it on a regular basis to indicate that it is functioning appropriately. Should the
system be malfunctioning so that initialization and service are not performed in a timely
fashion, the Watchdog Timer will time out, causing a Watchdog Timer reset.

If the TC11IB system is so corrupted that it is chronically unable to service the Watchdog
Timer, the danger could arise that the system would be continuously reset every time the
Watchdog Timer times out. This could lead to serious system instability, and to the loss
of information about the original cause of the failure. However, the reset circuitry of the
TC11IB is designed to detect this condition. If a Watchdog Timer error occurs while one
or both of the Watchdog Timer error flags (WDT_SR.WDTAE and WDT_SR.WDTOE)
are already set to 1, the reset circuitry locks the TC11IB permanently in reset (Reset
Lock) until the next power-on reset occurs by activation of the PORST pin.

This situation could arise, for example, if the connection to external code memory is lost
or memory becomes corrupt, such that no valid code can be executed, including the
initialization code. In this case, the initial time-out period of the Watchdog Timer cannot
be properly terminated by software. The Watchdog Timer error flag WDTOE will be set
when the Watchdog Timer overflows, and a Watchdog Timer reset will be triggered (after
the watchdog reset pre-warning phase). The error flag WDTOE is not cleared by the
Watchdog Timer reset which subsequently occurs. After finishing the Watchdog Timer
reset sequence, the TC11IB will again attempt to execute the initialization code. If the
code still cannot be executed because of connection problems, the WDTOE bit will not
have been cleared by software. Again, the Watchdog Timer will time out and generate a
Watchdog Timer reset. However, this time the reset circuitry detects that WDTOE is still
set while a Watchdog Timer error has occurred, indicating danger of cyclic resets. The
reset circuitry then puts the TC11IB in Reset Lock. This state can only be deactivated
again through a power-on reset.

5.3.4.2 Deep-Sleep Wake-Up Reset

Power is still applied to the TC11IB during Deep Sleep power-management mode, which
preserves the contents of the TC11IB’s static RAM. If Deep Sleep mode is entered
appropriately, all important system state information will have been preserved in static
RAM by software. The only way to terminate Deep Sleep mode is for the TC11IB to be
externally reset. However, while external reset will cause the TC11IB’s registers to return
to their default reset values, the contents of the static RAM is not affected. This can be
important to the application software because initialization of the static RAM can be
skipped, and data written to it before Deep Sleep mode was entered will still be valid.

If the TC11IB is in Deep Sleep mode, there are three options to awaken it:

1. A power-on reset PORST
2. An external NMI event with a reset sequence
3. An external NMI event without a reset sequence
User’s Manual 5-9 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
Selection between the two types of external NMI event is made via the control bit
PMG_CON.DSRE. The advantage of using an external NMI event without a reset
sequence is that the system can be more quickly awakened.

5.3.5 LMU eDRAM Reset

In TC11IB, the following three signals are provided to the LMU eDRAM for reset control.

The interface between the SCU and the LMU is shown in Figure 5-2.

Figure 5-2 SCU to LMU Interface

Table 5-2 LMU Reset Control Signals

Signals Description

eDRAM_PORST This signal is activated by power-on reset (PORST) or hardware
reset (HDRST).

ASYNC_RST Asynchronous Reset
This signal is activated by power-on reset (PORST) or hardware
reset (HDRST)

SYNC_RST Synchronous Reset
This signal is activated by watchdog timer reset or software reset.

Logic

Logic

Logic

WDT Reset
Software Reset

POR
HRST

PLL_LOCK

SYNC_RST

ASYNC_RST

eDRAM_POR
User’s Manual 5-10 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
The timing for eDRAM power-on reset cycle is shown as Figure 5-3

Figure 5-3 Timing for eDRAM Power-On Reset Cycle

When either PORST or HDRST is activated, the output signals eDRAM_PORST and
ASYNC_RST are both forced to low. A counter is also enabled for timing the signal
generation. After 200µs, eDRAM_POR is asserted high and maintained for 100µs. A
further 100µs later, ASYNC_RST is de-asserted.

Since PORST is an asynchronous input, counting can only proceed after the PLL clock
has locked. On the other hand, a stable PLL clock is already available when HDRST is
asserted. Thus counting can begin after the trailing edge of HDRST.

To reduce the size of counter, the input clock, slow FPI clock of 48MHz, can be divided
down (to say 1MHz, for example).

A detailed description of the behavior of the eDRAM module on the different reset
conditions see at LMU module description.

5.3.6 State of the TC11IB After Reset

Table 5-3 lists the modules/functions and types of reset and indicates whether and how
the various functions of the TC11IB are affected. A � indicates that a function is reset to
its default state.

Table 5-3 Effect of Reset Types on TC11IB Modules/Functions

Module /
Function

Wake-up
Reset

Watchdog
Reset

Software
Reset

Hardware
Reset

Power-On
Reset

CPU Core � � � � �

Peripherals
(except
System Timer)

� � � � �

200µs 100µs

100µs

HDRST or PORST

eDRAM_PORST

ASYNC_RST

Stable Clock
User’s Manual 5-11 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
Note: 1) The actual data contents of the cache are not affected through a reset; however
the cache tag information is cleared, resulting in an ‘empty’ cache.

On-Chip Static
RAM
(code or data)

Not
affected

Not affected;
contents
may be

unreliable

Not
affected

Not
affected

Not affected;
contents are

invalid

On-Chip
Cache
(see note 1)

� � � � �

LMU eDRAM content
undefined

Content
preserved

(see note 2)

Content
preserved

(see note 2)

Content
undefined

content
undefined

Com eDRAM content
undefined

content
undefined

content
undefined

content
undefined

content
undefined

PCI Interface
(see note 3)

� Optional Optional � �

System Timer
(see note 4)

� Not affected Optional Not affected �

Debug Unit � � Optional � �

Oscillator / PLL � Not affected Not affected Not affected �

External Bus
Control Unit

� � � � �

External Bus
Pins

Depending
on Reset
Config.

Depending
on Reset
Config.

Depending
on Reset
Config.

Depending
on Reset
Config.

Depending
on Reset
Config.

Port Pins Tri-stated Tri-stated Tri-stated Tri-stated Tri-stated

Reset output
pin HDRST

� Optional Optional � �

Boot
Configuration
taken from

Latched
hardware
configur-

ation

Latched
hardware
configur-

ation

Optional
latched

hardware or
software
configur-

ation

Latched
hardware
configur-

ation

External
pins

Table 5-3 Effect of Reset Types on TC11IB Modules/Functions (cont’d)

Module /
Function

Wake-up
Reset

Watchdog
Reset

Software
Reset

Hardware
Reset

Power-On
Reset
User’s Manual 5-12 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
2) The data integrity of a location being written on software reset or watchdog timer
reset activation can not be guaranteed. Spurious data might be written to the
location where the aborted write pointed to.
3) All tristatable PCI outputs are set to ‘Tristate’ when reset is active. Please refer
to Chapter “PCI Interface” for more details.
4) The counting of the System Timer is not affected by Watchdog Timer Reset and
Hardware Reset.

5.4 Booting Scheme

When the TC11IB is reset, it needs to know the type of configuration required to start in
after the reset sequence is finished. Internal state is usually cleared through a reset. This
is especially true in the case of a power-up reset. Thus, boot configuration information
needs to be applied by the external world through input pins.

Boot configuration information is required:

• for the start location of the code execution,
• and activation of special modes and conditions

For the start of code execution and activation of special mode, the TC11IB implements
two basic booting schemes: a hardware scheme which is invoked through external pins,
and a software scheme in which software can determine the boot options, overriding the
externally-applied options.

5.4.1 Hardware Booting Scheme

The hardware booting scheme uses the state of a number of external input pins —
sampled and latched with a power-on reset — to determine the start configuration of the
chip. The state of these pins is latched into the Reset Status Register RST_SR when the
power-on reset signal (pin PORST) is released. This hardware configuration determined
through the bits HWOCDSE, HWBRKIN, and HWCFG[3:0] is used for all hardware-
invoked reset options (power-on, hard, watchdog and wake-up reset). In order to have
several boot Software options available, pins P0.11 - P0.13 are latched with pin PORST
activation into CFGP0.[13-11] bit field of the reset status register RST_SR.

5.4.2 Software Booting Scheme

The Reset Request Register RST_REQ, used for generating a software reset, contains
seven bits that have the same meaning as the corresponding seven bits in the RST_SR
register. On a software reset, software can choose to set a different boot configuration
from the one latched with power-on reset. This option is selected through bit SWBOOT
in register RST_REQ. When writing to this register, the desired values for bits
SWOCDSE, SWBRKIN, and SWCFG[3:0] are written along with bit SWBOOT set to 1.
In addition, bit field BTSWCFG can be used to provide further option selection
information to the boot Software. This causes the device to start in the configuration
User’s Manual 5-13 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
selected through the software boot configuration bits in register RST_REQ instead of
starting with the hardware boot configuration stored in register RST_SR.

5.4.3 Boot Options

The architecture of the TriCore booting schemes provides a number of different boot
options for the start of code execution. Several of them have sub-options even.
Especially option 2 supports a wide variety of sub-options by the boot ROM Software
evaluating the latched configuration bits and Port 0 general Purpose IO bits latched
during reset at CFGP0[13:11].

Table 5-4 shows the boot options available in the TC11IB. Note that the signals OCDSE,
BRKIN, and CFG[3:0] can be either the corresponding bits HWOCDSE, HWBRKIN, and
HWCFG[3:0] in register RST_SR, or the software configuration bits SWOCDSE,
SWBRKIN and SWCFG[3:0] in register RST_REQ.

Table 5-4 Boot Selections

OCDSE BRKIN CFG
[3]

CFG
[2:0]

Type of Boot Boot Source Initial
PC Value

1 1 X 000B Start directly in core
scratchpad memory

SRAM (Only
via SW
Reset)

D400 0000H

Not
(000
or
100)

Start from Boot ROM Boot ROM,
SSC BSL
mode1)
(BootStrap
Loader) or
ASC BSL
mode1)

DFFF FFFCH

0 100B External memory as
slave directly via EBU

External
Memory
(non-cached,
CS0)

A000 0000H

1 100B External memory as
master directly via
EBU

1 0 don’t care Tri-state chip
(deep sleep)

– –
User’s Manual 5-14 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
1) SSC/ASC BootStrap Loader is built in BOOT ROM which provides a mechanism to load the startup program,
which is executed after reset, via the SSC/ASC interface. After successfully loaded, the startup program will
be executed from the address at 0xC000 0004H.

5.4.4 Boot Configuration Handling

• The inputs CFG[3:0] are latched internally with the rising edge of PORST to guarantee
a stable value during normal operation (during PORST active the latches are
transparent). The latched values can only be changed by another power-on reset.

• The CFG[3:0] pins determine the hardware boot configuration after power-on reset /
hardware reset. This configuration can be changed by software in conjunction with a
software reset (software boot configuration).

• The boot software must read the actual software configuration (register RST_REQ) to
determine how to proceed (for example: entering boot-strap loader). It is also possible
to read the latched value of the configuration pins.

5.4.5 Normal Boot Options

The normal boot options are invoked when both, OCDSE and BRKIN are set to 1.

TC11IB has three options for booting: External, Internal Boot ROM and Internal SRAM
(Scratchpad). The SRAM Boot Option can be selected only through a software reset
when first valid code has been written to the on-chip code memory.

In order to access external memory, the External Bus Unit (EBU) must have information
about the type and access mechanism of the external boot code memory. This
information is not available through the boot configuration pins. Special actions must be
taken first by the EBU in order to determine the configuration settings.

The EBU initiates a special external bus access in order to retrieve information about the
external code memory. This access is performed to address A000 0004H such that

0 1 0 100B Go to halt with EBU
enabled as slave

– –

1 Go to halt with EBU
enabled as master

all other
combina-
tions

Go to halt with EBU
disabled

0 0 don’t care Go to external
emulator space

– DE00 0000H

Table 5-4 Boot Selections (cont’d)

OCDSE BRKIN CFG
[3]

CFG
[2:0]

Type of Boot Boot Source Initial
PC Value
User’s Manual 5-15 V1.0, 2002-03

TC11IB
System Units

Reset and Boot Operation
regardless of the type and characteristics of the external memory, configuration
information can be read from the memory into the EBU. By examining this information,
the EBU determines the exact requirements for accesses to the external memory. It then
configures the control registers accordingly, and performs the first instruction fetch from
address A000 0000H.

5.4.6 Debug Boot Options

Debug boot options are selected if the states of the bits OCDSE and BRKIN are not both
activated.

Two of the options enable emulators to take control over the TC11IB. If only OCDSE is
activated (OCDSE = 0), the TC11IB goes into the HALT state. External hardware
emulators can then configure the TC11IB via the JTAG interface. If BRKIN is activated
(BRKIN = 0), the TC11IB starts execution out of a special external memory region
reserved for debugging.

After configuring the TC11IB via either of these boot options, the regular application
configuration can be invoked by executing a software reset with a software boot option.
By setting the software configuration bits in register RST_REQ such that the debug boot
options are deactivated, a normal boot of the TC11IB is accomplished after the software
reset terminates.

Note: The state of the external OCDSE pin is also latched by other circuitry in the
TC11IB, enabling special debugging features if a low signal level is latched at this
pin when the power-on reset (PORST) signal is raised. A software boot with a
normal boot configuration (that is, bit SWOCDSE = 1) does not affect this
operation.

The third debug boot option places the TC11IB into a tri-state mode. All pins are
deactivated, including the oscillator, and internal circuitry is held in a low-power mode.
This mode can be used to connect emulator probes to a TC11IB soldered onto a board
to perform testing.
User’s Manual 5-16 V1.0, 2002-03

TC11IB
System Units

Power Management
6 Power Management
This chapter describes the power management system for the TC11IB. Topics include
the internal system interfaces, external interfaces, state diagrams, and the operations of
the CPU and peripherals. The Power Management State Machine (PMSM) is also
described.

6.1 Power Management Overview

The TC11IB power management system allows software to configure the various
processing units so that they automatically adjust to draw the minimum necessary power
for the application.

As shown in Table 6-1, there are four power management modes:

• Run Mode
• Idle Mode
• Sleep Mode
• Deep Sleep Mode

The operation of each system component in each of these states can be configured by
software. The power management modes provide flexible reduction of power
consumption through a combination of techniques, including:

Table 6-1 Power Management Mode Summary

Mode Description

Run The system is fully operational. All clocks and peripherals are enabled,
as determined by software.

Idle The CPU clock is disabled, waiting for a condition to return it to Run
Mode. Idle Mode can be entered by software when the processor has no
active tasks to perform. All peripherals remain powered and clocked.
Processor memory is accessible to peripherals. A reset, Watchdog Timer
event, a falling edge on the NMI pin, or any enabled interrupt event will
return the system to Run Mode.

Sleep The system clock continues to be distributed only to those peripherals
programmed to operate in Sleep Mode. Interrupts from operating
peripherals, the Watchdog Timer, a falling edge on the NMI pin, or a reset
event will return the system to Run Mode. Entering this state requires an
orderly shut-down controlled by the Power Management State Machine.

Deep Sleep The system clock is shut off; only an external signal will restart the
system. Entering this state requires an orderly shut-down controlled by
the Power Management State Machine (PMSM).
User’s Manual 6-1 V1.0, 2002-03

TC11IB
System Units

Power Management
– Stopping the CPU clock
– Stopping the clocks of other system components individually
– Clock-speed reduction of some peripheral components individually
– Power-down of the entire system with fast restart capability

The Power Management State Machine (PMSM) controls the power management mode
of all system components during Run Mode, Idle Mode, and Sleep Mode. The PMSM
continues to operate in Idle Mode and Sleep Mode, even if all other system components
have been disabled, so that it can re-awaken the system as needed. In Deep Sleep
Mode, even the PMSM is disabled and the system must be re-awakened from an
external source. This flexibility in power management provides minimum power
consumption for any application.

The Power Management State Machine is implemented in the System Control Unit
(SCU) module of the TC11IB. Thus, it is accessible through the FPI Bus interface by any
FPI Bus master.

As well as these explicit software-controlled power-saving modes, special attention has
been paid in the TC11IB to provide automatic power-saving in those operating units that
are currently not required or idle. To save power, these are shut off automatically until
their operation is required again.

In typical operation, Idle Mode and Sleep Mode will be entered and exited frequently
during the runtime of an application. For example, system software will typically cause
the CPU to enter Idle Mode each time it must wait for an interrupt before continuing its
tasks. In Sleep Mode and Idle Mode, wake-up is performed automatically when any
enabled interrupt signal is detected or if the Watchdog Timer signals the CPU with an
NMI trap.

No clock is running in a system in Deep Sleep Mode, so it cannot be awakened by an
interrupt or the Watchdog Timer. It will be awakened only when it receives an external
non-maskable interrupt (NMI) or reset signal, as described Section 6.3.3. Software must
prepare the external environment of the TC11IB to cause one of these signals under the
appropriate conditions before entering Deep Sleep Mode. If Deep Sleep Mode were
entered unintentionally without an event of this nature first being prepared, the TC11IB
might never emerge from Deep Sleep Mode. For this reason, the register used to set up
Deep Sleep Mode can be changed only by way of a password-protected access
mechanism (see Section 6.3.3).

6.2 Power Management Control Registers

The set of registers used for power management is divided between central TC11IB
components and peripheral components. The PMG_CSR and the PMG_CON registers
provide software control and status information for the Power Management State
Machine (PMSM). There are individual clock control registers for peripheral components
because the Sleep Mode behavior of each peripheral component is programmable.
When entering Idle Mode and Sleep Mode, the PMSM directly controls TC11IB
User’s Manual 6-2 V1.0, 2002-03

TC11IB
System Units

Power Management
components such as the CPU, but indirectly controls peripheral components through
their clock control registers.

Figure 6-1 Power Management Registers

In the TC11IB, the reset registers are located in the address range of the SCU:

– Module Base Address. F000 0000H
Module End Address. F000 00FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 6-2)

6.2.1 Power Management Control Register PMG_CON

The Power Management Control Register PMG_CON is used to request Deep Sleep
Mode. This register is specially protected to avoid unintentional invocation of Deep Sleep
Mode.

Table 6-2 Power Management Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

PMG_CON Power Management Control Register 0030H Page 6-4

PMG_CSR Power Management Control and Status
Register

0034H Page 6-5

M C A04720

P M G _C O N

Control Registers

P M G _C S R
User’s Manual 6-3 V1.0, 2002-03

TC11IB
System Units

Power Management

Note: The PMG_CON register is specially protected to avoid unintentional invocation of
Deep Sleep Mode. In order to write to PMG_CON.DSREQ, the
WDT_CON0.ENDINIT bit must be set to 0 through a password-protected access
mechanism. WDT_CON0.ENDINIT must then be set to 1 to make the changed
value of DSREQ become effective.

PMG_CON
Power Management Control Register Reset Value: 0000 0001H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DS
REQ

DS
RE

r rwh rw

Field Bit Type Function

DSRE 0 rw Reset On Wake-Up From Deep Sleep
Wake-up from deep sleep can be caused by either a
power-on reset or through a low level at the NMI pin.
The state of DSRE determines whether a full internal
hardware reset should be performed on exit from deep
sleep.
0 No internal reset will be performed on exit from

deep sleep
1 An internal hardware reset will be performed on

exit from deep sleep

DSREQ 1 rwh Deep Sleep Request Bit
0 Normal Mode
1 Deep Sleep Mode requested
Bit is reset by hardware on wake-up from deep sleep
mode.

0 [31:2] r Reserved; read as 0; should be written with 0.
User’s Manual 6-4 V1.0, 2002-03

TC11IB
System Units

Power Management
6.2.2 Power Management Control and Status Register PMG_CSR

The Power Management Control and Status Register PMG_CSR stores Idle Mode and
Sleep Mode request bits. It also shows the status of the Power Management State
Machine. Its fields are described below.

PMG_CSR
Power Management Control and Status Register Reset Value: 0000 0100H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PMST 0 REQSLP

r rh r rwh

Field Bit Type Function

REQSLP [1:0] rwh Idle Mode and Sleep Mode Request Bits
00 Normal Run Mode
01 Request Idle Mode
10 Request Sleep Mode
11 Reserved; do not use this combination;
In Idle Mode, Sleep Mode, or Deep Sleep Mode, these
bits are cleared in response to an enabled interrupt, a
wake-up from Deep Sleep Mode via the NMI pin or
PORST pin, or when bit 15 of the Watchdog Timer
count register (the WDT_SR.TIM[15] bit) changes from
0 to 1.

PMST [10:8] rh Power Management State Machine Status
000 Waiting for PLL Lock condition
001 Normal Run Mode
010 Idle Mode requested
011 Idle Mode acknowledged
100 Sleep Mode
101 Deep Sleep Mode
110 Undefined, reserved
111 Undefined, reserved

0 [7:2],
[31:11]

r Reserved; read as 0; should be written with 0.
User’s Manual 6-5 V1.0, 2002-03

TC11IB
System Units

Power Management
6.3 Power Management Modes

This section describes power management modes, their operations, and how power
management modes are entered and exited. It also describes the behavior of TC11IB
system components in all power management modes.

6.3.1 Idle Mode

Software requests the Idle Mode by setting the PMG_CSR.REQSLP bit field to 01B.

The Power Management State Machine (PMSM) posts an idle request signal to the
CPU. The CPU finishes its current operation, sends an acknowledge signal back to the
PMSM, and then enters an inactive state in which the CPU clocks and the DMU and
PMU memory units are shut off. Other system components also can request the TC11IB
to enter idle mode. For example, FPI-Bus agents, the PCP, can request idle Mode by
writing to the PMG_CSR register.

In Idle Mode, memory accesses to the DMU and PMU via the FPI Bus cause these units
to awaken automatically to handle the transactions. When memory transactions are
complete, the DMU and PMU return to Idle Mode again.

The system will be returned to Run Mode through occurrence of any of the following
conditions:

• An interrupt signal is received from an enabled interrupt source.
• An NMI request is received either from an external source via the NMI pin or from the

Watchdog Timer. The Watchdog Timer triggers an NMI trap request in Idle mode
when its count value (WDT_SR.TIM) transitions from 7FFFH to 8000H.

• An external power-on signal PORST or hardware reset signal HDRST is received.
• A software reset is requested by another FPI Bus agent (such as the PCP) by writing

to the reset request register RST_REQ.

If any of these conditions arise, the TC11IB immediately awakens and returns to Run
Mode. If it is awakened by a hardware or software reset signal, the TC11IB system
begins its reset sequence. If it is awakened by a Watchdog Timer overflow event, it
executes the instruction following the one which was last executed before Idle Mode was
entered. If it is awakened by an NMI signal or interrupt signal, the CPU will immediately
vector to the appropriate handler.

6.3.2 Sleep Mode

Software can request the Sleep Mode by setting PMG_CSR.REQSLP = 10B.

6.3.2.1 Entering Sleep Mode

Sleep Mode is entered in two steps. In the first step, the CPU is put into Idle Mode in the
same manner as described in Section 6.3.1. When the PMSM receives the Idle
acknowledge signal back from the CPU, it goes on to the second step.
User’s Manual 6-6 V1.0, 2002-03

TC11IB
System Units

Power Management
In the second step, a sleep signal is then broadcast on the FPI Bus. Each FPI Bus
interface unit receives this signal. The response of each FPI Bus unit to the sleep signal
is determined by its own clock control register (CLC). These registers must have been
previously configured by software.

6.3.2.2 TC11IB State During Sleep Mode

Sleep Mode is disabled for a unit if its CLC_EDIS bit field is 1. The sleep signal is ignored
by this unit and it continues normal operation.

If the unit’s clock control register bit CLC_EDIS is 0, Sleep Mode is enabled for this unit.
In this case, the sleep signal will cause this unit to enter Sleep Mode. Two actions then
occur:

1. The unit’s bus interface finishes whatever transaction was in progress when the signal
was received.

2. The unit’s functions are suspended.

The TriCore architecture qualifies the actions in step 2 as follows. Depending on the
module’s Fast Shut-Off Enable bit CLC.FSOE in the clock control registers, the module’s
clocks are either immediately stopped (CLC.FSOE = 1), or the unit is allowed time to
finish ongoing operations (CLC.FSOE = 0) before the clocks are stopped. For example,
setting CLC.FSOE to 1 for a serial port will stop all actions in the serial port immediately
when the sleep signal is received. Ongoing transmissions or receptions will be aborted.
If CLC.FSOE is 0, ongoing transmissions or receptions will be completed, and then the
clock will be shut off. The purpose of setting CLC.FSOE = 1 is to allow a debugger to
observe the internal state of a peripheral unit immediately.

Please refer to the respective peripheral unit chapters for discussions of the exact
implementation of Sleep Mode (Clock Control Register) for a specific peripheral unit.

6.3.2.3 Exiting Sleep Mode

The system will be returned to Run Mode by the same events that exit Idle Mode, as
described in Section 6.3.1. The response of the CPU to being awakened is also the
same as for Idle Mode. Peripheral units which have entered Sleep Mode will switch back
to their selected Run Mode operation.

6.3.3 Deep Sleep Mode

In Deep Sleep Mode, the PMSM shuts off all clocks, the PLL, and the oscillator.
Therefore, Deep Sleep Mode consumes the least power of all TC11IB states.

Deep Sleep Mode is requested through software by setting the PMG_CON.DSREQ bit
to 1. The request bits for Deep Sleep Mode have been separated intentionally from the
Idle Mode and Sleep Mode request bits to minimize the chance of inadvertently invoking
Deep Sleep Mode.
User’s Manual 6-7 V1.0, 2002-03

TC11IB
System Units

Power Management
Because no clock is running in a system in Deep Sleep Mode, it can not be awakened
by any interrupt source, including the Watchdog Timer. It can only be awakened when it
receives an external reset or NMI signal, as described in this section. Software must
prepare the external environment of the TC11IB to cause one of these signals under the
appropriate conditions before entering Deep Sleep Mode. If Deep Sleep Mode were
entered unintentionally without an event of this nature first being prepared, the TC11IB
might never emerge from Deep Sleep Mode. For this reason, the PMG_CON register
which sets up Deep Sleep Mode is specially protected. In order to write to PMG_CON,
the WDT_CON0.ENDINIT bit must be set to 0 through a password-protected access
mechanism to register WDT_CON. In order for the request to be activated,
WDT_CON0.ENDINIT must first be set to 1 after the write to PMG_CON.

6.3.3.1 Entering Deep Sleep Mode

Deep Sleep Mode is entered in three steps. In the first step, the CPU is put into Idle Mode
in the same way as described in Section 6.3.1. When the PMSM receives the Idle
acknowledge signal back from the CPU, it goes on to the second step in which the
PMSM activates the sleep signal, as described in Section 6.3.2. In the third step, the
PMSM shuts off all clocks, the PLL, and the oscillator.

Note: The Power-On Reset Pin PORST should be kept stable when powering the
TC11IB down.

Note: The software which turns on deep sleep mode must reside in the internal code
scratch pad RAM to ensure that no external code accesses via the EBU are
running when the PLL clock is shut down.

6.3.3.2 TC11IB State During Deep Sleep Mode

In Deep Sleep Mode, all port pins hold their state when Deep Sleep Mode is entered.
The Deep Sleep Reset Enable Bit PMG_CON.DSRE controls whether the TC11IB is
reset when Deep Sleep Mode is left.

– PMG_CON.DSRE = 0: TC11IB is not reset when Deep Sleep Mode is left.
– PMG_CON.DSRE = 1: TC11IB is reset when Deep Sleep Mode is left. Port pins

are put into the reset state.

6.3.3.3 Exiting Deep Sleep Mode

Deep Sleep Mode can be exited in two ways:

• A power-on reset signal is detected (PORST)
• The NMI pin detects a falling edge

When returning to full-power operation, the first step is to restart the oscillator and PLL,
and re-enable the system clocks. This generally requires external hardware to wait until
User’s Manual 6-8 V1.0, 2002-03

TC11IB
System Units

Power Management
the PLL has had time to lock to its external clock source before the system can return to
reliable operation.

Exactly how the TC11IB system returns from Deep Sleep Mode depends upon which
signal re-awakens it. If awakened by a falling edge on the NMI pin, it further depends
upon the state of the PMG_CON.DSRE bit.

6.3.3.4 Exiting Deep Sleep Mode With A Power-On Reset Signal

When awakened through a power-on reset signal (PORST), the system initiates the
same reset sequence as is used when power is first applied. The TC11IB automatically
initiates its clock-acquisition sequence. This provides the time needed for the PLL to lock
to the oscillator. The TC11IB will remain in the reset state until both the PLL is locked
and the PORST signal is deactivated.

6.3.3.5 Exiting Deep Sleep Mode With an NMI Signal

The state of the Deep Sleep Reset Enable Bit, PMG_CON.DSRE, determines what
happens when the TC11IB is awakened through a falling edge on the NMI pin.

If DSRE was set to 1 before entering Deep Sleep Mode, the TC11IB will execute a reset
sequence similar to the power-on reset sequence. Therefore, all port pins are put into
their reset state and stay in this state until they are affected in some way by program
execution.

If DSRE was set to 0 before entering Deep Sleep Mode, a fast wake-up sequence is
used. In this case, the TC11IB does not wait for the PLL to stabilize and lock to the
external clock. Instead, it resumes operation as soon as the PLL provides clock signals.
The port pins continue to hold their state which was valid during Deep Sleep Mode until
they are affected by program execution.

Special attention must be paid when using this type of wake-up. As soon as the device
is woken up from Deep Sleep mode, the PLL begins generating clocks starting with the
PLL’s base frequency. When the external oscillator begins to generate clock signals, the
PLL will begin to increase its frequency in order to achieve the programmed frequency
(fOSC × N). Note that the start-up time of an external crystal oscillator can be in the range
of some ms. This will continue until the PLL is locked to the external clock. Thus, since
the TC11IB does not wait until the PLL has locked, its operation is based on a clock
which will increase in frequency until the PLL is locked to the programmed frequency.
Software can poll the PLL Lock Status bit (PLL_CLC.LOCK) for the lock status of the
PLL.

Note: For wake-up through NMI, the NMI signal must held active until the clock system
starts. Otherwise, the TC11IB will not enter the NMI trap handler routine.
User’s Manual 6-9 V1.0, 2002-03

TC11IB
System Units

Power Management
6.3.4 Summary of TC11IB Power Management States

Table 6-3 summarizes the state of the various units of the TC11IB during Run Mode, Idle
Mode, Sleep Mode, and Deep Sleep Mode.

Table 6-3 State of TC11IB Units During Power Management Modes

Unit Run Mode Idle Mode Sleep Mode Deep Sleep
Mode

Oscillator &
PLL

On On On Off

CPU Executing Idle Idle Off (no clock)

DMU & PMU Active Idle, but
accessible

Idle, but
accessible

Off (no clock).
Memory units hold
their contents

Watchdog
Timer

Functioning as
programmed

Functioning as
programmed

Functioning as
programmed

Off (no clock)

Slow FPI Bus
Peripherals

Functioning as
programmed

Functioning as
programmed

Functioning as
programmed

Off (no clock)

Debug Unit Functioning Functioning Functioning Off (no clock)

LMU (Code/
Data DRAM) &
ComDRAM

Refresh
running

Refresh
running

Refresh
running

No Refresh

External Bus
Controller
(EBU)

Functioning as
programmed

Functioning as
programmed

Functioning as
programmed

Off (no clock); The
EBU pins hold the
last value.

Ports Functioning as
programmed

Functioning as
programmed

Functioning as
programmed

Off (no clock). The
port pins hold the
last value.
User’s Manual 6-10 V1.0, 2002-03

TC11IB
System Units

Power Management

Ethernet
Controller

Functioning as
programmed

Functioning as
programmed

Functioning as
programmed

Input clocks are
disabled. MDIO
hold the last value
if it is output. Or
disabled if it is
input and
PMG_CON.DSRE
is set to ‘1’,
otherwise it
remains enabled.

PCI Functioning as
programmed

Functioning as
programmed

Functioning as
programmed

Output pins hold
the last value.
Input pins are
disabled if
PMG_CON.DSRE
is set to ‘1’,
otherwise input
pins remain
enabled.

Table 6-3 State of TC11IB Units During Power Management Modes

Unit Run Mode Idle Mode Sleep Mode Deep Sleep
Mode
User’s Manual 6-11 V1.0, 2002-03

TC11IB
System Units

Memory Map of On-Chip Local Memories
7 Memory Map of On-Chip Local Memories
The memory system of the TC11IB provides the following memories:

• Program Memory Unit (PMU) with
– 24 KBytes Code Scratch-Pad RAM (SRAM)
– 8 KBytes Instruction Cache (ICache)

• Data Memory Unit (DMU) with
– 24 KBytes Data Scratch-Pad RAM (SRAM)
– 8 KBytes Data Cache (DCache)

• 16 KBytes Boot ROM (BROM)
• eDRAM Local Memory Unit (LMU) with

– 512 KBytes Code/Data Memory
• ComDRAM with

– 1MBytes Code/Data Memory
• Peripheral Control Processor (PCP) with

– 16 KBytes Data Memory (PCODE)
– 4 KBytes Parameter RAM (PRAM)

This chapter gives an overview on the TC11IB memory map. Details on the specific
features of the memories in the PMU, DMU, LMU and PCP modules are described in the
specific Chapter 8, Chapter 9, Chapter 11 and Chapter 17 in this User’s Manual.
User’s Manual 7-1 V1.0, 2002-03

TC11IB
System Units

Memory Map of On-Chip Local Memories
7.1 TC11IB Address Map

Table 7-1 defines the specific segment oriented address blocks of the TC11IB with its
corresponding address range, size, and PMU/DMU access view.

Table 7-1 TC11IB Block Address Map

Seg-
ment

Address
Range

Size Description DMU
Acc.

PMU
Acc.

0 – 7 0000 0000H –
7FFF FFFFH

2 GB MMU/ FPI Space via
F_FPI

via
F_ FPI

c
a
c
h
e
d

8 8000 0000H –
8FFF FFFFH

256 MB External Memory Space
mapped from Segment 10

via
LMB

via
LMB

9 9000 0000H –
9FDF FFFFH

254 MB PCI Space
mapped from Segment 11 via

F_FPI
via
F_FPI9FE0 0000H –

9FEF FFFFH

1 MB Com-DRAM Space
mapped from Segment 11

9FF0 0000H –
9FFF FFFFH

1 MB Reserved – –

10
A000 0000H –
AFBF FFFFH

252 MB External Memory Space via
LMB

via
LMB

n
o
n-
c
a
c
h
e
d

AFC0 0000H –
AFC7 FFFFH

512 KB LMU Space via
LMB

via
LMB

AFC8 0000H –
AFFF FFFFH

3.5 MB Reserved – –

11

B000 0000H –
BFDF FFFFH

254 MB PCI Space
mappable into segment 9 via

F_FPI
via
F_FPIBFE0 0000H –

BFEF FFFFH

1 MB ComDRAM Space

BFF0 0000H –
BFFF FFFFH

1 MB Reserved – –

12
C000 0000H –
C007 FFFFH

512 KB Local Memory Unit eDRAM
Space

via
LMB

via
LMB

c
a
c
h
e
d

C008 0000H –
CFFF FFFFH

255.5
MB

Reserved – –
User’s Manual 7-2 V1.0, 2002-03

TC11IB
System Units

Memory Map of On-Chip Local Memories
13

D000 0000H –
D000 5FFFH

24 KB Local Data Scratchpad Memory
(SRAM)

DMU
local

 via
LMB

no
n-

ca
ch

ed

D000 6000H –
D3FF FFFFH

~ 64 MB Reserved – –

D400 0000H –
D400 5FFFH

24 KB Local Code Scratchpad
Memory (SRAM)

via
LMB

PMU
local

D400 6000H –
D7FF FFFFH

~64 MB Reserved – –

D800 0000H –
DDFF FFFFH

96 MB External Memory Space
via
LMB

via
LMBDE00 0000H –

DEFF FFFFH

16 MB Emulator Memory Space

DF00 0000H –
DFFF BFFFH

~16 MB Reserved – –

DFFF C000H –
DFFF FFFFH

16 KB Boot ROM Space via
S_FPI

via
S_FPI

14

E000 0000H –
E7FF FFFFH

128 MB External Memory Space via
LMB

–

E800 0000H –
E807 FFFFH

512 KB Local Memory Space
mapped to LMB Segment 12

–

E808 0000H –
E83F FFFFH

3.5 MB Reserved

E840 0000H –
E840 7FFFH

32 KB Local Data Memory (SRAM)
mapped to LMB Segment 13

E840 8000H –
E84F FFFFH

~1 MB Reserved

E850 0000H –
E850 7FFFH

32 KB Local Code Memory (SRAM)
mapped to LMB Segment 13

E850 8000H –
EFFF FFFFH

123 MB Reserved

Table 7-1 TC11IB Block Address Map (cont’d)

Seg-
ment

Address
Range

Size Description DMU
Acc.

PMU
Acc.
User’s Manual 7-3 V1.0, 2002-03

TC11IB
System Units

Memory Map of On-Chip Local Memories
Note: Accesses to address regions defined as “Reserved” in Table 7-1 lead to a bus
error. The exceptions are marked with 1).

15

F000 0000H –
F00F FFFFH

1 MB On-Chip Peripherals & Ports via
S_FPI

via
S_FPI

no
n-

ca
ch

ed

F010 0000H –
F017 FFFFH

1)
512 KB Reserved – –

F018 0000H –
F018 FFFFH

64 KB ComDRAM Control Registers via
S_FPI

via
S_FPI

F019 0000H –
F03F FFFFH

1)
2.4375
MB

Reserved – –

F040 0000H –
F04F FFFFH

1 MB PCI/FPI-Bridge Registers via
F_FPI

–

F050 0000H –
F0FF FFFFH

~11 MB Reserved –

F100 0000H –
F1FF FFFFH

16 MB PCI Configuration Space via
F_FPI

F200 0000H –
F200 05FFH

6 x 256
B

BCU0 and Fast Ethernet
Registers

F200 0600H –
F7E0 FEFFH

~94 MB Reserved –

F7E0 FF00H –
F7E0 FFFFH

256 B CPU Slave Interface Registers
(CPS)

via
F_FPI

F7E1 0000H –
F7E1 FFFFH

64 KB Core SFRs

F7E2 0000H –
F7FF FFFFH

15 x 128
KB

Reserved –

F800 0000H –
F87F FFFFH

8 MB LMB Peripheral Space
(EBU_LMB and local memory
eDRAM control registers)

via
LMB

F880 0000H –
FFFF FFFFH

120 MB Reserved –

1) Any access to this area will result in unpredicted behaviors of PORTs.

Table 7-1 TC11IB Block Address Map (cont’d)

Seg-
ment

Address
Range

Size Description DMU
Acc.

PMU
Acc.
User’s Manual 7-4 V1.0, 2002-03

TC11IB
System Units

Memory Map of On-Chip Local Memories
Segments 0-7

This memory range is assigned to be MMU Space if the processor is operating in Virtual
mode. But if the processor is operating in Physical mode, this memory range is assigned
to be FPI Space.

Segment 8

This memory segment is mirrored from Segment 10 for external EBU Space. But this
segment have to be accessed via LMB Bus.

Segment 9

This memory segment contains 255 MBytes mapped from Segment 11. In which,
254MBytes is assigned to PCI and 1 MBytes is assigned to Com-DRAM. Both spaces
can be accessed via fast FPI bus. Another 1 Mbytes is reserved in the TC11IB. It is
assigned to cached access purposes in future product derivatives.

Segment 10

This memory segment contains 252 MBytes reserved area for external code/data
memory and 4 Mbytes reserved for Local Memory Unit. Both spaces can be accessed
via LMB Bus. But 4 Mbytes LMU space can not be accessed by any fast FPI master. If
so, an error acknowledge will be given.

Segment 11

This memory segment is mapped to Segment 9. 254 Mbytes is assigned to PCI, 1
MBytes is assigned to ComDRAM memory and 1 MBytes is reserved.

Segment 12

This memory segment contains the 512 KBytes Local Code/Data DRAM memory
operating in cached mode.

Segment 13

This memory segment contains the 24 KBytes Local Data Scratchpad Memory (DMU
SRAM), the 24 KBytes Local Code Scratchpad Memory (PMU SRAM), the 16 KBytes
Boot ROM, the 96 MBytes External Code/Data Memory and the 16 MBytes Emulator
Memory operating in non-cached mode.

Segment 14

This memory segment contains a non-cached 128 MByte segment reserved for external
code/data memory. The 512 KBytes Local Data Memory is mapped to LMB Segment 12.
The 32 KBytes Local Data Memory (SRAM) is mapped to LMB Segment 13 and the
32 KBytes Local Code Memory (SRAM) is mapped to LMB Segment 13. Such internal
mapping is done by LFI bridge that makes the FPI translations appear at LMB bus at
different addresses. The Table 7-2 summaries the mapping from FPI to LMB.
User’s Manual 7-5 V1.0, 2002-03

TC11IB
System Units

Memory Map of On-Chip Local Memories
Segment 15

This memory segment is dedicated for CPU, PCP, on-chip peripheral units, and ports
(see Table 7-3).

7.2 Memory Segment 15 - Peripheral Units

Table 7-3 shows the block address map of Segment 15.

Table 7-2 Segment 14 Mapping from FPI to LMB

FPI Address Name LMB Address Size

0xE850 0000-0xE850 7FFF Code SRAM 0xD400 0000-0xD400 7FFF 32KByte

0xE840 0000-0xE840 7FFF Data SRAM 0xD000 0000-0xD000 7FFF 32KByte

0xE800 0000-0xE837 FFFF LMU 0xC000 0000-0xC007 FFFF 512KByte

Table 7-3 Block Address Map of Segment 15

Symbol Description Address Range Size

SCU System Control Unit F000 0000H – F000 00FFH 256 Bytes

PCISIR PCI Software Interrupt Request F000 0100H – F000 01FFH 256 Bytes

BCU1 Slow FPI Bus Control Unit 1 F000 0200H – F000 02FFH 256 Bytes

STM System Timer F000 0300H – F000 03FFH 256 Bytes

OCDS On-Chip Debug Support F000 0400H – F000 04FFH 256 Bytes

– Reserved F000 0500H – F000 05FFH –

GPTU0 General Purpose Timer Unit 0 F000 0600H – F000 06FFH 256 Bytes

GPTU1 General Purpose Timer Unit 1 F000 0700H – F000 07FFH 256 Bytes

ASC Async./Sync. Serial Interface F000 0800H – F000 08FFH 256 Bytes

16X50 Asynchronous Serial Interface F000 0900H – F000 09FFH 256 Bytes

SSC High-Speed Synchronous Serial
Interface

F000 0A00H – F000 0AFFH 256 Bytes

MMCI MultiMediaCard Interface F000 0B00H – F000 0BFFH 256 Bytes

SRU Service Request Unit F000 0C00H – F000 0DFFH 512 Bytes

– Reserved F000 0E00H – F000 27FFH –

P0 Port 0 F000 2800H – F000 28FFH 256 Bytes

P1 Port 1 F000 2900H – F000 29FFH 256 Bytes

P2 Port 2 F000 2A00H – F000 2AFFH 256 Bytes
User’s Manual 7-6 V1.0, 2002-03

TC11IB
System Units

Memory Map of On-Chip Local Memories
P3 Port 3 F000 2B00H – F000 2BFFH 256 Bytes

P4 Port 4 F000 2C00H – F000 2CFFH 256 Bytes

P5 Port 5 F000 2D00H – F000 2DFFH 256 Bytes

– Reserved F000 2E00H – F000 3EFFH –

PCP PCP Registers F000 3F00H – F000 3FFFH 256 Bytes

Reserved F000 4000H – F000 FFFFH –

PCP Data Memory (PRAM) F001 0000H – F001 0FFFH 4 KBytes

Reserved F001 1000H – F001 FFFFH –

PCP Code Memory (PCODE) F002 0000H – F002 3FFFH 16 KBytes

– Reserved F002 4000H – F017 FFFFH –1)

ComDR
AM

ComDRAM Control Registers F018 0000H – F018 FFFFH 64 KBytes

– Reserved F019 0000H – F03F FFFFH –1)

PCIBC
R

PCI Bridge Configuration
Registers

F040 0000H – F04F FFFFH 1 MBytes

– Reserved F050 0000H – F0FF FFFFH –

PCICS PCI Configuration Space
Registers

F100 0000H – F1FF FFFFH 16 MBytes

BCU0 Fast FPI Bus Control Unit 0 F200 0000H – F200 00FFH 256 Bytes

ECU Ethernet Controller Unit F200 0100H – F200 05FFH 1280 Bytes

– Reserved F200 0600H – F7E0 FEFFH –

Table 7-3 Block Address Map of Segment 15 (cont’d)

Symbol Description Address Range Size
User’s Manual 7-7 V1.0, 2002-03

TC11IB
System Units

Memory Map of On-Chip Local Memories
Note: Accesses to address defined as “Reserved” in Table 7-3 lead to a bus error. The
exceptions are marked with 1).

CPU Slave Interface Registers (CPS) F7E0 FF00H – F7E0 FFFFH 256 Bytes

Reserved F7E1 0000H – F7E1 7FFFH –

MMU F7E1 8000H – F7E1 80FFH 256 Bytes

Reserved F7E1 8100H – F7E1 BFFFH –

Memory Protection Registers F7E1 C000H – F7E1 EFFFH 12 KBytes

Reserved F7E1 F000H – F7E1 FCFFH –

Core Debug Register (OCDS) F7E1 FD00H – F7E1 FDFFH 256 Bytes

Core Special Function Registers
(CSFRs)

F7E1 FE00H – F7E1 FEFFH 256 Bytes

General Purpose Register
(GPRs)

F7E1 FF00H – F7E1 FFFFH 256 Bytes

– Reserved F7E2 0000H – F7FF FFFFH –

EBU EBU_LMB External Bus Unit F800 0000H – F800 01FFH 512 Bytes

– Reserved F800 0200H – F800 03FFH –

LMU Local Memory Unit F800 0400H – F800 04FFH 256 Bytes

– Reserved F800 0500H – F87F FBFFH –

DMU Local Data Memory Unit F87F FC00H – F87F FCFFH 256 Bytes

PMU Local Program Memory Unit F87F FD00H – F87F FDFFH 256 Bytes

LCU LMB Bus Control Unit F87F FE00H – F87F FEFFH 256 Bytes

LFI LMB to FPI Bus Bridge (LFI) F87F FF00H – F87F FFFFH 256 Bytes

– Reserved F880 0000H – FFFF FFFFH –

1) Any access to this area will result in unpredicted behaviors of PORTs.

Table 7-3 Block Address Map of Segment 15 (cont’d)

Symbol Description Address Range Size
User’s Manual 7-8 V1.0, 2002-03

TC11IB
System Units

Program Memory Unit
8 Program Memory Unit
The Program Memory Unit PMU controls the CPU code fetches from internal, local and
external code memory. The functionality of the PMU is implemented with the combination
of the Program Memory Interface (PMI), External Program Memory (PMEM) and the
Program Cache TAGRAM Memory (PTAG). The PMU of the TC11IB consists of the
functional blocks as shown in Figure 8-1:

• PMEM
– 24 KByte scratch-pad code RAM (SRAM)
– 8 KByte instruction cache (ICACHE)

• PMI
– PMU control block
– Interface to the CPU Instruction Fetch Unit
– Interface to the MMU
– LMB Bus interface

Figure 8-1 PMU Block Diagram with Data Paths

S R A M
24K B

P M U
C ontro l

64

R efill
C ontro lle r &

IC A C H E
8K B

PM U

C P U In terface

to LM B-Bus

to C PU Fetch U n it

LM B -B us In terface

 S lave | M aster

64

6464

6464

M
M

U
 In

te
rf

ac
e

 from M M U
User’s Manual 8-1 V1.0, 2002-03

TC11IB
System Units

Program Memory Unit
The LMB Bus interface is a master/slave interface which handles all transactions
between LMB Bus and the PMU code memories. The master part of the interface is used
when the PMU needs to access resources which are located on the LMB Bus. The slave
part of the interface is used when another LMB Bus master needs to access PMU
resources such as the CSRAM.

The MMU interface provides instruction access address together with CPU interface.

The Instruction Cache contains the cache RAM with the tag RAM and the Refill
controller.

8.1 Memories Controlled by PMU

Table 8-1 gives the sections of TC11IB internal code/program memories that are
controlled by the PMU.

8.2 Functions

The PMU functional flow is presented in the Figure 8-2. There are four functional flow
paths.

• Path 1: Fetch Streaming or ICache Bypass from LMB.
• Path 2: ICache Hit (Read from ICache Way 0 or Way 1) or SPR access (from upper

or lower SPR bank).
• Path 3: ICache Refill/Miss from LMB (Write to ICache).
• Path 4: SPR accesses from any LMB Master (Read/Write from/to SPR).

Table 8-1 Address Map of PMU Related Memories

Segment Address Name Description

On-Chip Memory

13 D400 0000H - D400 5FFFH SPRAM 24K Local Scratch-Pad Code
RAM
User’s Manual 8-2 V1.0, 2002-03

TC11IB
System Units

Program Memory Unit
Figure 8-2 PMU Functional Flow

8.3 Scratch-Pad RAM, SPRAM

The Scratch-Pad RAM (SPRAM) is a 24-KByte static RAM. As a code memory, it is
assigned especially to hold code that must be executed very fast (e.g. interrupt routines).

The SPRAM can be accessed from the LMB Bus side by another bus master, such as
the Data Memory Unit, DMU. On a read access from the LMB Bus (possible in supervisor
mode as well as in user mode), the data width can be only 64 bits (double-word) wide.
The natural alignment of the accessed data must be obeyed, that is, bytes can be
aligned on any byte boundary, half-words must be aligned to half-word (even byte)
boundaries, and word accesses must be aligned to word boundaries. Accesses not
following this rule will be flagged with an LMB Bus error by the PMU.

On a write access from the LMB Bus (only possible in supervisor mode!), the data width
can only be 64 bits wide and must be aligned to double-word boundaries. Byte and half-
word accesses are not allowed.

CPU fetch accesses to the address range of the SPRAM are never cached in the
ICACHE. They are always directly targeted to the SPRAM. A code fetch access from the
CPU to the SPRAM can be performed in one clock cycle, the data width of such an
access is 64 bits. The fetch logic also supports unaligned accesses (16-bit aligned), with
a minimum penalty of one cycle for unaligned accesses. Note that the CPU Fetch Unit
can only read from the SPRAM and never write to it.

R efill
C ontro lle r

S LA VE

C PU Fetch U nit

IC ache W ay 1
SP R upper bank

T
ag

IC ache W ay 0
SP R low er bank

M AS TER
LM B
I/F

8K Byte : W ay 1 / S PR upper
O rgan ized as 1024 line x 4 x 16-b it
IC ache /SP R line s ize = 256-b it

8K Byte : W ay 0 / S PR low er
O rgan ized as 1024 line x 4 x 16-b it
IC ache /SP R line s ize = 256-b it

12

34
User’s Manual 8-3 V1.0, 2002-03

TC11IB
System Units

Program Memory Unit
8.4 Instruction Cache, ICACHE

The ICACHE of the PMU is a two-way set-associative cache with a Least-Recently-Used
(LRU) replacement algorithm.

8.4.1 Cache Organization

The organization of the ICACHE is 256 cache lines with 32 bytes per line. Each cache
line is divided into four double-words (64 bits) with a valid bit in the tag line for each word.
Alignment of a cache line results in an 4-double-word address line border (address bits
A[4:0] = 0). With the 32/16-bit mixed instruction set formats of the TriCore, a full cache
line can hold a minimum of eight 32-bit instructions and a maximum of sixteen 16-bit
instructions.

The address of a CPU instruction fetch is first decoded to determine the access target
(for example: Scratch Pad RAM, address range accessible via LMB Bus, cachable area).
All CPU instruction fetch accesses in the address ranges of the cachable area
(segments 8-9 and 12) are targeted to the Refill Buffer. If the ICACHE is enabled and
ICACHE bypass disabled, the ICACHE is also targeted. If the address and its associated
instruction are found in the cache (Cache Hit), the instruction is passed to the CPU’s
Fetch Unit. If the address is not found in the cache (Cache Miss), the PMU’s cache
controller issues a cache refill sequence.

8.4.2 Cache Bypass Control

The ICACHE can be bypassed as controlled by bit PMU_CON0.CCBYP to provide a
direct fetch access from the CPU to on-chip and off-chip resources. The default value for
bit CCBYP after reset is 1, thus bypassing of the ICACHE is enabled. To enable the
ICACHE, CCBYP has to be set to 0 during initialization.

Note: PMU_CON0 register is an ENDINIT-protected register.

8.4.3 Refill Sequence for Cache

Cache refill is performed with a Critical Double Word First strategy until the end of the
ICache line, without wrapping around, i.e. the refill size being 1, 2, 3 or 4 double words.
This means that the refill sequence starts with the instruction actually requested (the
critical double word) by the CPU Fetch Unit and continues to the end of the cache line.
A refill will always be done in 64-bit quantities. If the critical word maps onto the first 64-
bit entry in the cache line, a refill of the entire cache line, four double words, will be
performed. If the critical word maps onto the last 64-bit entry of a cache line, only this
double-word will be refilled. In any case all valid bits of the refilled cache line are cleared.
Thus, depending on the location of the critical word, the refill sequence will always be
from one up to four double-words without wrap-around (the instructions mapping to the
refilled cache line which are on addresses lower than that of the critical word are not
fetched, except for instructions located within the double-word containing the critical
User’s Manual 8-4 V1.0, 2002-03

TC11IB
System Units

Program Memory Unit
word). A refill sequence will always only affect one cache line and is fully pipelined by the
PMU. There is no prefetching of the next cache line (no crossing of lines). Except this,
mode, the refill mechanism also allows Burst Refill (2W, 4W and 8W) the ICache line.

8.4.4 Instruction Streaming

The ICACHE supports instruction streaming, meaning that during a refill sequence, it can
already deliver the critical word to the CPU’s Fetch Unit (after having it assembled to a
double-word) before the sequence is completed. If the ICACHE is bypassed, an access
to a cachable address space is performed such that the cache controller issues a refill
sequence without updating the cache contents (cache data and valid bits)

8.4.5 Cache Coherency, Cache Invalidation

The PMU does not have automatic cache coherence support. Changes in the contents
of memory areas external to the PMU which have already been cached in the ICACHE
are not detected. Software has to provide the cache coherency in such a case. The PMU
supports this via the cache invalidation function. The ICACHE contents can be
invalidated through setting the invalidate control bit PMU_CON1.CCINV. While this bit is
set to 1, all cache accesses will be treated as Cache Miss Operations and a cache refill
is performed.
User’s Manual 8-5 V1.0, 2002-03

TC11IB
System Units

Program Memory Unit
8.5 PMU Registers

As shown in Figure 8-3, the following control register are implemented in the PMU.
These registers and their bits are described in this section.

Figure 8-3 PMU Registers

In the TC11IB, the registers of the PMU are located in the following address range:

– Module Base Address: F87F FD00H
Module End Address: F87F FDFFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 8-2)

Table 8-2 PMU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

PMU_CON0 PMU Control Register 0 0010H Page 8-7

PMU_CON1 PMU Control Register 1 0014H Page 8-8

PMU_CON2 PMU Control Register 2 0018H Page 8-9

P M U _C O N 0

Control Registers

P M U _C O N 1

P M U _C O N 2
User’s Manual 8-6 V1.0, 2002-03

TC11IB
System Units

Program Memory Unit
8.5.1 PMU Control Registers

PMU_CON0
PMU Control Register 0 Reset Value: 0000 0002H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CC
BYP 0

r r r

Field Bits Type Description

CCBYP 1 rw Code Cache Bypass Control
0 Cache is enabled
1 Cache is disabled (default after reset)

0 [31:2],
0

r Reserved; read as 0; should be written with 0.
User’s Manual 8-7 V1.0, 2002-03

TC11IB
System Units

Program Memory Unit

PMU_CON1
PMU Control Register 1 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CC
INV

r rw

Field Bits Type Description

CCINV 0 rw Code Cache Invalidate Control
0 Normal Operation
1 Cache code is flushed
As long as CCINV is set, all instruction fetch accesses
generate a cache refill. It is advised to keep CCINV set
until ICache coherency is guaranteed.

0 [31:1] r Reserved; read as 0; should be written with 0.
User’s Manual 8-8 V1.0, 2002-03

TC11IB
System Units

Program Memory Unit

1) The Program Memory PMEM itself is not part of the TriCore system.
SPR size = total size (PMEM) - cache size.

PMU_CON2
PMU Control Register 2 Reset Value: 0000 0022H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PMEMSZ 0 PCSZ

r rh r rh

Field Bits Type Description

PCSZ [1:0] rh Program Cache Size
10 8 Kbyte cache, 128x55 TAGRAM
othersReserved.
This field shows the configuration of the TAGRAM.

PMEMSZ [6:4] rh Program Memory Size
011 32 Kbyte PMEM
othersReserved
This field shows the configuration of the Program
Memory1).

0 [31:7]
[3:2]

r Reserved; read as 0; should be written with 0.
User’s Manual 8-9 V1.0, 2002-03

TC11IB
System Units

Data Memory Unit
9 Data Memory Unit
The functionality of the Data Memory Unit (DMU) is implemented with the combination
of the Data Memory Interface (DMI), External Data Memory (DMEM) and two Data
Cache TAGRAM Memories (DTAG). The block of DMU is shown in Figure 9-1, contains:

• DMEM
– 24 KBytes data memory (SRAM)
– 8 KBytes data cache memory (DCACHE)

• DMI
– DMU control block
– Interface to the CPU Load/Store Unit
– Interface to the MMU Unit
– Interface to the LMB Bus

Figure 9-1 Block Diagram of the Data Memory Unit (DMU)

The LMB Bus interface of the DMU can operate in either master or slave mode. The
master part of the interface is used when the CPU Load/Store Unit requests a data
access to a data resource that is outside the DMU on the LMB Bus (for example, a
module connected to the LMB Bus, such as Local Memory Unit (LMU)). The slave part

S R A M
24KB D M U

C ontro l

2 * 64

IC A C H E
8KB

DMU

C P U In te rface

 LM B-Bus

To C PU Load /S to re U n it

LM B -B us In terface

 S lave M aster

64

2 * 64

M M U In te rface

 From M M U
User’s Manual 9-1 V1.0, 2002-03

TC11IB
System Units

Data Memory Unit
of the interface is required when another LMB Bus master (such as the External Bus
Control Unit (EBU)) needs to access the DMU data memory.

The data width for read and write accesses to/from the data memory within the DMU via
the LMB Bus can be 8, 16, 32 or 64 bits (byte, half-word, word or double-word). Not only
the natural alignment of the accessed data is supported, that is, byte must be aligned to
byte boundaries, half-word must be aligned to half-word (even byte) boundaries, word
accesses must be aligned to word boundaries and double-word must be aligned to
double-word boundaries, but also unalignment accesses are supported. These include
word access can be half-word aligned, double-word access can be half-word aligned
also.

The MMU interface provides data access address together with CPU interface.

The data memory is located at the beginning of the non-cacheable Segment 13. DMU
Registers are located at Segment 15.

The placement of the SRAM into the lower half of Segment 13 facilitates the use of the
absolute addressing mode for load and store operations, supporting fast access to data
stored in the lower 16 KBytes of the data memory (in absolute addressing mode, an
address in the lower 16 KBytes of each of the segments can be specified as an
immediate address of a load/store instruction; such an address does not have to first be
loaded into an address register).

Table 9-1 DMU Address Map

Seg-
ment

Address Name Description CPU Access Bus Access

Load Store Read Write

13 D000 0000H -
D000 5FFFH

SRAM Data Memory 1)

1) CPU Load/Store accesses to this range can be performed in User or Supervisor Mode. Access width can be
8, 16, 32 or 64 bit, with 8-bit data aligned on byte boundaries and all others aligned on half-word (16 bit)
boundaries. Misaligned accesses to the data memory by the CPU’s Load/Store Unit will not occur since such
conditions will already be handled inside the CPU (Unalignment trap, ALN).

2) 3)

2) This address range only can be accessed via LMB Bus. The read/write accesses from the LMB Bus can be
performed in User or Supervisor Mode.

3) Address range D000 0000H - D000 5FFFH can only be used by TriCore for Context-Save area and load/store.
It means that this area can not be used for storing instructions, including interrupt as well as data for other
masters.

13 D000 6000H -
D3FF FFFFH

Reserved
DMU
Space

– BE BE

15 F87F FC00H -
F87F FCFFH

– DMU Registers 1) 2)
User’s Manual 9-2 V1.0, 2002-03

TC11IB
System Units

Data Memory Unit
Note: Read-modify-write instructions from LMB Bus to DMU memory are locked.

9.1 DMU Trap Generation

Several error conditions can lead to a trap being reported by the DMU back to the CPU.
These include range errors, DMU control register access errors, and LMB Bus errors.

To facilitate a detailed analysis of an error/trap, the DMU provides two read-only status
registers that hold information about the type of the error. The Synchronous Trap Flag
Register (DMU_STR) contains the flags indicating the cause of a synchronous trap,
while the Asynchronous Trap Flag Register (DMU_ATR) holds the flags for the cause of
an asynchronous trap.

In general, whether an operation in the DMU can result in a synchronous or
asynchronous error trap depends on the actual condition and sequence of operation in
the DMU. Thus, for each of the possible DMU error scenarios, an error flag is provided
in both registers DMU_STR and DMU_ATR. When an error is detected in the DMU, the
respective trap signal is generated to the CPU and the appropriate bit in the associated
trap flag registers is set.

The Trap Service Routine (TSR) invoked through the trap then needs to read the
appropriate DMU Trap Flag Register to further determine the root cause of the trap.
Reading a DMU Trap Flag Register in Supervisor Mode returns the contents of the
register, and then clears the register to 0. Reading a trap flag register in User Mode only
returns the contents of the register, but leaves it unaltered. The latter operation is
implemented to allow debuggers/emulators to examine the status of the trap flag register
without modifying it. The TSRs of user application code should always read these
registers in Supervisor Mode in order to clear their contents.

9.1.1 LMB Bus Error

Two kinds of status flags are implemented to indicate an LMB Bus error. One kind of flag
indicates errors resulting from a LMB Bus store operation, the other one kind indicates
errors resulting from a LMB Bus load operation. The appropriate flags
(DMU_STR.LFESTF, DMU_STR.SFESTF, DMU_ATR.LFEATF or DMU_ATR.
SFEATF) are set if a DMU operation to or from the LMB Bus is performed, and an error
occurs on the LMB Bus.

9.1.2 Range Error

Range errors are caused by accesses to reserved address ranges in the DMU.
Accesses to address ranges in Segment 13 (DMU), Segment 14 and Segment 15 which
are not covered by the data memory or the DMU control register ranges will lead to a
range trap.

In each of the DMU trap flag registers, two kinds of status flags are implemented to
indicate a range error. One kind of flag indicates errors resulting from a store operation
User’s Manual 9-3 V1.0, 2002-03

TC11IB
System Units

Data Memory Unit
(DMU_ATR. SREATF and DMU_STR. SRESTF), the other one kind indicates errors
resulting from a load operation (DMU_ATR. LREATF and DMU_STR. LRESTF). The
appropriate flag is set if an access to the reserved address ranges is performed.

9.1.3 DMU Register Access Error

DMU register access errors are caused if an improper access to a DMU register is
performed.

CPU load/store access to the DMU registers must only be made with word-aligned word
accesses. An access not conforming to this rule, or an access that does not follow the
specified privilege mode (supervisor mode, EndInit-protection), or a write access to a
read-only register, will lead to a DMU Control Register Error trap. An access to reserved
locations within the DMU register address area will not be flagged with an error. A read
will return all zeros, a write will have no effect.

In each of the DMU trap flag registers, two kind of status flags are implemented to
indicate a register access error. One kind of flag indicates errors resulting from a store
operation (DMU_ATR.SCEATF and DMU_STR. SCESTF), the other one kind indicates
errors resulting from a load operation (DMU_STR.LCESTF and DMU_ATR.
LCEATF).The appropriate flag is set if an improper access to the DMU registers is
performed.

9.1.4 Cache Management Error

Cache management errors are generated when one of the special cache instructions,
DFLUSH, DINV and DFLINV, specify a non-cacheable address.
User’s Manual 9-4 V1.0, 2002-03

TC11IB
System Units

Data Memory Unit
9.2 DMU Registers

As shown in Figure 9-2 and Table 9-2, one control register and two trap status registers
are implemented in the DMU. The registers and their bits are described in the following
sections.

Figure 9-2 DMU Registers

Note: Accesses to DMU registers must be made with word-aligned word accesses. An
access not conforming to this rule will cause a bus error if the access was from the
LMB Bus, or a trap in case of a CPU load/store access.

In the TC11IB, the registers of the DMU are located in the following address range:

– Module Base Address. F87F FC00H
Module End Address. F87F FCFFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 9-2)

Table 9-2 DMU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

DMU_CON DMU Control Register 0010H Page 9-6

DMU_STR DMU Synchronous Trap Flag Register 0018H Page 9-7

DMU_ATR DMU Asynchronous Trap Flag Register 0020H Page 9-9

D M U _C O N D M U _S TR

Control Register Status Registers

D M U _A TR
User’s Manual 9-5 V1.0, 2002-03

TC11IB
System Units

Data Memory Unit
9.2.1 Control Register

9.2.2 Synchronous Trap Flag Register

The Synchronous Trap Flag Register, DMU_STR, holds the flags that inform about the

DMU_CON
DMU Control Register Reset Value: 0000 0022H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DMEMSZ 0 DCSZ

r rh r rh

Field Bits Type Description

DCSZ [1:0] rh Data Cache Size
10 8 Kbyte cache, 128x55 TAGRAM
othersReserved.
This field shows the configuration of the TAGRAM.

DMEMSZ [6:4] rh Data Total Memory Size
011 32 Kbyte PMEM
othersReserved
This field shows the configuration of the Program
Memory1).

1) Cache size must be less than or equal to the SPR
SPR(Scratch Pad RAM) size = total size of DMEM - cache size

0 [31:7]
[3:2]

r Reserved; read as 0; should be written with 0.
User’s Manual 9-6 V1.0, 2002-03

TC11IB
System Units

Data Memory Unit
root cause of a DMU Synchronous Trap (DSE) event.

DMU_STR
DMU Synchronous Trap Flag Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CME
STF

CFE
STF

CWS
EST

F

CWL
ESA
TF

CRS
EST

F

CRL
EST

F
SCE
STF

LCE
STF

SFE
STF

LFE
STF

SRE
STF

LRE
STF

r rh rh rh rh rh rh rh rh rh rh rh rh

Field Bits Type Description

LRESTF 0 rh Load Range Synchronous Error Flag
0 No error
1 Synchronous load range error has occurred

SRESTF 1 rh Store Range Synchronous Error Flag
0 No error
1 Synchronous store range error has occurred

LFESTF 2 rh LMB Bus Load Synchronous Error Flag
0 No error
1 Synchronous LMB Bus load error has

occurred

SFESTF 3 rh LMB Bus Store Synchronous Error Flag
0 No error
1 Synchronous LMB Bus store error has

occurred

LCESTF 4 rh DMU Register Load Synchronous Error Flag
0 No error
1 Synchronous DMU register load error has

occurred

SCESTF 5 rh DMU Register Store Synchronous Error Flag
0 No error
1 Synchronous DMU register store error has

occurred
User’s Manual 9-7 V1.0, 2002-03

TC11IB
System Units

Data Memory Unit
Note: When reading DMU_STR in Supervisor Mode, the contents of the register are
returned and the bits of the register are then automatically cleared. Reading
DMU_STR in User Mode returns the contents only, the register is not cleared.

CRLESTF 6 rh Cache Refill Load Synchronous Error Flag
0 No error
1 Synchronous cache refill load error has

occurred

CRSESTF 7 rh Cache Refill Store Synchronous Error Flag
0 No error
1 Synchronous cache refill store error has

occurred

CWLESTF 8 rh Cache Writeback Load Synchronous Error Flag
0 No error
1 Synchronous cache writeback load error has

occurred

CWSESTF 9 rh Cache Writeback Store Synchronous Error Flag
0 No error
1 Synchronous cache writeback store error has

occurred

CFESTF 10 rh Cache Flush Synchronous Error Flag
0 No error
1 Synchronous cache flush error has occurred

CMESTF 11 rh Cache Management Synchronous Error Flag
0 No error
1 Synchronous cache management error has

occurred

0 [31:12] r Reserved; read as 0.

Field Bits Type Description
User’s Manual 9-8 V1.0, 2002-03

TC11IB
System Units

Data Memory Unit
9.2.3 Asynchronous Trap Flag Register

The Asynchronous Trap Flag Register, DMU_ATR, holds the flags that inform about the
root cause of a DMU Asynchronous Trap (DAE) event.

DMU_ATR
DMU Asynchronous Trap Flag Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CME
ATF

CFE
ATF

CWS
EAT

F

CWL
EAT

F

CRS
EAT

F

CRL
EAT

F
SCE
ATF

LCE
ATF

SFE
ATF

LFE
ATF

SRE
ATF

LRE
ATF

r rh r rh r rh r rh r

Field Bits Type Description

LREATF 0 rh Load Range Asynchronous Error Flag
0 No error
1 Asynchronous load range error has occurred

SREATF 1 rh Store Range Asynchronous Error Flag
0 No error
1 Asynchronous store range error has occurred

LFEATF 2 rh LMB Bus Load Asynchronous Error Flag
0 No error
1 Asynchronous LMB Bus load error has

occurred

SFEATF 3 rh LMB Bus Store Asynchronous Error Flag
0 No error
1 Asynchronous LMB Bus store error has

occurred

LCEATF 4 rh DMU Register Load Asynchronous Error Flag
0 No error
1 Asynchronous DMU register load error has

occurred

SCEATF 5 rh DMU Register Store Asynchronous Error Flag
0 No error
1 Asynchronous DMU register store error has

occurred
User’s Manual 9-9 V1.0, 2002-03

TC11IB
System Units

Data Memory Unit
Note: When reading DMU_ATR in Supervisor Mode, the contents of the register are
returned and the bits of the register are automatically cleared. Reading DMU_ATR
in User Mode returns the contents only, the register is not cleared.

CRLEATF 6 rh Cache Refill Load Asynchronous Error Flag
0 No error
1 Asynchronous cache refill load error has

occurred

CRSEATF 7 rh Cache Refill Store Asynchronous Error Flag
0 No error
1 Asynchronous cache refill store error has

occurred

CWLEATF 8 rh Cache Writeback Load Asynchronous Error
Flag
0 No error
1 Asynchronous cache writeback load error has

occurred

CWSEATF 9 rh Cache Writeback Store Asynchronous Error
Flag
0 No error
1 Asynchronous cache writeback store error

has occurred

CFEATF 10 rh Cache Flush Asynchronous Error Flag
0 No error
1 Asynchronous cache flush error has occurred

CMEATF 11 rh Cache Management Asynchronous Error Flag
0 No error
1 Asynchronous cache management error has

occurred

0 [31:12] r Reserved; read as 0.

Field Bits Type Description
User’s Manual 9-10 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
10 Memory Management Unit
The TC11IB Memory Management Unit (MMU) handles all memory operations as well
as arbitration between data stores and memory. The MMU implements virtual memory
and translates virtual addresses of each running process to physical addresses in
memory. The load/store unit addresses are translated and fed into the Data Memory Unit
(DMU), while the instruction fetch unit addresses are translated and fed into the Program
Memory Unit (PMU). Virtual memory is a method by which applications are written
assuming a full 64-bit address space is available. This abstraction requires partitioning
of the logical (virtual) address space into pages that are mapped into physical (real)
memory. The operating system in turn translates a 64-bit address into a 32-bit address
space supported by the processor. The MMU provides the translation of a 32-bit virtual
address to a 32-bit physical address through the use of Translation Lookaside Buffers
(TLB).

The MMU also provides memory protection so that a process can be prohibited from
reading or writing the address space of another process. This guarantees memory
integrity between processes. Access protection is also supported to ensure that any
given process does not gain unauthorized access to memory. For example, a process
will not be allowed to modify areas that are marked as read-only or reserved for
supervisory software.

Finally, the MMU performs the arbitration function among I/O, Data cache, Instruction
cache, and TLB references to memory. In essence, the MMU controls and prioritizes
access to main memory. At any given time, a contention for memory access may arise
between an I/O access involving the bus as well as internal accesses requested by
Instruction Cache, Data Cache, and TLB references. The MMU is connected to the
system as shown in Figure 10-1:

Figure 10-1 MMU System Integration Diagram

CPU MMU

DMU

PMU
User’s Manual 10-1 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
Features

• Implements virtual memory
• Provides virtual address to physical address memory translation
• Provides memory protection
• Performs arbitration among Input/Output, Data Cache, Instruction Cache, and

Translation Lookaside Buffer references to memory.

10.1 Address Spaces

The size of the virtual address space is 4 GB, divided into 16 segments of 256 MB. The
upper 4 bits of the 32-bit virtual address identify the segment. Virtual segments are
numbered 0 – 15. A virtual address is always translated into a physical address before
accessing memory. The size of the physical address space is 4 GB, divided into 16
segments of 256 MB. The upper 4 bits of the 32-bit physical address identify the
segment. Physical segments are numbered 0 – 15. The physical and virtual address
space maps are shown in Figure 10-2. A 32-bit virtual address is comprised of a Virtual
Page Number (VPN) concatenated with a Page Offset. A 32-bit physical address is
comprised of a Physical Page Number (PPN) concatenated with a Page Offset.
User’s Manual 10-2 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
Figure 10-2 Physical and Virtual Address Spaces

S egm ent 15

P hysica l space

S egm ent 14

S egm ent 13

S egm ent 12

S egm ent 11

S egm ent 10

S egm ent 9

S egm ent 8

S egm ent 7

S egm ent 6

S egm ent 5

S egm ent 4

S egm ent 3

S egm ent 2

S egm ent 1

S egm ent 0

S egm ent 15

S egm ent 14

S egm ent 13

S egm ent 12

S egm ent 11

S egm ent 10

S egm ent 9

S egm ent 8

S egm ent 7

S egm ent 6

S egm ent 5

S egm ent 4

S egm ent 3

S egm ent 2

S egm ent 1

S egm ent 0

V irtua l space

D irect m apped

D irec t/P TE
m apped
User’s Manual 10-3 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
10.1.1 Address Translation

The virtual address is translated into a physical address by one of two mechanisms:
(a) direct translation or (b) Page Table Entry (PTE)-based translation, as shown in
Figure 10-3. If the virtual address belongs to the upper half of the virtual address space,
the virtual address is used directly as the physical address (direct translation). If the
virtual address belongs to the lower half of the address space, the virtual address is used
directly as the physical address if the processor is operating in Physical mode (direct
translation) or is translated using a Page Table Entry if the processor is operating in
Virtual mode (PTE translation). The MMU_CON.V bit controls the Physical/Virtual
operating mode of the processor, as outlined in the section on the MMU_CON register.
Translation using the PTE is achieved by replacing the Virtual Page Number (VPN) of
the virtual address by a Physical Page Number (PPN) to obtain a physical address.

Figure 10-3 Virtual Address Translation

For Context Pointers (PCX, FCX, LCX), the address translations are constrained to use
the direct translation path.

10.1.2 Translation Lookaside Buffers

The MMU provides PTE-based virtual address translation through two Translation
Lookaside Buffers (TLBs): TLB-A and TLB-B. The MMU supports up to four page sizes,
including: 1 KB, 4 KB, 16 KB, and 64 KB. However, at any given time, each TLB
provides translations for only one particular page size. The page size setting of each TLB
is determined by the MMU_CON.SZA and MMU_CON.SZB fields, as outlined in the
section on the MMU_CON register.

VPN Offset

PPN Offset

PPNVPN

TLB

0 1
User’s Manual 10-4 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
Each TLB contains N TLB Table Entries (TTEs) where 4 <= N <= 128. The
MMU_CON.TSZ field determines the size of each TLB, as outlined in the section on the
MMU_CON register. Each TTE has an 8-bit index associated with it. Index numbers 0,
..., MMU_CON.TSZ are used for the entries in TLB-A. Index numbers 128, ...,
128+MMU_CON.TSZ are used for the entries in TLB-B. Each TTE contains a Page
Table Entry (PTE).

A Translation Lookaside Buffers Table Entry (TTE) contains the following fields:

• ASI (Address Space Identifier): This is a 5-bit field that specifies the address space
corresponding to the virtual address. ASIs allow mappings of up to 32 virtual address
spaces to coexist in the TLB.

• VPN (Virtual Page Number): This field contains the Virtual Page Number. This field
stores 32 – log2 (PageSize) bits, where PageSize is the size of the page in bytes.

• PPN (Physical Page Number): This field contains the Physical Page Number. This
field stores 32 – log2 (PageSize) bits, where PageSize is the size of the page in bytes.

• XE (Execute Enable) enables instruction fetch to the page.
• WE (Write Enable) enables data writes to the page.
• RE (Read Enable) enables data reads from the page
• C (Cacheability bit) indicates that the page is cacheable.
• G (Global bit) indicates that the page is globally mapped, thus making it visible in all

address spaces.
• V (Valid bit) indicates that the TTE contains a valid mapping.

10.1.3 Cacheability

The cacheability of a virtual address is determined using separate mechanisms for the
two translation paths.

10.1.3.1 Cacheability for Direct Translation

The cacheability status of a virtual address that undergoes direct translation is controlled
by a specific cacheability attribute associated with the segment, shown as Figure 10-4.
The segment cacheability attributes are not part of the MMU specification. These
cacheability attributes are provided by the system memory map for the specific CPU
core.
User’s Manual 10-5 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit

Figure 10-4 Cacheability of a Virtual Address

10.1.3.2 Cacheability for PTE-Based Translation

The cacheability status of a virtual address that undergoes PTE-based translation is
determined using the cacheability attribute of the PTE used for the address translation.
Each PTE has a Cacheability bit (C bit) that controls the cacheability status of the page.

10.1.4 Memory Protection

Memory protection is enforced using separate mechanisms for the two translation paths.

10.1.4.1 Protection for Direct Translation

Memory protection for addresses that undergo direct translation is enforced using the
range-based protection used in the previous generation of the TriCore architecture. This
mechanism protects memory ranges from unauthorized read, write, or instruction fetch
accesses. The TriCore architecture provides up to four protection register sets. The
PSW.PRS field controls the selection of the protection register set. Refer to the TriCore
Architecture Manual for details of this protection model. Also, User-0 accesses to virtual
addresses in the upper half of the virtual address space are disallowed in Virtual mode.
In Physical mode, User-0 accesses are disallowed only to segments 14 and 15. Any
User-0 access to a virtual address that is restricted to User-1 or Supervisor mode will
cause a Virtual Address Protection (VAP) Trap in both Physical and Virtual modes.

Virtual Address

Physical
mode

VA(31) = 1

PTE.C = 1 cacheability
atribute = 1non-cacheable

cacheable

N o

N o

N o N o

Y es

Y es

Y esY es
User’s Manual 10-6 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
10.1.4.2 Protection for PTE-Based Translation

Memory protection for addresses that undergo PTE-based translation is enforced using
the PTE used for the address translation. The PTE provides support for protecting a
process from unauthorized read, write, or instruction fetches by other processes. The
PTE uses the following bits for the purpose of protection:

• XE (Execute Enable) enables instruction fetch to the page.
• WE (Write Enable) enables data writes to the page.
• RE (Read Enable) enables data reads from the page.

10.1.5 Multiple Address Spaces

The MMU provides efficient support for multiple virtual address spaces.

Each TTE contains an Address Space Identifier (ASI) that identifies the address space
corresponding to the particular virtual address. Ambiguities in virtual address mappings
are avoided by the use of the Address Space Identifier. A special Address Space
Identifier (ASI) register is also provided to enable multiple address spaces.

The virtual address translation is performed by a TTE if: (a) it is a valid non-global TTE
that matches the incoming VPN of the virtual address and the address space identifier
contained in the ASI register, or (b) it is a valid global TTE that matches the incoming
VPN. Note that global TTEs are indicated by the Global bit (G bit) and such mappings
are visible to all virtual address spaces.

10.1.6 MMU Traps

MMU traps belong to Trap Class Number (TCN) 0 in the TriCore architecture. The MMU
can generate the following traps:

• VAF (Virtual Address Fill)
• VAP (Virtual Address Protection)

The Virtual Address Fill (VAF) trap is generated if PTE-based translation is required for
a virtual address and the PTE corresponding to the translation is missing in the MMU.
The Virtual Address Protection (VAP) trap is generated if the access is disallowed. The
VAF trap is assigned a TIN (Trap Identification Number) of 0 while the VAP trap is
assigned a TIN of 1. Both VAF and VAP are synchronous traps.

The events that happen on an MMU trap are identical to the events that happen on any
other trap. The virtual address is right shifted by 10 + 2*min(SZA, SZB) and loaded into
the Translation Fault Address (TFA) register. The upper context is saved before loading
the TIN into the D15 register. The address of the trap handler is computed by left shifting
the TCN by 5 bits and ORing it with the Base Trap Vector (BTV) register. An implicit
transfer of control then occurs by loading the program counter with the address of the
trap handler.
User’s Manual 10-7 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
Figure 10-5 MMU Traps in Physical Mode

VPN

VPN = 15

VA(31) = 1

PSW.IO = 0

direct
Translation cacheable

N o

N o

N o

Y es

Y es

Y es
User’s Manual 10-8 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
Figure 10-6 MMU Traps in Virtual Mode

VPN

VPN Match

V = 1

Access
Allowed

PTE translation fill trap

Y es

Y es

N o

N o

N o

Y es

VA(31) = 1

PSW.IO = 0

protection trap direct
translation

N o

N o

Y es

Y es
User’s Manual 10-9 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
10.1.7 MMU Instructions

All MMU instructions are privileged non-faulting instructions that require PSW.IO = 2
(Supervisor mode) for execution.

10.1.7.1 MAP Command (TLB Map)

The tlbmap instruction is used to install a mapping in the MMU. The tlbmap instruction
takes an extended data register (Ea) as a parameter. The even Ea register contains the
virtual address for the translation; the odd Ea register contains the page attributes and
PPN. The least significant log2(PageSize) bits of the virtual address are ignored by the
tlbmap instruction. The page attributes are contained in the Most Significant Byte of the
odd register with the format as shown. The 24 Least Significant Bits of the odd register
contain the PPN which is padded on the left with two zeros and on the right with
log2(PageSize) – 10 zeros. The ASI for the translation is obtained from the ASI register.

Installing a mapping for a virtual address for which a mapping already exists in the MMU
results in an undefined operation. Installing a mapping for a page size which is not one
of the two valid page sizes for either of the two TLBs results in a NOP. Installing a
mapping when the two TLBs have identical page size settings results in the mapping
being installed in one of the two TLBs.

The hardware replacement algorithm for the tlbmap instruction allows any set of four
VPNs specified by VPNa, VPNa+1, VPNb, and VPNc where VPNa and VPNb are arbitrary
and VPNc belongs to the set {VPNb+j j = 1, ..., 63} to be co-resident in the MMU at any
time. This guarantees that all the VPNs required for executing any single instruction can
be co-resident in the MMU.

10.1.7.2 DEMAP Command (TLB Demap)

The tlbdemap instruction is used to uninstall a mapping in the MMU. The tlbdemap
instruction takes a data register (Da) as a parameter. The Da register contains a virtual
address for the demap operation as shown. The address space identifier for the demap
operation is obtained from the ASI register. Demapping a translation that does not exist
in the MMU results in a NOP.

31 30 29 28 27 26 25 24

V XE WE RE G C PSZ

31 0

Virtual Address
User’s Manual 10-10 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
10.1.7.3 FLUSH Command (TLB Flush)

The tlbflush instruction is used to flush mappings from the MMU. There are two variants
of the tlb-flush instruction. The tlbflush.a instruction flushes all the mappings from TLB-A
while the tlb-flush.b instruction flushes all the mappings from TLB-B.

10.1.7.4 PROBE Command (TLB Probe)

The tlbprobe instruction has two variants: tlbprobe.a and tlbprobe.i.

The tlbprobe.a (TLB Probe Address) instruction takes a data register (Da) as a
parameter and is used to probe the MMU for a virtual address. The Da register contains
the virtual address for the probe. The address space identifier for the probe is obtained
from the ASI register.

The tlbprobe.i (TLB Probe Index) instruction takes a data register (Da) as a parameter
and is used to probe the TLB at a given index. The Da register contains the index for the
probe.

The tlbprobe instruction returns the ASI and VPN of the translation in the Translation
Virtual Ad-dress register (TVA), the PPN and attributes in the Translation Physical
Address register (TPA), and

the TLB index of the translation in the Translation Page Index register (TPX). The TPA.V
bit is set to 0 if the TTE contained an invalid translation or an invalid index was used for
the probe.

10.2 MMU Registers

All MMU Special Function Registers are memory-mapped. All registers can be read
using the MFCR instruction. The MMU_CON and MMU_ASI registers are the only
software-writable registers. The MMU_CON and MMU_ASI registers are written using
the MTCR instruction. The registers implemented in the MMU are shown in Figure 10-7
and Table 10-1. The registers and their bits are described in the following sections.

Figure 10-7 MMU Registers

M M U _CO N M M U _A S I

Configuration Register Data Registers

M M U _TV A

M M U _TP A

M M U _TP X

M M U _TFA
User’s Manual 10-11 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
In the TC11IB, the registers of the MMU are located in the following address range:

– Module Base Address. F7E1 8000H
Module End Address. F7E1 80FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 10-1)

10.2.1 Configuration Register

Table 10-1 MMU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

MMU_CON MMU Configuration Register 0000H Page 10-12

MMU_ASI MMU Address Space Identifier Register 0004H Page 10-13

MMU_TVA MMU Translation Virtual Address Register 000CH Page 10-14

MMU_TPA MMU Translation Physical Address Register 0010H Page 10-15

MMU_TPX MMU Translation Page Index Register 0014H Page 10-16

MMU_TFA MMU Translation Fault Address Register 0018H Page 10-17

MMU_CON
MMU Configuration Register Reset Value: 0000 07E0H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TSZ SZB SZA V

r r rw rw rw
User’s Manual 10-12 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
10.2.2 Address Space Identifier Register

The Address Space Identifier (ASI) register contains the address space identifier of the
current process.

Field Bits Type Description

V 0 rw Virtual Mode Control
0 The processor is in Physical Mode
1 The Processor is in Virtual Mode

SZA [2:1] rw Page Size A Control
The page size of the mappings in TLB-A:
00 1 KB
01 4 KB
10 16 KB
11 64 KB

SZB [4:3] rw Page Size B Control
The page size of the mappings in TLB-B:
00 1 KB
01 4 KB
10 16 KB
11 64 KB

TSZ [11:5] r TLB Size Control
The entries of TLB-A are indexed 0 through TSZ
The entries of TLB-B are indexed 128 through
128+TSZ

0 [31:12] r reserved

MMU_ASI
MMU Address Space Identifier Register Reset Value: 0000 001FH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ASI

r rw
User’s Manual 10-13 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
10.2.3 Translation Virtual Address Register

Translation Virtual Address register (TVA) is used to return the ASI and VPN of a
translation by a tlbprobe instruction.

Field Bits Type Description

ASI [4:0] rw Address Space Identifier
The Address Space Identifier of the current process.

0 [31:5] r reserved

MMU_TVA
MMU Translation Virtual Address Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 ASI VPN

r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN

r

Field Bits Type Description

VPN [23:0] r Virtual Page Number

ASI [28:24] r Address Space Identifier

0 [31:12] r reserved
User’s Manual 10-14 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
10.2.4 Translation Physical Address Register

The Translation Physical Address register (TPA) is used to return the PPN and attributes
of a translation by a tlbprobe instruction.

MMU_TPA
MMU Translation Physical Address Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

V XE WE RE G C PSZ PPN

r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPN

r

Field Bits Type Description

PPN [23:0] r Physical Page Number

PSZ [25:24] r Page Size Control
00 1 KB
01 4 KB
10 16 KB
11 64 KB

C 26 r Cacheability Control
0 The page is non-cacheable
1 The page is cacheable

G 27 r Global Control
0 The page is not globally mapped
1 The page is globally mapped, making it visible

in all address spaces

RE 28 r Read Enable Control
0 Disable data read from the page
1 Enable data read from the page
User’s Manual 10-15 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
10.2.5 Translation Page Index Register

The Translation Page Index register (TPX) is used to return the TLB index of a translation
by a tlbprobe instruction.

WE 29 r Write Enable Control
0 Disable data written to the page
1 Enable data written to the page

XE 30 r Execute Enable Control
0 Disable instruction fetch to the page
1 Enable instruction fetch to the page

V 31 r Valid Control
0 Invalid mapping
1 Valid mapping

MMU_TPX
MMU Translation Page Index Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Index

r r

Field Bits Type Description

Index [7:0] r TLB Index

0 [31:8] r reserved

Field Bits Type Description
User’s Manual 10-16 V1.0, 2002-03

TC11IB
System Units

Memory Management Unit
10.2.6 Translation Fault Address Register

MMU_TFA
MMU Translation Fault Address Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 FVAD

r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FVAD

r

Field Bits Type Description

FVAD [23:0] r Faulting Virtual Address
Faulting virtual Address shifted by 10 + 2 * min (SZA,
SZB) bits.

0 [31:24] r reserved
User’s Manual 10-17 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
11 On-Chip Local Memories
The TC11IB contains three on-chip local memories.

• 512-KB eDRAM Local Memory Unit connected to Local Memory Bus (LMB).
• 1-MB ComDRAM connected to Fast Flexible Peripheral Bus Interface (F_FPI).
• 16-KB Boot ROM connected to Slow Flexible Peripheral Bus Interface (S_FPI).

11.1 Local Memory Unit

The Local Memory Unit (LMU) contains a 512-KB eDRAM, the interface to the LMB bus
and corresponding control logic. It provides read, write, and refresh cycles to eDRAM
and some data management facilities, for example, a program memory prefetch facility.
It supports many kinds of refresh, the rates of which are programmable to suit the
statistics of the accesses, clock speed, and temperature. For safety and robustness, the
LMU goes directly into a refresh cycle immediately after a reset. Additionally, the
prefetch facilities may be set to paged only or paged and random mode using the control
registers. The paged accesses are performed as this requires fewer LMB data cycles
and uses less power to complete the access. Generally, the LMU is flexible due to its
programmability and configuration. The LMU consists of the functional blocks as shown
in Figure 11-1:

Figure 11-1 LMU Block Diagram

LMB Bus

Control
Block Write

Block

Read
Block

eDRAM

W rite
D ata

W rite
M ask

R ead
D ata
User’s Manual 11-1 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
Features

• 512-KB eDRAM
• 256-bit wide Read/Write Data Bus
• Supports all Burst Mode Accesses
• Access Prefetch Functionality
• Supports Random and Paged Accesses
• Provides eDRAM Refresh Cycle
• Forced and Refresh Request Modes
• Programmable/Configurable Forced Refresh and Request Times
• Synchronous WatchDog Timer Reset

11.1.1 eDRAM Overview

The embedded eDRAM has the following features:

• 256 bit wide write data bus and 256 bit wide write mask
• 256 bit wide read data bus
• Random Access Time is 13 ns
• Paged Access Time is 6.6 ns
• Page Width is 8*256 bits

11.1.2 eDRAM Address Map

Table 11-1 shows the memory map of LMU eDRAM.

11.1.3 LMU Operation Overview

The LMU supports both Local Memory Bus (LMB) access and non-LMB access. Besides
control registers, access and error transaction, there are three main types of access
starts initiated by the LMB:

• Access from scratch register or prefetch register (read only)
• Random access
• Paged access

There are two kinds of non-LMB access flows:

• Refresh flow

Table 11-1 LMU eDRAM Address Map

Address Name Size

0xF800 0400-0xF800 07FF LMU eDRAM control register space 1 KB

0xE800 0000-0xE83F FFFF Mapped LMU eDRAM space seen from FPI 4 MB

0xC000 0000-0xC007 FFFF Regular LMU eDRAM space 512 KB

0xAFC0 0000-0xAFC7 FFFF Non-Cached LMU eDRAM space 512 KB
User’s Manual 11-2 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
• Prefetch flow

For LMB access, because LMB is pipelined, which includes three pipeline phases:
Arbitration Phase (one cycle), Address Phase (one cycle) and Data Phase (minimum
one cycle), longer bursts have proportionally less overhead, more efficient. Therefore, it
is important that the LMU supports all burst modes, especially the larger one.

Because the LMU address is a byte address, the LMB address has the following
relevance:

• The LMB address (32 down to 0) are relevant to SDTB
• The LMB address (32 down to 1) are relevant to SDTH
• The LMB address (32 down to 2) are relevant to SDTW
• The LMB address (32 down to 3) are relevant to SDTD, BTR2, BTR4 and BTR8

 The LMB address (4 down to 3) corresponds to the SDTD, BTR2, BTR4 and BTR8
start point position in the eDRAM 256-bit wide bus. When these bits are “00”, the access
starts at the beginning of the bus. When these bits are “01”,”10” and “11”, the access
starts in positions 2, 3 and 4 respectively, as shown in Figure 11-2.

In the case of BTR2 or BTR4, when the access comes to the end of the memory data
bus, subsequent blocks of 64 start again at the beginning of the same bus, i.e. only one
memory access occurs. For a BTR8, the same is true except that two bus widths are
accessed at the same time, i.e. only two memory accesses occur.

Note: A burst access never crosses a page boundary, i.e. for a BTR8 access, cycle 2 is
always paged. The LMU returns an error transaction if the address is inconsistent
with the transaction size. If the two accesses of a BTR8 do not fit inside a single
page, an error is issued also.
User’s Manual 11-3 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
• The LMB address (7 down to 5) corresponds to the eDRAM address within current
page.

Figure 11-2 Access Patterns And Cycles

The bytes, words and double words are aligned to the LMB read bus boundary in the
same way as they reside in the memory address space. The LMU uses the same flow
for SDTW,SDTH,SDTB and SDTS read access. Table 11-2 lists the data access
alignment.

Table 11-2 Access Alignment vs. LMB Data Bus (64-bit wide)

LMB address (2-0) 111 110 101 100 011 010 001 000

SDTB Byte 7 Byte6 Byte5 Byte4 Byte3 Byte2 Byte1 Byte0

SDTH Half Word 3 Half Word 2 Half Word 1 Half Word 0

SDTW Word 1 Word0

SDTD Double Word 0

1
2

3
4

0

255

B urs t 2 A ccess eD R A M Cyc le 1 P atte rns

1
2

4

0

255

B urs t 4 A ccess eD R A M Cyc le 1 P atte rns

3

1
2

4

0

255

B urs t 8 A ccess eD R A M Cyc le 1 P atte rns

3

511

eD R A M Cyc le 2 P atte rns

O ne s ing le bus w id th

0

63
User’s Manual 11-4 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
Table 11-3 lists the LMU functions and their required data phase cycles.

Table 11-3 LMU Functions

Function Function Description Cycles Remark

Error Indicate an illegal access
request has been made

2

Refresh Perform a refresh cycle 3 After the refresh, the next
cycle must be 7 ns away.

Control
Register
Access

Read/Write to a control
register

2

Prefetch Load prefetch register from
random/paged access

3

Register
Read1

Read SDTD, SDTW, SDTH,
SDTB access from scratch or
prefetch registers

2

Register
Read2

Read BTR2 from scratch or
prefetch registers

3

Register
Read4

Read BTR4 from scratch or
prefetch registers

5

Write1 Write starting random/paged
SDTD, SDTW, SDTH, SDTB

3

Write2 Write starting random/paged
BTR2

4

Write4 Write starting random BTR4 6 This access contains an
integral refresh.

Write8 Write starting random BTR8 10 This access contains an
integral refresh.

Wrapped
Write8

Write starting random BTR8
with data wrapping

12 This access contains an
integral refresh.

Random
Read1

Read starting random SDTD,
SDTW, SDTH, SDTB

4

Paged Read1 Read starting paged SDTD,
SDTW, SDTH, SDTB

3

Random
Read2

Read starting random BTR2 5

Paged Read2 Read starting paged BTR2 4
User’s Manual 11-5 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
Note: A wrapped BTR8 access data from the second eDRAM access is always the first
to be placed on the LMB data, therefore wrapped BTR8 accesses are longer than
non-wrapped BTR8 access.

11.1.3.1 LMB Slot Condition

The LMB Slot Condition (only one condition exists for all operations) may be set for:

• Refreshes
• Random prefetch requests
• Paged prefetch requests

The normal request mechanism for either the refresh or the prefetch detects that there
is no current access in the address phase for the LMU, before commencing the flow. This
means that should flow be commenced, and an access appears on the bus, the access
will have to be detained until the current flow is completed.

For the slot condition, the LMU is set to recognize accesses of a specified size to another
‘slave’. The LMU then performs the required operation (i.e. refresh or prefetch) while the
bus is otherwise occupied. That is, if the LMU is set to detect that another slave is doing
a BRT4, BRT8 access, it is known that even with zero wait state transactions, it has
sufficient time to do either a refresh of prefetch random or paged flow. This ensures that
these operations will then be completely hidden, and that no access collision will occur.

Note: The slotted condition may be set to a size less than the number of cycles required
to perform operation(s) merely to gain a statistical advantage.

11.1.3.2 Read Data Scratch Registers

The LMU has two scratch registers, one for the PMU read data and one for non PMU
read data. Each time, there is a read access to the eDRAM, the LMU registers the
eDRAM read data into scratch register for possible reuse. The scratch registers are the
registered value of the entire last read access, i.e. the registered data is 256-bit wide. If

Random
Read4

Read starting random BTR4 7

Paged Read4 Read starting paged BTR4 6

Random
Read8

Read starting random BTR8 11

Paged Read8 Read starting paged BTR8 10

Wrapped
Read8

Read starting random/paged
BTR8 with data wrap

12

Table 11-3 LMU Functions

Function Function Description Cycles Remark
User’s Manual 11-6 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
a read address coincides with a scratch register address, then no eDRAM access is
performed and the data is selected from the active scratch register. This reduces the
number of cycles required to complete the access and save power.

The scratch registers and prefetch register are read by means of one of three Register
Read functions.

11.1.3.3 Prefetch Mechanism

Program data can be loaded in advance during a free controller timeslot. It is assumed
that the next access follows sequentially from the previous access. As well as registering
the data from the last access, the LMU can speculatively load data from the next address
into the PMU prefetch register for possible use. The prefetch operates by means of a
prefetch request mechanism.

Prefetch Request

The LMU generates a prefetch request if the PMU (read only) makes a SDTD, BTR2,
BTR4 last access in the eDRAM data bus.

The prefetch request is killed when the access that follows does not have the above PMU
condition, if the prefetch has been serviced, or if an abort occurs.

The prefetch mode of operation may be set to random or paged for both a slotted bus
and normal bus condition, by means of the mode register. Requests are serviced when
there is a single free timeslot detected on the bus, or when a slotted bus condition is
detected.

Note: Care must be taken when setting the prefetch mode for the optimum performance.
If another master is frequently accessing while the PMU is making accesses,
constant use of a random PMU prefetch in between may hinder the other master
by constantly closing the page.

11.1.3.4 Refresh Modes of Operation

There are four LMU refresh types:

• Forced refresh
• Request refresh
• Slotted refresh request
• Integral refresh

The refresh request rates may be set by means of the REFRATE register. The timing of
the refreshes is generated in the LMU Control Block. All LMU refreshes have the same
effect on the eDRAM when performed. A refresh may collide with an LMB access
request. The LMU will handle such a collision by sampling the access in the address
phase and inserting wait states to the access’s first data phase. The LMU commences
the sampled access after the refresh or prefetch has been completed.
User’s Manual 11-7 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
Forced Refresh

The forced refresh can maintain the integrity of the memory if another kind of refresh has
not been preformed within the maximum time between refreshes.

The forced refresh takes precedence over any other actions, i.e. memory accesses.

Request Refresh

This type of refresh is a request, and may be fit into the next available timeslot; thus, not
filling the timeslot for an access. This can help to hide the refresh action.

Note: A free timeslot detected may be only one cycle long, and the refresh takes 3
cycles. i.e. this refresh mode may block accesses to the LMU for up to two cycles.

Note: Setting this value low (i.e. generate many requests) will tend to increase the
number of refreshes, and hence increase the power consumption of the memory,
and maybe cause detrimental blocking of the LMU.

Slotted Refresh

This refresh aims to avoid blocking of the LMU operation. The slotted refresh looks for
non-LMU accesses on the LMB and attempts to make refreshes while these are in
progress.

Note: If correctly configured, this may be set high or permanently on without blocking the
LMU.

Note: If setting permanently and refresh has priority over prefetch, the prefetch request
will not be serviced. It is suggested that setting this permanently and giving
prefetch priority may give good results.

Integral Refresh

Some flows contain sufficient timeslots to contain refreshes. These flows include:

• Write starting random BTR2
• Write starting random BTR8
• Write starting random BTR8 with data wrapping

When any kind of refresh is performed, the refresh counter is reset.

Note: The refresh happens as early as possible in the flow in order to reduce the ‘refresh
margin’.

Note: All flows that contain a refresh should reopen the current page

Note: Read BTR8 and above (smaller reads do not have sufficiently long timeslots) do
not contain refreshes as this requires extra registering of the read data, and this
slows the LMU’s operation.
User’s Manual 11-8 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
11.1.3.5 Error

An error indicates an illegal access request has been made. The following reasons may
result in the LMU error:

• Access is in the control, the eDRAM or eDRAM map empty regions
• Address is not consistent with the access size
• Address is such that the second access of a BTR8 access crosses a page boundary
• Non supervisor control write
• Non 32-bit control write
• Write to a read only control register
• Control read BRT2, BRT4 or BRT8
• BRT2, BRT4, or BRT8 read modify write, (read phase only)

No access occurs to any source if an error sequence occurs.

11.1.3.6 LMU Reset

The LMU has two types of reset available: asynchronous and synchronous. Both types
reset the refresh counter to its maximum count; i.e., the LMU always goes into a refresh
immediately after a reset.

Asynchronous Reset

The LMU has an asynchronous reset signal that resets all the synchronous cells in the
LMU. During reset, the LMU is completely inoperable. It cannot accept or respond to an
access or refresh.

Note: The details about eDRAM Power On Reset (POR) are described in Section 5.3.5.
The reset signal must be driven such that the required timings are satisfied.

Synchronous Reset

The LMU has a synchronous reset in order that it my be issued a reset at any time and
still perform a predetermined and safe action.

The synchronous reset is taken into account by the LMU either when the eDRAM is in
the idle state, in the last refresh state, or in the last data phase of the current transaction.
This ensures that the eDRAM control signal timings are respected, and that the LMU
may be interrupted if no idle condition occurs on the bus; i.e., there are continuous
accesses.

When the synchronous reset coincides with an idle, end of a refresh, or last data phase,
the next state is the start of a refresh cycle. If, after a refresh, the synchronous reset
signal is still asserted, the eDRAM will again be reset to the start of a refresh cycle and
another refresh will occur; i.e., refreshes happen continuously while the synchronous
reset signal is asserted.
User’s Manual 11-9 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
The value in the refresh counter during a synchronous reset is irrelevant as the LMU is
refreshing irrespective of its value. After the reset is deasserted, the LMU will issue a
refresh done signal that resets the counter to zero, and the counter will begin to count
on the following LMB clock pulse. This has the effect of synchronizing the refresh counter
with the time between refreshes.

This synchronous reset signal must be asserted for a period equal to the longest
transaction that the LMU may be asked to perform, for example, BTR8 access.

Note: If it could be assumed that the LMU will be in idle when a synchronous reset is
issued, then the reset signal need only be active for one clock cycle. The problem
with this assumption is that a refresh may occur, thus a minimum of 4 clocks would
be required in this case.

Note: Worst Case Minimum Synchronous Reset Time (for BTR8 system) = 12 cycles.

11.1.4 LMU Registers

As shown in Figure 11-3, the following control registers are implemented in the LMU.
These registers and their bits are described in this section
.

Figure 11-3 LMU Registers

Note: Write access to these registers must be performed in supervisor mode and SDTW
(32-bit) write only.

Note: Each of these control registers has a unique LMB address for a 64-bit access. The
registers are aligned so that the lower 32 bits of the LMB read data contain the
read information. The upper 32 bits will always read as 0. The Read
SDTD,SDTW,SDTH, and SDTB are allowed.

Note: Read Modify Write Access should be SDTW access. The LMB address [1:0] = 00B
for a read modify write access.

Table 11-4 LMU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

LMU_MODE LMU Mode Register 0000H Page 11-11

LMU_REFRATE LMU Refresh Rate Register 0008H Page 11-12

M O D E

Control Registers

R E FR A TE
User’s Manual 11-10 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
In the TC11IB, the registers of the LMU are located in the following address range:

– Module Base Address. F800 0400H
Module End Address. F800 04FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 11-4)

11.1.4.1 LMU MODE Register

LMU_MODE
LMU Mode Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 BTR
8

BTR
4

BTR
2

SDT
D

SDT
W

SDT
H

SDT
B

r rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CLK
GAT

PRE
SLP

PRE
SL

PRE
ONP

PRE
ON

REF
PRI 0

r rw rw rw rw rw rw r

Field Bits Type Description

REFPRI 2 rw If 1,refreshes have priority over prefetch mechanism.
If 0, prefetch has priority.

PREON 3 rw If 1, LMU is able to service random prefetch requests.

PREONP 4 rw If 1, LMU is able to service paged prefetch requests.

PRESL 5 rw If 1, LMU is enabled to service random prefetch when
slotted condition is satisfied.

PRESLP 6 rw If 1, LMU is enabled to service paged prefetch when
slotted condition is satisfied.

CLKGAT 7 rw Gate for clock to Prefetch & Scratch registers.
When 0, no register read possible.

SDTB 16 rw If 1, LMU is enabled to make slotted refresh/prefetch
for STDB transfers

SDTH 17 rw If 1, LMU is enabled to make slotted refresh/prefetch
for STDH transfers

SDTW 18 rw If 1, LMU is enabled to make slotted refresh/prefetch
for STDW transfers
User’s Manual 11-11 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
11.1.4.2 REFRATE Register

The LMU has an 8-bit address field for the refresh request and an 8-bit address for the
forced refresh. When the divide value on the refresh request register is larger, only
forced refreshes occur.

SDTD 19 rw If 1, LMU is enabled to make slotted refresh/prefetch
for STDD transfers

BTR2 20 rw If 1, LMU is enabled to make slotted refresh/prefetch
for BTR2 transfers

BTR4 21 rw If 1, LMU is enabled to make slotted refresh/prefetch
for BTR4 transfers

BTR8 22 rw If 1, LMU is enabled to make slotted refresh/prefetch
for BTR8 transfers

0 [1:0]
[15:8]
[31:23]

r Reserved; read as 0; should be written with 0.

LMU_REFRATE
LMU Refresh Rate Register Reset Value: 0140 5014H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 SREF REFREQ

r rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REFREQ FORREF

rw rw

Field Bits Type Description

FORREF [9:0] rw Forced Refresh
The number of clocks of forced refresh

REFREQ [19:10] rw Refresh Request
The number of clocks of refresh request

SREF [29:20] rw Slotted Refresh
The number of clocks of slotted refresh

0 [31:30] r reserved

Field Bits Type Description
User’s Manual 11-12 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
Note: The refresh cycle takes 3 clocks. Therefore, a forced refresh of 3 clocks or fewer
will completely block out any subsequent accesses. In order to protect against bad
values being written to the REFRATE forced refresh field, LMB metastability,
noise etc., if any of {3,2,1,0} is detected in the REFRATE register, the forced
refresh reset value will be loaded on the subsequent clock.

11.2 ComDRAM

Another 1-MB eDRAM of ComDRAM is implemented in TC11IB and connected on Fast
FPI Bus. The embedded eDRAM has the similar features as the one in LMU:

• 256 bit wide write data bus and 256 bit wide write mask
• 256 bit wide read data bus

By default, ComDRAM is disabled. Before it is used, the clock to ComDRAM must first
be initialized. On the other hand, ComDRAM registers are affected by OCDS Suspend
Mode (refer to Section 21.3.1). If OCDS Suspend Mode is active, all writes to
ComDRAM registers are ignored. The S_FPI acknowledges the write access, but the
write is not executed internally. Read access are not affected. ComDRAM can be reset
via software.

The address range of ComDRAM is: BFE0 0000H - BFEF FFFFH

11.2.1 ComDRAM Registers

As shown in Figure 11-4, the following control registers are implemented in the
ComDRAM. These registers and their bits are described in this section
.

Figure 11-4 ComDRAM Registers

C LC

Control Registers

O C D S S

R S T

M O D E

R E FC O N
User’s Manual 11-13 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
Note: Write access to these registers must be performed in supervisor mode and
ComDRAM_CLC is EndInit protected.

In the TC11IB, the registers of the ComDRAM are located in the following address range:

– Module Base Address. F018 0000H
Module End Address. F018 FFFFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 11-5)

11.2.1.1 ComDRAM Clock Register

Table 11-5 ComDRAM Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

ComDRAM_CLC ComDRAM Clock Register 0000H Page 11-14

ComDRAM_OC
DSS

ComDRAm OCDS Suspend Register 0004H Page 11-15

ComDRAM_RST ComDRAM Reset Register 0040H Page 11-16

ComDRAM_REF
CON

ComDRAM Refresh Control Register 01A0H Page 11-17

ComDRAM_MO
DE

ComDRAM Mode Register 01A4H Page 11-17

ComDRAM_CLC
ComDRAM Clock Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EN 0 REG
EN

r rw r rw
User’s Manual 11-14 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
11.2.1.2 ComDRAM OCDS Suspend Register

Field Bits Type Description

REGEN 0 rw Switch the clock of the ComDRAM register on
S_FPI Bus
0 Clock off
1 Clock on

EN 5 rw Switch the clock of the ComDRAM
0 Clock off
1 Clock on

0 [4:1]
[31:6]

r Reserved; read as 0; should be written with 0.

ComDRAM_OCDSS
ComDRAM OCDS Suspend Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SP
EN

r rw

Field Bits Type Description

SPEN 0 rw Suspend Enable Bit for OCDS
0 Suspend disabled
1 Suspend enabled

0 [31:1] r Reserved; read as 0; should be written with 0.
User’s Manual 11-15 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
11.2.1.3 ComDRAM Reset Register

11.2.1.4 ComDRAM Refresh Register

The delay of the ComDRAM refresh cycles is controlled by the ComDRAM Refresh
Register. The refresh rate can be gotten via the following formula:

REFVAL = (Refresh Time/Clock Period) - 1 [11.1]

ComDRAM_RST
ComDRAM Reset Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RST
CON 0

r rw r

Field Bits Type Description

RSTCON 3 rw ComDRAM Reset Control
0 No reset
1 Reset ComDRAM

0 [2:0]
[31:4]

r Reserved; read as 0; should be written with 0.
User’s Manual 11-16 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
For example, after reset the refresh rate is 400ns and clock frequency is 96MHz, the
REFVAL is 25H.

11.2.1.5 ComDRAM MODE Register

MODE register enables the Scratchpad buffer of ComDRAM interface. This buffer saves
the data of the last FPI access to ComDRAM. The access could be SDTB, SDTH,
SDTW, BTR2 and BTR4. The next access to the ComDRAM will check whether the new
data are already in Scratchpad buffer. If there are, then the access goes only to the buffer
and does not go to the eDRAM. When a Write the address of data in Scratchpad buffer
is executed or a FPI abort occurs, the Scratchpad buffer is flushed.

ComDRAM_REFCON
ComDRAM Refresh Control Register Reset Value: 0000 0025H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REFVAL

Field Bits Type Description

REFVAL [15:0] rw Refresh Rate
The number of clocks of refresh.

0 [31:16] r reserved

ComDRAM_MODE
COmDRAM Mode Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SPB
EN

r rw
User’s Manual 11-17 V1.0, 2002-03

TC11IB
System Units

On-Chip Local Memories
11.3 Boot ROM

The TC11IB contains 16-KB of Boot ROM memory, which can be used for:

– Device operating mode initialization routines
– Bootstrap loader support
– Test functions

11.3.1 Bootstrap Loader Support

An integrated bootstrap mechanism is provided to support a system start with boot
operation after reset. If the boot mode is selected during reset, program execution is
started from the Boot ROM. The functionality of the boot routine will be similar to the one
implemented in other 16-Bit microcontrollers from Infineon.

Note: The bootstrap loader and the functionality of the boot routines will be described in
detail in a separate document.

Field Bits Type Description

SPBEN 0 rw ComDRAM Scratchpad Buffer Enable Control
0 The Scratchpad Buffer is disabled
1 The Scratchpad Buffer is enabled

0 [31:1] r Reserved; read as 0; should be written with 0.
User’s Manual 11-18 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
12 Memory Protection System
This chapter describes memory protection for the TC11IB. Topics covered include the
architecture of the memory protection system and the memory protection registers.

12.1 Memory Protection Overview

The TC11IB memory protection system specifies the addressable range and read/write
permissions of memory segments available to the currently executing task. The memory
protection system controls the position and range of addressable segments in memory.
It also controls the kinds of read and write operations allowed within addressable
memory segments. Any illegal memory access is detected by the memory protection
hardware, which then invokes the appropriate Trap Service Routine (TSR) to handle the
error. Thus, the memory protection system protects critical system functions against both
software and hardware errors. The memory protection hardware can also generate
signals to the Debug Unit to facilitate tracing illegal memory accesses.

As shown in Figure 12-1, there are two Memory Protection Register Sets in the TC11IB,
numbered 0 and 1, which specify memory protection ranges and permissions for code
and data. The PSW.PRS bit field determines which of these is the set currently in use by
the CPU. Because the TC11IB uses a Harvard-style memory architecture, each Memory
Protection Register Set is broken down into a Data Protection Register Set and a Code
Protection Register Set. Each Data Protection Register Set can specify up to four
address ranges to receive particular protection modes. Each Code Protection Register
Set can specify up to two address ranges to receive particular protection modes.

Each of the Data Protection Register Sets and Code Protection Register Sets
determines the range and protection modes for a separate memory area. Each contains
register pairs which determine the address range (the Data Segment Protection
Registers and Code Segment Protection Registers) and one register (Data Protection
Mode Register) which determines the memory access modes which apply to the
specified range.

The pairs of memory range registers determine the lower address boundary and the
upper address boundary of each memory range. The Data Protection Mode Registers
and Code Protection Mode Registers determine the access permissions for the ranges
specified in their corresponding address range registers.

The memory protection system can also be used to generate signals to the Debug Unit
when the processor attempts to access certain memory addresses. When used this way,
values in the memory range registers are regarded as individual addresses, instead of
defining an address range. An equality comparison with the contents of the address
register pairs is performed instead of the normal address range calculation. If enabled
for this function, signals are generated to the Debug Unit if the address of a memory
access equals any of the address range registers.
User’s Manual 12-1 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
Note that while the TriCore architecture allows as many as four Memory Protection
Register Sets, the TC11IB implements two; and while the TriCore architecture allows as
many as four Code Segment Protection Register Sets, the TC11IB implements two.

Figure 12-1 Memory Protection Register Sets

Data M emory Protection Set 0

M C A04731

D P M 0[31:24]D PR 0_3UD P R 0_3L

R ange 3

D P M 0[23:16]D PR 0_2UD P R 0_2L

R ange 2

D P M 0[15 :8]D PR 0_1UD P R 0_1L

R ange 1

D P M 0[7:0]D PR 0_0UD P R 0_0L

R ange 0

Code M emory Protection Set 0

C PM 0[15:8]C P R 0_1UC P R 0_1L

R ange 1

C P M 0[7 :0]C P R 0_0UC P R 0_0L

R ange 0

Data M emory Protection Set 1

D P M 1[31:24]D PR 1_3UD P R 1_3L

R ange 3

D P M 1[23:16]D PR 1_2UD P R 1_2L

R ange 2

D P M 1[15 :8]D PR 1_1UD P R 1_1L

R ange 1

D P M 1[7:0]D PR 1_0UD P R 1_0L

R ange 0

Code M emory Protection Set 1

C PM 1[15:8]C P R 1_1UC P R 1_1L

R ange 1

C P M 1[7 :0]C P R 1_0UC P R 1_0L

R ange 0

D ata and C ode M em ory
P rotec tion Se ts 0
are se lec ted w ith
P SW .PR S = 00 B

D ata and C ode M em ory
P rotec tion Se ts 1
are se lec ted w ith
P SW .PR S = 01 B
User’s Manual 12-2 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
12.2 Memory Protection Registers

The TC11IB memory protection architecture is based on memory segments which are
specified by address ranges and their associated access permissions or modes. Specific
access permissions are associated with each addressable range. Ranges and their
associated permissions are specified in two Memory Protection Register Sets (PRS)
residing in the Core Special Function Registers (CSFR). A PRS consists of Data
Segment Protection Registers, Data Protection Mode Registers, Code Segment
Protection Registers, and Code Protection Mode Registers. The organization of these
registers is shown in Figure 12-1. The PSW_PRS bit field indexes the current PRS. The
current PRS determines what accesses can be performed by the processor for each
memory segment.

Because of the Harvard-style architecture of the TC11IB, each PRS contains separate
registers for checking data accesses and code accesses. Memory ranges are specified
by pairs of registers which give lower and upper boundary for the associated ranges.

Data and code memory range registers are collectively named DPRx_n{L,U} and
CPRx_n{L,U}, respectively. In all cases, x refers to the specific Memory Protection
Register Set that the register is in, n refers to the range within the set, and L and U refer
to the lower and upper boundary, respectively. For some lower boundary L, upper
boundary U, and address a, the range defined by each address-range register pair is the
interval: L ≤ a < U.

The memory protection system can also be used to generate signals to the Debug Unit
when the processor attempts to access particular memory addresses. When used this
way, values in the DPRx_n{L,U} and CPRx_n{L,U} registers are regarded as individual
addresses, instead of defining an address range. An equality comparison with the
contents of the address register pairs is performed instead of the normal address range
calculation. If enabled for this function, signals are generated to the Debug Unit if the
address of a memory access equals any of the DPRx_n{L,U} and CPRx_n{L,U}
registers.

When used for normal memory protection (not for debugging), the memory protection
system performs as outlined in the following paragraphs. When the CPU performs load
and store operations, data addresses are checked against the memory ranges given by
the current data protection registers. Likewise, when the CPU fetches instructions, the
address of the instruction is checked against the memory ranges given by the current
code protection registers.

Range checking is disabled if the lower address is greater than the upper address. If the
lower address is equal to the upper address, the segment is regarded as empty. If the
address does not correspond to an allowable address range in any segment of the
current PRS, a trap signal is generated by the memory protection hardware. Note that
range checking is also disabled if the mode of a segment indicates that it is to signal the
Debug Unit.)
User’s Manual 12-3 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
If the address being examined is found to fall within an enabled, non-empty, and
allowable range, the associated mode register is checked for access permissions. If the
access mode is not allowed, a trap signal is generated by the memory protection
hardware.

Table 12-1 shows all registers of the TC11IB Memory Protection Unit.

Table 12-1 Memory Protection Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

DPR0_0L Data Segment Protection Register Set 0,
Range 0, Lower

0000H Page 12-11

DPR0_0U Data Segment Protection Register Set 0,
Range 0, Upper

0004H

DPR0_1L Data Segment Protection Register Set 0,
Range 1, Lower

0008H

DPR0_1U Data Segment Protection Register Set 0,
Range 1, Upper

000CH

DPR0_2L Data Segment Protection Register Set 0,
Range 2, Lower

0010H

DPR0_2U Data Segment Protection Register Set 0,
Range 2, Upper

0014H

DPR0_3L Data Segment Protection Register Set 0,
Range 3, Lower

0018H

DPR0_3U Data Segment Protection Register Set 0,
Range 3, Upper

001CH
User’s Manual 12-4 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
DPR1_0L Data Segment Protection Register Set 1,
Range 0, Lower

0400H Page 12-11

DPR1_0U Data Segment Protection Register Set 1,
Range 0, Upper

0404H

DPR1_1L Data Segment Protection Register Set 1,
Range 1, Lower

0408H

DPR1_1U Data Segment Protection Register Set 1,
Range 1, Upper

040CH

DPR1_2L Data Segment Protection Register Set 1,
Range 2, Lower

0410H

DPR1_2U Data Segment Protection Register Set 1,
Range 2, Upper

0414H

DPR1_3L Data Segment Protection Register Set 1,
Range 3, Lower

0418H

DPR1_3U Data Segment Protection Register Set 1,
Range 3, Upper

041CH Page 12-11

CPR0_0L Code Segment Protection Register Set 0,
Range 0, Lower

1000H Page 12-14

CPR0_0U Code Segment Protection Register Set 0,
Range 0, Upper

1004H

CPR0_1L Code Segment Protection Register Set 0,
Range 1, Lower

1008H

CPR0_1U Code Segment Protection Register Set 0,
Range 1, Upper

100CH

CPR1_0L Code Segment Protection Register Set 1,
Range 0, Lower

1400H Page 12-14

CPR1_0U Code Segment Protection Register Set 1,
Range 0, Upper

1404H

CPR1_1L Code Segment Protection Register Set 1,
Range 1, Lower

1408H

CPR1_1U Code Segment Protection Register Set 1,
Range 1, Upper

140CH

DPM0 Set 0 Data Protection Mode Register, Set 0 2000H Page 12-12

Table 12-1 Memory Protection Registers (cont’d)

Register
Short Name

Register Long Name Offset
Address

Description
see
User’s Manual 12-5 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
In the TC11IB, the memory protection registers are located in the following address
range:

– Module Base Address. F7E1 C000H
Module End Address. F7E1 EFFFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 12-1)

There are two major components within the memory protection system:

– The control bits and bit fields in the PSW.
– The memory protection registers which control program execution and memory

access.

DPM1 Data Protection Mode Register, Set 1 2080H Page 12-12

CPM0 Code Protection Mode Register, Set 0 2200H Page 12-15

CPM1 Code Protection Mode Register, Set 1 2280H Page 12-15

Table 12-1 Memory Protection Registers (cont’d)

Register
Short Name

Register Long Name Offset
Address

Description
see
User’s Manual 12-6 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
12.2.1 PSW Protection Fields

The control fields in the PSW that do not deal with the protection system are shaded in
the PSW register table below.

PSW
Program Status Word Reset Value: 0000 0B80H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

C V SV AV SAV 0

rwh rwh rwh rwh rwh r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRS IO IS GW CDE CDC

r rwh rwh rwh rwh rwh rwh

Field Bits Type Description

CDC [6:0] rwh Call Depth Counter
The CDC field consists of two variable-width fields. The
first is a mask field, consisting of a string of zero or more
initial 1 bits, terminated by the first 0 bit. The remaining
bits of the field are the call depth counter.
0ccccccB 6-bit counter; trap on overflow
10cccccB 5-bit counter; trap on overflow
110ccccB 4-bit counter; trap on overflow
1110cccB 3-bit counter; trap on overflow
11110ccB 2-bit counter; trap on overflow
111110cB 1-bit counter; trap on overflow
1111110B Trap every call (call trace mode)
1111111B Disable call depth counting
When the call depth counter overflows, a trap is
generated. Depending on the width of the mask field, the
call depth counter can be set to overflow at any power of
two boundary, from 1 to 64. Setting the mask field to
1111110B allows no bits for the counter, and causes
every call to be trapped. This is used for call tracing.
Setting the field to mask field to 1111111B disables call
depth counting altogether.
User’s Manual 12-7 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
CDE 7 rwh Call Depth Count Enable
The CDE bit enables call-depth counting, provided that
the CDC mask field is not all 1’s. CDE is set to 1 by
default, but should be cleared by the SYSCALL
instruction Trap Service Routine to allow a trapped
SYSCALL instruction to execute without producing
another trap upon return from the trap handler. It is then
set again when the next SYSCALL instruction is
executed.
0 Call depth counter disabled
1 Call depth counter enabled

GW 8 rwh Global Register Write Permission
GW controls whether the current execution thread has
permission to modify the global address registers. Most
tasks and ISRs will use the global address registers as
“read only” registers, pointing to the global literal pool and
key data structures. However, a task or ISR can be
designated as the “owner” of a particular global address
register, and is allowed to modify it.
The system designer must determine which global
address variables are used with sufficient frequency and/
or in sufficiently time-critical code to justify allocation to a
global address register. By compiler convention, global
address register A0 is reserved as the base register for
short form loads and stores. Register A1 is also reserved
for compiler use. Registers A8 and A9 are not used by the
compiler, and are available for holding critical system
address variables.
0 Write permission to global registers A0, A1, A8, and

A9 is disabled
1 Write permission to global registers A0, A1, A8, and

A9 is enabled

Field Bits Type Description
User’s Manual 12-8 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
IS 9 rwh Interrupt Stack Control
Determines whether the current execution thread is using
the shared global (interrupt) stack or a user stack.
0 User Stack. If an interrupt is taken when the IS bit

is 0, then the stack pointer register is loaded from
the ISP register before execution starts at the first
instruction of the Interrupt Service Routine.

1 Shared Global Stack. If an interrupt is taken when
the IS bit is 1, then the current value of the stack
pointer register is used by the Interrupt Service
Routine.

IO [11:10] rwh Access Privilege Level Control
This 2-bit field selects determines the access level to
special function registers and peripheral devices.
00B User-0 Mode: No peripheral access. Access to

segments 14 and 15 is prohibited and will result in
a trap. This access level is given to tasks that need
not directly access peripheral devices. Tasks at this
level do not have permission to enable or disable
interrupts.

01B User-1 Mode: regular peripheral access. This
access level enables access to common peripheral
devices that are not specially protected, including
read/write access to serial
I/O ports, read access to timers, and access to most
I/O status registers. Tasks at this level may disable
interrupts.

10B Supervisor Mode. This access level enables
access to all peripheral devices. It enables read/
write access to core registers and protected
peripheral devices. Tasks at this level may disable
interrupts.

11B Reserved; this encoding is reserved and is not
defined.

Field Bits Type Description
User’s Manual 12-9 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
PRS [13:12] rwh Protection Register Set Selection
The PRS field selects one of two possible sets of memory
protection register values controlling load and store
operations and instruction fetches within the current
process. This field indicates the current protection
register set.
00 Protection register set 0 selected
01 Protection register set 1 selected
10 Reserved; don’t use this combination
11 Reserved; don’t use this combination

0 [26:14] r Reserved; read as 0; should be written with 0.

– [31:27] rwh Not used for memory protection purposes.

Field Bits Type Description
User’s Manual 12-10 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
12.2.2 Data Memory Protection Register

The lower and upper boundaries of a data memory segment are specified by word-length
register pairs DPRx_nL and DPRx_nU respectively, where x is the Memory Protection
Register Set number (0..1) and n is the range number (0..3).

DPR0_0L DPR0_1L DPR0_2L DPR0_3L
DPR1_0L DPR1_1L DPR1_2L DPR1_3L
Data Segment Protection Register n, Set x, Lower Bound DPRx_nL (x = 0, 1, n = 0-3)

Reset Value: 0000 0000H

31 0

LOWBND

rw

Field Bits Type Description

LOWBND [31:0] rw Lower Boundary Address

DPR0_0U DPR0_1U DPR0_2U DPR0_3U
DPR1_0U DPR1_1U DPR1_2U DPR1_3U
Data Segment Protection Register n, Set x, Upper Bound DPRx_nU (x = 0, 1, n = 0-3)

Reset Value: 0000 0000H

31 0

UPPBND

rw

Field Bits Type Description

UPPBND [31:0] rw Upper Boundary Address
User’s Manual 12-11 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
The access permissions of the two data memory ranges are specified by the registers
DPMx, where x is the Memory Protection Register Set number (x = 0, 1). Four byte fields
within each DPMx register are assigned to the range number (0..3). Note that in one set
the mode register with the four ranges is located in a single word register. Byte field
DPMx[7:0] is assigned to Range 0, byte field DPMx[15:8] is assigned to Range 1, byte
field DPM[23:16] is assigned to Range 2, and byte field DPMx[31:24] is assigned to
Range 3.

DPM0 DPM1
Data Protection Mode Registers DPMx (x = 0, 1) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WE
3

RE
3

WS
3

RS
3

WBL
3

RBL
3

WBU
3

RBU
3

WE
2

RE
2

WS
2

RS
2

WBL
2

RBL
2

WBU
2

RBU
2

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WE
1

RE
1

WS
1

RS
1

WBL
1

RBL
1

WBU
1

RBU
1

WE
0

RE
0

WS
0

RS
0

WBL
0

RBL
0

WBU
0

RBU
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

RBUn
(n = 0-3)

0,
8,
16,
24

rw Data Read Signal on Upper Bound Access Range n
0 Data read signal is disabled
1 A signal is asserted to the debug unit on a data

read access to an address that matches the
upper boundary address of the associated
address range.

WBUn
(n = 0-3)

1,
9,
17,
25

rw Write Signal on Upper Bound Access Range n
0 Write signal is disabled
1 A signal is asserted to the debug unit on a data

write access to an address that matches the
upper boundary address of the associated
address range.

RBLn
(n = 0-3)

2,
10,
18,
26

rw Data Read Signal on Lower Bound Access Range n
0 Data read signal is disabled
1 A signal is asserted to the debug unit on a data

read access to an address that matches the
lower boundary address of the associated
address range.
User’s Manual 12-12 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
WBLn
(n = 0-3)

3,
11,
19,
27

rw Data Write Signal on Lower Bound Access Range n
0 Data write signal is disabled
1 A signal is asserted to the debug unit on a data

write access to an address that matches the
lower boundary address of the associated
address range

RSn
(n = 0-3)

4,
12,
20,
28

rw Address Range Data Read Signal Range n
0 Data read signal is disabled
1 A signal is asserted to the debug unit on data

read accesses to the associated address range

WSn
(n = 0-3)

5,
13,
21,
29

rw Address Range Data Write Signal Range n
0 Data write signal is disabled
1 A signal is asserted to the debug unit on data

write accesses to the associated address range

REn
(n = 0-3)

6,
14,
22,
30

rw Address Range Data Read Enable Range n
RE controls reads to the addresses in the associated
range.
0 Data read accesses to the associated address

range are not permitted
1 Data read accesses to the associated address

range are permitted

WEn
(n = 0-3)

7,
15,
23,
31

rw Address Range Data Write Enable Range n
WE controls writes to the addresses in the associated
range.
0 Data write accesses to the associated address

range are not permitted
1 Data write accesses to the associated address

range are permitted

Field Bits Type Description
User’s Manual 12-13 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
12.2.3 Code Memory Protection Register

The lower and upper boundaries of a code memory segment are specified by word
length register pairs CPRx_nL and CPRx_nU respectively, where x is the Memory
Protection Register Set number (0..1) and n is the range number (0..1).

CPR0_0L CPR0_1L
CPR1_0L CPR1_1L
Code Segment Protection Register n, Set x, Lower Bound CPRx_nL (x = 0, 1, n = 0, 1)

Reset Value: 0000 0000H

31 0

LOWBND

rw

Field Bits Type Description

LOWBND [31:0] rw Lower Boundary Address

CPR0_0U CPR0_1U
CPR1_0U CPR1_1U
Code Segment Protection Register n, Set x, Upper Bound CPRx_nU (x = 0, 1, n = 0, 1)

Reset Value: 0000 0000H

31 0

UPPBND

rw

Field Bits Type Description

UPPBND [31:0] rw Upper Boundary Address
User’s Manual 12-14 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
The access permissions of the two code memory ranges are specified by the registers
CPMx, where x is the Memory Protection Register Set number (x = 0, 1). Two byte fields
within each CPMx register are assigned to the range number (0, 1). Note that in one set,
the mode register with the two ranges is located in a single word register. Byte field
CPMx[7:0] is assigned to Range 0, and byte field CPMx[15:8] is assigned to Range 1.

CPM0 CPM1
Code Protection Mode Registers CPMx (x = 0, 1) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XE
1 0 XS

1 0 BL
1 0 0 BU

1
XE
0 0 XS

0 0 BL
0 0 0 BU

0

rw r rw r rw r r rw rw r rw r rw r r rw

Field Bits Type Description

BUn
(n = 0, 1)

0,
8

rw Execute Signal on Upper Bound Access Range n
0 Upper bound execute signal is disabled
1 A signal is asserted to the debug unit on an

instruction fetch to an address that matches the
upper bound address of the associated address
range

BLn
(n = 0, 1)

3,
11

rw Execute Signal on Lower Bound Access Range n
0 Lower bound execute signal is disabled
1 A signal is asserted to the debug unit on an

instruction fetch to an address that matches the lower
bound address of the associated address range

XSn
(n = 0, 1)

5,
13

rw Address Range Execute Signal Range n
0 Execute signal is disabled
1 A signal is asserted to the debug unit on instruction

fetches to the associated address range

XEn
(n = 0, 1)

7,
15

rw Address Range Execute Enable Range n
0 Instruction fetches to the associated address range

are not permitted
1 Instruction fetches to the associated address range

are permitted

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 12-15 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
At any given time, one of the sets is the current protection register set that determines
the legality of memory accesses by the current task or ISR. The PRS field in the PSW
indicates the current protection register set number. Each protection register set
contains separate address range tables for checking data accesses and code accesses.
The range table entry is a pair of words specifying a lower and an upper boundary for the
associated range. The range defined by one range table entry is the address interval:

• lower bound ≤ address < upper bound

Each range table entry has an associated mode table entry in which access permissions
and debug signal conditions for that range are specified. For load and store operations,
data address values are checked against the entries in the data range table. For
instruction fetches, the PC value for the fetch is checked against the entries in the code
range table. When an address is found to fall within a range defined in the appropriate
range table, the associated mode table entry is checked for access permissions and
debug signal generation.

Modes of Use for Range Table Entries

An individual range table entry can be used for memory protection or for debugging; it is
rarely used for both purposes. If the upper and lower bound values have been set for
debug breakpoints, they probably are not meaningful for defining protection ranges, and
vice versa.However, it is possible — and reasonable — to have some entries in the table
for memory protection and others for debugging.

To disable an entry for memory protection, clear both the RE and WE bits in a data range
table entry or clear the XE bit in a code range table entry. The entry can be disabled for
use in debugging by clearing any debug signal bits. If a range entry is being used for
debugging, the debug signal bits that are set determine whether it is used as a single
range comparator (giving an in-range/not in-range signal) or as a pair of equal
comparators. The two uses are not mutually exclusive.

Using Protection Register Sets

If there were only one protection register set, then either the mappings would need to be
general enough to apply to all tasks and ISRs — thus, not terribly useful for isolating
software errors in individual tasks — or there would need to be substantial overhead paid
on interrupts and task context switches for updating the tables to match the currently
executing task or ISR. Those drawbacks are avoided by providing for multiple sets of
tables, with two bits in the PSW to select the currently active set.

Note that supervisor mode does not automatically disable memory protection. The
protection register set selected for supervisor tasks will normally be set up to allow write
access to regions of memory protected from user mode access. In addition, of course,
supervisor tasks can execute instructions to change the protection maps, or to disable
the protection system entirely. But supervisor mode does not implicitly override memory
protection, and it is possible for a supervisor task to take a memory protection trap.
User’s Manual 12-16 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
12.3 Sample Protection Register Set

Figure 12-2 illustrates Data Protection Register Set n, where n is one of the two sets
selected by the PSW.PRS field. Each register set in this example consists of four range
table entries. The defined ranges can potentially overlap or be nested. Nesting of ranges
can be used, for example, to allow write access to a subrange of a larger range in which
the current task is allowed read access. The four Data Segment Protection Registers
and four Data Protection Mode Registers are set up as follows:

• Data Segment Protection Register 3 (DPRn_3) defines the upper and lower
boundaries for Data Range 4. Data Protection Mode Register 3 (DPMn_3) defines the
permissions and debug conditions for Data Range 4.

• Data Segment Protection Register 2 (DPRn_2) defines the upper and lower
boundaries for Data Range 3. Data Protection Mode Register 2 (DPMn_2) defines the
permissions and debug conditions for Data Range 3. Note that Data Range 3 is
nested within Data Range 4.

• Data Segment Protection Register 1 (DPRn_1) defines the upper and lower
boundaries for Data Range 2. Data Protection Mode Register 1 (DPMn_1) defines the
permissions and debug conditions for Data Range 2.

• Data Segment Protection Register 0 (DPRn_0) defines the upper and lower
boundaries for Data Range 1. Data Protection Mode Register 0 (DPMn_0) defines the
permissions and debug conditions for Data Range 1.

This same configuration can be used to illustrate Code Protection Register Set n.

Figure 12-2 Example Configuration of a Data Protection Register Set (Set n)

M C A04732

D M N n_3 D M N n_2 D M N n_1 D M N n_0

Low er B ound

U pper B ound

D PM 0

D PR n_0L

D P R n_0U

D M N n_3 D M N n_2 D M N n_1 D M N n_0

Low er B ound

U pper B ound

D PM n

D PR n_1L

D P R n_1U

D M N n_3 D M N n_2 D M N n_1 D M N n_0

Low er B ound

U pper B ound

D PM n

D PR n_2L

D P R n_2U

D M N n_3 D M N n_2 D M N n_1 D M N n_0

Low er B ound

U pper B ound

D PM n

D PR n_3L

D P R n_3U

D ata R ange 0

D ata R ange 1

D ata R ange 2

M em ory

D ata
R ange 3
User’s Manual 12-17 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
12.4 Memory Access Checking

If the protection system is enabled, before any memory access (read, write, execute) is
performed, it is checked for legality as determined by all of the following:

• The protection enable bits in the SYSCON Register,
• The current I/O privilege level (0 = User-0 Mode; 1 = User-1 Mode; 2 = Supervisor

Mode), and
• The ranges defined in the currently selected protection register set.

Data addresses (read and write accesses) are checked against the currently selected
data address range table, while instruction fetch addresses are checked against the
code address range tables. The mode entries for the data range table entries enable only
read and write accesses, while the mode entries for the code range table entries enable
only execute access. In order for data to be read from program space, there must be an
entry in the data address range table that covers the address being read. Conversely,
there must be an entry in the code address range table for the instruction being read.

Access to the internal and external peripherals is through the two upper segments of the
TC11IB address space (high-order address bits equal to 1110B and 1111B). Access
checking for addresses in the peripheral segments is independent of access checking in
the remainder of the address space. Access to peripheral segments is not allowed for
tasks at I/O privilege Level 0 (User-0 tasks). Tasks at I/O privilege Level 1 and higher
have access rights to the peripheral segment space. However, the validity of any access
attempt depends on the presence of a peripheral at the accessed address, and any
restrictions it may impose on its own access. Protected peripherals, for example, require
I/O privilege Level 2, as reflected by the supervisor line value on the system bus.

If the memory protection system is disabled, any access to any memory address outside
of the peripheral segments is permitted, regardless of the I/O privilege level. There are
no memory regions reserved for supervisor access only, when the memory protection
system is disabled.

When the memory protection system is enabled, for an access to be permitted, the
address for the access must fall within one or more of the ranges specified in the
currently selected protection register set. Furthermore, the mode entry for at least one of
the matching ranges must enable the requested type of access.

12.4.1 Permitted versus Valid Accesses

A memory access can be permitted within the ranges specified in the data and code
range tables without necessarily being valid. A range specified in a range table entry
could cover one or more address regions where no physical memory was implemented.
Although that would normally reflect an error in the system code that set up the address
range, the memory protection system only uses the range table entries when
determining whether an access is permitted. In addition, if the memory protection system
User’s Manual 12-18 V1.0, 2002-03

TC11IB
System Units

Memory Protection System
M C A04733

A B C

Execu te N o E xecu te

is disabled, all accesses must be taken as permitted, although individual accesses may
or may not be valid.

An access that is not permitted under the memory protection system results in a memory
protection trap. When permitted, an access to an unimplemented memory address
results in a bus error trap, provided that the memory address is in one of the segments
reserved for local memory. If the address is an external memory address, the result
depends on the memory implementation, and is not architecturally defined. An access
can also be permitted but invalid due to a misaligned address. Misaligned accesses
result in an alignment trap, rather than a protection trap.

12.4.2 Crossing Protection Boundaries

An access can straddle two regions. For example, Figure 12-3 illustrates the condition
where Instruction A lies in an execute region of memory, Instruction C lies in a no-
execute region of memory, and Instruction B straddles the execute/no execute
boundary.

Figure 12-3 Protection Boundaries

Because the PC is used in the comparison with the range registers, the program error
exception is not signaled until Instruction C is fetched. The same is true for all
comparisons — the address of the first accessed byte is compared against the memory
protection range registers. Hence, an access assumes the memory protection properties
of the first byte in the access regardless of the number of bytes involved in the access.

For normal accesses, this assumption is not a problem because the regions are set up
according to the natural access boundaries for the code or data that the region contains.
For wild accesses due to software or hardware errors, stores are the main concern. In
the worst case, a double-word store that is aligned on a half-word boundary can extend
three half-words beyond the end of the region in which its address lies.

One way to prevent boundary crossings is to leave at least three half-words of buffer
space between regions. This configuration prevents wild stores from destroying data in
adjacent read-only regions, for example.
User’s Manual 12-19 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13 Parallel Ports
The TC11IB has 96 digital input/output port lines organized into six parallel 16-bit ports,
Port P0 to Port P5. The parallel ports can be all used as general purpose I/O lines or they
can perform input/output functions for the on-chip peripheral units, even 24 of them can
be used as interrupt inputs. Port P0 to Port P5 are assigned to the on-chip peripheral
units for their specific I/O operations. An overview on the port-to-peripheral unit
assignment is shown in Figure 13-1.

Figure 13-1 Parallel Ports of the TC11IB

M C A 04951

TC11IB

P a ra lle l P o rts

G P IO 3

G P IO 4

G P IO 5

G P IO A lte rn a te F u n ctio ns

E xte rn a l In te rru p ts

E xte rn a l In te rru p ts

M M C I

G P IO 1

G P IO 0

G P IO 2

G P IOA lte rna te F un ction s

E the rne t / M M C I

A S C / S S C / M M C I / 1 6 x50

G P T U 0 / G P T U 1
User’s Manual 13-1 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.1 General Port Operation

Figure 13-2 shows a general block diagram of an TC11IB port line. Each port line is
equipped with a number of control and data bits, enabling very flexible usage of the line.

Each port pin can be configured for input or output operation. In input mode (default after
reset), the output driver is switched off (high-impedance). The actual voltage level
present at the port pin is translated into a logic 0 or 1 via a Schmitt-Trigger device and
can be read via the read only register Px_IN. In output mode, the output driver is
activated and drives the value supplied through the multiplexer to the port pin. Switching
between input and output mode is accomplished through the Px_DIR register, which
enables or disables the output driver.

The output multiplexer in front of the output driver enables the port output function to be
used for different purposes. If the pin is used as general purpose output, the multiplexer
is switched by software to the Output Data Register Px. Software can set or clear the bit
in Px, and therefore it can directly influence the state of the port pin.

Latch Px_IN is provided for input functions of the on-chip peripheral units. Its input is
connected to the output of the input Schmitt-Trigger. Further, an input signal can be
connected directly to the various inputs of the peripheral units (AltDataIn). The function
of the input line from the pin to the input latch Px_IN and to AltDataIn is independent of
the port pin operates as input or output. This means that when the port is in output mode,
the level of the pin can be read by software via latch Px_IN or a peripheral can use the
pin level as an input. This offers additional advantages in an application.

– The data written to the output register Px by software can be used as input data to
an on-chip peripheral. This enables, for example, peripheral tests via software
without external circuitry. Examples for this can be the triggering of a timer count
input, generating an external interrupt, or simulating the incoming serial data stream
to a serial port receive input via software.

– When the pin is used as an output, the actual logic level at the pin can be examined
through reading latch Px_IN and compared against the applied output level (either
applied through software via the output register Px, or via an alternate output
function of a peripheral). This can be used to detect some electrical failures at the
pin caused through external circuitry. In addition, software supported arbitration
schemes can be implemented in this way using the open-drain configuration and
an external wired-And circuitry. Collisions on the external communication lines can
be detected when a logic 1 is output, but a logic 0 is seen when reading the pin
value via the input latch Px_IN.

– The output data from a peripheral applied to the pin via an alternate output function
can be read through software or can be used by the same or another peripheral as
input data. This enables testing of peripheral functions or provides additional
connections between on-chip peripherals via the same pin without external wires.
User’s Manual 13-2 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
Figure 13-2 General Port Structure

P u ll-up
P ull-dow n

C on tro l Log ic

O D
O pen D ra in

C on tro l R egis te r

D IR
D irection
R eg iste r

D irection
Se lection

P x
D ata O u tput

R egis te r

In te rn a l B u s

M U X

Select

O u tp u t
D rive r

A ltD a ta O u t 0

A ltD a ta O u t 1

A LT S E L 1
A lte rna te S e lect

R eg is ter 1

A LT S E L 0
A lte rna te S e lect

R eg is ter 0

IN
D ata Inpu t
R eg is ter

A ltD a ta In

S ch m itt
T rig g e r

Pin
Pad
User’s Manual 13-3 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.2 Port Kernel Registers

The individual control and data bits of each digital parallel port are implemented in a
number of registers. Bits with the same meaning and function are assembled together in
the same register. Each parallel port consists of a set of registers. The registers are used
to configure and use the port as general purpose I/O or alternate function input/output.
For most ports not all registers are implemented. The availability of the kernel registers
in the specific ports is defined in Section 13.3 to Section 13.8.

Figure 13-3 Port Kernel Registers

In the TC11IB, the registers of the digital ports are located in the address ranges as
shown in Table 13-2.

– Absolute Register Address = Module Base Address (Table 13-2) + Offset Address
(Table 13-1)

Table 13-1 Port Kernel Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

Px Port x Data Output Register 0010H Page 13-5

Px_IN Port x Data Input Register 0014H Page 13-6

Px_DIR Port x Direction Register 0018H Page 13-7

Px_OD Port x Open Drain Control Register 001CH Page 13-8

Px_ALTSEL0 Port x Alternate Select Register 0 0044H Page 13-9

Px_ALTSEL1 Port x Alternate Select Register 1 0048H Page 13-9

Table 13-2 Port Registers Address Ranges

Port No. Address Range Port No. Address Range

Port 0 F000 2800H - F000 28FFH Port 3 F000 2B00H - F000 2BFFH

Port 1 F000 2900H - F000 29FFH Port 4 F000 2C00H - F000 2CFFH

Port 2 F000 2A00H - F000 2AFFH Port 5 F000 2D00H - F000 2DFFH

P x_D IR

P x_O D

P x

Control Registers Data Registers

P x_IN

P x_A LTS E L0

P x_A LTS E L1
User’s Manual 13-4 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.2.1 Data Output Register

If a port pin is used as general purpose output (GPIO), output data is written into register
Px of port x.

The contents of Px.n are output on the assigned pin if the pin is assigned as GPIO pin
and the direction is switched/set to output (Px_DIR.n = 1). A read operation of Px returns
the register value and not the state of the Px pins.

13.2.2 Data Input Register

The value at a port pin can be read through the read-only register Px_IN. The data input
register Px_IN always contains a latched value of the assigned port pin.

Px
Port x Data Output Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

Pn
(n = 15-0)

n rw Port x Pin n Output Value
0 Port x pin n output value = 0

(default after reset)
1 Port x pin n output value = 1

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 13-5 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
Px_IN
Port x Data Input Register Reset Value: 0000 XXXXH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

r r r r r r r r r r r r r r r r

Field Bits Type Description

Pn
(n = 15-0)

n rw Port x Pin n Latched Input Value
0 Port x input pin n latched value = 0
1 Port x input pin n latched value = 1

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 13-6 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.2.3 Direction Register

The direction of port pins can be controlled in the following ways:

– Always controlled by Px_DIR register
– Controlled by Px_DIR register if used for GPIO and controlled by the peripheral if

used for alternate function
– Controlled by Px_DIR register if used as GPIO and fixed direction if used for

alternate function
– Always fixed if used for GPIO and alternate function

If the port direction is controlled by the respective direction register Px_DIR, the following
encoding is defined:

Px_DIR
Port x Direction Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

Pn
(n = 15-0)

n rw Port x Pin n Direction Control
0 Direction is set to input (default after reset)
1 Direction is set to output

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 13-7 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.2.4 Open Drain Control Register

For ports P1 to P3, each pin in output mode can be switched to Open Drain Mode. If
driven with 1, no driver will be activated; if driven with 0, the pull-down transistor will be
activated.

The open drain mode is controlled by the register Px_OD.

13.2.5 Pull-Up/Pull-Down Device Control

In the TC11IB, internal pull-up/pull-down devices is fixed assignment to apply to a port
pin. It is unnecessary to configure the input and output characteristics. This means that
normal timing and high current outputs are always enabled due to the fixed output driver
characteristics of the GPIO ports. During Power Down, the output driver is switched off.
The last driven value can be kept valid by an internal weak pull-up/pull-down device.

13.2.6 Alternate Input Functions

The number of alternate functions that uses a pin for input is not limited. Each port control
logic of an I/O pin provides several input paths:

• Digital input value via register
• Direct digital input value

Px_OD
Port x Open Drain Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

Pn
(n = 15-0)

n rw Port x Pin n Open Drain Mode
0 Normal Mode, output is actively driven for 0 and

1 state
1 Open Drain Mode, output is actively driven only

for 0 state

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 13-8 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.2.6.1 Alternate Output Functions

Alternate functions are selected via an output muliplexer which can select up to four
output lines. This muliplexer can be controlled by the following signals:

• Register Px_ALTSEL0
• Register Px_ALTSEL1

Selection of alternate functions are defined in registers Px_ALTSEL0 and Px_ALTSEL1.
The tables in the port chapters Section 13.3 to Section 13.8 define which type of select
signal is used for the alternate function selection for each port pin.

13.3 Port 0

Port 0 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as I/O for GPTU0 and
GPTU1 modules.The port lines can be used as standard GPIO pins if its alternate
function is not required.

13.3.1 Features

• Push/pull output drivers
• 3.3 Volt operation for GPIO
• Fixed port hold logic
• Fixed slew-rate and output driver strength
• Fixed pull-up/pull-down devices

13.3.2 Registers

The following port kernel registers are available at Port 0:

Px_ALTSELn (n = 1, 0)
Port x Alternate Select Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
User’s Manual 13-9 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.3.3 Port Configuration and Function

Figure 13-4 Port 0 Configuration

Table 13-3 Port 0 Kernel Registers

Register Short Name Register Long Name

P0 Port 0 Data Output Register

P0_IN Port 0 Data Input Register

P0_DIR Port 0 Direction Register

P0_ALTSEL0 Port 0 Alternate Function Select Register 0

P0_ALTSEL1 Port 0 Alternate Function Select Register 1

O utp ut
D river

Schm itt
T rigger

Pin
PadM

U
X

00

10

P0 P0_ IN P0_ALTSEL0 P0_ALTSEL1 P0_D IR

Pu llup
Pu lldo w n
C o ntro l

A ltD ata In

A ltD ata O ut (G PTU)

In te rna l Bus

Pad C e ll
User’s Manual 13-10 V1.0, 2002-03

TC11IB
System Units

Parallel Ports

13.4 Port 1

Port 1 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as I/O for SSC, MMCI,
ASC and 16X50 modules. The port lines can be used as standard GPIO pins if its
alternate function is not required.

13.4.1 Features

• Push/pull output drivers
• 3.3 Volt operation for GPIO
• Fixed port hold logic
• Fixed slew-rate and output driver strength
• Fixed pull-up/pull-down devices
• Selectable open-drain functions for the following:

Table 13-4 Port 0 Functions

Port Pin Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P0.x
(x = 7-0)

General purpose input P0_IN.x P0_DIR.x = 0

General purpose output P0.x P0_ALTSEL0.x
= 0
P0_ALTSEL1.x
= 0

P0_DIR.x = 1

GPTU0 I/O lines used
as input

GPTU0 P0_DIR.x = 0

GPTU0 I/O lines used
as output

P0_ALTSEL0.x
= 1
P0_ALTSEL1.x
= 0

P0_DIR.x = 1

P0.x
(x = 15-8)

General purpose input P0_IN.x P0_DIR.x = 0

General purpose output P0.x P0_ALTSEL0.x
= 0
P0_ALTSEL1.x
= 0

P0_DIR.x = 1

GPTU1 I/O lines used
as input

GPTU1 P0_DIR.x = 0

GPTU1 I/O lines used
as output

P0_ALTSEL0.x
= 1
P0_ALTSEL1.x
= 0

P0_DIR.x = 1
User’s Manual 13-11 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
– P1.4/MMCI.CMD_OUT/MMCI.CMD_IN
– P1.5/MMCI.DAT_OUT/MMCI.DAT_IN

13.4.2 Registers

The following port kernel registers are available at Port 1:

Table 13-5 Port 1 Kernel Registers

Register Short Name Register Long Name

P1 Port 1 Data Output Register

P1_IN Port 1 Data Input Register

P1_DIR Port 1 Direction Register

P1_OD Port 1 Open Drain Control Register

P1_ALTSEL0 Port 1 Alternate Function Select Register 0
User’s Manual 13-12 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.4.3 Port Configuration and Function

Figure 13-5 Port 1 Configuration

Table 13-6 Port 1 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P1.0 General purpose input P1_IN.0 P1_DIR.0 = 0

General purpose output P1_OUT.0 P1_ALTSEL0.0
= 0

P1_DIR.0 = 1

SSC clock input SCLK SSC P1_DIR.0 = 0

SSC clock output SCLK P1_ALTSEL0.0
= 1

P1_DIR.0 = 1

O utpu t
D rive r

Schm itt
T rigge r

Pin
PadM

U
X

0

1

P1 P1_IN P1_ALTSEL0 P1_O D P1_D IR

Pu llup
Pu lldow n
C ontro l

A ltD ata In

A ltD ataO u t (SSC ,ASC ,M M C I, 16X50)

In terna l Bus

Pad C ell
User’s Manual 13-13 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
P1.1 General purpose input P1_IN.1 P1_DIR.1 = 0

General purpose output P1_OUT.1 P1_ALTSEL0.1
= 0

P1_DIR.1 = 1

SSC master receive
input MRST

SSC P1_DIR.1 = 0

SSC slave transmit
output MRST

P1_ALTSEL0.1
= 1

P1_DIR.1 = 1

P1.2 General purpose input P1_IN.2 P1_DIR.2 = 0

General purpose output P1_OUT.2 P1_ALTSEL0.2
= 0

P1_DIR.2 = 1

SSC slave receive input
MTSR

SSC P1_DIR.2 = 0

SSC master transmit
output MTSR

P1_ALTSEL0.2
= 1

P1_DIR.2 = 1

P1.3 General purpose input P1_IN.3 P1_DIR.3 = 0

General purpose output P1_OUT.3 P1_ALTSEL0.3
= 0

P1_DIR.3 = 1

MMCI clock output CLK MMCI P1_ALTSEL0.3
= 1

P1_DIR.3 = 1

P1.4 General purpose input P1_IN.4 P1_DIR.4 = 0

General purpose output P1_OUT.4 P1_ALTSEL0.4
= 0

P1_DIR.4 = 1

MMCI command input
CMD

MMCI P1_DIR.4 = 0

MMCI command output
CMD

P1_ALTSEL0.4
= 1

P1_DIR.4 = 1

P1.5 General purpose input P1_IN.5 P1_DIR.5 = 0

General purpose output P1_OUT.5 P1_ALTSEL0.5
= 0

P1_DIR.5 = 1

MMCI data input DAT MMCI P1_DIR.5 = 0

MMCI data output DAT P1_ALTSEL0.5
= 1

P1_DIR.5 = 1

Table 13-6 Port 1 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 13-14 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
P1.6 General purpose input P1_IN.6 P1_DIR.6 = 0

General purpose output P1_OUT.6 P1_ALTSEL0.6
= 0

P1_DIR.6 = 1

ASC receiver input RXD
used as input

ASC P1_DIR.6 = 0

ASC receiver input RXD
used as output

P1_ALTSEL0.6
= 1

P1_DIR.6 = 1

P1.7 General purpose input P1_IN.7 P1_DIR.7 = 0

General purpose output P1_OUT.7 P1_ALTSEL0.7
= 0

P1_DIR.7 = 1

ASC transmitter output
TXD

ASC P1_ALTSEL0.7
= 1

P1_DIR.7 = 1

P1.8 General purpose input P1_IN.8 P1_DIR.8 = 0

General purpose output P1_OUT.8 P1_ALTSEL0.8
= 0

P1_DIR.8 = 1

16X50 receiver input
RXD

16X50 P1_DIR.8 = 0

P1.9 General purpose input P1_IN.9 P1_DIR.9 = 0

General purpose output P1_OUT.9 P1_ALTSEL0.9
= 0

P1_DIR.9 = 1

16X50 transmitter
output RXD

16X50 P1_ALTSEL0.9
= 1

P1_DIR.9 = 1

P1.10 General purpose input P1_IN.10 P1_DIR.10 = 0

General purpose output P1_OUT.10 P1_ALTSEL0.10
= 0

P1_DIR.10 = 1

16X50 request to send
output RTS

16X50 P1_ALTSEL0.10
= 1

P1_DIR.10 = 1

P1.11 General purpose input P1_IN.11 P1_DIR.11 = 0

General purpose output P1_OUT.11 P1_ALTSEL0.11
= 0

P1_DIR.11 = 1

16X50 data carrier
detection input DCD

16X50 P1_DIR.11 = 0

Table 13-6 Port 1 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 13-15 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.5 Port 2

Port 2 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as I/O for the Ethernet
controller and MMCI modules. The port lines can be used as standard GPIO pins if its
alternate function is not required.

13.5.1 Features

• Push/pull output drivers
• 3.3 Volt operation for GPIO
• Fixed port hold logic
• Fixed slew-rate and output driver strength
• Fixed pull-up/pull-down devices

P1.12 General purpose input P1_IN.12 P1_DIR.12 = 0

General purpose output P1_OUT.12 P1_ALTSEL0.12
= 0

P1_DIR.12 = 1

16X50 data set ready
input DSR

16X50 P1_DIR.12 = 0

P1.13 General purpose input P1_IN.13 P1_DIR.13 = 0

General purpose output P1_OUT.13 P1_ALTSEL0.13
= 0

P1_DIR.13 = 1

16X50 data terminal
ready output DTR

16X50 P1_ALTSEL0.13
= 1

P1_DIR.13 = 1

P1.14 General purpose input P1_IN.14 P1_DIR.14 = 0

General purpose output P1_OUT.14 P1_ALTSEL0.14
= 0

P1_DIR.14 = 1

16X50 clear to send
input CTS

16X50 P1_DIR.14 = 0

P1.15 General purpose input P1_IN.15 P1_DIR.15 = 0

General purpose output P1_OUT.15 P1_ALTSEL0.15
= 0

P1_DIR.15 = 1

16X50 ring indicator
input RI

16X50 P1_DIR.15 = 0

Table 13-6 Port 1 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 13-16 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.5.2 Registers

The following port kernel registers are available at Port 2:

13.5.3 Port Configuration and Function

Figure 13-6 Port 2 Configuration

Table 13-7 Port 2 Kernel Registers

Register Short Name Register Long Name

P2 Port 2 Data Output Register

P2_IN Port 2 Data Input Register

P2_DIR Port 2 Direction Register

P2_ALTSEL0 Port 2 Alternate Function Select Register

O utput
D river

S chm itt
T rigger

Pin
PadM

U
X

0

1

P 2 P2 _IN P 2_A LTS E L0 P 2_D IR

P ullu p
P u lldow n
C ontro l

A ltD ata In

A ltD ata O ut (E th erne t ,M M C I)

In te rna l B us

P ad C e ll
User’s Manual 13-17 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
Table 13-8 Port 2 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P2.0 General purpose input P2_IN.0 P2_DIR.0 = 0

General purpose output P2_OUT.0 P2_ALTSEL0.0
= 0

P2_DIR.0 = 1

Ethernet transmit data
output 0 MIITXD0

Ethernet P2_ALTSEL0.0
= 1

P2_DIR.0 = 1

P2.1 General purpose input P2_IN.1 P2_DIR.1 = 0

General purpose output P2_OUT.1 P2_ALTSEL0.1
= 0

P2_DIR.1 = 1

Ethernet transmit data
output 1MIITXD1

Ethernet P2_ALTSEL0.1
= 1

P2_DIR.1 = 1

P2.2 General purpose input P2_IN.2 P2_DIR.2 = 0

General purpose output P2_OUT.2 P2_ALTSEL0.2
= 0

P2_DIR.2 = 1

Ethernet transmit data
output 2 MIITXD2

Ethernet P2_ALTSEL0.2
= 1

P2_DIR.2 = 1

P2.3 General purpose input P2_IN.3 P2_DIR.3 = 0

General purpose output P2_OUT.3 P2_ALTSEL0.3
= 0

P2_DIR.3 = 1

Ethernet transmit data
output 3 MIITXD3

Ethernet P2_ALTSEL0.3
= 1

P2_DIR.3 = 1

P2.4 General purpose input P2_IN.4 P2_DIR.4 = 0

General purpose output P2_OUT.4 P2_ALTSEL0.4
= 0

P2_DIR.4 = 1

Ethernet transmit error
output MIITXER

Ethernet P2_ALTSEL0.4
= 1

P2_DIR.4 = 1

P2.5 General purpose input P2_IN.5 P2_DIR.5 = 0

General purpose output P2_OUT.5 P2_ALTSEL0.5
= 0

P2_DIR.5 = 1

Ethernet transmit
enable output MIITXEN

Ethernet P2_ALTSEL0.5
= 1

P2_DIR.5 = 1
User’s Manual 13-18 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
P2.6 General purpose input P2_IN.6 P2_DIR.6 = 0

General purpose output P2_OUT.6 P2_ALTSEL0.6
= 0

P2_DIR.6 = 1

Ethernet management
data clock output
MIIMDC

Ethernet P2_ALTSEL0.6
= 1

P2_DIR.6 = 1

P2.7 General purpose input P2_IN.7 P2_DIR.7 = 0

General purpose output P2_OUT.7 P2_ALTSEL0.7
= 0

P2_DIR.7 = 1

MMCI power supply
enable output VDDEN

MMCI P2_ALTSEL0.7
= 1

P2_DIR.7 = 1

P2.8 General purpose input P2_IN.8 P2_DIR.8 = 0

General purpose output P2_OUT.8 P2_ALTSEL0.8
= 0

P2_DIR.8 = 1

Ethernet receive data
valid input MIIRXDV

Ethernet P2_ALTSEL0.8
= 1

P2_DIR.8 = 0

P2.9 General purpose input P2_IN.9 P2_DIR.9 = 0

General purpose output P2_OUT.9 P2_ALTSEL0.9
= 0

P2_DIR.9 = 1

Ethernet carrier input
MIICRS

Ethernet P2_DIR.9 = 0

P2.10 General purpose input P2_IN.10 P2_DIR.10 = 0

General purpose output P2_OUT.10 P2_ALTSEL0.10
= 0

P2_DIR.10 = 1

Ethernet collision input
MIICOL

Ethernet P2_DIR.10 = 0

P2.11 General purpose input P2_IN.11 P2_DIR.11 = 0

General purpose output P2_OUT.11 P2_ALTSEL0.11
= 0

P2_DIR.11 = 1

Ethernet receive data
input 0 MIIRXD0

Ethernet P2_DIR.11 = 0

Table 13-8 Port 2 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 13-19 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
P2.12 General purpose input P2_IN.12 P2_DIR.12 = 0

General purpose output P2_OUT.12 P2_ALTSEL0.12
= 0

P2_DIR.12 = 1

Ethernet receive data
input 1 MIIRXD1

Ethernet P2_DIR.12 = 0

P2.13 General purpose input P2_IN.13 P2_DIR.13 = 0

General purpose output P2_OUT.13 P2_ALTSEL0.13
= 0

P2_DIR.13 = 1

Ethernet receive data
input 2 MIIRXD2

Ethernet P2_DIR.13 = 0

P2.14 General purpose input P2_IN.14 P2_DIR.14 = 0

General purpose output P2_OUT.14 P2_ALTSEL0.14
= 0

P2_DIR.14 = 1

Ethernet receive data
input 3 MIIRXD3

Ethernet P2_DIR.14 = 0

P2.15 General purpose input P2_IN.15 P2_DIR.15 = 0

General purpose output P2_OUT.15 P2_ALTSEL0.15
= 0

P2_DIR.15 = 1

Ethernet receive error
input MIIRXER

Ethernet P2_DIR.15 = 0

Table 13-8 Port 2 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 13-20 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.6 Port 3

Port 3 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as input for the external
interrupts. For further details regards the interrupt control, please refer to Chapter
“Interrupt System”.

13.6.1 Features

• Push/pull output drivers
• 3.3 Volt operation for GPIO
• Fixed port hold logic
• Fixed slew-rate and output driver strength
• Fixed pull-up/pull-down devices
• Selectable open-drain function

13.6.2 Registers

The following port kernel registers are available at Port 3:

Table 13-9 Port 3 Kernel Registers

Register Short Name Register Long Name

P3 Port 3 Data Output Register

P3_IN Port 3 Data Input Register

P3_DIR Port 3 Direction Register

P3_OD Port 3 Open Drain Control Register
User’s Manual 13-21 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.6.3 Port Configuration and Function

Figure 13-7 Port 3 Configuration

Table 13-10 Port 3 Functions

Port Pin Pin Functionality Associated Register Direction Control

P3.x
(x = 15-0)

General purpose input P3_IN.x P3_DIR.x = 0

General purpose output P3.x P3_DIR.x = 1

O utpu t
D rive r

Schm itt
T rigger

Pin
PadM

U
X

0

1

P3 P3_IN P 3_O D P 3_D IR

Pu llup
P u lldow n
C ontro l

A ltD a ta In

In te rna l Bus

P ad C e ll
User’s Manual 13-22 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.7 Port 4

Port 4 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as input for the external
interrupts. For further details regards the interrupt control, please refer to Chapter
“Interrupt System”.

13.7.1 Features

• Push/pull output drivers
• 3.3 Volt operation for GPIO
• Fixed port hold logic
• Fixed slew-rate and output driver strength
• Fixed pull-up/pull-down devices

13.7.2 Registers

The following port kernel registers are available at Port 4:

Table 13-11 Port 4 Kernel Registers

Register Short Name Register Long Name

P4 Port 4 Data Output Register

P4_IN Port 4 Data Input Register

P4_DIR Port 4 Direction Register
User’s Manual 13-23 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.7.3 Port Configuration and Function

Figure 13-8 Port 4 Configuration

Table 13-12 Port 4 Functions

Port Pin Pin Functionality Associated Register Direction Control

P4.x
(x = 15-0)

General purpose input P4_IN.x P4_DIR.x = 0

General purpose output P4.x P4_DIR.x = 1

O utpu t
D river

Schm itt
T rigger

Pin
PadM

U
X

P4 P4_IN P4_D IR

Pu llup
Pu lldow n
C ontro l

A ltD a ta In

In te rna l Bus

Pad C e ll
User’s Manual 13-24 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.8 Port 5

Port 5 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as output of MMCI
module. The port lines can be used as standard GPIO pins if its alternate function is not
required.

13.8.1 Features

• Push/pull output drivers
• 3.3 Volt operation for GPIO
• Fixed port hold logic
• Fixed slew-rate and output driver strength
• Fixed pull-up/pull-down devices

13.8.2 Registers

The following port kernel registers are available at Port 5:

Table 13-13 Port 5 Kernel Registers

Register Short Name Register Long Name

P5 Port 5 Data Output Register

P5_IN Port 5 Data Input Register

P5_DIR Port 5 Direction Register

P5_ALTSEL0 Port 5 Alternate Function Select Register 0

P5_ALTSEL1 Port 5 Alternate Function Select Register 1
User’s Manual 13-25 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
13.8.3 Port Configuration and Function

Figure 13-9 Port 5 Configuration

Table 13-14 Port 5 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P5.0 General purpose input P5_IN.0 P5_DIR.0 = 0

General purpose output P5_OUT.0 P5_ALTSEL0.0
= 0
P5_ALTSEL1.0
= 0

P5_DIR.0 = 1

MMCI data direction
indicator output
DATRW

MMCI P5_ALTSEL0.0
= 0
P5_ALTSEL1.0
= 1

P5_DIR.0 = 1

O utpu t
D rive r

S chm itt
T rigger

Pin
PadM

U
X

00

10

P5 P 5_IN P 5_ALT SE L0 P5_ ALTS E L1 P 5_D IR

Pu llup
P u lldow n
C ontro l

A ltD a ta In

A ltD a taO ut (M M C I)

In te rna l B us

Pad C e ll
User’s Manual 13-26 V1.0, 2002-03

TC11IB
System Units

Parallel Ports
P5.1 General purpose input P5_IN.1 P5_DIR.1 = 0

General purpose output P5_OUT.1 P5_ALTSEL0.1
= 0
P5_ALTSEL1.1
= 0

P5_DIR.1 = 1

P5.2 General purpose input P5_IN.2 P5_DIR.2 = 0

General purpose output P5_OUT.2 P5_ALTSEL0.2
= 0
P5_ALTSEL1.2
= 0

P5_DIR.2 = 1

MMCI command
direction indicator
output CMDRW

MMCI P5_ALTSEL0.2
= 0
P5_ALTSEL1.2
= 1

P5_DIR.2 = 1

P5.x
(x =
14-3)

General purpose input P5_IN.x P5_DIR.x = 0

General purpose output P5_OUT.x P5_ALTSEL0.x
= 0
P5_ALTSEL1.x
= 0

P5_DIR.x = 1

P5.15 General purpose input P5_IN.15 P5_DIR.15 = 0

General purpose output P5_OUT.15 P5_ALTSEL0.15
= 0
P5_ALTSEL1.15
= 0

P5_DIR.15 = 1

MMCI command line
mode indicator output
ROD

MMCI P2_ALTSEL0.15
= 1
P5_ALTSEL1.15
= 1

P5_DIR.15 = 1

Table 13-14 Port 5 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 13-27 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14 External Bus Unit
The External Bus Control Unit (EBU) of the TC11IB is the interface between external
memories and peripheral units and the internal memories and peripheral units. The basic
structure of the EBU is shown in Figure 14-1.

Figure 14-1 EBU Structure and Interfaces

M C B 04941

EBU _LM B

AD [31 :0]

BC [3 :0]

A [23 :0]

R D

R D /W R

W AIT

SVM

H LD A

BR EQ

ALE

R AS

C S[6 :0]

C SEM U

C SG LB

C SO VL

C AS

C KE

M R /W

R M W

H O LD

C SFPI

EBU C LK

BAA

AD V

AC LK

C M D ELAY

32

4

24

7

LM U

LM B

PM U

D M U LFI

M M UTriC ore

FA S T FP I

To P eriphera ls

FFI

To P eriphera ls
and PC P

S LO W FP I
User’s Manual 14-1 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
The EBU is primarily used for the following two operations:

• Any LMB or FPI masters can access external memories through EBU.
• An external master can only access internal devices through the FPI Bus

The EBU controls all transactions required for these two operations and in particular
handles the arbitration between these two tasks.

The types of external devices/Bus modes controlled by the EBU are:

– INTEL style peripherals (separate RD and WR signals)
– Motorola style peripherals (MR/ W signals)
– ROMs, EPROMs
– Static RAMs
– PC 100 SDRAMs (Burst Read/Write Capacity / Multi-Bank/Page support)
– Specific types of Burst Mode Flashes (Intel 28F800F3/28F160F3, AMD 29BL162)
– Special support for external emulator/debug hardware

14.1 Overview

The External Bus Controller (EBU) is connecting the internal LMB bus and FPI bus and
the external bus. EBU is always a slave on the LMB Bus and either a master or slave on
the FPI Bus. Any LMB of FPI masters thus can access external memories or devices
through EBU of TC11IB. The maximum length of the bursts are according to the size of
program and data cache lines, i.e. 8 x32-bit words. EBU of TC11IB also supports shorter
bursts of 4 and 2 of 32-bit words. Single transfers (non-burst) are supported for 8-bit, 16-
bit and 32-bit wide access. EBU of TC11IB also allows external master to access internal
devices once it grabs the ownership of the external bus, but access is limited through the
FPI bus. The EBU of the TC11IB can

• Support Local Memory Bus (LMB 64-bit)
• Support External bus frequency up to 96 MHz. External bus frequency: internal LMB

frequency = 1:1 or 1:2 or 1:4
• Highly programmable access parameters
• Support Intel-and Motorola-style peripherals/devices
• Support PC 100 SDRAM (burst access, multibanking, precharge, refresh)
• Support 16-and 32-bit SDRAM data bus and 64,128 and 256MBit devices
• Support Burst Flash (Intel 28F800F3/160F3,AMD 29BL162)
• Support Multiplexed access (address &data on the same bus) when PC 100 SDRAM

is not presented on the External Bus
• Support Data Buffering: Code Prefetch Buffer, Read/Write Buffer.
• External master arbitration compatible to C166 and other Tricore devices
• 8 programmable address regions (1 dedicated for emulator)
• CSGLB signal, bit programmable to combine one or more CS lines for buffer control
• RMW signal reflecting s read-modify-write action
• Support Little-and Big-endian
• Signal for controlling data flow of slow-memory buffer
User’s Manual 14-2 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
• Slave unit for external (off-chip) master to access devices on FPI bus

If PC100 compatibility is used, only SDRAM devices can be connected directly to the
EBU pins. Other devices have to be connected through buffers. But when PC 100
SDRAM devices are not connected, these buffers are not needed for other devices. In
addition, the EBU provides special support for external emulator hardware and
debugging support.

The external bus established by the EBU consists of a 32-bit wide data bus, a 24-bit wide
address bus, and a number of control signals. With eight user chip select lines, eight
external address ranges can be accessed, each with a size of up to 64 MBytes (besides
the special emulator range). Each of these ranges can be programmed individually in
terms of location, size and access parameters (such as data size, address mode, wait
states, etc.), making it possible to connect and access different device types in one
system. The EBU dynamically adjusts the access sequence according to the
programmed parameters for each selectable device.

14.2 EBU Features

• 32-bit wide data bus (D[31:0])
– Data width of external device can be 8, 16 or 32 bits
– Automatic data assembly/disassembly operation
– Demultiplexed or multiplexed (address and data on the same bus) operation

• 24-bit wide address bus (A[23:0])
• Bus control signals

– EBU clock output (EBUCLK)
– Additional clock output (ACLK)
– Address latch enable (ALE)
– Read (RD) and read/write (RD/WR)
– Read/Modify/Write signal (RMW)
– Four byte control signals (BC[3:0])
– Seven user chip selects (CS[6:0])
– Buffer control signal (CSGLB)
– External synchronous/asynchronous wait state control (WAIT)
– Motorola-style device control (MR/W)
– Non-standard devices control signal (CMDELAY)
– Protection signal (SVM)

• SDRAM control signals
– SDRAM Devices clock signal (CKE)
– SDRAM row address strobe signal (RAS)
– SDRAM column address strobe signal (CAS)

• Burst FLASH control signals
– Burst FLASH address valid signal (ADV)
– Busrt address advance signal (BAA)
User’s Manual 14-3 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
• 7 user address ranges
– Programmable location and size
– Individual chip select for each range
– Programmable mirror function: the same physical device can be accessed in two

different address ranges
– Enable/disable control

• Programmable access parameters for each address range
– Address mode (multiplexed/demultiplexed)
– Data width
– Byte control signal operation
– Address setup and hold timing
– Data hold wait states
– Read/write wait states
– Recovery cycle wait states
– External WAIT input enable and active level control, asynchronous or synchronous

operation
– Write protection for region

• Programmable wait state insertion to meet recovery/tristate time needs of external
devices between
– Read and write accesses
– Accesses to different address ranges

• External bus arbitration
– Simple three-line interface: bus hold (HOLD), hold acknowledge (HLDA) and bus

request (BREQ) signals
– External bus master/slave arbitration operation
– External master can access EBU with special chip select (CSFPI) to access on-chip

devices connected to the FPI Bus
• Automatic self-configuration on boot from external memory

– Reads configuration data from external memory
• Dedicated emulation support

– Emulator address range
– Emulator memory chip select (CSEMU)
– Overlay chip select for emulator memory (CSOVL)
– Special boot from emulation memory

14.3 Basic EBU Operation

The EBU is the interface or gateway from the internal on-chip system onto the external
on-board system. But it can operate in both directions, it is also a gateway from the
external world onto the internal on-chip system. Figure 14-2 shows an example for the
connection of an external system, including an external bus master, to the EBU. (Note:
not all signals are shown in this diagram. For example, the connections from the external
master to the chip-select (CSn) lines are not shown.
User’s Manual 14-4 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Figure 14-2 Example Configuration for Connection of External Devices

Note: The example given in Figure 14-2 is valid for small systems with a low capacity
(ca. 30 pF max.). For larger systems and high frequency applications, the external
bus must be separated by additional buffers into a fast section (that is, low
capacity, maximum capacitance of 30 pF, and 0 wait-states) and a slow section
(that is, high capacity, with wait states).

The basic operation of the EBU in these two fundamental modes is described in the
following sections. It is assumed for these descriptions that there are no blocking
conditions for the operations (such as EBU is busy, arbitration conflict, etc.), and that no
bus arbitration is required. In later sections of this chapter, operation of the EBU is
described in more detail, and all special conditions and prerequisites as well as bus
arbitration procedures are considered.

M C A04754m od

W
A

IT
C

S
A

[1
:0

]
W

R
O

E
D

[7
:0

]

U
B

C
S

A
[1

8:
1]

W
R

O
E

D
[1

5:
0]

LBC
S

A
[1

5:
0]

O
E

D
[3

1:
0]

B u rs t F lash
M em ories

64K x 32

S R AM

256K × 16

P eriphera l

4 × 8

W
A

IT
A

[2
3:

0]
W

R

E x ternal
M aster

D
[3

1:
0]

R
D

BR E Q
H LD A
H O LD

B
R

E
Q

H
LD

A
H

O
LD

EBU

A D [31:0]
A [23:0]

R D
R D /W R

B C 0
B C 1
B C 2
B C 3

W AIT

C S 0

C
S

A
D

[1
5:

0]

R
D

R
D

/W
R

E PR O M
64K × 8

A
LE

C S 1
C S 2
C S 3

ALE

E B U C LK

C S G LB
C S O V L

C S FP I

A C LK

C S 4
C S 5
C S 6

C S E M U
User’s Manual 14-5 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.3.1 Internal to External Operation

When an internal LMB Bus master wants to perform a read or write transaction from/to
a device connected to the external bus, it sends out the address onto the LMB Bus. The
address needs to be in the address ranges defined as external, as shown in Table 14-1.

The EBU reacts to addresses in these ranges only. It compares the address sent from
the LMB Bus master against the address ranges pre-programmed in its address select
registers, EBU_ADDSELx. If it finds a match in one (or more) of the address regions, it
selects the associated bus control register, EBU_BUSCONx and the associated bus
access parameter register EBU_BUSAPx, for that region, and starts to perform the
external access according to the parameters programmed in the EBU_BUSCONx and
EBU_BUSAPx registers.

On a write operation, the write data from the LMB Bus master is stored inside the EBU,
and the master can continue with its other tasks. The EBU will take care of properly
storing the data to the external device.

On a read operation, the LMB Bus master has to wait until the EBU has retrieved the
data from the external device and has sent it to the master via the LMB Bus. The internal
LMB Bus is blocked for that time, no other transaction can take place.

14.3.2 External to Internal Operation

If an external bus master wants to access a device connected to the external bus or to
an internal module on the FPI Bus, it first needs to receive ownership of the external bus
from the EBU via the bus arbitration procedure. The EBU releases all signals of the
external bus to the other bus master. Internal pull-up or pull-down devices connected to
the EBU signals guarantee stable signal conditions during the transition phase, until the
other bus master has taken over and drives the bus signals.

Table 14-1 EBU External Address Ranges

Segment Address Range Description

8 8000 0000H - 8FFF FFFFH External memory space (cached area)

10 A000 0000H - AFBF FFFFH External memory space (non-cached area)

13 D800 0000H - DDFF FFFFH External peripheral and data memory space
(non-cached area)

DE00 0000H - DEFF FFFFH External emulator memory (non-cached area)

14 E000 0000H - E7FF FFFFH External peripheral and data memory space
(non-cached area)

15 F800 0000H - F800 03FFH EBU special control registers
(non-cached area)
User’s Manual 14-6 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
The external master then performs its transaction over the external bus. If the access is
to the internal FPI Bus, the EBU is activated as a slave via a special chip select signal.
It then acts as an bus master on the internal FPI Bus, performing the required access on
behalf of the external bus master.

Three reprogrammable address extension registers are provided to extend the external
24-bit address to the full 32-bit FPI Bus address. EBU offers the following memory map
to the external master:

14.4 EBU Signal Description

The external signals of the EBU are listed in Table 14-3 and described in the following
sections.

Table 14-2 EBU Memory Map in Slave Mode

Address A(23:0) Resource

C00000H - FFFFFFH FPI
The 32-bit FPI Target Address is generated via the
EXTCON.AEXT3 field1). Byte, Half-Word or Word access is
allowed (subject to support by the corresponding FPI
resource).

1) According to the mapping scheme defined in Section 14.6.2

800000H - BFFFFFH FPI
The 32-bit FPI Target Address is generated via the
EXTCON.AEXT2 field1).Byte, Half-Word or Word access is
allowed (subject to support by the corresponding FPI
resource).

400004H - 7FFFFFH reserved; should not be read or written.

400000H EXTCON Register
32-bit read/write access only (see Section 14.12.8).

000000H - 3FFFFFH FPI
The 32-bit FPI Target Address is generated via the
EXTCON.AEXT0 field1). Byte, Half-Word or Word access is
allowed (subject to support by the corresponding FPI
resource).

Table 14-3 EBU Signals available on the TC11IB Ports

Signal Type Pull Function

AD[31:0] I/O Up Address/data bus lines 31-0

A[23:0] I/O Up Address bus lines 23-0
User’s Manual 14-7 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
CS[6:0] O Up Chip select n (n = 6-0)

CSEMU O Up Chip select for emulation region
selects external emulator memory region

CSOVL O Up Chip select for overlay memory
selects external overlay memory region

CSGLB O Up Chip select Global

CSFPI I Up Chip select FPI for external master
selects EBU as target in the slave mode

EBUCLK O – External bus clock

ACLK O – Additional clock

RD I/O Up Read control line; active during read operation

RD/WR I/O Up Write control line; active during write operation

ALE O Down Address latch enable

ADV O up Address valid strobe

MR/W O Up Motorola-style read/write control line

BC0 I/O Up Byte control line n (n = 3-0)
controls the byte access to corresponding byte
location

BC1 I/O Up

BC2 I/O Up

BC3 I/O Up

WAIT I/O Up Wait for inserting wait states

CMDELAY I Up Command delay for inserting delays input

BAA O Up Burst address advance output

RMW O Up Read/Modify/Write signal output

HOLD I Up Hold request input

HLDA I/O Up Hold acknowledge input/output

BREQ O Up Bus request output

CKE O Up Clock enable for SDRAM output

RAS O Up Row address strobe for SDRAM output

CAS O Up Column address strobe for SDRAM output

SVM O Up Supervisor mode output

Table 14-3 EBU Signals available on the TC11IB Ports (cont’d)

Signal Type Pull Function
User’s Manual 14-8 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.4.1 Address Bus, A[23:0]

The address bus of the EBU consists of 24 address lines, giving a directly addressable
range of 16 MBytes. Directly addressable means, that these address lines can be used
to access any location within one external device, such as a memory. This external
device is selected via one of the chip select lines. While there are seven chip selects,
seven such devices with up to 16 MBytes of address range can be used in the external
system.

Note: The address bus outputs the address in multiplexed mode.

If an external bus master is used in the system, and this master performs an access to
the internal bus via the EBU, the address bus is switched to input. A special mechanism,
described in Section 14.6.2, is provided to extend the external 24 address lines to the
full 32-bit internal address.

14.4.2 Address/Data Bus, AD[31:0]

The Address/Data bus transfers data information in demultiplexed mode, and transfers
address and data information in multiplexed mode. The width of this bus is 32 bits.
External devices with 8, 16 or 32 bits of data width can be connected to the data bus.
The EBU adjusts the data on the data bus to the width of the external device, according
to the programmed parameters in its control registers. See Section 14.5.4 for more
information. The byte control signals, BCx, specify which part of the data bus carries
valid data. See also Section 14.4.5.

In multiplexed mode, the 32-bit address is first output on the bus. The bus is then set to
input on a read access, or the data is output on a write access. Signal ALE captures the
address from the bus either by the external device itself or into an external address latch.

Note: In multiplexed mode, only the lower 26 lines of this 32-bit bus are used to transfer
the address. The upper 6 lines are valid but irrelevant.

14.4.3 Read/Write Strobes, RD and RD/WR

Two lines are provided to trigger the read (RD) and write (RD/WR) operations of external
devices. While some read/write devices require both signals, there are devices with only
one control input. The RD/WR line is then used for these devices. This line will go to an
active low level on a write, and will stay inactive high on a read. The external device
should only evaluate this signal in conjunction with an active chip select. Thus, an active
chip select in combination with a high level on the RD/WR line indicates a read access
to this device.

14.4.4 Address Latch Enable, ALE

This signal is used in the multiplexed mode to indicate a valid address on the address/
data bus AD[31:0]. The high-to-low transition of this signal is used to capture the address
User’s Manual 14-9 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
in an external address latch (transparent latch) or the external multiplexed device. The
length of ALE is programmable to accommodate timing requirements of the external
device. In demultiplexed mode ALE is inactive (low).

14.4.5 Byte Control Signals, BCx

The byte control signals BC[3:0] select the appropriate byte lanes of the data bus for both
read and write accesses. Table 14-4 shows the activation on access to a 32-bit, 16-bit
or 8-bit external device. Please note that this scheme supports little-endian devices.

Signals BCx can be programmed for different timing. The available modes cover a wide
range of external devices, such as RAM with separate byte write-enable signals, and
RAM with separate byte chip-select signals. This allows external devices to connect
without any external “glue” logic. Refer to Table 14-5 for byte-control timing.

14.4.6 External Extension of the Command Delay,CMDELAY

The CMDELAY input can be used to extend the Command Delay Phase, i.e. to cause
EBU to insert additional cycles prior to the activation of the RD, RD/WR control lines.
This signal can programmed on a region to region basis to be ignored or sampled either
synchronously or asynchronously (selected via the BUSCON[6:0].XCMDDELAY and
EMUBC.XCMDDELAY parameters). The signal will only take effect after the

Table 14-4 Byte Control Pin Usage

Width of External Device BC3 BC2 BC1 BC0

32-bit device
with byte write capability

AD[31:24] AD[23:16] AD[15:8] AD[7:0]

16-bit device
with byte write capability

inactive
(high)

inactive
(high)

AD[15:8] AD[7:0]

8-bit device inactive
(high)

inactive
(high)

inactive
(high)

AD[7:0]

Table 14-5 Byte Control Signal Timing Options

Programmed Mode BCx Signal Timing

Chip Select Mode BCx signals have the same timing as the generated chip select
CS.

Control Mode BCx signals have the same timing as the generated control
signals RD or RD/WR.

Write Enable Mode BCx signals have the same timing as the generated control
signal RD/WR.
User’s Manual 14-10 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
programmed number of Command Delay Phase cycles has passed (i.e. the signal can
only be used to extend the phase, not to shorten it).

When programmed for synchronous operation, CMDELAY is sampled on every rising
edge of LMB Clock during the Command Delay phase. This sampled value is then used
on the next rising edge of LMB Clock to decide whether to prolong the Command Delay
Phase or to start the next phase.

Note: Due to the one cycle delay in Synchronous Mode between the sampling of the
CMDELAY input and its evaluation by EBU, the Command Delay Phase must
always be programmed to be at least one LMB Clock cycle (via the
BUSAP[6:0].CMDDELAY and EMUBAP.CMDDELAY bit-fields) in this mode.

When programmed for asynchronous operation, CMDELAY is also sampled at each
rising edge of LMB Clock during the Command Phase. However an extra cycle is
inserted for synchronization prior to the use of the sampled value (i.e. the sampled value
is not used until the second following rising edge of LMB Clock). This minimizes the
chance of the propagation of metastable signals into the module due to the CMDELAY
signal changing at or around the same time as the rising edge of LMB Clock. This, in turn,
allows the use of asynchronous input signals.

Note: Due to the two cycle delay in Asynchronous Mode between the sampling of the
CMDELAY input and its evaluation by EBU, the Command Delay Phase must
always be programmed to be at least two LMB Clock cycles (via the
BUSAP[6:0].CMDDELAY and EMUBAP.CMDDELAY bit-fields) in this mode.

14.4.7 Variable Wait State Control, WAIT

This is an input signal to the EBU allowing the external device to force the EBU to insert
additional wait states prior to deactivation of the RD, RD/WR lines. WAIT can be
enabled/disabled on a region to region basis by software and programmed to be active
low or active high (the active level forces additional wait states). The
BUSCON[6:0].WAITINV and EMUBC.WAITINV bits are used to select the desired
polarity. Its sampling by the EBU can be selected to be synchronous or asynchronous
(selected via the BUSCON[6:0].WAIT and EMUBC.WAIT parameters).

A fixed number of initial wait states should be programmed for the access because the
external device usually requires time to react to an access and properly set WAIT to the
appropriate level, and because the EBU requires time to sample and react to the WAIT
signal.

If synchronous mode is selected, WAIT is sampled on the rising edge of LMB Clock so
that it can be evaluated at the next rising edge of the clock. Due to the one cycle delay
in Synchronous Mode between the sampling of the WAIT input and its evaluation by
EBU, the wait states must always be programmed to be at least one LMB Clock cycle
via the BUSAP[6:0].WAITRDC, BUSAP[6:0].WAITWRC, EMUBAP.WAITRDC and
EMUBAP.WAITWRC bit-fields. In asynchronous mode, the WAIT signal is also sampled
User’s Manual 14-11 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
at each rising edge of LMB Clock. However, an extra cycle is inserted for synchronization
prior to the use of the sampled value, so that it minimizes the chance of the propagation
of metastable signals into the module due to the WAIT signal changing at or around the
same time as the rising edge of LMB Clock. Thus, asynchronous operation of WAIT may
results in one additional wait state compared to synchronous operation. Due to the two
cycle delay in Asynchronous Mode between the sampling of the WAIT input and its
evaluation by EBU, the wait states must always be programmed to be at least two LMB
Clock cycles via the BUSAP[6:0].WAITRDC, BUSAP[6:0].WAITWRC,
EMUBAP.WAITRDC and EMUBAP.WAITWRC bit-fields.

14.4.8 Chip Select Lines, CSx, CSGLB

The EBU provides seven user chip selects, CS0, CS1, CS2, CS3, CS4, CS5 and CS6.
The address ranges for which these chip selects are generated are programmed via the
address select registers, EBU_ADDSELx, in a very flexible way (see Section 14.5.1).

Chip Select line CSGLB can be programmed to combine one or more the above CSx
lines. This signal can be used to control a buffer located between EBU and slow memory/
peripheral devices when using PC100 SDRAM.

If overlapping address regions are programmed in the EBU_ADDSELx registers, only
one chip select — the one with the lower number (higher priority) — will be activated on
an access within the overlapping address range.

If the number of chip select lines is not sufficient, additional chip-select signals can be
generated by combining one chip select output with some address bits. In this case, all
generated chip selects must share the same EBU timing and data width parameters.
Figure 14-3 shows how CS3 can be divided into four smaller regions. Using this
solution, the regions must be of equal size.

Figure 14-3 Simple Chip Select Expansion

M C S04756

D ecoderA [23:22]

C S 3

S C S 0

S C S 1

S C S 2

S C S 3
> 1

> 1

> 1

> 1
User’s Manual 14-12 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.4.9 EBU Arbitration Signals, HOLD, HLDA and BREQ

These signals are used by the EBU to negotiate ownership of the external bus with
another external bus master. The HOLD signal (Hold Request) is used to request
release of the bus from the EBU. If done so, the EBU acknowledges it with signal HLDA
(Hold Acknowledge). Signal BREQ (Bus Request) is used by the EBU to signal its desire
to get bus ownership to the external bus master.

More detailed descriptions of these signals and the bus arbitration modes of the EBU can
be found in Section 14.7.

14.4.10 EBU Chip Select, CSFPI

An external bus master has the option to access modules connected to the internal FPI
Bus of the TC11IB. To do so, it first has to arbitrate for ownership of the external bus.
Then, it accesses the external bus with an appropriate address and activates CSFPI to
inform the EBU that the access is to be performed from the external bus onto the internal
FPI Bus. In this case, the EBU acts as a slave on the external bus, but as a master on
the internal FPI Bus. It performs the FPI Bus transaction on behalf of the external bus
master. Refer to Section 14.6.3 and its subsections for more information on this signal.

14.4.11 Emulation Support Signals, CSEMU and CSOVL

To support emulation and debugging, the EBU provides a special emulator memory chip
select, CSEMU, and an overlay memory chip select, CSOVL. A detailed description of
these signals can be found in Section 14.5.1.

Note: These signals are intended solely for the purpose of emulation and debugging.
Using these signals for normal application purposes may result in conflicts when
using emulators/debuggers, and may severely hinder proper debugging. It is
strongly recommended to exclude these signals from normal application usage.

14.5 Detailed Internal to External EBU Operation (Master Mode)

The following subsections provide more insight into the operation of the EBU for internal
to external transactions. In the master mode, EBU supports interconnection to a wide
variety of devices with flexible programming of the access parameters. The types of
external access cycle provided by EBU are:

• Asynchronous devices - demuxed and muxed accesses like ROMs, E²PROMs,
SRAMs, peripherals etc.

• Burst mode FLASH devices
• SDRAM devices

Examples of external memories/peripherals include:-

• INTEL style peripherals (separate RD and WR signals).
• Motorola style peripherals (MR/W signals).
User’s Manual 14-13 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
• ROMs, EPROMs.
• Static RAMs.
• SDRAMs (burst read / write capability/multi bank/page support).
• Specific types of Burst Mode Flashes.
• Multiplexed address / data bus peripherals.

Each (internal) LMB/FPI master can access external devices via EBU. EBU provides a
number of user programmable external memory regions each with an associated
individual Chip Select signal (see Section 14.5.1). An LMB/FPI transaction which
matches one of these user programmable external memory regions will be translated by
EBU to the appropriate external access(es). The type of transfer and the parameters of
the external bus transaction are flexible and programmable on a region by region basis.

If PC100 compatibility is required, then only the PC100 SDRAM devices can be
connected directly to the EBU pins. In this case other memory/peripheral devices must
be connected through buffers to minimize EBU pin loading. Buffers are not needed when
PC100 SDRAM devices are not used.

14.5.1 EBU Address Regions

The EBU provides eight programmable address regions (including the emulator range),
each with its own chip select. The access parameters for each of the region can be
programmed individually to accommodate different types of external devices. Seven of
these regions are provided for normal user application purposes, while the eighth one is
reserved for emulator usage.

Three EBU registers and a chip select line are dedicated to each of the regions. The
address range of the region is programmed through the address select register,
EBU_ADDSELx (x = 0..6). The access parameters for the external device in that region
are programmed through the respective bus control register, EBU_BUSCONx, and bus
access parameter register, EBU_BUSAPx. Each region can be defined as either normal
asynchronous/demultiplexed, multiplexed, burst FLASH or SDRAM access. The access
to the external device is performed using the associated chip select line, CSx.
Additionally CSGLB can be programmed to combine one or more the above CS lines.
This signal can be used to control the buffer located between the EBU of TC11IB and
slow devices.

The EBU also provides an overlay memory chip select CSOVL to redirect accesses to
the target system to another external memory. Both external devices must have the
same access parameters (data width, address range, timing). CSOVL can be enabled
for accesses to each defined region and has to be used in the following way:

– CSOVL gates the RD and RD/WR signal to the target system. These signals can
pass through only if CSOVL is inactive (‘1’), i.e. a read/write access to the target
system is possible.
User’s Manual 14-14 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
– CSOVL enables the external overlay memory (wired to the chip select of the
memory), i.e. if CSOVL is active, a read/write access to the overlay memory will be
performed (instead of the target system).

Which region to be redirected is programmable through OVL parameter in EMUOVL
register.

Table 14-6 summarizes the registers and chip selects associated with the eight regions.

14.5.1.1 Address Region Selection

Any LMB Bus address belonging to one of the external ranges shown in Table 14-1
activates the EBU (provided the EBU is idle). It picks up the address and compares it to
the eight address regions programmed through its address select registers (including the
emulator range). Each address select register (EBU_ADDSELx, EBU_EMUAS) contains
five bit fields:

• Bit REGEN is the enable control of that region. If the region is disabled (REGEN = 0),
any address in that region presented to the EBU will result in a bus error reported back
to the master requesting the access. Also the chip select associated with that range
is disabled.

• Bit field BASE specifies address bits A[31:12] of region x, where A[31:28] must only
point to segments 8,10,13,14 and 15 which are covered by the EBU (see Table 14-1).

• Bit field MASK specifies how many bits of an LMB Bus address must match the
contents of the BASE(x) bit field (to a maximum of 15, starting with A[26]). (Note that
address bits A[31:27] must always match.) This parameter defines the length of a
region.

Table 14-6 EBU Address Regions, Registers and Chip Selects

Address
Region

Address Select
Register

Bus Control
Register

Bus Access
Parameter
Register

Chip
Select

User region 0 EBU_ADDRSEL0 EBU_BUSCON0 EBU_BUSAP0 CS0

User region 1 EBU_ADDRSEL1 EBU_BUSCON1 EBU_BUSAP1 CS1

User region 2 EBU_ADDRSEL2 EBU_BUSCON2 EBU_BUSAP2 CS2

User region 3 EBU_ADDRSEL3 EBU_BUSCON3 EBU_BUSAP3 CS3

User region 4 EBU_ADDRSEL4 EBU_BUSCON4 EBU_BUSAP4 CS4

User region 5 EBU_ADDRSEL5 EBU_BUSCON5 EBU_BUSAP5 CS5

User region 6 EBU_ADDRSEL6 EBU_BUSCON6 EBU_BUSAP6 CS6

Emulator region EBU_EMUAS EBU_EMUBC EBU_EMUBAP CSEMU
User’s Manual 14-15 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
• The ALTSEG bit field specifies an alternate segment for comparison with A(31:28).
This means that A(31:28) is compared to BASE(31:28) and also to ALTSEG(11:8).
For both case A(27) has to match BASE(27).

• Bit ALTEN indicates whether ALTSEG is valid or invalid.

Figure 14-4 illustrates how the comparison of the LMB Bus address to the address
region setup in register EBU_ADDSELx/EBU_EMUAS is performed to determine
whether or not a region is selected.

Figure 14-4 Address Region Selection

This address region scheme described above implies the following:

• The smallest possible address region is 212 bytes (4 KBytes)
• The largest possible address region is 227 bytes (128 MBytes)
• The start address of a region depends on the size of the region. It must be at an

address which is a multiple of the size of a region; for example, the smallest region
can be placed on any 4-KByte boundary, while the largest region can be placed on
128-MByte boundaries only.

Table 14-7 shows the possible region sizes and start granularity, as determined by the
programming of the MASK bit field. The range of the offset address within such a region
is also given. Please note that in demultiplexed mode, only addresses A[23:0] are

31
LM B B us
A ddress

28 27 26 12 11 0

E qual ? &

15
15

E xpans ion

&
E qual ? 4

31
E B U _A DD S E Lx
R egis ter

28 27 26 12 1 047

B A S E

M A S K

A LTE N

RE G E N

R eg ion ×
S e lected

A LTS E G

811

E qual ? E qua l ?

+

User’s Manual 14-16 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
actually output to the external system. In multiplexed mode, a 32-bit address is output
on AD[31:0].

Due to the scheme shown in Table 14-7, memory regions can overlap and there can be
gaps between regions. EBU actions in these cases are as follows.

1. An address lies in EBU register region (LMB only):
The EBU will perform desired EBU register access.

2. An address lies in exactly one defined region:
The EBU will perform the requested access to external memory.

3. An address lies in more than one region (overlapping regions):
The access is performed to the region with higher priority where region 0 has the
highest priority, region 7 has the lowest.

4. The address does not lie in any region, or lies in a disabled region:
In case of an unknown external address or disabled region, the EBU will return an
error-acknowledge code on the LMB/FPI Bus.

Table 14-7 EBU Address Regions Size and Start Address Relations

MASK No. of Address
Bits compared
to BASE[26:12]

Range of Address
Bits compared to
BASE[26:12]

Region Size and
Start Address
Granularity

Range of Offset
Address Bits
within Region

1111B 15 A[26:12] 4 KBytes A[11:0]

1110B 14 A[26:13] 8 KBytes A[12:0]

1101B 13 A[26:14] 16 KBytes A[13:0]

1100B 12 A[26:15] 32 KBytes A[14:0]

1011B 11 A[26:16] 64 KBytes A[15:0]

1010B 10 A[26:17] 128 KBytes A[16:0]

1001B 9 A[26:18] 256 KBytes A[17:0]

1000B 8 A[26:19] 512 KBytes A[18:0]

0111B 7 A[26:20] 1 MByte A[19:0]

0110B 6 A[26:21] 2 MBytes A[20:0]

0101B 5 A[26:22] 4 MBytes A[21:0]

0100B 4 A[26:23] 8 MBytes A[22:0]

0011B 3 A[26:24] 16 MBytes A[23:0]

0010B 2 A[26:25] 32 MBytes A[24:0]

0001B 1 A[26] 64 MBytes A[25:0]

0000B 0 – 128 MBytes A[26:0]
User’s Manual 14-17 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Note: When mirrored segments are being defined, one has to take care that there is no
collision. TC11IB does not have a checking mechanism to ensure that each
segment defined (either in BASE(31:28) or ALTSEG(11:8) or both) is exclusive.
Therefore one must ensure that each mapping from region 0 to 7 does not
interfere with any other, otherwise only the mapping with the highest priority will
take effect. Region 0 is the highest, while region 7 is the lowest.

14.5.1.2 Address Region Parameters

When a LMB Bus address presented to the EBU is found to belong to one of its
programmed active (enabled) address regions, the EBU performs the external bus
access according to the global EBU parameters stored in register EBU_CON and
according to the individual parameters stored in the bus control register,
EBU_BUSCONx, and bus access parameter register, EBU_BUSAPx, associated with
that address region. The selection of the appropriate access parameters is shown in
Figure 14-5.

Figure 14-5 Access Parameter Selection Phases

At the end of the LMB/FPI address phase (cycle ‘n’ above), the 32-bit LMB address is
made available to the region comparison logic. In the second phase (cycle ‘n + 1’ above)
the region comparison logic determines whether the LMB/FPI address lies within an
active region (or regions). If the address is not matched (i.e. is not within an active region)
then the “No Match” signal causes EBU to return an LMB/FPI Error Acknowledge and
discard the access. Otherwise the “Region” signal passes the region index number (in
the case of multiple region matches, this is the index number of the lowest matching
region) to the parameter selection logic. During the third phase (cycle ‘n + 2’ above) the

Region 0 address
compare

Region 7
(emulator)

address compare

Region 6 address
compare

Region 5 address
compare

Region 4 address
compare

Region 3 address
compare

Region 2 address
compare

Region 1 address
compare

LM B Add ress

32

LM B to EB U
A ccess
cyc le n

Region
Arbitration

N o M a tch

Region 0
parameters

Region 7
(emulator)
parameters

Region 6
parameters

Region 5
parameters

Region 4
parameters

Region 3
parameters

Region 2
parameters

Region 1
parameters

Se
le

ct
R egion

3

C om parison
cycle n+1

Access
Parameter

Check

Error

S e lec tion
cyc le n+2

E xterna l
Access S tarts

cycle n+3
User’s Manual 14-18 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
parameter selection logic selects the appropriate access cycle parameters. At the end of
this cycle, the access parameters associated with the highest priority region are
checked. If the access is invalid, then EBU returns an LMB/FPI Error Acknowledge and
discards the access. Otherwise the parameters are made available to the external bus
driver logic. These parameters are then used to select/initialize the appropriate external
access cycle state machine and also to make the selection of the external bus pins to be
used for the access cycle. The next cycle (cycle ‘n + 3’ above) should see the actual start
of the external bus access cycle on the external bus pins.

The part of programmable parameters for the support of eight external regions are listed
in Table 14-8.

Table 14-8 LMB Master Mode Programmable Parameters

Parameter Function Register

AGEN Access type for each external region:
DEMULTIPLEXED, MULTIPLEXED,
BURST_FLASH, SDRAM_TYPE0, SDRAM_TYPE1

EBU_BUSCON
x (x=0-6)
EBU_EMUBC

ALTSEG Alternate segment defined for each external region EBU_ADDRSE
Lx (x=0-6)
EBU_EMUAS

BASE Base address for each external region which is used
in conjunction with the mask parameter

EBU_ADDRSE
Lx (x=0-6)
EBU_EMUAS

MASK Address mask for each external region. Specifies the
number of right-most bits in the base address starting
from bit 26.

EBU_ADDRSE
Lx (x=0-6)
EBU_EMUAS

ALTEN Enable bit for alternate segment for each external
region.

EBU_ADDRSE
Lx (x=0-6)
EBU_EMUAS

REGEN Enable bit for each external region. A disabled region
will always generate a miss during address
comparison.

EBU_ADDRSE
Lx (x=0-6)
EBU_EMUAS

ENDIAN The endian mode for each external region:
LITTLE_ENDIAN or BIG_ENDIAN

EBU_BUSCON
x (x=0-6)
EBU_EMUBC

PORTW The data width for each external region:
16_BIT or 32_BIT

EBU_BUSCON
x (x=0-6)
EBU_EMUBC

WR To specify the write protection for each memory
region: ON or OFF

EBU_BUSCON
x (x=0-6)
EBU_EMUBC
User’s Manual 14-19 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Write Protection

Each address region has an associated bit to provide write protection (programmable on
a region by region basis). Write protection is controlled by the “WR” bit in the
EBU_BUSCONx (x=0-6) and EBU_EMUBC registers.

Little/Big Endian Access Modes

The native mode of EBU is little endian. In addition, EBU provides limited support for big
endian access modes. Big endian accesses are supported by modifying the least
significant two address bits. This feature is programmable (on a region by region basis)
through the “ENDIAN” bit in the EBU_BUSCONx (x=0-6) and EBU_EMUBC registers.

Big endian access mode is available only for single accesses (8, 16 or 32 bit) to external
regions programmed for 16-bit wide operation. There is no support for burst accesses to
regions that have been programmed for big endian operation. There is no concept of little
and big endian for accesses to 32-bit wide external regions.

Table 14-9 shows how the lower two bits of the LMB/FPI address is modified prior to
being issued as an address on the external bus:

GLBCS To select one or more chip-select lines to generate
CSglb

EBU_CON

OVL To select one or more chip-select lines to generate
CSovl

EBU_EMUOVL

BUSCLK To select the prescaler factor for EBUCLK, equal,
half or one-fourth of LMB Clock

EBU_CON

Table 14-9 Little and Big Endian Address Translation

External Address (binary)

Internal
(LMB/FPI)
Address
(binary)

Little Endian Big Endian

16-bit Access 8-bit Access 16-bit Access 8-bit Access

...xxx00B ...xxx00B ...xxx00B ...xxx10B ...xxx11B

...xxx01B -1)

1) This represents a non-aligned 16-bit access which can never be generated on the LMB.

...xxx01B -1) ...xxx10B

...xxx10B ...xxx10B ...xxx10B ...xxx00B ...xxx01B

...xxx11B -1) ...xxx11B -1) ...xxx00B

Table 14-8 LMB Master Mode Programmable Parameters

Parameter Function Register
User’s Manual 14-20 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
LMB Bus Width Translation

If the internal access width is wider than the external bus width specified for the selected
external region (programmed via the EBU_BUSCONx (x=0-6).PORTW bit-field), then
the internal access is split into several external accesses to complete the required
access. For example, if the LMB request is to read a 64-bit word and the external device
is specified to be 16-bit wide, then EBU will perform four external accesses (i.e. to 4 x
16-bit external addresses). When multiple accesses are generated in this way external
bus arbitration is suspended until the access is complete (i.e. EBU remains the owner of
the bus for the duration of the access sequence). The external accesses are performed
in ascending LMB/FPI address order.

To allow proper bus width translation EBU has the capability to re-align data between the
external bus and the LMB as shown in Figure 14-6.

Figure 14-6 LMB to External Bus Data Re-alignment

• During an access to a 32-bit wide external region either “buffer 1” or “buffer 2” is
enabled (according to bit 2 of the LMB address being accessed) to perform the
required 64 bit (LMB) data to 32-bit bus alignment (signified by “Data32[31:0]” above).
To generate a 32-bit access to the external data bus (AD[31:0]) “buffer 3” and “buffer
5” are enabled together.

• During an access to a 16-bit wide external region either “buffer 1” or “buffer 2” is
enabled (according to bit 2 of the LMB address being accessed) and either “buffer 4”
or “buffer 5” is enabled (according to bit 1 of the LMB address being accessed). This
allows any LMB channel byte pair (i.e. any properly aligned 16-bit data) to be re-
aligned to the lower 16 bits of the external data bus (AD[15:0]).

LMB Data
Buffers
(Most

Significant
32-bits)

LMB Data
Buffers
(Least

Significant
32-bits)

Data64[63:32]

Data64[31:0]

Data32[31:0]

Data32[31:16]

Data32[31:16]

Data32[31:16]

DataMS16[15:0]

DataLS16[15:0]

EBU Data
Bus pins

AD[31:16]

EBU Data
Bus pins
AD[15:0]

Exte rna l
D ata B us
A D[31 :1 6]

E xterna l
Da ta B us
AD [15 :0]

�

�

�

�

�

User’s Manual 14-21 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Note: When accessing a 16-bit wide external region programmed for big endian
operation the LMB address is modified prior to being driven to the external bus
(see Table 14-9). For a 64-bit access this will generate external bus accesses in
the address sequence x010B, x000B, x110B, x100B. For a 32-bit access the
external bus address sequence will be xx10B, xx00B.

FPI Bus Width Translation

If the internal access width is wider than the external bus width specified for the selected
external region (programmed via the EBU_BUSCONx (x=0-6).PORTW bit-field), then
the internal access is split into several external accesses to complete the required
access. For example, if the FPI request is to read a 32-bit word and the external device
is specified to be 16-bit wide, then EBU will perform two external accesses (i.e. to 2 x 16-
bit external addresses). When multiple accesses are generated in this way external bus
arbitration is suspended until the access is complete (i.e. EBU remains the owner of the
bus for the duration of the access sequence). The external accesses are performed in
ascending FPI address order.

To allow proper bus width translation EBU has the capability to re-align data between the
external bus and the FPI as shown in Figure 14-7.

Figure 14-7 FPI to External Bus Data Re-alignment

• During an access to a 32-bit wide external region “buffer 1” and “buffer 3” are enabled.
• During an access to a 16-bit wide external region either “buffer 2” or “buffer 3” is

enabled (according to bit 1 of the FPI address being accessed). This allows any FPI
channel byte pair (i.e. any properly aligned 16-bit data) to be re-aligned to the lower
16 bits of the external data bus (AD[15:0]).

Note: When accessing a 16-bit wide external region programmed for big endian
operation the FPI address is modified prior to being driven to the external bus (see
Table 14-9). For a 32-bit access the external bus address sequence will be xx10B,
xx00B.

FPI Data
Buffers

Data32[31:0]

Data32[31:16]

Data32[31:16]

Data32[31:16]

DataMS16[15:0]

DataLS16[15:0]

EBU Data
Bus pins

AD[31:16]

EBU Data
Bus pins
AD[15:0]

Exte rna l
D a ta Bus
A D [31 :16]

E xte rna l
D a ta B us
AD [15 :0]

�

�

�

User’s Manual 14-22 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
External Bus Clock Generation

EBU uses the LMB clock to generate all external bus access sequences. Two additional
clocks are generated by EBU for accesses to synchronous memory devices:

• EBUCLK is used to interface to SDRAM devices. The parameter BUSCLK in the
EBU_BUSCONx (x=0-6) register is used to control the frequency of this signal.

• ACLK is used to interface to Burst FLASH device. The parameter extclock in the
EBU_BFCON register is used to control the frequency of this signal.

Read/Modify/Write Accesses

During a Read/Modify/Write access from either the LMB or FPI bus, EBU uses the RMW
pin to signal that a Read/Modify/Write access is underway. During the read access cycle
(of a Read/Modify/Write access), the RMW pin is driven low with the appropriate CSx
(chip select) pin. The RMW pin remains high throughout the subsequent write access
(and all subsequent accesses that are not the start of a Read/Modify/Write access).

FPI Read/Modify/Write transactions can only be generated for accesses up to and
including Word accesses i.e. Byte (8-bit), Half-Word (16-bit) and Word (32-bit) accesses.
Generation of a Read/Modify/Write access with data widths greater than 32-bits will
cause invalid EBU operation.

Note: The Read/Modify/Write feature is intended for use with fully compatible external
devices (e.g. devices containing an additional instance of EBU). External bus
slave devices that are not fully compatible with the Read/Modify/Write feature
must not use the RMW signal.

14.5.2 Driver Turn-Around Wait States

Besides the wait states that can be inserted into an external access, the EBU supports
the insertion of wait states in between consecutive accesses. This may be necessary if
the current access is to a different address region than the previous one, or if a read
access is followed by a write access, or vice versa. The insertion of wait states between
the accesses allows the timing of accesses to external devices to be fine-tuned to gain
higher performance.

When, for instance, a number of read accesses to an external memory are performed
with a demultiplexed bus configuration, the memory is the only driver on the data bus,
providing its data onto the bus. The memory is constantly selected via its chip select. If
an access to a different device is performed (different address region, different chip
select), the memory is deselected, and the next device is selected. However, many
memory devices need a specific time to fully release the bus, to tristate their output
drivers. Recovery wait states would need to be inserted at the end of the last access to
the memory to ensure enough time to get off the bus before the next access occurs.
User’s Manual 14-23 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
A similar situation is true if a read access is followed by a write access. The data bus
driver role must change from the memory to the EBU. Again, the memory needs time to
release the data bus, and recovery wait states need to be inserted.

If this recovery wait state insertion would be programmed via the address region
parameters (see Section 14.5.1.2), the wait states would apply to every access to the
device, thus, slowing down the access performance. Instead, the EBU offers the option
to insert such wait states either between accesses to different address regions (different
chip selects) or between read and write accesses.

Since the internal clock runs much faster than the external devices, some devices may
need to have long cycles in each phase. A general multiplier for all delays is not
necessary and can be replaced with a better scheme where some configurations may
have one or more of the phases relatively much longer than another. This will optimize
the access and tune individual phase better to the device access characteristics.

Parameter CMULT (in BUSAPx and EMUBAP registers) provides multiplication factors
of 1, 4, 8, 16 and 32. Delay parameters WAITRDC, WAITWRC, DTARDWR and DTACS
are hardwired to always use the multiplier, as these delays tend to be larger than other
access parameters. Other individual seven access parameters (ADDRC, AHOLDC,
CMDDELAY, BURSTC, DATAC, RDRECOVC and WRRECOVC) are programmable as
whether they are multiplied by CMULT. Each bit in MULTMAP is used to indicate
whether each of the seven parameters mentioned above is multiplied by CMULT.

Programming of these wait states is done through register EBU_BUSCONx and
EBU_BUSAPx. Between 0 and 480 idle cycles can be inserted between accesses to
different address regions via bit field DTACS, while DTARDWR provides the option to
insert between 0 and 15 idle cycles multiplied by bit field CMULT between a read and a
write access, or vice versa. With these options, access performance to external devices
is significantly improved, especially when a number of consecutive access of the same
type (read or write) is performed.

14.5.3 Data Buffering

There are three data buffers used to adapt accesses taken place between the 16-bit or
32-bit external bus (accesses to external devices, SDRAMs, flashes, or other memories)
and the internal 64-bit Local Memory Bus (LMB, running at the multiplication of the power
of two of the external bus speed, 1x, 2x, 4x) transactions and vice versa. A single 64-bit
word Data Read Buffer, four 64-bit words Code Prefetch Buffer and four 64-bit word Data
Write Buffer. The ratio of LMB to external bus frequency is programmable via the
EBUCON.BUSCLK. The LMB transactions can not be split, i.e. the master will own the
bus until the transactions are completed.

• Code Prefetch Buffer, For LMB code fetch transactions, every two 32-bit word data
in the buffer will make up for a LMB response. This buffer is enough to service an LMB
four word burst read request (BTR4) and support the code cache line size of TriCore.
When the code is highly sequential in nature, the prefetch buffer can help speeding
User’s Manual 14-24 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
up the instruction fetching process. This feature is programmable through bit pre in
each of BUSCONx and EMUBC registers. On an instruction fetch cycle, a transaction
originated from the PMU takes place (most likely a cache line refill) on the LMB. At the
end of this request, a prefetch activity is triggered to fill up the Code Prefetch Buffer
by reading the next four consecutive 64-bit words. When using synchronous
memories (i.e. SDRAM or Burst FLASH), the prefetch is performed by extending the
access by the appropriate number of cycles. For example, SDRAM burst (maximum
up to the page boundary, code prefetching across SDRAM page boundaries is not
supported). This prefetch will follow on immediately from the triggering code access,
extending the access by typically 8 clock cycles for SDRAM. For asynchronous
memories, the prefetch is performed by generating the appropriate number of device
read accesses.The result of prefetch will be that, when the next request of sequential
instructions arrive, the buffer is ready with the instructions. The only exception will be
if a data access starts during the code access. In this case the pending prefetch will
be cancelled. This feature will be user selectable and controlled by bit wpre in the
BUSCONx and EMUBC registers.

Note: A code prefetch is only triggered by a PMU read access that is handled via the
Data Read Buffer. A PMU read access that is serviced by the Code Prefetch Buffer
will not generate a subsequent code prefetch.

• Data Read Buffer, This buffer is used when a LMB master performs a read from a
device on the external bus. The buffer helps composing the appropriate data width
(e.g. 32 or 64-bit data) to be delivered on LMB from the appropriate number of 16-bit
or 32-bit data fetched from external bus. When a LMB data read transaction occurs,
this can be translated to a external read access or a bypass from Data Write Buffer. If
the requested data is not in the Data Write Buffer, an external read access is
generated. User must disable/enable the bypass feature through DLOAD bit in
BUSCONx or EMUBC registers, but this feature is always disabled for segment 14 (
A[31:28] is equal to ’1110’). Software must ensure data coherency through DLOAD
bit. When EBU receives an external bus read access which represents a TriCore code
fetch (i.e. generated by PMU) to a memory region with prefetch enabled, this will
cause EBU to perform a Code Prefetch into the Code Prefetch Buffer.

• Data Write Buffer, This buffer is used when a cache line is being updated to the
memory. When a LMB data write transaction occurs, this will be translated to external
write accesses. The buffer holds the 64-bit data to be written in two 32-bit external
write accesses. The size of this buffer matches cache line size of the data cache. A
bypass is used from this buffer to the Data Read Buffer, when the buffer holds the
requested read data as explained above.
User’s Manual 14-25 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.5.4 Data Width of External Devices

The EBU supports external devices with a data width of 8, 16 or 32 bits. If the data width
of an access is less than the width of the external device, the internal access is split into
several external accesses to fetch the complete data requested.

14.5.5 Basic Access Timing

This section describes the basic access sequences of the EBU to external devices.
Refer to the TC11IB Data Sheet for detailed timing diagrams and timing values.

Note: All timings described in this section are specified relative to the EBUCLK signal.

14.5.5.1 Standard Access Phases

Accesses to asynchronous and Burst FLASH devices are composed of a number of
Standard Access Phases. There are seven Standard Access Phases:

• Address Phase (AP), where the valid address is being put on the address bus. This
phase is compulsory and can be repeated for slower devices. The falling edge of ALE
signal can be used by devices to sample the valid address. The number of additional
cycles (the number of LMB Clock cycles) is programmed as ADDRC parameter in
BUSAPx and EMUBAP registers.
When an access is performed to a Burst FLASH device, the start of the Address
Phase is always synchronized to a rising edge of the appropriate ACLK signal.

• Address Hold (AH), this phase is only for multiplexed devices where additional hold
cycles are required to continue to drive the address lines, but having ALE deasserted.
The number of cycles (the number of LMB Clock cycles) in this phase is
programmable through AHOLDC parameter in BUSAPx and EMUBAP registers and
can optionally be multiplied by the CMULT parameter, which is enabled via
MULTMAP parameter (in BUSCONx and EMUBC registers).

• Command Delay (CD), the delay between address and command phase. This phase
is optional. Some devices are not fast enough to receive commands immediately after
taking in the address, delay are needed in between. The number of delay cycles can
be programmed as CMDDELAY (in BUSAPx and EMUBAP registers) and optionally
be multiplied by the CMULT parameter. This Command Delay phase can also be
prolonged externally by asserting the CMDELAY signal when the region being
accessed is programmed for external command delay control via the XCMDDELAY
parameters (in BUSAPx and EMUBAP registers). To distinguish between the two, in
this document CDi means ’internally-programmed’ Command Delay and CDe means
’externally-prolonged’ Command Delay by the assertion of CMDELAY signal.

• Command Phase (CP), where the action read/write is explicitly being put out. This
phase is compulsory and can be repeated for inserting waitstates. There are separate
parameters to reflect the number of wait state cycles in the read and write access. The
WAITRDC parameter indicates how many additional cycles are required in a read
User’s Manual 14-26 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
access, while WAITWRC for write accesses. External device can also prolong the wait
states by asserting the WAIT signal. For read accesses, data are latched at the end
of this phase. In write accesses, this is the phase where the data is being put on the
AD[31:0] bus and latched by external devices at the rising edge of WR. WAITRDC and
WAITWRC are in the BUSAPx and EMUBAP registers. Just like CD, CP is also
distinguished into CPi and CPe. CPi also means ’internally-programmed’ CP and CPe
means ’externally-prolonged’ Command Phase by the assertion of WAIT signal.

• Data Hold (DH), where hold cycles are provided for write data when the WR signal
has gone inactive. This phase is optional and can be repeated, for example to have a
prolonged hold bus for a write access to a slow device. The parameter DATAC (in
BUSAPx and EMUBAP registers) is the number of cycles in the data hold phase.

• Burst Phase (BP), This phase is compulsory during accesses to Burst FLASH
devices. In order to read the required amount of data from the Burst FLASH device,
this phase is repeated as many times as required. The length of each Burst Phase can
be programmed via the BURSTC parameter (in BUSAPx and EMUBAP registers) and
can optionally be multiplied by the CMULT parameter.

• Recovery Phase (RP), where the idle cycles are inserted between transfers on the
data bus. This phase is optional. When accessing the same memory region, the
number of inserted recovery cycles are programmable. In the case of read and write
accesses the number of cycles in the recovery phase can also be different
(programmable through RDRECOVC in BUSAPx and EMUBAP registers and
WRRECOVC in BUSAPx and EMUBAP registers), to adapt the various behavior of
devices. When going across a different memory region, the recovery cycles can also
be inserted (DTACS in BUSAPx and EMUBAP registers), as well as switching
between read and write (DTARDWR in BUSAPx and EMUBAP registers).

Table 14-10 Parameters for Recovery Phase

Case Parameter

Switching to
different CSn

Current
access

Next
access

same CSn read read RDRECOVC

same CSn write write WRRECOVC

same CSn read write max(RDRECOVC, DTARDWR)

same CSn write read max(WRRECOVC, DTARDWR)

different CSn read read max(DTACS, RDRECOVC)

different CSn write write max(DTACS, WRRECOVC)

different CSn read write max(DTACS,RDRECOVC,
DTARDWR)

different CSn write read max(DTACS,WRRECOVC,
DTARDWR)
User’s Manual 14-27 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
The parameters in Table 14-10 implies the maximum number of recovery cycles under
each particular circumstances. For example, a read access to a region associated with
CS1 is followed by a write to a region associated with CS2. In this case if DTARDWR is
greater than DTACS and RDRECOVC, then the number of recovery cycles between the
two accesses are DTARDWR.

Throughout the document the number following the phase name means the number of
clock cycle has been executed so far for the respective phase. For example, AP2 points
to the second clock in the Address Phase. CPe3 means the third clock in the Command
Phase and is being extended by external wait-states.

14.5.5.2 Access to Demultiplexed Devices

EBU supports different configurations of Demultiplexed memory/peripheral devices.
Selection of the appropriate Demultiplexed Memory configuration will be performed by
programming the PORTW parameter in registers BUSCONx.

Note: These settings only apply when the “AGEN” field specifies that the device
connected to the appropriate chip select is a Demultiplexed device.

Devices with demultiplexed access (demultiplexed access) can be controlled by
separate RD and RD/WR signals. Figure 14-8 shows the basic sequence of a read
access in demultiplexed mode.
User’s Manual 14-28 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Figure 14-8 Basic Read Access Timing in Demultiplexed Devices

This type of access cycle consists of from two to four phases as follows:

– Address Phase (compulsory).
– Command Delay Phase (optional).
– Command Phase (compulsory).
– Recovery Phase (optional).

Figure 14-9 shows an example of a write access to a demultiplexed device. This type of
access cycle consists of from two to five phases as follows:

– Address Phase (compulsory).
– Command Delay Phase (optional).

A P

A [23 :0]

A LE

C S

R D

A D V

E B U C LK

address add ress

R D /W R

A D [31:0] da ta in

new A PR PC PC D

M R /W

B C x

N otes:
1 . BC x (by te C ontro l) s igna ls can be p rog ram m ed to be asse rted e ither w ith
read/w rite ac tive (R D or R D /W R) o r w ith C h ip Se lect ac tive (C Sx).
2 . C D and R P a re op tiona l phases.
User’s Manual 14-29 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
– Command Phase (compulsory).
– Data Hold Phase (optional).
– Recovery Phase (optional).

Figure 14-9 Basic Write Access Timing in Demultiplexed Devices

14.5.5.3 Access to Multiplexed Devices

EBU supports different configurations of Multiplexed memory/peripheral devices.
Selection of the appropriate Multiplexed Memory configuration will be performed by
programming the PORTW parameter in registers BUSCONx as.

Note: These settings only apply when the “AGEN” field specifies that the device
connected to the appropriate chip select is a Multiplexed device.

A P

A [23 :0]

A LE

C S

R D /W R

A D V

E B U C LK

address address

R D

A D [31:0] da ta ou t

new A PR PC PC D

M R /W

B C x

N otes:
1 . BC x (byte C on tro l) s igna ls can be p rogram m ed to be asserted e ithe r w ith
read /w rite active (R D o r R D /W R) or w ith C h ip Se lec t ac tive (C Sx).
2 . C D , D H and R P a re op tiona l phases.

D H
User’s Manual 14-30 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Devices using multiplexed address and data lines can be supported by the EBU
according to the features and requirements. In multiplexed mode, the address/data bus
AD[31:0] is shared between address output and data input/output. In the first part of
access, the address is driven onto AD[31:0]. The address latch enable signal (ALE) is
used to capture the address either into the external device (supporting multiplexed
address/data) or into an external address latch. Then, the bus is switched to either input
for a read access, or the write data is driven onto the bus on a write access. Figure 14-
10 shows the basic sequence of a read access in multiplexed mode. Under Multiplexed
access mode, 128 MB memory space externally can be addressed to support Windows
CE applications.

This type of access cycle consists of from two to five phases as follows:

– Address Phase (compulsory).
– Address Hold Phase (optional)
– Command Delay Phase (optional).
– Command Phase (compulsory).
– Recovery Phase (optional).
User’s Manual 14-31 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Figure 14-10 Basic Read Access Timing in Multiplexed Devices

Figure 14-11 shows an example of a write access to a multiplexed device. This type of
access cycle consists of from two to six phases as follows:

– Address Phase (compulsory).
– Address Hold Phase (optional).
– Command Delay Phase (optional).
– Command Phase (compulsory).
– Data Hold Phase (optional).
– Recovery Phase (optional).

address

A P

A [23 :0]

A LE

C S

R D

A D V

E B U C LK

address add ress

R D /W R

A D [31 :0] data in

new A PR PC DA H

M R /W

B C x

N otes:
1 . BC x (byte C ontro l) s igna ls can be p rog ram m ed to be asserted e ithe r w ith
read /w rite active (R D or R D /W R) or w ith C h ip Se lect active (C Sx).
2 . AH , C D and R P a re optiona l phases.

C P
User’s Manual 14-32 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Figure 14-11 Basic Write Access Timing in Multiplexed Devices

14.5.6 Interfacing to Asynchronous Devices

Figure 14-12 illustrates a typical connection for INTEL-style and Motorola-style
peripherals. This also illustrates the use of a buffer to maintain pin loading requirements
when using PC100 SDRAM devices. In this configuration all external devices (except the
SDRAM) are connected through a buffer. The MR/W signal indicates the data direction
for the current transfer and can be used to control the data direction through the buffer
for the AD[31:0] bus (as well as controlling whether an access to a Motorola-Style device
is read or write). The CSGLB signal is used to enable the outputs of the buffer during any
access to a device other than SDRAM.

address

A P

A [23 :0]

A LE

C S

R D /W R

A D V

E B U C LK

address address

R D

A D [31:0] da ta out

new A PR PC DA H

M R /W

B C x

N otes :
1 . BC x (byte C ontro l) s igna ls can be prog ram m ed to be asse rted e ithe r w ith
read/w rite ac tive (R D o r R D /W R) o r w ith C h ip S e lect ac tive (C S x).
2 . AH , C D , D H and R P are op tiona l phases.

C P D H
User’s Manual 14-33 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Note: When operating EBU in this configuration, the user must ensure that the CSGLB
output is asserted low for all accesses to devices which are connected via the
buffer by programming the appropriate value into the EBUCON.globalCS bit-field.

Figure 14-12 Typical Connection of Asynchronous Devices

By consulting Figure 14-11 (multiplexed write access cycle), it can be seen that it is
impossible to support multiplexed devices when a buffer is used in the configuration
shown in Figure 14-12 above. From these two figures it can be seen that during the
Address Phase the data direction of the buffer (controlled by the MR/W signal) would
cause the buffer to attempt to drive AD[31:0] at the same time that EBU is attempting to
drive the multiplexed address to AD[31:0]. This would lead to bus contention and also
the issuing of an invalid address to a multiplexed device located on the right hand side
of the buffer (as shown in Figure 14-12 above).

In general there are two critical phases during asynchronous device accesses. These
phases are:

• Command Delay Phase (see Section 14.5.5.1).
• Command Phase (see Section 14.5.5.1).

For maximum flexibility, in addition to internal length programming for these two phases,
EBU also provides optional length control by use of external control lines:

EBU
Buffer

A D [31:0]
A [23:0]

C S y

R D
R D /W R

M R /W

W A IT

C S G LB

Intel-Style
Device

A D [31 :0]

C E

O E
W E

C S x

A D [31:0]

C S y

R D
R D /W R

M R /W

W A IT

C S x

O E

A [23:0] A [23:0]

Motorola-Style
Device

A D [31:0]

A S

R /W

D TA C K

A [23:0]
User’s Manual 14-34 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.5.6.1 Interfacing to INTEL-style Devices

Figure 14-13 shows an example of accessing an INTEL-Style demultiplexed device for
both read and write accesses. This shows the insertion of delay cycles (shown shaded)
to adjust the access cycle to the device’s timing requirements.

Both read and write accesses begin with a two cycle Address Phase followed by a two
cycle Command Delay Phase.

For the read access, the Command Delay Phase is followed by a three cycle Command
Phase. At the end of the Command Phase, the data is read (latched) by EBU. A one
cycle Recovery Phase is inserted at the end of the cycle. At the start of this Recovery
Phase all control signals return to their non-active levels.

For the write access the Command Delay Phase is followed by a two cycle Command
Phase. During a write access it is possible to insert a Data Hold Phase to satisfy the data
hold time requirements of the device. In the example the Data Hold Phase consists of
two cycles. During the Data Hold Phase, the RD/WR control signal is driven to the non-
active state but the data and address are still driven on the bus.
User’s Manual 14-35 V1.0, 2002-03

TC11IB
System Units

External Bus Unit

Figure 14-13 Example of an INTEL-style Demultiplexed Device Access

14.5.6.2 Interfacing to Motorola-Style Devices

Figure 14-14 gives an example of Motorola-style access. The chip-select signal (CS) is
used to generate the AS input for the device. The MR/W signal maintains its level

A P 1

A [23:0]

A LE

C S

R D

E B U C LK

address x

A D [31:0]
da ta

in

new
A P 1R P 1C P i1CD i1

(a) Read Access

N otes : A LE is no t used for in te rfac ing to In te l-s ty le devices and is show n for re ference on ly.

(b) W rite Access

A P 2 C D i2 C P i2 C P i3 R P 2

A P 1

A [23:0]

A LE

C S

R D /W R

E B U C LK

address x

A D [31:0] da ta ou t

new
A P 1D H2C P i1CD i1A P 2 C D i2 C P i2 D H 1 R P 1
User’s Manual 14-36 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
(according to whether the cycle is read or write) from the Address Phase to the Recovery
Phase during each access.

Externally controlled wait states are used to synchronize with the DTACK output from the
device. A device asserts DTACK during a read access to signal that the data is available
on the data bus. During a write access the falling edge of DTACK signals that the device
has completed the write access and the data can be removed from the data bus. This
can be accommodated by use of the WAIT signal with inverse polarity (selected via the
EBU_BUSCONx (x=0-6).WAITINV or EBU_EMUBC.WAITINV bits) with the following
limitations:

• During read accesses a minimum command phase (three LMB Clock cycles) must be
used to ensure correct recognition of the WAIT input.

• Only the falling edge of DTACK is recognized by the WAIT pin and the user must insert
sufficient recovery cycles to ensure that the DTACK pin has returned high before the
next external bus cycle starts (i.e. before the next falling edge of any CSx signal).
Typically devices de-assert DTACK after the rising edge of their AS input (which is
connected to an EBU CSx output).
User’s Manual 14-37 V1.0, 2002-03

TC11IB
System Units

External Bus Unit

Figure 14-14 Example of an Motorola-style Demultiplexed Device Access

AP

A [23:0]

C S

M R /W

EB U C LK

add ress address

AD [31:0] data in

new A PR PC P eC P i

(a) R ead Access

N otes: C S is connected as AS to M otoro la dev ices, w h ile W AIT (w ith inverse po la rity) is
connected to the D TAC K ou tpu t.

(b) W rite Access

W A IT

A P

A [23:0]

C S

M R /W

EB U C LK

add ress add ress

A D [31:0] data ou t

new A PR PC P eC P i

W A IT
User’s Manual 14-38 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.6 Detailed External to Internal EBU Operation (Slave Mode)

The following subsections provide a more detailed insight into the operation of the EBU
for external to internal transactions. Such transactions can be performed by an external
bus master that wants to perform a read or write access to an on-chip FPI Bus device.
The master needs to have ownership of the external bus, thus, bus arbitration will be
required before such an access (see Section 14.7.1). This master can access the EBU
by activating the EBU chip select input CSFPI and presenting a proper address on the
address bus. The features and functions of this operation and its basic timing are
described in the following.

Note: In the TC11IB, if an external bus master is used to access internal peripherals,
then PCP must never access the external Bus. When the external master is not
used, PCP may access the external bus.

14.6.1 EBU Signal Direction

When the EBU is accessed by an external master that wants to read or write an internal
module, the direction of some of the EBU signals need to be reversed. The address bus
and control signals are now inputs to the EBU, driven by the external master. The data
bus is input for writes, and output for reads. The WAIT signal is now driven by the EBU
to indicate to the master the necessity for additional wait states. Table 14-11 lists the
EBU signals for external to internal operation and indicates their direction and relevance
for the access.

Table 14-11 EBU Signals for External to Internal Operation

Signal Direction Pull Driven by

AD[31:0] Input for write access,
output for read access

Up External Master for writes, EBU for
reads

A[23:2] Input Up External Master

RD Input Up External Master

RD/WR Input Up External Master

CSFPI Input Up External Master

BC0 Input Up External Master

BC1 Input Up External Master

BC2 Input Up External Master

BC3 Input Up External Master

WAIT Output (Open Drain) Up EBU

RMW Input/Output Up EBU
User’s Manual 14-39 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.6.2 Address Translation

While EBU is operating in Slave mode, it offers the memory map to the external master
as shown in Table 14-2.

Because the external address bus is only 24 bits wide, any external address presented
by an external bus master must be extended to the full 32-bit FPI Bus address width via
an address translation mechanism. It gives access up to three 4 MByte regions at a time.
The external 24-bit address is extended to a full 32-bit FPI address by concatenation of
A[21:2] with the contents of one of three 10-bit registers. An address extension register
will be selected depending on bits A[23:22]. The default values of the address extension
registers give an external master the possibility to access the 4 Mbytes of segment 14 :
E8000000H - E83FFFFFH (CPU memories), segment 11 : BFC00000H - BFFFFFFFH
(CommDRAM) and segment 15 : F0000000H - F03FFFFFH (internal peripheral space).
These registers can be reprogrammed by the external master in EXTCON register to
access also other areas (if enabled by software through bit EXTRECON in EBUCON
register). To write correct address extension values into register EXTCON is necessary.
This register is only accessible from the external bus (by external master). The extended
address must never point to an external region because this could cause a deadlock
situation on the LMB bus. The EBU of TC11IB would try to access an external region
while being occupied by the access of the external master.

In order to keep security, it is possible to inhibit all accesses from an external master to
FPI. The bit EXTACC of register EBUCON is internally combined with the CSFPI signal
and can prevent the device from ever being selected. All external accesses to FPI will
be performed in user or supervisor mode depending on the value of bit EXTSVM in
register EBUCON.

The external master can set bit RMWEN in register EXTCON so that the EBU of TC11IB
locks the FPI bus to speed up a sequence of accesses (e.g. for read-modify-write
accesses). Like other parameters in EXTCON, this can only be changed by external
master if bit EXTRECON in EBUCON register is set.

Figure 14-15 gives an overview on the address extension operation. The byte-control
mapping function generates A[1:0] and specifies the access type from the byte-control

Table 14-12 Default Values for the Address Extension

A[23:22] AEXT(n)[31:22] Location

00B 1110 1000 00 Segment 14: CPU memories

01B others Used for reprogramming EXTCON
register

10B 1011 1111 11 Segment 11: CommDRAM

11B 1111 0000 00 Segment 15: Internal Peripheral
User’s Manual 14-40 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
signals BC[3:0], which must be generated by the external master. The EBU always
behaves as a little-endian 32-bit device that supports aligned accesses only.

Figure 14-15 External to Internal Address Extension

14.6.3 External to Internal Access Control

Three bits in register EBU_CON and one bit in register EBU_EXTCON help to control
external accesses to the EBU. Access from an external master to the internal resources
via the EBU can be enabled or disabled via bit EXTACC in register EBU_CON. Accesses

Table 14-13 Byte Control Mapping Function

BC3 BC2 BC1 BC0 FPI Bus Access Width FPI Bus Address A[1:0]

0 Byte

00B0 0 Half-word

0 0 0 0 Word

0 Byte 01B

0 Byte
10B0 0 Half-word

0 Byte 11B

Other combinations Undefined

M C A 04762

31
FP I Bus
Address

22 21 1 02

2

B yte
C ontro l

M app ing

BC 2
B C 3 B C 1

B C 0

M U X

22 21 1 0223

AE X T3

AE X T2

AE X T0

A [23:22] = 11 B

A [23 :22] = 10B

A [23:22] = 00 B

10

2 20

E xte rna l Address
User’s Manual 14-41 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
can be performed in User mode or in Supervisor mode as determined by the level at pin
SVM (defined by.bit EBU_CON.EXTSVM). The option to reprogram the address
extension registers by the external master can also be enabled or disabled through bit
EXTRECON. These controls are useful to prevent hostile or faulty accesses from the
external world onto the FPI Bus.

If the external master needs to perform read-modify-write accesses to the FPI Bus, it can
lock the FPI Bus such that no other transaction can take place between the read and the
write operation. This is done through bit RMWEN in register EBU_EXTCON. See also
Section 14.12.8.

14.6.4 Basic Access Timing

When accessed by an external master, the EBU behaves like a 32-bit wide, little-endian
device with byte write capability. Accesses must be naturally aligned. Thus, an external
master must drive the BCn signals and align byte writes to the appropriate data bus byte
lane. Usually, the external master derives its clock from a source other than the EBU.
Thus, timing synchronization is specified in relation to the RD and RD/WR signals.

Access time is mainly determined by the time needed for synchronization (two internal
clock cycles required, worst case) and the time consumed by the FPI Bus transfer (at
least three internal clock cycles required). The earliest start point of an FPI Bus transfer
for an external master access is given in Table 14-14.

A write access will request additional waitstates only if the former write access has not
finished yet (because write accesses are buffered).

A Read/Modify/Write operation (on the external bus) consists of a read cycle followed by
a write cycle. The write access must be of the same data width and to the same address
as the proceeding read. At the start of the read cycle, the external master drives the
RMW signal low to show that the read access is part of a Read/Modify/Write access.
When EBU samples the RMW signal low at the start of a read cycle, this causes the EBU
FPI Master interface to generate an FPI RMW access (rather than a discrete Read
access). This will automatically lock the FPI bus until the completion of the associated
Write access.

Note: Read/Modify/Write accesses must only be generated by a fully compatible
external master.

Table 14-14 Earliest Start Point of FPI Bus Transfer for External Master Accesses

Type of Access Start Point of FPI Transfer (earliest)

External master reads from FPI device synchronized address bus, RD, RD/WR and BC

External master writes to FPI device synchronized address bus, RD, RD/WR, BC
and data bus
User’s Manual 14-42 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Figure 14-16 Basic External to Internal Read Access Timing

Figure 14-17 Basic External to Internal Write Access Timing

M C T04763

A [23:2]

D ata V a lid

A ddress / B y te C on tro l
B C [3 :0]

C S FP I

R D

R D /W R

W A IT

A D [31:0]

M C T04764

A [23:2]

D ata V a lid

A ddress / B y te C on tro l
B C [3 :0]

C S FP I

R D

R D /W R

W A IT

A D [31:0]
User’s Manual 14-43 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.7 Arbitration

The function of the External Bus Controller is manifold. It establishes and controls the
external bus and acts as a bidirectional interface between the internal and the external
system. Additionally, it provides bus arbitration support to allow up to two masters to use
the external bus. Except EBU, an external master can grab the external bus and access
external devices (leaving EBU off the external bus) or accessing internal devices
(through FPI bus). Every time a master requires the external bus, it will signal to the
current master and wait for it to release the bus. This scheme is compatible to other
Tricore and C166 devices, therefore such devices can be used as external master.

14.7.1 Arbitration Modes

The arbitration logic of the EBU can be configured to one of four modes through
configuration pins during reset or setting ARBMODE after reset:

1. No Bus:
All accesses from internal LMB/FPI Bus masters to the external bus via the EBU are
disabled and will cause an LMB/FPI Bus error.

2. Arbiter Mode:
The EBU is normally the owner of the external bus. This mode is the default mode
after reset if external boot is configured. Bus ownership must be requested from the
EBU if another external bus master (configured to Participant Mode) needs to get onto
the external bus.

3. Participant Mode:
Another external bus master is the default owner of the external bus. The EBU will
request bus ownership from this master only in case of a pending transfer issued by
an internal LMB/FPI Bus master.

4. Sole Master Mode:
This mode is used when the EBU is the only master on the external bus. No external
bus arbitration is necessary in this configuration, and accesses to the external bus are
always possible. LMB accesses to the external bus take priority over FPI accesses to
the external bus. If an FPI master submits a request to access the external bus which
cannot be serviced due to a pending or on-going LMB transaction then EBU will issue
an FPI-Retry response. If an LMB master submits a request to access the external bus
which cannot be serviced due to a pending or on-going FPI transaction then EBU will
issue an LMB-Retry response.The arbitration signals are not evaluated in this mode.

14.7.1.1 Arbitration Signals

The EBU has three signals dedicated to external bus arbitration, HOLD (hold input),
HLDA (hold acknowledge) and BREQ (bus request). As described in this section, these
signals are used differently depending on the arbitration mode. Figure 14-18 shows the
interconnection of arbitration signals for an arbiter and a participant. Table 14-15 shows
the function of the arbitration pins in arbiter mode, and Table 14-16 shows the function
User’s Manual 14-44 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
of these pins in participant mode. The term “participant mode” in this context relates to
the mode of bus arbitration; the EBU is still considered as one of the external bus
masters in this mode.

Figure 14-18 Connection of the Bus Arbitration Signals

Note: This simple connection allows two devices with the same (such as two TC11IBs)
or very similar arbitration schemes to perform bus arbitration. If more than two
external bus masters are used, external circuitry is required for proper arbitration.

.

Table 14-15 Arbitration Signals in Arbiter Mode

Pin Type Function in Arbitration External Master Mode

HOLD In While HOLD is high, the EBU is operating in normal mode and is the
owner of the external bus. A high-to-low transition indicates a hold
request from an external device. The EBU finishes ongoing
transactions, then backs off the bus, activates HLDA and goes into hold
mode.
A low-to-high transition causes it to exit from hold mode. The EBU
deactivates HLDA, takes over the bus, and resumes normal operation.

HLDA Out This signal is high during normal operation. When the EBU enters hold
mode, it sets HLDA low after releasing the bus. On exit of hold mode,
the EBU first sets HLDA high and then goes onto the bus again. It does
this to avoid collisions.

BREQ Out This signal is high during normal operation. The EBU activates BREQ
at the earliest one clock cycle after activating HLDA if it must perform
an external bus access. If the EBU has regained the bus, BREQ is set
to high one clock cycle after deactivation of HLDA.

M C A04766m od

A rb ite r P atic ipan t

H O LD

H LD A

BR E Q

H O LD

H LD A

BR E Q
User’s Manual 14-45 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
When synchronous arbitration signal sampling is selected (parameter ARBSYNC in
EBUCON), the arbitration input signals are sampled and evaluated in the same clock
cycle. This mode provides the least overhead during arbitration (i.e. when changing bus
ownership). The disadvantage is that the input signals must adhere to set-up and hold
times with LMB Clock to prevent the propagation of meta-stable signals into EBU.

When asynchronous arbitration signal sampling is selected (parameter ARBSYNC in
EBUCON), the arbitration signals are sampled and then fed to an additional latch to be
evaluated in the cycle following that in which they were sampled (i.e. the signals pass
through a cascade of two latches before being evaluated). This provides EBU with good
immunity to signals changing state at or around the time at which they are sampled. The
disadvantage is the introduction of additional latency during arbitration (i.e. when
changing bus ownership).

14.7.1.2 Arbitration Sequence

Figure 14-19 shows the sequence of bus arbitration signals in a arbiter/participant
system. In this context, the terms “arbiter” and “participant” refer to the arbitration modes.
The participant is one of the bus masters on the external bus, capable of initiating bus
transactions and driving the external bus, but it is not the default owner of the bus. It must
request the bus from the arbiter (default owner of the external bus) to perform a
transaction. At start-up, the arbiter is in normal mode and operating on the external bus;
the participant is in hold mode, operating from internal memory; the participant’s bus
interface is tristated.

• Stage 1) The participant detects that it must perform an external bus access. It
activates BREQ, which issues a hold request to the arbiter.

Table 14-16 Arbitration Signals in Participant Mode

Pin Type Function in Arbitration External Slave Mode

HOLD In While both HOLD and HLDA are high, the EBU is in hold mode, and the
external bus interface signals are tristated. When the EBU is released
out of hold mode (HLDA = 0) and has completely taken over control of
the external bus, a low level at this pin requests the EBU to go into hold
mode again. But in any case the EBU will perform at least one external
bus cycle before going into hold mode again.

HLDA In A high-to-low transition at this pin releases the EBU from hold mode.

BREQ Out This signal is high as long as the EBU operates from internal memory.
When it detects that an external access is required, it sets BREQ to low
and waits for signal HLDA to become low. BREQ will go back to high
when the slave has backed off the bus after it was requested to go into
hold mode.
User’s Manual 14-46 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
• Stage 2) The arbiter activates HLDA after having released the bus. This initiates the
participant’s exit from hold sequence.

• Stage 3a) When the arbiter detects that it also must perform external bus accesses,
it activates his BREQ. The earliest time for the master to activate BREQ is two LMB
clock cycles after the activation of the arbiter’s HLDA signal. However, the participant
will ignore this signal until it has finished the current access. In this way it is assured
that the participant will at least perform one complete external bus access.

• Stage 3b) If the arbiter can operate from internal memory while in hold mode, it leaves
the BREQ signal high until it detects that an external bus access must be performed.
Therefore, the participant can stay on the bus until the arbiter does not request the
bus.

• Stage 4) When the arbiter has requested the bus again through activation of his
BREQ signal, the participant will complete the current access and go into hold mode
again. After having tristated its bus interface, the participant deactivates its BREQ
signal, thus releasing the arbiter from hold mode.

• Stage 5) The arbiter has terminated its hold mode and deactivates its HLDA signal.
Now, the arbiter again controls the external bus.

• Stage 6) The arbiter deactivates its BREQ signal one cycle after deactivation of
HLDA. From now on (and not earlier), the participant can generate a new hold request
to the master. With this procedure it is assured that the arbiter can perform at least
one complete bus cycle before it goes into hold mode again if requested by the
participant.

Figure 14-19 Bus Arbitration Sequence

The result of this arbitration scheme is such that if both devices would constantly request
the bus (for example, if both are executing code out of external memory), they alternately
gain bus access. However, the usual way for this configuration is that the participant

M C T 04767m od

H O LD (A rb ite r In)

B R E Q (P artic ipant O ut)
1) 4)

2) 5)

3b) 6)

1 C yc le

A rb iter on B us P artic ipan t on B us A rb ite r on B us

2 C yc les
H LD A (P artic ipant In)

H LD A (A rb ite r O ut)

B R E Q (A rb ite r O ut)

H O LD (P artic ipant In)

B U S

3a)

1 C yc le>

1 C yc le>
User’s Manual 14-47 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
would execute out of internal memory, only eventually requesting an external bus
transaction to load/store data.

The behavior of the external bus controller depends in general on the status of the
external bus. It can be summarized as follows:

Table 14-17 External Bus Controller Actions Depending on Bus Ownership

Owner of
external bus

Access Actions of external bus controller

External master External
master to FPI
device

- release external bus (tristate all drivers, some
signals need pull ups)
- perform requested FPI access
- return result to external master (read access
only)

LMB master to
external
device

- reject LMB access with RETRY
- request ownership of external bus

Ext. bus
controller

External
master to FPI
device

not possible

LMB master to
external
device

- perform requested external access or accesses
(burst)
- return result to requesting LMB master (read
access only)
User’s Manual 14-48 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Switching of external bus ownership occurs in the following cases:

Table 14-18 Conditions for Changing Bus Ownership

14.7.2 Locking the External Bus

EBU allows the external bus to be locked to perform any arbitrary uninterrupted
sequence of external bus accesses. Two methods are allowed to lock the external bus:

• Locked LMB/FPI Accesses, When EBU has ownership of the external bus and is
performing external bus accesses in response to a locked LMB or FPI access
sequence, then ownership of the external bus will not be relinquished until the locked
LMB access sequence has completed.

• EBUCON.EXTLOCK bit, When bit EXTLOCK of register EBUCON is set, then EBU
will retain ownership of the external bus until “EXTLOCK” is subsequently cleared. If
EBUCON.EXTLOCK is written to 1 when EBU is the owner of the external bus, then
this has immediate effect (i.e. the external master is immediately prevented from
gaining ownership of the bus until EBU_CON.EXTLOCK is cleared). If
EBUCON.EXTLOCK is written to 1 when EBU is not the owner of the external bus,
then this has no immediate effect. When EBU subsequently gains ownership of the
bus, then the external master is prevented from regaining ownership of the bus until
EBUCON.EXTLOCK is cleared.

Note: There is no time-out mechanism associated with the EBUCON.EXTLOCK bit.
When EBU is owner of the external bus with the EXTLOCK bit set, then the
external master will remain locked off the bus until the EXTLOCK bit is cleared.

14.7.3 EBU Reaction to an LMB Access to the External Bus

The reaction of EBU to a request from an LMB master to access the external bus is as
follows:

Owner of
external bus

Prerequisites Trigger to change
ownership in
external master
mode

Trigger to change
ownership in
external slave
mode

Ext. bus
controller

Previous access has
finished or
time-out after
gaining ownership
detected

Request of ext.
master
and
no access pending

Request of ext.
master

External master Previous access has
finished

LMB request or
no request of ext.
master any more

LMB request
User’s Manual 14-49 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
• If EBU is operating in “no bus” mode, then it is impossible for an LMB or FPI master
to access the external bus. For this reason EBU generates an LMB/FPI (as
appropriate) error whenever an attempt is made to access the external bus while in
“no bus” mode.

• If EBU is operating in “sole master” mode, then it has access to the external bus at all
times and as a result it is possible for EBU to immediately perform the required
external bus access.

• If EBU is operating in “Arbiter” or “Participant” modes and receives a request for an
external access from an LMB or FPI master when it is not the owner of the external
bus (or is not able to retain ownership of the bus), then the request is rejected with a
“retry”. This event also triggers EBU to arbitrate with the external master in order to
attempt to gain ownership of the external bus so that the request can be serviced
when it is resubmitted by the master. This strategy ensures that the FPI Bus/LMB
remain available while EBU arbitrates for the external bus.

The strategy of issuing a retry (when EBU is not the owner of the external bus) detailed
above results in the potential for a locked bus condition. Consider the case of an LMB
master issuing a request for an external bus access. EBU rejects this access with a retry
(in order to retain LMB availability) but at the same time starts arbitration for ownership
of the bus. Once ownership of the bus has been obtained, EBU retains ownership until
the next LMB to external bus access occurs. If the LMB master (or any other LMB
masters) subsequently performs no external bus accesses (e.g. fails to re-submit the
original access request), then EBU would retain indefinite ownership of the bus and it
would become impossible for the external master to access the external bus.

EBU contains a time-out mechanism to avoid this lock condition. Once EBU has gained
ownership of the external bus it will retain ownership only until:

• An LMB or FPI to External Bus access occurs (as appropriate).

or

• A (programmable) number of LMB cycles have elapsed (without an LMB to external
bus access).

Once either of these conditions has occurred, the pending access is cancelled and EBU
will continue to arbitrate the external bus in the normal fashion. The desired time-out
(number of LMB Clock cycles) is programmed by use of the EBUCON.TOUTC field (see
Section 14.12.5)

14.8 EBU Boot Process

If external boot is selected — meaning that after reset, initial code execution begins from
external memory — the EBU needs to access the external default or boot memory.
However, because no application software has been executed yet, there is no
information inside the EBU concerning the type of external memory and the proper
access parameters to it.
User’s Manual 14-50 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
To get around this problem, the EBU first starts a “blind” boot access to the external
memory using a set of default values. This boot access is designed such that the EBU
can access the external boot memory without knowing the exact parameters of it. In this
way, the EBU retrieves additional detailed access information from a predefined location
in the boot memory. It configures itself according to these parameters, and then performs
the first true code fetch from location 0 of the boot memory, now with the proper access
parameters.

Naturally, this boot access can handle only a limited variety of external boot memory
types and access schemes. The boot memory must be either a ROM, EPROM, Flash-
EPROM memory compatible to these types. The access is in demultiplexed mode only.
The memory can be 16 or 32 bits wide. The boot memory must be connected to CS0.

If external boot takes place, a configuration pin selects between external master or slave
mode. The EBU will perform exactly one read access to a specific address (0x000004)
in the external memory to read configuration data. During this fetch operation, any LMB
request will be acknowledges with RETRY code. Figure 14-20 gives an overview of this
boot access.

Between reset becoming inactive and the access described in Figure 14-20, a gap of
256 clock cycles will be inserted to satisfy the recovery needs of external synchronous
devices like flash ROMs. During the read access the maximum number of programmable
waitstates will be inserted (waitrdc * cmult = 7 * 32 = 224) and the evaluation of the WAIT
signal will be inhibited.

It is assumed, that the EBU is in external master mode, when a boot from external
memory is performed. That means, that during reset phase the HLDA signal will be
pulled inactive (pull up) and that the EBU is owner of the external bus immediately after
reset. When external boot is disabled, the EBU will come up with external bus arbitration
turned off after reset, i.e. no access from LMB to external memory possible without EBU
of TC11IB reconfiguration.

The configuration data has to be coded in the following way:

EBU of TC11IB can only support boot ROM 16-bit or 32-bit wide. A description of the
bits, except for “CFG32” bit, can be found in the register description. If “CFG32”bit is set
to ‘1’, then the configuration data consists of a full 32-bit word, otherwise 16-bit. However

BOOTCFG
EBU External Boot Memory Configuration Word

Boot Memory Offset Address + 04H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFG
32 CMULT BCGEN WAIT WAI

TINV ADDRC WAITRDC 0
User’s Manual 14-51 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
for 32-bit word, the upper 16-bit is used for future extension. The data width of the boot
ROM is determined as Table 14-19:

Figure 14-20 EBU Boot Process after Reset

14.9 Emulation Support

The TC11IB supports emulation and debugging via a number of measures. Some of
features are provided through the EBU via the external bus. A special emulation boot is
provided after reset which activates the EBU to direct code and data accesses from the
CPU to a dedicated emulator memory region. Additionally, accesses to application

Table 14-19 Boot Memory Data Width Encoding

CFG32 Boot Memory Data Width

0 01B: 16-bit

1 10B: 32-bit

M C T04768m od

LM B C LK

D ata In

A [23 :0]

C S 0

R D

R D /W R

AD [31:0]

BC [3:2]

BC [1:0]

00 0004H

W rite data to
B U SC O N 0
reg is te r

C P 1AP C P 224
User’s Manual 14-52 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
memory can be redirected to emulation memory during debugging and emulation to
allow replacement of application memory contents with special emulation memory.

Note: The EBU uses special registers and signals for this emulation support. These
resources are dedicated for these purposes and must not be used in normal
operation. Proper emulation and debugging is not guaranteed and supported if
these restrictions are not obeyed.

The following subsections describe the EBU emulation support in more detail.

14.9.1 Emulation Boot

One of the boot options of the TC11IB, selectable during reset, is to start execution out
of a special external emulation memory. This memory is connected to the external bus
of the EBU in a standard way, however, a special chip select, CSEMU, is provided for
this memory. The address range for this emulation memory is predefined to Segment 13,
starting at address DE00 0000H with a size of 16 MByte.

If emulation boot is selected during reset, then after the end of the reset sequence the
Program Counter (PC) of the CPU is set to DE00 0000H (pointing to the emulation
memory) and the EBU is enabled. The EBU has an address select register,
EBU_EMUAS, a bus control register, EBU_EMUBC, and a bus access parameter
register, EBU_EMUBAP, dedicated to the emulation memory. The address area and
access parameters in these registers are set to predefined default values for a certain
type of emulation memory. Thus, the EBU does not need to perform a boot access to the
memory to retrieve further configuration data, as required for a normal boot. The code
fetch requests from the CPU activate the EBU, which in turn performs a respective
access to the emulation memory.

In this way, emulation software instead of application software is executed directly after
reset. After having performed necessary initialization and programming, the emulation
software usually executes a soft reset with the proper boot configuration to perform a
normal boot and returning to the application software.

14.9.2 Overlay Memory

During emulation and debugging, it is often necessary to modify or replace the
application code. While this is not very difficult to do with easily writable memories, such
as RAMs, it can be awkward or even not possible without removing the memory or
adding special provisions for on-board reprogramming when the code is stored in non-
volatile memory such as a ROM or an EPROM.

The solution to this problem provided by the EBU is an overlay memory chip select,
CSOVL. This chip select line can be programmed to be active in addition to the normal
chip select connected to the application memory. An additional overlay memory can then
be connected to the external bus, using this overlay chip select to activate it. Additionally,
the CSOVL line is used to gate the read and write signals to the application memory.
User’s Manual 14-53 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Figure 14-21 gives an overview for such a configuration. Only the signals relevant for
this feature are shown.

Figure 14-21 Use of the Overlay Chip Select

If the overlay chip select option is selected for an address range, then it is activated for
all accesses to this address range in addition to the activation of the regular chip select,
CSx. Thus, the overlay memory is activated for these accesses. To ensure that the
regular application memory is not driving the bus on a read or storing the data on a write,
the inverted overlay chip select controls two OR-gates to disable the read and write
signals to the memory. In this way, the overlay memory is accessed instead of the
application memory.

The selection of the overlay chip select is performed through register EBU_EMUCON.
For each of the seven regular chip selects CS[6:0], an enable bit for CSOVL is provided.
It is possible to activate CSOVL for one or more of the regular chip selects.

Note: To guarantee proper access, the overlay memory must meet the same access
requirements as the application memory. The access to it is performed according
to the parameters programmed for the application memory via the
EBU_BUSCONx and EBU_BUSAPx registers associated with the regular chip
select.

Note: Use of the overlay chip select feature is intended for emulation support. The
circuitry shown in Figure 14-21 is usually provided on the emulator probe. It does
not need to be included in the application circuitry.

M C S04769

EBU

C S x

R D /W R

R D

Application
M em ory

&

O E

W E

C E

C S O V L C E

W E

O E

Overlay
M em ory

> 1

> 1
User’s Manual 14-54 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.10 External Instruction Fetches

This section describes the synchronous burst Flash memory accesses that are initiated
and controlled by the PMU and which use the EBU lines for external access. The EBU
of the TC11IB supports two types of burst mode FALSHes:

– AMD 29BL162
– Intel 18F800F3 and 28F160F3

14.10.1 Signal List

The signals shown in Table 14-20 are used for synchronous burst Flash memory
accesses and are part of the EBU interface:

14.10.2 Basic Functions

The EBU is designed to perform burst mode cycles for an external code Flash memory.
These burst mode cycles are executed via a separate instruction fetch bus as shown in
Figure 14-1. In general, the burst mode cycle capability provides the following features:

• Fully synchronous timing with flexible programmable timing parameters (address
cycles, read wait cycles and data cycles)

• Programmable WAIT function
• Programmable burst (mode and length)
• 16-bit or 32-bit data bus width
• Support of INTEL 28F800F3 and 28F160F3 Fast Boot Block Flash Memory
• Support of AMD 29BL162 Burst Mode Flash Memory

Figure 14-22 shows the basic configuration of external burst Flash memory
connections.

Table 14-20 EBU Signals used for Burst Flash Memory Accesses

Signal Type Function

AD[31:0] I/O Data bus

RD O Read control

A[23:1] O Address bus

ADV O Address valid strobe

BAA O Burst address advance

WAIT I Wait/terminate burst control

CS[7:0] O Chip select

EBUCLK O External EBU clock output

ACLK O Slower EBU clock, equal 1/2, 1/3 or 1/4 of the frequency of
the EBUCLK
User’s Manual 14-55 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Figure 14-22 Example Configuration for Connection with Intel/AMD Flash Devices

Flash devices are started as asynchronous devices. Software has to set the suitable
timing parameters to write to an internal device register (Intel’s burst flash) or sequence
of write access (AMD’s burst flash) in order to switch to synchronous mode.

D
Q

[15:0]

EBU

Buffer

A D [31 :16]
A D [15:0]

A [21:2]

C S x

R D
R D /W R

A D V
B A A

W A IT

A C LK

Burst FLASH Mem.
1Mx16
(Intel)

D
Q

[15:0]

A
[19:0]

C
E

O
E

W
E

A
D

V
W

A
IT

C
LK

EBU

Buffer

A D [15 :0]

A [21 :2]

C S x

R D
R D /W R

A D V
B A A

W A IT

A C LK

Burst FLASH Mem.
1Mx16
(AMD)

D
Q

[15:0]

A
[19:0]

C
E

O
E

W
E

LB
A

B
A

A

C
LK

IN
D

32-b it D a ta B us

16-b it D a ta B us
User’s Manual 14-56 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.10.3 Cycle Definitions of Burst Mode Timing

Accesses to Burst FLASH devices are composed of a number of Standard Access
Phases (details in Section 14.5.5.1).The timing diagrams on the following pages use
abbreviations for the clock cycles:

• Fully synchronous timing
– AP Address Phase (1 to n cycles), must start at the rising edge of ACLK
– CD Command Delay (0 to n cycles)
– CP Command Phase (1 to n cycles)
– BP Burst Phase (1 to n cycles), this phase repeated to complete the burst

length
– RP Recovery Phase (0 to n cycles)

• Programmable number of cycles for each phase: Address Phase, Command Delay,
Command Phase, Burst Phase and Recovery Phase

• Programmable fetching burst length

Figure 14-23 shows the basic timing of a synchronous burst mode operation.

Figure 14-23 Synchronous Burst Read Operation (4 Word Burst)

Because the EBUCLK runs too fast for external devices, there is a second clock source
running at equal, 1/2, 1/3 or 1/4 of the EBUCLK frequency. This clock (ACLK) can be
used by external devices for synchronous access. Accesses for devices using this clock

A C LK

A D V

A [23:0]

R D

B A A

A P 1

A D [31:0]

C S 0

E B U C LK

A P 2 A P 3 C D 1 C D 2 C D 3 C P 1 C P 2 B P 1 B P 2 B P 1B P 2 B P 1 B P 2 B P 1 B P 2 R P 1R P 2 n ew
A P 1

A D [15:0]

D ata of
A ddr+12

D ata of
A ddr+8

D ata of
A ddr+4

D ata of
A ddr

D ata of
Addr+ 12

D ata of
A ddr+8

D ata of
A ddr+4

D ata of
A ddr

(32 b it w ide da ta)

(16 b it w ide da ta)

A dd ress N ew
A ddr
User’s Manual 14-57 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
must be programmed so that critical phases can be guaranteed valid sampling on ACLK
rising edge. However other signals are relative to EBUCLK.

The ADV and BAA signals go low on the negative edge of EBUCLK due to delay by
default. EBU allows these delays (1/2 an EBU clock cycle) to be removed via EBASE
parameter in BFCON register. The resultant signal timings will be as Table 14-21.

The Burst Phase has to be repeated for the rest of fetching burst length (programmable
through FETBLEN = 1, 2, 4 or 8), which select the maximum number of Burst Phases in
a single access. When an LMB request exceeds the amount of data that can be fetched
by the programmed number of Burst Phases, EBU will automatically generate the
appropriate number of burst access to supply the required amount of data. Selection of
Continuous Burst Mode (by use of FBBMSEL) overrides the maximum burst setting.

The programmability of the length of the Address, Command Delay and Command
Phases allows flexible configuration to meet the initial read access time of a Burst
FLASH device.

In Figure 14-23, an example of a burst length of 4 is shown. The following parameters
are set in the example:

– ADDRC = 3 (BUSAPx register),
– CMDDELAY =3 (BUSAPx register),
– WAITRDC = 2 (BUSAPx register),
– BURSTC = 2 (BUSAPx register),
– RDRECOVC = 2(BUSAPx register),
– FETBLEN = 4 (BFCON register),
– PORTW = 16 & 32 (BUSCONx register),
– EXTLOCK = 1/2 of EBUCLK frequency.

Table 14-21 ADV/BAA Signal Timings

Signal Delay Disabled Delay Enabled

ADV Start of AP1 Middle of AP1

BAA Start of BP1 Middle of BP1

Table 14-22 Programmable Access Phase

Access Phase # Cycles Parameter

Address Phase addrc addrc = 1 to n
User’s Manual 14-58 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.10.4 External Cycle Control via the WAIT Input

EBU provides control of the Burst FLASH device via the WAIT input. This allows EBU to
support operation of Burst FLASH while crossing Burst FLASH page boundaries. During
a Burst FLASH access, the WAIT input operates in one of three modes in TC11IB:

• Disabled
• Asynchronous Wait for Page Load (Intel devices).
• Synchronous Terminate and Start New Burst (AMD device).

Selection of the mode in which the WAIT input operates during Burst FLASH accesses
is selected via the BUSCON[6:0].WAIT bit-field (see Section 14.12.3) and the
BFCON.WAITFUNC bit (see Section 14.12.6). The WAITFUNC bit selects either Wait
for Page Load or Terminate and Start New Burst mode. The WAIT bit-field selects one
of three sampling modes:

• Synchronous Sampling
• Asynchronous Sampling
• Disabled

Note: Selection of “Disabled” via the wait bit-field prevents the WAIT input having any
effect on a Burst FLASH access cycle regardless of the setting of the WAITFUNC
bit.

14.10.4.1 Asynchronous Wait for Page Load Mode (Intel)

In this mode, the WAIT input being asserted low during a burst access causes EBU to
complete the current Burst Phase and then to perform an additional Burst Phase (if the
previous BP was not the last of the current access). Following this, the next Burst Phase
(again if this BP required) will not be started until the WAIT input is de-asserted. In
addition the start of the next Burst Phase is also synchronized to the next rising edge of
the ACLK signal to ensure that EBU continues to sample data from the device at the
correct time. This mode allows an Intel Burst FLASH device to temporarily suspend the

Command Delay CMDDELAY CMDDELAY = 0 to n

Command Phase read access:
WAITRDC

WAITRDC = 1 to n

Burst Phase BURSTC BURSTC = 1 to n

Recovery Phase switch to diff. CS:
DTACS
after every read:
RDRECOVC

DTACS = 0 to n
RDRECOVC = 0 to n

Table 14-22 Programmable Access Phase

Access Phase # Cycles Parameter
User’s Manual 14-59 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
burst sequence in order to perform a page load when a page boundary is crossed during
the access. This mode supports the use of Intel Burst FLASH devices configured for
Early Wait Generation Mode.

Figure 14-24 Wait Input in Asynchronous Wait for Page Load Mode(waitfunc = 0)

Figure 14-24 shows an example of the insertion of wait cycles in Asynchronous Wait for
Page Load Mode:

1. The Burst FLASH drives WAIT low to signal that after two data values have been read.
a page boundary will be crossed (the FLASH is operating in Early Wait Generation
Mode).

2. The WAIT input is sampled low on the rising edge of EBUCLK.
3. The sample taken at ‚ “1” is re-synchronized to the rising edge of ACLK.
4. The re-synchronized sample (from “2”) is evaluated and causes the insertion of wait

cycles.
5. The WAIT input is sampled high on the rising edge of EBUCLK prior to an ACLK rising

edge.
6. The sample taken at “4” in conjunction with the rising edge of ACLK allows EBU to

start the next Burst Phase.

A C LK

A D V

A [23 :0]

R D

W A IT

A P 2

A D [31:0]

C S x

E B U C LK

C P 1 C P 2 B P 1 B P 2 B P 1 B P 2 w ait w a it B P 1 B P 2

D ata 3D ata2D ata 1
(32 b it w ide data)

A ddress

`̀�� � � � �
User’s Manual 14-60 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.10.4.2 Synchronous Terminate and Start New Burst Mode (AMD)

In this mode, the WAIT input being asserted low during a burst access causes EBU to
complete the current Burst Phase and then to terminate the current access. If additional
data is required, EBU will start a new access cycle (i.e. Address Phase, Command Delay
Phase, Command Phase, Burst Phase etc.). EBU calculates the address to be issued
during the new Address Phase to ensure correct sequential reading of the Burst FLASH
device(s). This mode allows an AMD Burst FLASH device to cause EBU terminate the
current access when a page boundary is crossed and to issue a complete new burst read
access. This allows the Burst FLASH device to perform a page load at the start of the
new access. This mode supports AMD Burst Flash Devices in Terminate mode.

Figure 14-25 WAIT Input in Synchronous Terminate and Start New Burst Mode

Figure 14-25 shows an example of the termination of a burst access and the start of a
new access cycle in response to the WAIT input asserted low in Synchronous Terminate
and Start New Burst Mode:-

1. The Burst FLASH drives WAIT low to signal that after the current data value has been
read a page boundary will be crossed.

2. The WAIT input is sampled low on the rising edge of EBUCLK.

A C LK

A D V

A [23:0]

R D

W A IT

A P 2

A D [31:0]

C S x

E B U C LK

C P 1 C P 2 B P 1 B P 2 B P 1 B P 2 R P 1 R P 2 A P 1 A P 2

Data2D ata 1
(32 b it w ide da ta)

A ddress

`̀�� � �

A ddress (+8)
User’s Manual 14-61 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
3. The sample (from “2”) is evaluated and causes the termination of the current access.
4. After the appropriate Recovery, Phase EBU issues a new Burst FLASH access

(synchronized to an ACLK rising edge). The burst start address is automatically
updated by EBU to read the appropriate data (the example shows a 32-bit wide bus).

14.10.5 Termination of a Burst Access

A burst read operation is terminated by de-asserting CSx signal followed by the
appropriate length Recovery Phase. Figure 14-26 shows termination of a burst access
following the read of two locations (i.e. two Burst Phases) from the Burst FLASH
device(s).

Figure 14-26 Termination a Burst by Deasserting CS

Terminating a burst is important, if the LMB’s burst request is shorter than the fetch burst
length. For example when LMB request is 2 beats of 64-bit data (i.e. 4 x32-bit data) and
fetch burst length of the device is 8, then termination comes after the fourth data being
latched. Also when dealing with continuous burst, deasserting CSx will terminate the
burst.

14.11 SDRAM Interface

The TC11IB SDRAM interface supports 64 MBit (organized as 4 banks x 1M x 16), 128
MBit (as 4 banks x 2M x16) and 256 MBit (as 4 banks x 4M x16) SDRAMs. EBU can

A C LK

A D V

A [23:0]

R D

B A A

A P 2

A D [31:0]

C S x

E B U C LK

C P 1 C P 2 B P 1 B P 2 B P 1 B P 2 R P 1 R P 2

D ata2D ata 1
(32 b it w ide data)

A ddress
User’s Manual 14-62 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
simultaneously support two SDRAM memories, Type 0 and Type 1. Each has different
access/refresh parameters and corresponds to the SDRAM region with a chip select
signal CSx.

SDRAMs are synchronous DRAMs with burst read/write capability which are controlled
by a set of commands at the pins CS, RAS, CAS, WE, DQM, A10. A SDRAM contains
multiple DRAM banks which are addressed by bank select(s) and multiplexed addresses
(row / column address). A periodic refresh has to be performed like in standard DRAMs.

Features

• PC100 compatible (if multiplexed devices are not connected to the external bus)
• Multibank support
• Interleaved access support
• Support 64, 128 and 256 MBit SDRAM devices
• Maximum address space of 128 MByte, support of 16- and 32-bit wide
• Very high bandwidth > 200 MByte/s for 32-bit wide access
• Individual SDRAM parameters for each CS strobe (up to two different SDRAM types)
• Autorefresh mode support for power-down mode
• Data types: halfword and word for single reads and word for burst reads
• Power-on/mode-set sequence triggered by LMB write to SDRAM configuration

register
• Programmable refresh rate
• Programmable timing parameters (row-to-column delay, row-precharge time, mode-

register setup time, initialization refresh cycles, refresh periods)

The supported SDRAM devices include (but not limited to) the following:

• Infineon, HYB39S16160, HYB39S256160
• IBM, IBM0325164
• Samsung, KM416S1020
• Micron, MT48LC2M32, MT48LCM4M16, MT48LC16M16
• Hyundai, HY57V161610, HY57V651620
• Hitachi HM5225165
User’s Manual 14-63 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.11.1 Signal List

The following signals are used for the SDRAM interface:

14.11.2 External Interface

The external interface is PC100 compatible and can be directly connected to two sets of
DRAM chips without any glue-logic. To maintain pin loading requirements, all other
devices can be connected only at a buffered bus extension (i.e. only two components
may be directly connected to the EBU of TC11IB address and data buses and certain
control signals). Additionally special board layout constraints apply.

Table 14-23 SDRAM Signal List

Signal Type Function

AD(31:0) I/O Data bus

A(23:0) O Address bus

RD/WR O Read and write control

BC(3:0) O DQM output control

CKE O Clock enable

CS(7:0) O Chip select

EBUCLK O External EBU of TC11IB Clock

CAS O Column address strobe

RAS O Row address strobe
User’s Manual 14-64 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Figure 14-27 Connectivity for SDRAM

Multibanking is supported in order to allow interleaved banks accesses. When a bank is
already opened, it will be registered so that access to the same row within the bank can
be sped up. Comparison of banks are done prior to initiating external memory accesses.

EBU

A D [31:0]

A [23:0]

C S [n]

C S [m]

D [31:0]

A [16:1]

C S

D [31:0]

A [16:1]

C S
S D R A M #1

S D R A M #2

A [23 :0]

D [31:0]

FLASH

SRAM

ROM

C S

C S

C S

othe r C S lines

(lim ited to tw o C Sx fo r SD R AM devices!)

Buffer for
slower
devices
User’s Manual 14-65 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.11.3 Supported SDRAM commands

Table 14-24 lists the supported commands, how they are being triggered and what are
the signals activated..

Table 14-24 Supported SDRAM commands

Command Event
CKE
(n-1)

CKE
(n) CS RAS CAS

RD/
WR

See Table 14-29 and Table 14-
30 for EBU of TC11IB pins

A11 A10 BA
(1:0)

A
(9:0)

Device
deselect

region not
selected

H - H - - - - - - -

Nop idle H - L H H H - - - -

Bank
activate

open a
closed
bank

H - L L H H valid address

Read read
access

H - L H L H valid
addr

L valid address

Write write
access

H - L H L L valid
addr

L valid address

Precharge
selective

bank or
page miss

H - L L H L - L bank -

Precharge
all

refresh is
due or
going into
power
down

H - L L H L - H - -

Auto-
refresh

refresh is
due, after
precharge
all is done

H H L L L H - - - -

Self
refresh
entry

going into
power
down
after
precharge
all is done

H L L L L H - - - -

Self
refresh exit

coming
out of
power
down

L H H - - - - - - -

Mode
register set

during
initializati
on

H - L L L L valid mode (see register
SDRMOD)
User’s Manual 14-66 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.11.4 Power Up sequence

During power-up the SDRAM should be initialized with the proper sequence. This
includes the requirement of bringing up the VDD, VDDQ and the stable clock (minimum
100 µs before any accesses to SDRAM) and CS remains inactive.

14.11.5 Initialization sequence

SDRAMs must be initialized before being used. At least one NOP cycle must be issued
after 1 ms of CS inactive (device deselect). This must be followed by 200 µs pause by
software and then a Precharge All Banks command. Following this, the device must go
through Auto Refresh Cycles (the number of refresh commands is programmable
through CRFSH in SDRMCON[1:0] registers and the number of NOP cycles in between
is programmable through CRC). At the end of it, the Mode Register must be programmed
through the address lines. Following that some number of NOP cycles programmable
through CRSC in SDRMCON[1:0] registers. This sequence must be carried out for each
of SDRAM type

Figure 14-28 SDRAM Initialization

A (bank)

A [11:2]

A [12]

R A S

C A S

B C [3 :0]

C S x

E B U C LK

don 't ca rem odedon 't ca re

don 't ca rem odedo n 't ca re

don 't ca rem odedon 't ca re

R D /W R

A D [31:0]
P recha rge
a ll ba nks N O P

re fresh
N O P N O P N O Prefresh m o de

reg iste r
se t

A p rog ram m able num b er
(crfsh) o f re fresh seque nces

w ill be perfo rm ed .
User’s Manual 14-67 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
The sequence is triggered by a write to the SDRAM mode register SDRMOD0 or
SDRMOD1. All the regions having AGEN in BUSCONx set to ’011’ will be configured
with the mode from SDRMOD0, while regions with AGEN equals ’100’ configured from
SDRMOD1. While this sequence is being executed, SDRMBUSY flag in the
SDRMSTAT0,1 status register will be set accordingly.

The setting sequence of corresponding registers is critical. Especially the SDRMODx
registers, they must be the last one to set because this write will trigger the initialization
sequence. The recommended the sequence of setting registers is as follow:

1. ADDRSELx
2. BUSCONx
3. BUSAPx (not relevant to SDRAM)
4. SDRMCONx
5. SDRMREFx
6. SDRMODx (must be the last one)

The contents of register SDRMOD0,1 will be written to the SDRAM mode register in
each device at the end of this sequence via the address pins A[15:2], if the port width is
set to 32-bit or A[14:1] if the port is 16-bit. The user has to make sure that the SDRAM
is programmed in the following way:

Table 14-25 SDRAM Mode Register Setting

The EBU of TC11IB uses the CAS latency value and burst length to adjust the burst read
timing. All other fields have no influence on the EBU of TC11IB, which means only single
value is accepted for those fields.

Field Value Meaning SDRMOD0,
1 Position

Corresponding
Address Pins

32-bit 16-bit

Burst length “011”
“010”
“001”
"000"

bursts of length 8
reserved
reserved
bursts of length 1

BURSTL[2:0
]

A[4:2] A[3:1]

Burst type ‘0’ sequential bursts BTYP[3] A[5] A[4]

CAS latency “001”
“010”
“011”
“100”

latency 1 (for test only)
latency 2
latency 3
latency 4

CASLAT[6:4
]

A[8:6] A[7:5]

Operation
Mode

all ‘0’ burst read and burst
write

OPMODE
[13:7]

A[15:9] A[14:8]
User’s Manual 14-68 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
The complete initialization sequence described will only be issued on the first write (since
reset) to the relevant SDRMOD register. On subsequent writes, the SDRAM device does
not need to be initialized, so a simple mode register set command can be issued. A
precharge-all command needs to be issued to the SDRAM before this can happen.

14.11.6 SDRAM Accesses

Figure 14-29 and show the SDRAM access timing.

Figure 14-29 SDRAM Write Timing

C K E

A [23:0]

R A S

C A S

B C [3 :0]

C S x

E B U C LK

colum nrow

R D /W R

A D [31:0] da ta (0) data (n-1)
User’s Manual 14-69 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Figure 14-30 SDRAM Read Timing

In order to deliver good performance, EBU of TC11IB only supports burst length of 1 and
8. Other burst lengths are supported but implemented together with data-masking
operation. Code prefetching is at most done with burst length of 8, while data load/store
can be of variable length.

14.11.7 Multibanking Operation

The design supports up to 4 banks (2 for instruction and 2 for data) being opened at the
same time for each SDRAM type. To speed up execution, the comparison of bank
identifiers must happen at the same time with region comparison (i.e. after the LMB
address phase is recognized). In the next cycle then, it can be decided whether it is a
page hit or a page miss access.

If the next access is to an open bank (comparing to all four banks just to cater for the
possibility of mixed code and data in one region), it will then proceed with one of the
access commands without having to close one of the bank. If nothing matches, then it
has to close one of the banks. If the access is for instruction fetching, then it has to close
one of the ’instruction’ banks. If the access is for data access, then it has to close one of
the ’data’ banks.

A random retirement strategy will close one of the open bank to make way for a new
open bank.

C K E

A [23 :0]

R A S

C A S

BC [3 :0]

C S x

E BU C LK

colum nrow

R D /W R

A D [31 :0] da ta (0) da ta (n -1)
User’s Manual 14-70 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.11.7.1 Bank-Page Tag Structure

EBU of TC11IB can open up to four banks at one time for each of SDRAM type. The
opened banks are stored as address bits associated with the banks. Table 14-29 and
Table 14-30 show how banks and pages/rows are recognizable from the address bits.
For example, if one region of SDRAM is configured as: 32-bit wide, having 4 banks in the
device, 8192 of rows and 512 of columns, then tag for each of the bank is bits 24 to 31
of the address (Address[31:24]). Each open bank has an associated open page, and for
example the page tag is Address[23:11].

Each pair of bank-page tag has a validity bit. Upon reset all of these bits are zero. Out of
four bank-page tag pairs, the first two pairs are allocated for instructions and the other
two for data. All requests from PMU are recognized as instructions requests, while others
are data requests.

Each time there is a new LMB request, the address is compared against all valid bank-
page tag pairs. After one clock cycle there will be two decisions to make. If the current
access is targeted to recognized SDRAM region(s), then EBU of TC11IB must recognize
whether the requested address is a page-hit and whether it’s a bank hit. Figure 14-31
illustrates the decision process.

14.11.7.2 Bank Mask and Page Mask

EBU of TC11IB needs to generate a bank hit and a page hit signal. To generate a bank
hit, the LMB address has to be applied with a bank mask. Also to generate a page hit, it
has to be applied with a page mask. The bank mask and the page mask depends on the
following configuration of SDRAMs being used:

– number of banks in the device: 2 or 4
– data-width: 16-bit or 32-bit
– number of columns: 256, 512, 1024 or 2048
– number of rows/pages: 2048, 4096, 8192

Based on the above options, the page mask can be one of the followings (address bits
31-27 are surely compared in the address comparison, see Section 14.5.1):

– bit-26 to bit-9
– bit-26 to bit-10
– bit-26 to bit-11
– bit-26 to bit-12
– bit-26 to bit-13
User’s Manual 14-71 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Figure 14-31 Generating Bank_hit And Page_hit

While the bank mask is one of the followings:

– bit-26 to bit-20
– bit-26 to bit-21
– bit-26 to bit-22
– bit-26 to bit-23
– bit-26 to bit-24
– bit-26 to bit-25
– bit-26 only

In order to avoid complexities, user must choose which one of the bank mask and page
matches the configuration of the SDRAM being used. The parameters need to be
programmed are BANKM and PAGEM in SDRMCON0,1 registers.

14.11.7.3 Decisions over Page_hit and Bank_hit

Generally a page hit also means a bank hit, but a page miss does not necessarily mean
a bank miss. When a page hit occurs, EBU of TC11IB can continue the access operation
without updating the stored tag pairs of bank-page. A page miss unfortunately can result
in several other activities.

LMB ADDRESS[26:9]

bank_hit

186

COMPARECOMPARECOMPARE

S
T
O
R
E
D
P
A
G
E

S
T
O
R
E
D
P
A
G
E

S
T
O
R
E
D
P
A
G
E

B
A
N
K
T
A
G
S

B
A
N
K
M
A
S
K

COMPARE
COMPARECOMPARECOMPARE

S
T
O
R
E
D
P
A
G
E

S
T
O
R
E
D
P
A
G
E

S
T
O
R
E
D
P
A
G
E

P
A
G
E
T
A
G
S

P
A
G
E
M
A
S
K

COMPARE page_hit
User’s Manual 14-72 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
When a page miss and a bank hit occur, it means EBU of TC11IB has to close current
bank, i.e. do a precharge. This is then followed by (re-)activating the bank and continue
with the access operation. The current bank need not to be invalidated, but the new page
tag has to be stored.

For a page miss and bank miss event, consider first for an instruction request (from
PMU). If there are already two valid pairs of instruction bank-page tags being stored, one
of the pairs have to be randomly invalidated. This means EBU of TC11IB has to issue a
precharge operation to close particular bank. Following this the new pair of bank and
page tag is stored at the invalidated/vacant slot and bank activate command is issued.

If the page miss and bank miss event happen while there is at least one invalid/vacant
slot (e.g. when the system first being started up), EBU of TC11IB does not have to issue
a precharge operation but rather continue with activating the new bank and storing the
new pair of bank-page tag.

For a data request, the activity will be similar but only affected pairs of data bank-page.
Table 14-26 lists the activities in cycle by cycle basis.
User’s Manual 14-73 V1.0, 2002-03

TC11IB
System Units

External Bus Unit

Table 14-26 Cycle By Cycle Activities Of Multibanking Operation

14.11.8 Banks Precharge

The system is required to precharge a bank under one of these conditions:

1. A bank needs to be selectively precharged when the next access goes within the
same bank, but to a different page/row.

2. When an LMB request cannot be completed before the row active time tRAS max is due,
then the bank must explicitly be closed and opened again for the current request.
Since tRAS max is usually much greater (in order of 100 µs) compared to the refresh
period (distributed refresh is in order of 15 µs for 4096 rows), generally this is fulfilled
by obediently carrying out refresh to the SDRAMs.

Cycle n Cycle n+1 Cycle n+2 Cycle n+3

Comparing the
LMB address with
the stored bank-
page tags, if any.

page_hit :

Continue with read or
write command.

not relevant not relevant

page_miss and bank_hit:

Precharge particular
bank and change the
page tag with the new
one.

Insert idle cycles
(repeatable) to
satisfy tRP.

Continue with
bank activate
command, etc.

page_miss and bank_miss:

if no vacant slots
available :
Randomly pick one pair
of instruction or data
bank tag (depends on the
originator), close/
precharge the picked
bank. Store new bank-
page tag.

Insert idle cycles
(repeatable) to
satisfy tRP.

Continue with
bank activate
command, etc.

if there is a vacant slot
available :
Store new bank-page tag
and validate the slot.
Continue with bank
activate command, etc.

not relevant not relevant
User’s Manual 14-74 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
3. Accompanying a page miss is also naturally a selective bank precharge operation, as
mentioned previously.

4. All banks must also be precharged, when a refresh cycle is due as explained next. See
Chapter 14.11.9.

5. All banks must also be precharged, prior to issuing Self Refresh Entry command. See
Chapter 14.11.10.

Activities in (1) and (3) are carried out as a result of the address comparison explained
in Chapter 14.11.7. Activity (2) and (4) are covered by refresh timer.

14.11.9 Refresh Cycles

It is required within certain time limit that the devices must be refreshed. Prior to being
refreshed the devices must be precharged as mentioned above.

Figure 14-32 SDRAM Refresh

This sequence is periodically triggered by an internal refresh counter with programmable
rate (REFRESHC in SDRMREF[1:0] registers). All SDRAM banks will be precharged

A (bank)

A [11:2]

A [12]

R A S

C A S

B C [3 :0]

C S x

E B U C LK

don 't ca re

don 't ca re

don 't care

R D /W R

A D [31 :0]
P recharge
all banks

N O P N O Pre fresh
User’s Manual 14-75 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
before the refresh sequence can be started and each SDRAM type is refreshed
separately. The specific refresh command being issued is Auto Refresh (CBR)
command, in which the device keeps track of the row addresses to be refreshed. The
number of this command being issued for each refresh operation is programmable
through REFRESHR in SDRMREF[1:0].

A refresh request has precedence over a LMB access to SDRAM, i.e. if both occur at the
same time the refresh sequence is entered and the LMB access is rejected with
“RETRY”. A refresh error occurs when a previous refresh request has not been satisfied
yet and another refresh request occurs and an error flag (REFERR) in the
SDRMSTAT[1:0] status register will be set accordingly. This error flag can be cleared by
writing to SDRMCON[1:0] respective to the appropriate address region.

14.11.10 Power Down Support

Before undergoing the power-down mode, software must write ’1’ to bit SELFEN in
SDRMREF0 register. EBU of TC11IB will then:

• precharge all the banks, and
• issue a self refresh command (see Table 14-24) to all SDRAM devices (regardless

whether the device belongs to access type 0 or type 1).

In completion of this command all SDRAM devices would ignore all inputs but CKE
signal. The read-only bit SELFRENST reflects the status of issuing this command. When
the command is completed, power-down can be safely entered. The devices would
perform low-current self refresh during the power down. When exiting from power-down
and before doing any accesses to SDRAM, software must write ’1’ to bit SELFREX in
SDRMREF0 registers. EBU of TC11IB will then assert the CKE signal for all the SDRAM
devices to get out of the self-refresh mode. The read-only bit SELFREXST reflects the
completion of this command, upon which an access to SDRAMs can be performed.

14.11.11 SDRAM Addressing Scheme

The EBU of TC11IB requires the SDRAMs to be configured to read/write bursts of length
1 or 8. A burst shorter than 8 (e.g. a single access) can be generated by stopping the
burst with another command or simply masking it with DQM. Due to the wrap around
feature of the SDRAMs, a burst has to start at certain addresses to prevent the wrap
around (a burst must not cross an address modulo 8*4). This guarantees also that the
internal page boundaries of the SDRAMs will not be crossed by any burst access. Bursts
User’s Manual 14-76 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
are 16- or 32-bit wide transfers, therefore LMB address A[0] or A[1:0] respective of any
burst address have to be “0” or "00"!

Table 14-27 16-bit Burst Address Restrictions, A[0] = "0"

Table 14-28 32-bit Burst Address Restrictions, A[1:0] = "00"

The following SDRAM types can be connected to the EBU of TC11IB:

Burst Length LMB Address A[3:1] SDRAM Burst Address Generation

1 any single access

8 “000” (0) 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7

Burst Length LMB Address A[4:2] SDRAM Burst Address Generation

1 any single access

8 “000” (0) 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7

SDRAM
PORTW = 10 (32-bit)

EBU of TC11IB Pins multiplexed
LMB
Address

setting
for
AWIDT
H

A[16] A[15] A[14] A[13] A[12] A[11:2]

256M
Bit

Pins BA[1] BA[0] A[12] A[11] A[10] A[9:0]

16Mx1
6

row RA[14
] /
BA[1]

RA[13
] /
BA[0]

RA[12] RA[11] RA[10] RA[9:0] A[25:11] 10

col CMD CA[8:0] A[25:24],
A[10:2]

128M
Bit

Pins BA[1] BA[0] A[11] A[10] A[9:0]

8Mx16 row RA[13
] /
BA[1]

RA[12]
/ BA[0]

RA[11] RA[10] RA[9:0] A[24:11] 10

col CMD CA[8:0] A[24:23],
A[10:2]
User’s Manual 14-77 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
RA: row address
BA: bank select (MSB of row address)
CA: column address
CMD: autoprecharge command is currently not supported
Area in shades are not recommended when having PC100 SDRAM configurations, in order to minimize loads
on the pads.

Table 14-29 Supported SDRAM Configurations for 32-bit Wide Data Bus

64MBi
t

Pins BA[1] BA[0] A[11] A[10] A[9:0]

16Mx4 row RA[13
] /
BA[1]

RA[12]
/ BA[0]

RA[11] RA[10] RA[9:0] A[25:12] 11

col CMD CA[9:0] A[25:24],
A[11:2]

8Mx8 row RA[13
] /
BA[1]

RA[12]
/ BA[0]

RA[11] RA[10] RA[9:0] A[24:11] 10

col CMD CA[8:0] A[24:23],
A[10:2]

4Mx16 row RA[13
] /
BA[1]

RA[12]
/ BA[0]

RA[11] RA[10] RA[9:0] A[23:10] 01

col CMD CA[7:0] A[23:22],
A[9:2]

16MBi
t

Pins BS A[10] A[9:0]

4Mx4 row RA[11]
/ BA[0]

RA[10] RA[9:0] A[23:12] 11

col CMD CA[9:0] A[23], A[11:2]

2Mx8 row RA[11]
/ BA[0]

RA[10] RA[9:0] A[22:11] 10

col CMD CA[8:0] A[22], A[10:2]

1Mx16 row RA[11]
/ BA[0]

RA[10] RA[9:0] A[21:10] 01

col CMD CA[7:0] A[21], A[9:2]

64MBi
t

Pins BA A[11] A[10] A[9:0]

2Mx32 row RA[12]
/ BA[0]

RA[11] RA[10] RA[9:0] A[22:10] 01

col CMD CA[7:0] A[22], A[9:2]

SDRAM
PORTW = 10 (32-bit)

EBU of TC11IB Pins multiplexed
LMB
Address

setting
for
AWIDT
H

A[16] A[15] A[14] A[13] A[12] A[11:2]
User’s Manual 14-78 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
RA: row address
BA: bank select (MSB of row address)
CA: column address
CMD: autoprecharge command is currently not supported
Area in shades are not recommended when having PC100 SDRAM configurations, in order to minimize loads
on the pads.

Table 14-30 Supported SDRAM Configurations for 16-bit wide data bus

SDRAM
PORTW = 01 (16-bit)

EBU of TC11IB Pins Multiplexed
LMB Address

setting
for
AWIDT
H

A[15] A[14] A[13] A[12] A[11] A[10:1]

256M
Bit

Pins BA[1] BA[0] A[12] A[11] A[10] A[9:0]

16Mx1
6

row RA[14
] /
BA[1]

RA[13
] /
BA[0]

RA[12
]

RA[11] RA[10] RA[9:0] A[24:10] 10

col CMD CA[8:0] A[24:23],
A[9:1]

128M
Bit

Pins BA[1] BA[0] A[11] A[10] A[9:0]

8Mx16 row RA[13
] /
BA[1]

RA[12
] /
BA[0]

RA[11] RA[10] RA[9:0] A[23:10] 10

col CMD CA[8:0] A[23:22],
A[9:1]

64MBit Pins BA[1] BA[0] A[11] A[10] A[9:0]

16Mx4 row RA[13
] /
BA[1]

RA[12
] /
BA[0]

RA[11] RA[10] RA[9:0] A[24:11] 11

col CMD CA[9:0] A[24:23],
A[10:1]

8Mx8 row RA[13
] /
BA[1]

RA[12
] /
BA[0]

RA[11] RA[10] RA[9:0] A[23:10] 10

col CMD CA[8:0] A[23:22],
A[9:1]

4Mx16 row RA[13
] /
BA[1]

RA[12
] /
BA[0]

RA[11] RA[10] RA[9:0] A[22:9] 01

col CMD CA[7:0] A[22:21],
A[8:1]

16MBit Pins BS A[10] A[9:0]

4Mx4 row RA[11]
/ BA[0]

RA[10] RA[9:0] A[22:11] 11

col CMD CA[9:0] A[22], A[10:1]

2Mx8 row RA[11]
/ BA[0]

RA[10] RA[9:0] A[21:10] 10

col CMD CA[8:0] A[21], A[9:1]

1Mx16 row RA[11]
/ BA[0]

RA[10] RA[9:0] A[20:9] 01

col CMD CA[7:0] A[20], A[8:1]
User’s Manual 14-79 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Each SDRAM bank has to be 16 or 32-bit wide (programmable through PORTW in
BUSCONx or EMUBC registers). The byte selection, e.g. for performing a byte write, is
handled via the BC(3:0) signals. Since there will be two address regions supported for
SDRAMs, up to two types of SDRAM can be used. Each region can only have single
configuration type. First region is selected if parameter AGEN (in BUSCONx or EMUBC
registers) is equal to ’011’ and the associated set of registers for parameter setting is
SDRMREF0, SDRMCON0, SDRMOD0 and SDRMSTAT0. The second region is
associated with SDRMREF1, SDRMCON1, SDRMOD1 and SDRMSTAT1 and selected
when AGEN is equal to ’100’.

The following addressing scheme supports all configurations mentioned above:

Table 14-31 SDRAM Address Multiplexing Scheme

Port Width Address Type Pin Usage Mode

32-bit
(PORTW = 10)

column address EBU of TC11IB Pins A[11:2]:= LMB A[11:2]
EBU of TC11IB Pins A[12]:= CMD

all modes

EBU of TC11IB Pin A[16:13]:= LMB A [26:23] AWIDTH = “11”

EBU of TC11IB Pin A[16:13]:= LMB A [25:22] AWIDTH = “10”

EBU of TC11IB Pin A[16:13]:= LMB A [24:21] AWIDTH = “01”

row address EBU of TC11IB Pins A[16:2]:= LMB A[26:12] AWIDTH = “11”

EBU of TC11IB Pins A[16:2]:= LMB A[25:11] AWIDTH = “10”

EBU of TC11IB Pins A[16:2]:= LMB A[24:10] AWIDTH = “01”

16-bit
(PORTW = 01)

column address EBU of TC11IB Pins A[10:1]:= LMB A[10:1]
EBU of TC11IB Pins A[11]:= CMD

all modes

EBU of TC11IB Pin A[15:12]:= LMB A [25:22] AWIDTH = “11”

EBU of TC11IB Pin A[15:12]:= LMB A [24:21] AWIDTH = “10”

EBU of TC11IB Pin A[15:12]:= LMB A [23:20] AWIDTH = “01”

row address EBU of TC11IB Pins A[15:1]:= LMB A[25:11] AWIDTH = “11”

EBU of TC11IB Pins A[15:1]:= LMB A[24:10] AWIDTH = “10”

EBU of TC11IB Pins A[15:1]:= LMB A[23:9] AWIDTH = “01”
User’s Manual 14-80 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.12 EBU Registers

This section describes the control registers and programmable parameters of the EBU.
Figure 14-33 shows all LMB Bus accessible registers associated with the EBU.

Figure 14-33 EBU Registers

E B U _C LC E B U _A D D R S E L0

Control/Status
Registers

Address Region
Registers

E B U _A D D R S E L1

Em ulator Registers

E B U _C O N
E B U _E M U A S

E B U _E M U B C

E B U _E M U B A PE B U _B FC O N

E B U _S D R M R E F0

E B U _S D R M R E F1

E B U _S D R M C O N 0

E B U _S D R M C O N 1

E B U _S D R M O D 0

E B U _S D R M O D 1

E B U _S D R S TA T0

E B U _S D R S TA T1

E B U _B U S C O N 0

E B U _B U S C O N 1

E B U _B U S C O N 2

E B U _B U S C O N 3

E B U _B U S C O N 4

E B U _B U S C O N 5

E B U _B U S C O N 6

E B U _B U S A P 0

E B U _B U S A P 1

E B U _B U S A P 2

E B U _B U S A P 3

E B U _B U S A P 4

E B U _B U S A P 5

E B U _B U S A P 6

E B U _E X TC O N 1)

E B U _A D D R S E L2

E B U _A D D R S E L3

E B U _A D D R S E L4

E B U _A D D R S E L5

E B U _A D D R S E L6

E B U _E M U O V L

1)Th is reg is ter is on ly access ib le from the externa l bus not v ia the LM B B us
User’s Manual 14-81 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Table 14-32 EBU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

EBU_CLC EBU Clock Control Register 0000H Page 14-84

EBU_CON EBU External Bus Configuration Register 0010H Page 14-98

EBU_BFCON EBU Burst Flash Access Control Register 0020H Page 14-
100

EBU_SDRMREF
0

EBU SDRAM Type 0 Refresh Control
Register

0040H Page 14-
101

EBU_SDRMREF
1

EBU SDRAM Type 1 Refresh Control
Register

0048H

EBU_SDRMCO
N0

EBU SDRAM Type 0 Configuration
Register

0050H Page 14-
102

EBU_SDRMCO
N1

EBU SDRAM Type 1 Configuration
Register

0058H

EBU_SDRMOD0 EBU SDRAM Type 0 Mode Register 0060H Page 14-
104EBU_SDRMOD1 EBU SDRAM Type 1 Mode Register 0068H

EBU_SDRSTAT
0

EBU SDRAM Type 0 Status Register 0070H Page 14-
106

EBU_SDRSTAT
1

EBU SDRAM Type 1Status Register 0078H

EBU_ADDRSEL
0

EBU Memory Region 0 Base Address
Select Register

0080H Page 14-85

EBU_ADDRSEL
1

EBU Memory Region 1 Base Address
Select Register

0088H

EBU_ADDRSEL
2

EBU Memory Region 2 Base Address
Select Register

0090H

EBU_ADDRSEL
3

EBU Memory Region 3 Base Address
Select Register

0098H

EBU_ADDRSEL
4

EBU Memory Region 4 Base Address
Select Register

00A0H

EBU_ADDRSEL
5

EBU Memory Region 5 Base Address
Select Register

00A8H

EBU_ADDRSEL
6

EBU Memory Region 6 Base Address
Select Register

00B0H
User’s Manual 14-82 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
EBU_BUSCON0 EBU Memory Region 0 External Bus
Configuration Register

00C0H Page 14-86

EBU_BUSCON1 EBU Memory Region 1External Bus
Configuration Register

00C8H

EBU_BUSCON2 EBU Memory Region 2 External Bus
Configuration Register

00D0H

EBU_BUSCON3 EBU Memory Region 3 External Bus
Configuration Register

00D8H

EBU_BUSCON4 EBU Memory Region 4 External Bus
Configuration Register

00E0H

EBU_BUSCON5 EBU Memory Region 5 External Bus
Configuration Register

00E8H

EBU_BUSCON6 EBU Memory Region 6 External Bus
Configuration Register

00F0H

EBU_BUSAP0 EBU Memory Region 0 External Bus
Access Parameter Register

0100H Page 14-89

EBU_BUSAP1 EBU Memory Region 1External Bus
Access Parameter Register

0108H

EBU_BUSAP2 EBU Memory Region 2 External Bus
Access Parameter Register

0110H

EBU_BUSAP3 EBU Memory Region 3 External Bus
Access Parameter Register

0118H

EBU_BUSAP4 EBU Memory Region 4 External Bus
Access Parameter Register

0120H

EBU_BUSAP5 EBU Memory Region 5 External Bus
Access Parameter Register

0128H

EBU_BUSAP6 EBU Memory Region 6 External Bus
Access Parameter Register

0130H

EBU_EMUAS EBU Emulator Region Base Address
Select Register

0160H Page 14-92

EBU_EMUBC EBU Emulator Region External Bus
Configuration Register

0168H Page 14-93

EBU_EMUBAP EBU Emulator Region External Bus
Access Parameter Register

0170H Page 14-95

Table 14-32 EBU Registers (cont’d)

Register
Short Name

Register Long Name Offset
Address

Description
see
User’s Manual 14-83 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.12.1 Clock Control Register

The EBU clock control register CLC allows to enable/disable the EBU in general. After
reset the EBU is enabled.

EBU_EMUOVL EBU Overlay Memory Chip Select
Generation Register

0178H Page 14-97

EBU_EXTCON EBU External Access Configuration
Register

Only
from
external
400000H

Page 14-
107

EBU_CLC
EBU Clock Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DIS
S

DIS
R

r r rw

Field Bits Type Description

DISR 0 rw EBU Disable Request Bit
Used for enable/disable control of the EBU.
0 EBU disable is not requested
1 EBU disable is requested

DISS 1 r EBU Disable Status Bit
Bit indicates the current status of the EBU.
0 EBU is enabled (default after reset)
1 EBU is disabled

0 [31:2] r Reserved; read as 0; should be written with 0.

Table 14-32 EBU Registers (cont’d)

Register
Short Name

Register Long Name Offset
Address

Description
see
User’s Manual 14-84 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.12.2 Address Select Registers

The EBU Address Select Registers EBU_ADDSELx (x=0-6) establish and control
memory regions for external accesses.

EBU_ADDRSELx (x=0-6)
EBU Address Select Register x ADDRSEL[6:1] Reset Value: 0000 0000H

 ADDRSEL0 Reset Value (internal boot): 0000 0000H
 ADDRSEL0 Reset Value (external boot): A000 0001H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BASE

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BASE ALTSEG MASK 0 ALT
EN

REG
EN

rw rw rw r rw rw

Field Bits Type Description

REGEN 0 rw Memory Region Enable
0: memory region is disabled (default after reset

except for ADDRSEL0)
1: memory region is enabled

Note: In the case of ADDRSEL0, when EBU is in
external boot mode, the default value of this bit
after reset is 1.

ALTEN 1 rw Alternate Segment Comparison Enable
0: altseg is never compared with LMB address

(default after reset)
1: altseg is always compared with LMB address

MASK [7:4] rw Memory Region Address Mask
Specifies the number of rightmost bits in the base
address starting at bit 26, which should be included in
the address comparison. Bits (31:27) will always be
part of the comparison.

ALTSEG [11:8] rw Memory Region Alternate Segment
Alternate segment to be compared with LMB address
bit (31:28).
User’s Manual 14-85 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.12.3 Bus Configuration Registers

The EBU Bus Configuration Registers EBU_BUSCONx (x = 0-6) and Bus Access
Parameter Registers EBU_BUSAPx configure access modes and access timing to the
external memory regions defined through the EBU_ADDRSELx registers.

BASE [31:12] rw Memory Region Base Address
Base address to be compared with LMB address in
conjunction with the mask control.

0 [3:2] r Reserved bits
These bits are reserved; read as ‘0’, must be written
with ‘0’.

EBU_BUSCONx (x=0-6)
EBU Bus Configuration Register x Reset Value (internal boot): 8092 8000H
 Reset Value (external boot): 8092 807FH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WR AGEN XCMDDEL
AY WAIT PORTW BCGEN WAI

TINV PRE DLO
AD

END
IAN

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMULT 0 W
PRE 0 MULTMAP

rw r rw r rw

Field Bits Type Description
User’s Manual 14-86 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Field Bits Type Description

MULTMAP [6:0] rw Multiplier map
A mask value specifies which of the programmable
delay cycles are set to use the multiplier defined in
cmult.
XXXXXX0: addrc does not use the multiplier
XXXXXX1: addrc uses the multiplier
XXXXX0X: aholdc does not use the multiplier
XXXXX1X: aholdc uses the multiplier
XXXX0XX: cmddelay does not use the multiplier
XXXX1XX: cmddelay uses the multiplier
XXX0XXX: burstc does not use the multiplier
XXX1XXX: burstc uses the multiplier
XX0XXXX: datac does not use the multiplier
XX1XXXX: datac uses the multiplier
X0XXXXX: rdrecovc does not use the multiplier
X1XXXXX: rdrecovc uses the multiplier
0XXXXXX: wrrecovc does not use the multiplier
1XXXXXX: wrrecovc uses the multiplier

Note: “waitrdc”,”waitwrc”.”dtardwr” and “dtacs” are
not programmable and always use the “cmult”
multiplier

WPRE 8 rw Weak Prefetch
0 Running prefetch access cannot be aborted by an
interrupting data access.
1: Running prefetch access can be aborted by an
interrupting data access.

CMULT [15:13] rw Cycle multiplier control
Specifies a multiplier for the cycles specified via
multmap (see below). waitrdc, waitwrc, dtardwr
and dtacs are always using the multiplier.
000 : multiplier is 1
001 : multiplier is 4
010 : multiplier is 8
011 : multiplier is 16
100 : multiplier is 32 (default after reset)
101, 110, 111 : reserved

ENDIAN 16 rw Endian mode
0 little endian access mode (default after reset)
1 big endian access mode
User’s Manual 14-87 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
DLOAD 17 rw Enforce data upload from external bus
0 Data access is fed from data write buffer if it’s

available
1 Data access is always fed from the external bus

access

PRE 18 rw Prefetch mechanism for each code access
0 Code access never uses prefetch buffer

mechanism
1 Code access always uses prefetch buffer

mechanism

WAITINV 19 rw Reversed Polarity at WAIT
0 OFF, input at WAIT pin is active low (default

after reset)
1 polarity reversed, input at WAIT pin is active

high

BCGEN [21:20] rw Byte Control Signal Control
To select the timing mode of the byte control signals.
00 to follow chip-select
01 to follow control signal (RD, RD/WR) (default

after reset)
10 to follow write enable signal (RD/WR only)
11 to be used as DQM for SDRAM access

PORTW [23:22] rw Port width
00 reserved
01 16-bit
10 32-bit (default after reset)
11 reserved

WAIT [25:24] rw External Wait State Control
00 OFF (default after reset)
01 Asynchronous input at WAIT
10 Synchronous input at WAIT
11 reserved

XCMDDELAY [27:26] rw External Command Delay Control
00 OFF (default after reset)
01 Asynchronous input at CMDELAY
10 Synchronous input at CMDELAY
11 reserved

Field Bits Type Description
User’s Manual 14-88 V1.0, 2002-03

TC11IB
System Units

External Bus Unit

AGEN [30:28] rw Address Generation Control
000 Demultiplexed access (default after reset)
001 Multiplexed access
010 Burst Flash access
011 SDRAM access type 0
100 SDRAM access type 1
other values : reserved

WR 31 rw Memory Region Write Protection
0: writes to the memory region are enabled
1: writes to the memory region are disabled

(default after reset)

0 7,
[12:9]

r Reserved bits
Read as ‘0’, must be written with ‘0’.

EBU_BUSAPx (x=0-6)
EBU Bus Access Parameter Register x Reset Value : FFFF FFFFH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADDRC AHOLDC CMDDELAY WAITRDC WAITWRC BURSTC

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATAC RDRECOVC WRRECOVC DTARDWR DTACS

rw rw rw rw rw

Field Bits Type Description

DTACS [3:0] rw Recovery cycles between different regions
Minimum number of cycles following an access, if the
next access is to a different region. This number is
multiplied by cmult in BUSCONx.
0 - 15 :number of idle cycles

Field Bits Type Description
User’s Manual 14-89 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
DTARDWR [7:4] rw Recovery cycles between read and write
accesses
Minimum number of cycles between a read and write
access, and vice versa. This number is multiplied by
cmult in BUSCONx.
0 - 15 :number of idle cycles

WRRECOVC [10:8] rw Recovery cycles after write accesses
Number of idle cycles after write accesses. This
number is multiplied by cmult in BUSCONx, if bit
multmap[6] in BUSCONx is set to ’1’.
0 -7 : number of idle cycles

RDRECOVC [13:11] rw Recovery cycles after read accesses
Number of idle cycles after read accesses. This
number is multiplied by cmult in BUSCONx, if bit
multmap[5] in BUSCONx is set to ’1’.
0 -7 : number of idle cycles

DATAC [15:14] rw Data hold cycles for write accesses
Number of data hold cycles during write accesses.
This number is multiplied by cmult in BUSCONx, if bit
multmap[4] in BUSCONx is set to ’1’.
0 - 3 : number of hold cycles

BURSTC [18:16] rw Data cycles during burst accesses
Number of data cycles during burst accesses. This
number is multiplied by cmult in BUSCONx, if bit
multmap[3] in BUSCONx is set to ’1’.
0 - 7 : number of data cycles

WAITWRC [21:19] rw Programmed Wait States for wait accesses
Number of programmed wait states for write
accesses.This number is always multiplied by cmult
in BUSCONx.
0 - 7 : number of wait states

WAITRDC [24:22] rw Programmed Wait States for Read Accesses
Number of programmed wait states for read
accesses. This number is always multiplied by cmult
in BUSCONx.
0 - 7 : number of wait states

Field Bits Type Description
User’s Manual 14-90 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.12.4 Emulator Configuration Registers

The EBU Emulator Address Select Register EBU_EMUAS defines the address region
for the emulator memory. This register has the same layout and semantics as the
EBU_ADDRSELx registers.The EBU Emulator Bus Configuration Register
EBU_EMUBC and EBU Bus Access Parameter Register EBU_EMUBAP define the
access parameters for the emulator memory region determined through register
EBU_EMUAS. These two registers have the same layout and semantics as the

CMDDELAY [27:25] rw Programmed Command Delay Cycles
Number of delay cycles during command delay
phase. This number is multiplied by cmult in
BUSCONx, if bit multmap[2] in BUSCONx is set to
’1’. Writing value ’0’ to this field is ignored and
minimum value of ’1’ will be set.
1 - 7 : number of delay cycles

AHOLDC [29:28] rw Address Hold Cycles for Multiplexed Accesses
Number of address hold cycles during multiplexed
accesses. This number is multiplied by cmult in
BUSCONx, if bit multmap[1] in BUSCONx is set to
’1’.
0 - 3 : number of hold cycles

ADDRC [31:30] rw Address Cycles
Number of cycles for address phase. This number is
multiplied by cmult in BUSCONx, if bit multmap[0] in
BUSCONx is set to ’1’. Writing value ’0’ to this field is
ignored and minimum value of ’1’ will be set.
1 - 3 : number of cycles

Field Bits Type Description
User’s Manual 14-91 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
EBU_BUSCONx and EBU_BUSAPx.The EBU Emulator Overlay Register
EBU_EMUOVL provides overlay memory control to the emulator.

EBU_EMUAS
EBU Emulator Address Select Register Reset Value : DE00 0031H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BASE

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BASE ALTSEG MASK 0 ALT
EN

REG
EN

rw rw rw r rw rw

Field Bits Type Description

REGEN 0 rw Memory Region Enable
0 memory region is disabled
1 memory region is enabled (default after reset)

ALTEN 1 rw Alternate Segment Comparison Enable
0 altseg is never compared with LMB address

(default after reset)
1 altseg is always compared with LMB address

MASK [7:4] rw Memory Region Address Mask
Specifies the number of rightmost bits in the base
address starting at bit 26, which should be included in
the address comparison. Bits (31:27) will always be
part of the comparison.

ALTSEG [11:8] rw Memory Region Alternate Segment
Alternate segment to be compared with LMB address
bit (31:28).

BASE [31:12] rw Memory Region Base Address
Base address to be compared with LMB address in
conjunction with the mask control.

0 [3:2] rw Reserved bits
These bits are reserved and read as ‘0’, must be
written with ‘0’.
User’s Manual 14-92 V1.0, 2002-03

TC11IB
System Units

External Bus Unit

EBU_EMUBC
EBU Emulator Bus Configuration Register Reset Value : 0190 2077H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WR AGEN XCMDDEL
AY WAIT PORTW BCGEN WAI

TINV PRE DLO
AD

END
IAN

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMULT 0 W
PRE 0 MULTMAP

rw r rw r rw

Field Bits Type Description

MULTMAP [6:0] rw Multiplier map
A mask value specifies which of the programmable
delay cycles are set to use the multiplier defined in
cmult.
XXXXXX0: addrc does not use the multiplier
XXXXXX1: addrc uses the multiplier
XXXXX0X: aholdc does not use the multiplier
XXXXX1X: aholdc uses the multiplier
XXXX0XX: cmddelay does not use the multiplier
XXXX1XX: cmddelay uses the multiplier
XXX0XXX: burstc does not use the multiplier
XXX1XXX: burstc uses the multiplier
XX0XXXX: datac does not use the multiplier
XX1XXXX: datac uses the multiplier
X0XXXXX: rdrecovc does not use the multiplier
X1XXXXX: rdrecovc uses the multiplier
0XXXXXX: wrrecovc does not use the multiplier
1XXXXXX: wrrecovc uses the multiplier

Note: “waitrdc”,”waitwrc”.”dtardwr” and “dtacs” are
not programmable and always use the “cmult”
multiplier

WPRE 8 rw Weak Prefetch
0 Code prefetch cannot be aborted by an interrupting
data access.
1: Code prefetch can be aborted by an interrupting
data access.
User’s Manual 14-93 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
CMULT [15:13] rw Cycle multiplier control
Specifies a multiplier for the cycles specified via
multmap (see below). waitrdc, waitwrc, dtardwr
and dtacs are always using the multiplier.
000 : multiplier is 1
001 : multiplier is 4
010 : multiplier is 8
011 : multiplier is 16
100 : multiplier is 32
101, 110,111 : reserved.

ENDIAN 16 rw Endian mode
0 little endian access mode
1 big endian access mode

DLOAD 17 rw Enforce data upload from external bus
0 Data access is fed from data write buffer if it’s

available
1 Data access is always fed from the external bus

access

PRE 18 rw Prefetch mechanism for each code access
0 Code access never uses prefetch buffer

mechanism
1 Code access always uses prefetch buffer

mechanism

WAITINV 19 rw Reversed polarity at WAIT
0 OFF, input at WAIT pin is active low
1 polarity reversed, input at WAIT pin is active

high

BCGEN [21:20] rw Byte Control Signal Control
To select the timing mode of the byte control signals.
00 to follow chip-select
01 to follow control signal (RD, RD/WR)
10 to follow write enable signal (RD/WR only)
11 to be used as DQM for SDRAM access

PORTW [23:22] rw Port Width
00 reserved
01 16-bit
10 32-bit
11 reserved

Field Bits Type Description
User’s Manual 14-94 V1.0, 2002-03

TC11IB
System Units

External Bus Unit

WAIT [25:24] rw External Wait State Control
00 OFF
01 Asynchronous input at WAIT
10 Synchronous input at WAIT
11 reserved

XCMDDELAY [27:26] rw External Command Delay Control
00 OFF
01 Asynchronous input at CMDELAY
10 Synchronous input at CMDELAY
11 reserved

AGEN [30:28] rw Address Generation Control
000 Demultiplexed access
001 Multiplexed access
010 Burst Flash access
011 SDRAM access type 0
100 SDRAM access type 1
other values : reserved

WR 31 rw Memory Region Write Protection
0 writes to the memory region are enabled
1 writes to the memory region are disabled

0 7,
[12:9]

r Reserved bits
These bits are reserved and read as ‘0’, must be
written with ‘0’.

EBU_EMUBAP
EBU Emulator Bus Access Parameter Register Reset Value : 5248 4911H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADDRC AHOLDC CMDDELAY WAITRDC WAITWRC BURSTC

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATAC RDRECOVC WRRECOVC DTARDWR DTACS

rw rw rw rw rw

Field Bits Type Description
User’s Manual 14-95 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Field Bits Type Description

DTACS [3:0] rw Recovery cycles between different regions
Minimum number of cycles following an access, if the
next access is to a different region. This number is
multiplied by cmult in EMUBC.
0 - 15 :number of idle cycles

DTARDWR [7:4] rw Recovery cycles between read and write
accesses
Minimum number of cycles between a read and write
access, and vice versa. This number is multiplied by
cmult in EMUBC.
0 - 15 :number of idle cycles

WRRECOVC [10:8] rw Recovery cycles after write accesses
Number of idle cycles after write accesses. This
number is multiplied by cmult in EMUBC, if bit
multmap[6] in EMUBC is set to ’1’.
0 -7 : number of idle cycles

RDRECOVC [13:11] rw Recovery cycles after read accesses
Number of idle cycles after read accesses. This
number is multiplied by cmult in EMUBC, if bit
multmap[5] in EMUBC is set to ’1’.
0 -7 : number of idle cycles

DATAC [15:14] rw Data hold cycles for write accesses
Number of data hold cycles during write accesses.
This number is multiplied by cmult in EMUBC, if bit
multmap[4] in EMUBC is set to ’1’.
0 - 3 : number of hold cycles

BURSTC [18:16] rw Data cycles during burst accesses
Number of data cycles during burst accesses. This
number is multiplied by cmult in EMUBC, if bit
multmap[3] in EMUBC is set to ’1’.
0 - 7 : number of data cycles

WAITWRC [21:19] rw Programmed Wait States for wait accesses
Number of programmed wait states for write
accesses.This number is always multiplied by cmult
in EMUBC.
0 - 7: number of wait states
User’s Manual 14-96 V1.0, 2002-03

TC11IB
System Units

External Bus Unit

WAITRDC [24:22] rw Programmed Wait States for read accesses
Number of programmed wait states for read
accesses. This number is always multiplied by cmult
in EMUBC.
0 - 7: number of wait states

CMDDELAY [27:25] rw Programmed command delay cycles
Number of delay cycles during command delay
phase. This number is multiplied by cmult in EMUBC,
if bit multmap[2] in EMUBC is set to ’1’.
1 - 7: number of delay cycles

AHOLDC [29:28] rw Address hold cycles for multiplexed accesses
Number of address hold cycles during multiplexed
accesses. This number is multiplied by cmult in
EMUBC, if bit multmap[1] in EMUBC is set to ’1’.
0 - 3: number of hold cycles

ADDRC [31:30] rw Address Cycles
Number of cycles for address phase. This number is
multiplied by cmult in EMUBC, if bit multmap[0] in
EMUBC is set to ’1’. Writing value ’0’ to this field will
be ignored and minimum value of ’1’ is set.
1 - 3: number of cycles

EBU_EMUOVL
EBU Emulator Overlay Register Reset Value : 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 OVL

r rw

Field Bits Type Description
User’s Manual 14-97 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.12.5 EBU Configuration Register

The EBU Configuration Register EBU_CON provides control of the EBU bus.

Field Bits Type Description

OVL [7:0] rw Overlay Chip Select signal
To select one or more of the chip select to generate
CSovl
0: CSovl is always inactive
other :if ovl[n] is set, it means CSovl will always be

asserted when CS[n] is asserted

0 [31:8] r Reserved bits
These bits are reserved and read as ‘0’, must be
written with ‘0’.

EBU_CON
EBU Configuration Register Reset Value (internal boot): 0000 0028H
 Reset Value (external boot): 0001 0068H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 BUSCLK GLBCS

r rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOUTC ARB
MODE

ARB
SYN

C

EXT
LOC

K
EXT
ACC

EXT
SVM

EXT
RE

CON
0

rw rw rw rw rw rw rw r

Field Bits Type Description

EXTRECON 1 rw Extension Reconfiguration
The ability of external master to change address
extension register EXTCON.
0 no
1 yes

EXTSVM 2 rw External Access in Supervisor Mode
0 external device access to FPI bus is performed

in user mode
1 external device access to FPI bus is performed

in supervisor mode
User’s Manual 14-98 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
EXTACC 3 rw External Device Access to FPI Bus
0 external device access to FPI bus is disabled
1 external device access to FPI bus is enabled

EXTLOCK 4 rw External Bus Lock Control
0 external bus is not locked after EBU of TC11IB

gain ownership
1 external bus is locked after EBU of TC11IB gain

ownership

ARBSYNC 5 rw Arbitration Signal Synchronization
0 arbitration inputs are synchronous
1 arbitration inputs are asynchronous

ARBMODE [7:6] rw EBU Arbitration Strategy
0 EBU is disabled
1 EBU is in external master mode
2 EBU is in external slave mode
3 No arbitration, EBU is the only bus master

TOUTC [15:8] rw Bus Time-out Control
Number of inactive cycles leads to a bus time-out
after EBU gain ownership
0 time-out is disabled
1-255 time-out is after timeoutc*8 clock cycles

GLBCS [23:16] rw Global Chip Select Signal
To select one or more of the chip select to generate
CSglb
0 CSglb is always inactive
other if globalCS[n] is set, it means CSglb will always

be asserted when CS[n] is asserted

BUSCLK [25:24] rw EBU clock generation
0 Frequency of EBU of TC11IB clock is equal to

LMB clock
1 Frequency of EBU of TC11IB clock is half of

LMB clock
2 Frequency of EBU of TC11IB clock is one-

fourth of LMB clock
3 reserved

0 0,
[31:26]

r Reserved bits
These bits are reserved and read as ‘0’, must be
written with ‘0’.

Field Bits Type Description
User’s Manual 14-99 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.12.6 Burst Flash Control Register

EBU_BFCON
EBU Burst Flash Control Register Reset Value : 0100 01D0H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 1 0

r rw r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 EXECLK
WAI
TFU
NC

FBB
MSE

L
FETBLEN

r rw rw rw rw rw

Field Bits Type Description

FETBLEN [3:0] rw Fetch Burst Length for Busrt FLASH
Defines maximum number of burst data cycles which
are executed by the EBU during access to Burst
FLASH.
000: 1 data access (default after reset)
001: 2 data accesses
010: 4 data accesses
011: 8 data accesses
1xx : reserved

FBBMSEL 4 rw Flash Burst Buffer Mode Select for Burst FLASH
0: continuous mode
1: Flash burst buffer length defined by value in

FETBLEN (default after reset)

WAITFUNC 5 rw Function of WAIT Input for Burst FLASH
0: WAIT input operates as a wait data bus function

on bursts.(default after reset)
1: The WAIT input operates as a terminate burst

function.

EXTCLK [7:6] rw Frequency of External Clock at Pin ACLK
00: equal LMBCLK frequency
01: 1/2 of LMBCLK frequency
10: 1/3 of LMBCLK frequency
11: 1/4 of LMBCLK frequency (default after reset)

1 8,24 rw These bits should be clear to 0 after reset
User’s Manual 14-100 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.12.7 SDRAM Configuration Registers

0 [31:25]
[24:9]

r Reserved Bits.
Read as ‘0’ always.

EBU_SDRMREFx (x=0,1)
EBU SDRAM Refresh Register x Reset Value : 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
SEL
FRE

N

SEL
FRE
NST

SEL
FRE

X

SEL
FRE
XST

REFRESHR REFRESHC

r rw r rw r rw rw

Field Bits Type Description

REFRESHC [5:0] rw Refresh Counter Period
Number of clock cycles between refresh operations.
0 no refresh needed (default after reset)
1-63 refresh period is refreshc x 64 clock cycles

REFRESHR [8:6] rw Number of Refresh Commands
The number of additional refresh commands issued to
SDRAM each time a refresh is due.
0 only one refresh command is issued (default

after reset)
1-7 additional one to seven refresh commands are

issued

SELFREXST 9 r Self Refresh Exit Status (only in SDRMREF0
register)
If this bit is set to ’1’, it means the Self Refresh Entry
command has been successfully issued. This bit is
reset when bit selfren is set to ’1’ or a reset takes
place.

Field Bits Type Description
User’s Manual 14-101 V1.0, 2002-03

TC11IB
System Units

External Bus Unit

SELFREX 10 rw Self Refresh Exit (only in SDRMREF0 register)
When this bit is written with ’1’ the Self Refresh Exit
command is issued to all SDRAM devices, regardless
whether they are attached to type 0 or type 1.

SELFRENST 11 r Self Refresh Entry Status (only in SDRMREF0
register)
If this bit is set to ’1’, it means the Self Refresh Entry
command has been successfully issued. This bit is
reset when bit selfrex is set to ’1’ or a reset takes
place.

SELFREN 12 rw Self Refresh Entry (only in SDRMREF0 register)
When this bit is written with ’1’ the Self Refresh Entry
command is issued to all SDRAM devices, regardless
whether they are attached to type 0 or type 1.

0 [31:13] r Reserved bits
read as ‘0’, must be written with ‘0’.

EBU_SDRMCONx (x = 0,1)
EBU SDRAM Control Register x Reset Value : 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 BANKM PAGEM CRC

r rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRCD AWIDTH CRP CRSC CRFSH CRAS

rw rw rw rw rw rw

Field Bits Type Description

CRAS [3:0] rw Row to Precharge Delay Counter
Number of clock cycles between row activate
command and a precharge command.
0-15 minimum Cras + 1 clock cycles (default after

reset Cras is 0)

Field Bits Type Description
User’s Manual 14-102 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
CRFSH [7:4] rw Initialization Refresh Commands Counter
Number of refresh commands issued during power-
up initialization sequence.
0-15 perform Crfsh + 1 NOP cycles (default after

reset Crfsh is 0)

CRSC [9:8] rw Mode Register Set-up Time
Number of NOP cycles after a mode register set
command.
0-3 insert Crsc + 1 NOP cycles (default after reset

Crsc is 0)

CRP [11:10] rw Row Precharge Time Counter
Number of NOP cycles inserted after a precharge
command. The actual number performed can be
greater due to CAS latency and burst length.
0-3 insert Crsc + 1 NOP cycles (default after reset

Crp is 0)

AWIDTH [13:12] rw Width of Column Address
Number of address bits from bit 0 to be used for
column address depending on the port width.
If port width = 32-bit
00 Address(8:0), otherwise: Address(7:0)
01 Address(9:0), otherwise: Address(8:0)
10 Address(10:0), otherwise: Address(9:0)
11 Address(11:0), otherwise: Address(10:0)
If port width = 16-bit
00 Address(7:0), otherwise: Address(6:0)
01 Address(8:0), otherwise: Address(7:0)
10 Address(9:0), otherwise: Address(8:0)
11 Address(10:0), otherwise: Address(9:0)

CRCD [15:14] rw Row to Column Delay Counter
Number of NOP cycles between a row address and a
column address.
0-3 insert Crcd + 1 NOP cycles (default after reset

Crcd is 0)

CRC [18:16] rw Row Cycle Time Counter
Number of NOP cycles between refresh commands in
the power-up initialization sequence.
0-7 insert Crc + 1 NOP cycles (default after reset

Crc is 0)

Field Bits Type Description
User’s Manual 14-103 V1.0, 2002-03

TC11IB
System Units

External Bus Unit

PAGEM [21:19] rw Mask for Page Tag
Number of address bits from bit 26 to be used for
comparing page tags.
0 always generates page miss (default after

reset)
1 address bit 26 to 9
2 address bit 26 to 10
3 address bit 26 to 11
4 address bit 26 to 12
5 address bit 26 to 13
6 reserved
7 reserved

BANKM [24:22] rw Mask for Bank Tag
Number of address bits from bit 26 to be used for
comparing bank tags.
0 always generates bank miss (default after

reset)
1 address bit 26 to 20
2 address bit 26 to 21
3 address bit 26 to 22
4 address bit 26 to 23
5 address bit 26 to 24
6 address bit 26 to 25
7 address bit 26

0 [31:25] r Reserved bits
Read as ‘0’, must be written with ‘0’.

EBU_SDRMODx (x = 0,1)
EBU SDRAM Mode Register x Reset Value : 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 OPMODE CASLAT BTY
P BURSTL

r rw rw rw rw

Field Bits Type Description
User’s Manual 14-104 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
Field Bits Type Description

BURSTL [2:0] rw Burst length
Number of locations can be accessed with a single
command.
0 1 (default after reset)
1 reserved
2 reserved
3 8
other values:reserved

BTYP 3 rw Burst type
EBU only supports sequential burst.
0 only this value should be written (default after

reset)
other valuesreserved

CASLAT [6:4] rw CAS latency
Number of clocks between a READ command and the
availability of data.
2 two clocks (default after reset)
3 three clocks
other valuesreserved

OPMODE [13:7] rw Operation Mode
EBU only supports burst write standard operation.
0 only this value should be written (default after

reset)
other values:reserved

0 [31:14] r Reserved bits
Read as ‘0’, must be written with ‘0’.
User’s Manual 14-105 V1.0, 2002-03

TC11IB
System Units

External Bus Unit

14.12.8 External Access Configuration Register

The External Access Configuration Register EBU_EXTCON is only accessible from the
external bus, not via the LMB Bus. In addition, this register can be write-protected by use
of the EBU_EBUCON.EXTRECON bit.

EBU_SDRSTATx (x=0,1)
EBU SDRAM Status Register x Reset Value : 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
SDR
MBS

Y
REF
ERR

r r r

Field Bits Type Description

REFERR 0 r SDRAM Refresh Error
Unsuccessful previous refresh request collides with a
new request.
This bit is reset by a write access to SDRMCON[1:0]
respectively.
0 no refresh error
1 refresh error occurred

SDRMBSY 1 r SDRAM Busy
The status of power-up initialization sequence.
0 power-up initialization sequence is not running
1 power-up initialization sequence is running

0 [31:2] r Reserved bits
Read as ‘0’, must be written with ‘0’.
User’s Manual 14-106 V1.0, 2002-03

TC11IB
System Units

External Bus Unit

EBU_EXTCON
EBU External Access Configuration Register Reset Value : 3C0B FFA0H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RM
WEN 0 AEXT3 AEXT2

rw r rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AEXT2 AEXT0

rw rw

Field Bits Type Description

AEXT0 [9:0] rw Address Extension 0
Address extension bits A[31:22] for external accesses
with A[23:22] = ’00’,
default: 1110100000B (E800 0000H - E83F FFFFH)

AEXT2 [19:10] rw Address Extension 2
Address extension bits A[31:22] for external accesses
with A[23:22] = ’10’,
default: 1011111111B (BFC0 0000H - BFFF FFFFH)

AEXT3 [29:20] rw Address Extension 3
Address extension bits A[31:22] for external accesses
with A[23:22] = ’11’,
default: 1111000000B (F0000 0000H - F03F FFFFH)

RMWEN 31 rw Read Modify Write Enable
Disables/enables read/modify/write accesses to
internal resources (via the FPI bus):
0: Read/Modify/Write accesses are disabled
1: Read/Modify/Write accesses are enabled

Note: This bit must only be written with ‘1’ when used
with a compatible external master (e.g. another
instance of EBU)

0 30 r Reserved bits
These bits are reserved and read as ‘0’, must be
written with ‘0’.
User’s Manual 14-107 V1.0, 2002-03

TC11IB
System Units

External Bus Unit
14.12.9 EBU Register Address Range

In the TC11IB, the registers of the EBU are located in the following address range:

– Module Base Address. F800 0000H
Module End Address. F800 02FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 14-32)
User’s Manual 14-108 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15 Interrupt System
The TC11IB interrupt system provides a flexible and time-efficient means for processing
interrupts. This chapter describes the interrupt system for the TC11IB. Topics covered
include the architecture of the interrupt system, interrupt system configuration, and the
interrupt operations of the TC11IB peripherals and Central Processing Unit (CPU).
General information is also given about the Peripheral Control Processor (PCP). For
details about that unit, see Chapter 17.

15.1 Overview

An interrupt request can be serviced either by the CPU or by the Peripheral Control
Processor (PCP). These units are called “Service Providers”. Interrupt requests are
called “Service Requests” rather than “Interrupt Requests” in this document because
they can be serviced by either of the Service Providers.

Each peripheral in the TC11IB can generate service requests. Additionally, the Bus
Control Unit, the Debug Unit, the PCP, and even the CPU itself can generate service
requests to either of the two Service Providers.

As shown in Figure 15-1, each TC11IB unit that can generate service requests is
connected to one or multiple Service Request Nodes (SRN). Each SRN contains a
Service Request Control Register mod_SRCx, where “mod” is the identifier of the
service requesting unit and “x” an optional index. Two buses connect the SRNs with two
Interrupt Control Units, which handle interrupt arbitration among competing interrupt
service requests, as follows:

• The Interrupt Control Unit (ICU) arbitrates service requests for the CPU and
administers the CPU Interrupt Arbitration Bus.

• The Peripheral Interrupt Control Unit (PICU) arbitrates service requests for the PCP
and administers the PCP Interrupt Arbitration Bus.

Units which can generate service requests are:

• General Purpose Timer Units (GPTU 0 and GPTU 1) with 8 SRNs each
• High-Speed Synchronous Serial Interface (SSC) with 3 SRNs
• Asynchronous/Synchronous Serial Interfaces (ASC) with 4 SRNs
• Asynchronous Serial Interface (16x50) with 1 SRN
• MultiMediaCard Interface (MMCI) with 1 SRN
• Ethernet Controller with 9 SRNs
• PCI Interface with 1 SRN
• PCI Software Interrupts with 32 SRNs
• External Interrupts with 24 SRNs
• FPI Bus Control Units (BCU0 and BCU1) with 1 SRN each
• LMB Bus Control Units (LCU) with 1 SRN
• Peripheral Control Processor (PCP) with 12 SRNs
• Central Processing Unit (CPU) with 4 SRNs
User’s Manual 15-1 V1.0, 2002-03

TC11IB
System Units

Interrupt System
• Debug Unit (OCDS) with 1 SRN

The PCP can make service requests directly to itself (via the PICU), or it can make
service requests to the CPU. The Debug Unit can generate service requests to the PCP
or the CPU. The CPU can make service requests directly to itself (via the ICU), or it can
make service requests to the PCP. The CPU Service Request Nodes are activated
through software.
User’s Manual 15-2 V1.0, 2002-03

TC11IB
System Units

Interrupt System

Figure 15-1 Block Diagram of the TC11IB Interrupt System

8 S R N s

8 S R N s
8

G P T U 0

G P T U 1

3 S R N s
3

S S C

4 S R N s
4

A S C

1 S R N
1

1 6x5 0

1 S R N
1

M M C I

9 S R N s
9

E the rne t

3 3 S R N s
3 3

P C I

2 4 S R N s
2 4

E xte rna l

1 S R N
1

B C U 0

1 S R N
1

B C U 1

1 S R N
1

O C D S

S e rv ice
R e qu es t
N od es

S erv ice
R e qu e sto rs

8

8

2
3

4

4

1

1

 1

 1

9

9

3 3

3 3

2 4

2 4

1

1

1

1

1

1

P C P
In te rrup t

A rb itra tio n B us

C P U
In te rru p t
A rb itra tion B u s

2 S R N s

2 S R N s

In te rru p t
C on tro l U n its

2

P IP N

PCP

In t. A ck.

C C P N

2

In te rrup t
S e rv ice

P ro v id e rs

2

4

4 4 S R N s
4

P IP N

CPU

C C P N
In t. A ck.

S o ftw a re
In te rru p t

ICU

PICU
3

8
8

8

5 S R N s

3 S R N s

5

3

5

5

3

In t. R e q .

In t. R e q .

1 S R N
1

LC U 1

1

User’s Manual 15-3 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.2 Service Request Nodes

In total, there are 111 Service Request Nodes available in the TC11IB. Note that the four
CPU Service Request Nodes can be activated only by software (either CPU instructions
or PCP instructions).

Each Service Request Node contains a Service Request Control Register (SRC) and
interface logic that connects it to the triggering unit on one side and to the two interrupt
arbitration buses on the other side. Some peripheral units of the TC11IB have multiple
Service Request Nodes.

15.2.1 Service Request Control Registers

All Service Request Control Registers in the TC11IB have the same format. In general,
these registers contain:

• Enable/disable information
• Priority information
• Service Provider destination
• Service request active status bit
• Software-initiated service request set and reset bits

Besides being activated by the associated triggering unit through hardware, each SRN
can also be set or reset by software via two software-initiated service request control
bits.

Note: The description given in this chapter characterizes all Service Request Control
Registers of the TC11IB. Informations on further peripheral module interrupt
functions, such as enable or request flags, are described in the corresponding
chapters of the peripheral modules.

User’s Manual 15-4 V1.0, 2002-03

TC11IB
System Units

Interrupt System
mod_SRC
Service Request Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number
00H Service request is never serviced
01H Service request is on lowest priority
.. ..
FFH Service request is on highest priority

TOS [11:10] rw Type of Service Control
00B CPU service is initiated
01B PCP request is initiated
1XB Reserved

SRE 12 rw Service Request Enable
0 Service request is disabled
1 Service request is enabled

SRR 13 rh Service Request Flag
0 No service request is pending
1 A service request is pending

CLRR 14 w Request Clear Bit
CLRR is required to reset SRR.
0 No action
1 Clear SRR; bit value is not stored; read always

returns 0; no action if SETR is set also.

SETR 15 w Request Set Bit
SETR is required to set SRR.
0 No action
1 Set SRR; bit value is not stored; read always

returns 0; no action if CLRR is set also.

0 [9:8],
[31:16]

r Reserved; read as 0; should be written with 0.
User’s Manual 15-5 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.2.2 Service Request Flag (SRR)

A trigger event in a peripheral associated with this register causes SRR to be set to 1.
Service requests can be acknowledged automatically by hardware or can be polled by
software. If the corresponding enable bit SRE is set, a service request will be forwarded
for arbitration to the Service Provider indicated by the TOS bit. When the service request
is acknowledged by the Service Provider (either the CPU or the PCP), this bit is reset by
hardware to 0.

When set, the SRR flag indicates that a service request is pending. It can be set or reset
directly by associated hardware or indirectly through software using the SETR and
CLRR bits. For instance, in the General Purpose Timer Unit, an associated timer event
can cause this bit to be set to 1. The details of how hardware events can cause the SRR
bit to be set are defined in the individual peripheral chapters.

The acknowledgment of the service request by either the Interrupt Control Unit (ICU) or
the PCP Interrupt Control Unit (PICU) causes the SRR bit to be cleared.

SRR can be set or cleared either by hardware or by software regardless of the state of
the enable bit SRE. However, the request is only forwarded for service if the enable bit
is set. If SRE = 1, a pending service request takes part in the interrupt arbitration of the
service provider selected by the device’s TOS field. If SRE = 0, a pending service
request is excluded from interrupt arbitrations.

SRR is automatically reset by hardware when the service request is acknowledged and
serviced. The SRR bit can also be monitored, set, and reset by software via the SETR
or CLRR bits respectively. This allows software to poll for events in peripheral devices.
SRR must be reset by software in this case by writing a 1 to CLRR. Writing directly to
this bit via software has no effect.

15.2.2.1 Request Set and Clear Bits (SETR, CLRR)

The SETR and CLRR bits allow software to set or clear the service request bit SRR.
Writing a 1 to SETR causes bit SRR to be set to 1. Writing a 1 to CLRR causes bit SRR
to be cleared to 0. If hardware attempts to modify SRR during an atomic read-modify-
write software operation (such as the bit-set or bit-clear instructions) the software
operation will succeed and the hardware operation will have no effect.

The value written to SETR or CLRR is not stored. Writing a 0 to these bits has no effect.
These bits always return 0 when read. If both, SETR and CLRR are set to 1 at the same
time, SRR is not changed.

15.2.2.2 Enable Bit (SRE)

The SRE bit enables an interrupt to take part in the arbitration for the selected Service
Provider. It does not enable or disable the setting of the request flag SRR; the request
flag can be set by hardware or by software (via SETR) independent of the state of the
User’s Manual 15-6 V1.0, 2002-03

TC11IB
System Units

Interrupt System
SRE bit. This allows service requests to be handled automatically by hardware or
through software polling.

If SRE = 1, pending service requests are passed on to the designated Service Provider
for interrupt arbitration. The SRR bit is automatically set to 0 by hardware when the
service request is acknowledged and serviced. It is recommended that in this case,
software should not modify the SRR bit to avoid unexpected behavior due to the
hardware controlling this bit.

If SRE = 0, pending service requests are not passed on to Service Providers. Software
can poll the SRR bit to check whether a service request is pending. To acknowledge the
service request, the SRR bit must then be reset by software by writing a 1 to CLRR.

Note: In this document, ‘active source’ means a Service Request Node whose Service
Request Control Register has its request enable bit SRE set to 1 to allow its
service requests to participate in interrupt arbitration.

15.2.3 Type-of-Service Control (TOS)

There are two Service Providers for service requests in the TC11IB, the CPU and the
PCP. The TOS bit field is used to select whether a service request generates an interrupt
to the CPU (TOS[0] = 0) or to the PCP (TOS[0] = 1). Bit TOS[1] is read-only, returning 0
when read. Writing to this bit position has no effect. However, to ensure compatibility with
future extensions, it should always be written with 0.

15.2.4 Service Request Priority Number (SRPN)

The 8-bit Service Request Priority Number (SRPN) indicates the priority of a service
request with respect to other sources requesting service from the same Service
Provider, and with respect to the priority of the Service Provider itself.

Each active source selecting the same Service Provider must have a unique SRPN
value to differentiate its priority. The special SRPN value of 00H excludes an SRN from
taking part in arbitration, regardless of the state of its SRE bit. The SRPN values for
active sources selecting different Service Providers (CPU vs. PCP) may overlap. If a
source is not active — meaning its SRE bit is 0 — no restrictions are applied to the
service request priority number.

The SRPN is used by Service Providers to select an Interrupt Service Routine (ISR) or
Channel Program (in case of the PCP) to service the request. ISRs are associated with
Service Request Priority Numbers by an Interrupt Vector Table located in each Service
Provider. This means that the TC11IB Interrupt Vector Table is ordered by priority
number. This is unlike traditional interrupt architectures in which their interrupt vector
tables are ordered by the source of the interrupt. The TC11IB Interrupt Vector Table
allows a single peripheral can have multiple priorities for different purposes.

The range of values for SRPNs used in a system depends on the number of possible
active service requests and the user-definable organization of the Interrupt Vector Table.
User’s Manual 15-7 V1.0, 2002-03

TC11IB
System Units

Interrupt System
The 8-bit SRPNs permit up to 255 sources to be active at one time (remembering that
the special SRPN value of 00H excludes an SRN from taking part in arbitration).

15.3 Interrupt Control Units

The Interrupt Control Units manage the interrupt system, arbitrate incoming service
requests, and determine whether and when to interrupt the Service Provider. The
TC11IB contains two interrupt control units, one for the CPU (called ICU), and one for
the PCP (called PICU). Each one controls its associated interrupt arbitration bus and
manages the communication with its Service Provider (see Figure 15-1).

15.3.1 Interrupt Control Unit (ICU)

15.3.1.1 ICU Interrupt Control Register (ICR)

The ICU Interrupt Control Register ICR holds the current CPU priority number (CCPN),
the global interrupt enable/disable bit (IE), the pending interrupt priority number (PIPN),
and bit fields which control the interrupt arbitration process.

ICR
ICU Interrupt Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0
C

ONE
CYC

CARBCYC PIPN

r rw rw rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IE CCPN

r rwh rwh

Field Bits Type Description

CCPN [7:0] rwh Current CPU Priority Number
The Current CPU Priority Number (CCPN) bit field
indicates the current priority level of the CPU. It is
automatically updated by hardware on entry and exit of
interrupt service routines, and through the execution of
a BISR instruction. CCPN can also be updated through
an MTCR instruction.
User’s Manual 15-8 V1.0, 2002-03

TC11IB
System Units

Interrupt System
IE 8 rwh Global Interrupt Enable Bit
The interrupt enable bit globally enables the CPU
service request system. Whether a service request is
delivered to the CPU depends on the individual
Service Request Enable Bits (SRE) in the SRNs, and
the current state of the CPU.
IE is automatically updated by hardware on entry and
exit of an Interrupt Service Routine (ISR).
IE is cleared to 0 when an interrupt is taken, and is
restored to the previous value when the ISR executes
an RFE instruction to terminate itself.
IE can also be updated through the execution of the
ENABLE, DISABLE, MTCR, and BISR instructions.
0 Interrupt system is globally disabled
1 Interrupt system is globally enabled

PIPN [23:16] rh Pending Interrupt Priority Number
PIPN is a read-only bit field that is updated by the ICU
at the end of each interrupt arbitration process. It
indicates the priority number of the pending service
request. PIPN is set to 0 when no request is pending,
and at the beginning of each new arbitration process.
00H No valid pending request
YYH A request with priority YYH is pending

CARBCYC [25:24] rw Number of Arbitration Cycles
CARBCYC controls the number of arbitration cycles
used to determine the request with the highest priority.
00B 4 arbitration cycles (default)
01B 3 arbitration cycles
10B 2 arbitration cycles
11B 1 arbitration cycle

CONECYC 26 rw Number of Clocks per Arbitration Cycle Control
The CONECYC bit determines the number of system
clocks per arbitration cycle. This bit should be set to 1
only for system designs utilizing low system clock
frequencies.
0 2 clocks per arbitration cycle (default)
1 1 clock per arbitration cycle

0 [15:9],
[31:27]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 15-9 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.3.1.2 Operation of the Interrupt Control Unit (ICU)

Service-request arbitration is performed in the ICU in parallel with normal CPU
operation. When a triggering event occurs in one or more interrupt sources, the
associated SRNs, if enabled, send service requests to the ICU via the arbitration bus.
The ICU determines which service request has the highest priority. The ICU will then
forward the service request to the CPU. The service request will be acknowledged by the
CPU and serviced, depending upon the state of the CPU.

The ICU arbitration process takes place in one or more arbitration cycles over the CPU
Interrupt Arbitration Bus. The ICU begins a new arbitration process when a new service
request is detected. At the end of the arbitration process, the ICU will have determined
the service request with the highest priority number. This number is stored in the
ICR.PIPN bit field and becomes the pending service request.

After the arbitration process, the ICU forwards the pending service request to the CPU
by attempting to interrupt it. The CPU can be interrupted only if interrupts are enabled
globally (that is, ICR.IE = 1) and if the priority of the service request is higher than the
current processor priority (ICR.PIPN > ICR.CCPN). Also, the CPU may be temporarily
blocked from taking interrupts, for example, if it is executing a multi-cycle instruction such
as an atomic read-modify-write operation. The full list of conditions which could block the
CPU from immediately responding to an interrupt request generated by the ICU is:

– Current CPU priority, ICR.CCPN, is equal to or higher than the pending interrupt
priority, ICR.PIPN

– Interrupt system is globally disabled (ICR.IE = 0)
– CPU is in the process of entering an interrupt- or trap-service routine
– CPU is executing non-interruptible trap services
– CPU is executing a multi-cycle instruction
– CPU is executing an instruction which modifies the conditions of the global interrupt

system, such as modifying the ICR
– CPU detects a trap condition (such as context depletion) when trying to enter a

service routine

When the CPU is not otherwise prevented from taking an interrupt, the CPU’s program
counter will be directed to the Interrupt Service Routine entry point associated with the
priority of the service request. Now, the CPU saves the value of ICR.PIPN internally, and
acknowledges the ICU. The ICU then forwards the acknowledge signal back to the SRN
that is requesting service, to inform it that it will be serviced by the CPU. The SRR bit in
this SRN is then reset to 0.

After sending the acknowledgement, the ICU resets ICR.PIPN to 0 and immediately
starts a new arbitration process to determine if there is another pending interrupt
request. If not, ICR.PIPN remains at 0 and the ICU enters an idle state, waiting for the
next interrupt request to awaken it. If there is a new service request waiting, the priority
number of the new request will be written to ICR.PIPN at the end of the new arbitration
User’s Manual 15-10 V1.0, 2002-03

TC11IB
System Units

Interrupt System
process and the ICU will deliver the pending interrupt to the CPU according to the rules
described in this section.

If a new service request is received by the ICU before the CPU has acknowledged the
pending interrupt request, the ICU deactivates the pending request and starts a new
arbitration process. This reduces the latency of service requests posted before the
current request is acknowledged. The ICU deactivates the current pending interrupt
request by setting the ICR.PIPN bit field to 0, indicating that the ICU has not yet found a
new valid pending request. It then executes its arbitration process again. If the new
service request has a higher priority than the previous one, its priority will be written to
ICR.PIPN. If the new interrupt has a lower priority, the priority of the previous interrupt
request will again be written to ICR.PIPN. In any case, the ICU will deliver a new interrupt
request to the CPU according to the rules described in this section.

Once the CPU has acknowledged the current pending interrupt request, any new service
request generated by an SRN must wait at least until the end of the next service request
arbitration process to be serviced.

Essentially, arbitration in the ICU is performed whenever a new service request is
detected, regardless of whether or not the CPU is servicing interrupts. Because of this,
the ICR.PIPN bit field always reflects the pending service request with the highest
priority. This can, for example, be used by software polling techniques to determine high-
priority requests while leaving the interrupt system disabled.

15.3.2 PCP Interrupt Control Unit (PICU)

The PCP Interrupt Control Unit (PICU) is closely coupled with the PCP and its Interrupt
Control Register (PCP_PICR). The operation of the PICU is very similar to the ICU of the
CPU with respect to the overall scheme. However, the PCP cannot handle nested
interrupts, that is, an interrupt request to the PCP cannot interrupt the service of another
interrupt request. Thus, schemes such as interrupt priority grouping, are not feasible in
the PCP.

15.3.2.1 PICU Interrupt control Register

The PCP_ICR register is nearly identical to the ICR register of the CPU. It holds the
current PCP priority number (PCP_ICR_CPPN), the global interrupt enable/disable bit
(PCP_ICR_IE), the pending interrupt priority number (PCP_ICR_PIPN), as well as bits
to control interrupt arbitration cycles.

User’s Manual 15-11 V1.0, 2002-03

TC11IB
System Units

Interrupt System
PCP_ICR
PCP Interrupt Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0
P

ONE
CYC

PARBCYC PIPN

r rw rw rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IE CPPN

r rwh rwh

Field Bits Type Description

CPPN [7:0] rwh Current PCP Priority Number
The Current PCP Priority Number (CPPN) bit field
indicates the current priority level of the PCP. It is
automatically updated by hardware on entry and exit of
a PCP Channel Program.

IE 8 rwh Global Interrupt Enable Bit
The Global Interrupt Enable status bit is updated by
hardware according to the state of the INT bit in the
register R7.
0 Interrupt system is globally disabled
1 Interrupt system is globally enabled

PIPN [23:16] rh Pending Interrupt Priority Number
PIPN is a read-only bit field that is updated by the PICU
at the end of each interrupt arbitration process. It
indicates the priority number of the pending service
request. PIPN is set to 0 when no request is pending,
and at the beginning of each new arbitration process.
00H No valid pending request
YYH A request with priority YYH is pending

PARBCYC [25:24] rw Number of Arbitration Cycles
PARBCYC controls the number of arbitration cycles
used to determine the request with the highest priority.
00B 4 arbitration cycles (default)
01B 3 arbitration cycles
10B 2 arbitration cycles
11B 1 arbitration cycle
User’s Manual 15-12 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.4 Arbitration Process

The arbitration process implemented in the TC11IB uses a number of arbitration cycles
to determine the pending interrupt request with the highest priority number, SRPN. In
each of these cycles, two bits of the SRPNs of all pending service requests are
compared against each other. The sequence starts with the high-order bits of the SRPNs
and works downwards, such that in the last cycle, bits[1:0] of the SRPNs are compared.
Thus, to perform an arbitration through all 8 bits of an SRPN, four arbitration cycles are
required. There are two factors determining the duration of the arbitration process:

– Number of arbitration cycles, and
– Duration of arbitration cycles.

Both of these can be controlled by the user, as described in the following sections.

15.4.1 Controlling the Number of Arbitration Cycles

In a real-time system where responsiveness is critical, arbitration must be as fast as
possible. Yet to maintain flexibility, the TC11IB system is designed to have a large range
of service priorities. If not all priorities are needed in a system, arbitration can be speeded
up by not examining all the bits used to identify all 255 unique priorities.

For instance, if a 6-bit number is enough to identify all priority numbers used in a system,
(meaning that bits [7:6] of all SRPNs are always 0), it is not necessary to perform
arbitration on these two bits. Three arbitration cycles will be enough to find the highest
number in bits [5:0] of the SRPNs of all pending requests. Similarly, the number of
arbitration cycles can be reduced to two if only bits [3:0] are used in all SRPNs, and the
number of arbitration cycles can be reduced to one cycle if only bits [1:0] are used.

The ICR.CARBCYC bit field controls the number of cycles in the arbitration process. Its
default value is 0, which selects four arbitration cycles. Table 15-1 gives the options for
arbitration cycle control.

PONECYC 26 rw Number of Clocks per Arbitration Cycle Control
The CONECYC bit determines the number of system
clocks per arbitration cycle. This bit should be set to 1
only for system designs utilizing low system clock
frequencies.
0 2 clocks per arbitration cycle (default)
1 1 clock per arbitration cycle

0 [15:9],
[31:27]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 15-13 V1.0, 2002-03

TC11IB
System Units

Interrupt System

Note: If less than four arbitration cycles are selected, the corresponding upper bits of the
SRPNs are not examined, even if they do not contain zeros.

15.4.2 Controlling the Duration of Arbitration Cycles

During each arbitration cycle, the rate of information flow between the SRNs and the ICU
can become limited by propagation delays within the TC11IB when it is executing at high
system clock frequencies. At high frequencies, arbitration cycles may require two system
clocks to execute properly. In order to optimize the arbitration scheme at lower system
frequencies, an additional control bit, ICR.CONECYC is implemented. The default value
of 0 of this bit selects two clock cycles per arbitration cycle. Setting this bit to 1 selects
one clock cycle per arbitration cycle. This bit should only be set to 1 for lower system
frequencies. Setting this bit for system frequencies above the specified limit leads to
unpredictable behavior of the interrupt system. Correct operation is not then guaranteed.

15.5 Entering an Interrupt Service Routine

When an interrupt request from the ICU is pending and all conditions are met such that
the CPU can now service the interrupt request, the CPU performs the following actions
in preparation for entering the designated Interrupt Service Routine (ISR):

1. Upper context of the current task is saved1). The current CPU priority number,
ICR.CCPN, and the state of the global interrupt enable bit, ICR.IE, are automatically
saved with the PCXI register (bit field PCPN and bit PIE).

2. Interrupt system is globally disabled (ICR.IE is set to 0).
3. Current CPU priority number (ICR.CCPN) is set to the value of ICR.PIPN.
4. PSW is set to a default value:

– All permissions are enabled, that is, PSW.IO = 10B
– Memory protection is switched to PRS0, that is, PSW.PRS = 0.
– The stack pointer bit is set to the interrupt stack, that is, PSW.IS = 1.
– The call depth counter is cleared, the call depth limit is set to 63, that is,

PSW.CDC = 0.

Table 15-1 Arbitration Cycle Control

Number of Arbitration Cycles 4 3 2 1

ICR.CARBCYC 00B 01B 10B 11B

Relevant bits of the SRPNs [7:0] [5:0] [3:0] [1:0]

Range of priority numbers covered 1..255 1..63 1..15 1..3

1) Note that, if a context-switch trap occurs while the CPU is in the process of saving the upper context of the
current task, the pending ISR will not be entered, the interrupt request will be left pending, and the CPU will
enter the appropriate trap handling routine instead.
User’s Manual 15-14 V1.0, 2002-03

TC11IB
System Units

Interrupt System
5. Stack pointer, A10, is reloaded with the contents of the Interrupt Stack Pointer, ISP, if
the PSW.IS bit of the interrupted routine was set to 0 (using the user stack), otherwise
it is left unaltered.

6. CPU program counter is assigned an effective address consisting of the contents of
the BIV register ORed with the ICR.PIPN number left-shifted by 5. This indexes the
Interrupt Vector Table entry corresponding to the interrupt priority.

7. Contents at the effective address of the program counter in the Interrupt Vector Table
is fetched as the first instruction of the Interrupt Service Routine (ISR). Execution
continues linearly from there until the ISR branches or exits.

As explained, receipt of further interrupts is disabled (ICR.IE = 0) when an Interrupt
Service Routine is entered. At the same time, the current CPU priority ICR.CCPN is set
by hardware to the priority of the interrupting source (ICR.PIPN).

Clearly, before the processor can receive any more interrupts, the ISR must eventually
re-enable the interrupt system again by setting ICR.IE = 1. Furthermore, the ISR can
also modify the priority number ICR.CCPN to allow effective interrupt priority levels. It is
up to the user to enable the interrupt system again and optionally modify the priority
number CCPN to implement interrupt priority levels or handle special cases (see next
sections).

To simply enable the interrupt system again, the ENABLE instruction can be used, which
sets ICR.IE bit to 1. The BISR instruction offers a convenient way to re-enable the
interrupt system, to set ICR.CCPN to a new value, and to save the lower context of the
interrupted task. It is also possible to use an MTCR instruction to modify ICR.IE and
ICR.CCPN. However, this should be performed together with an ISYNC instruction
(which synchronizes the instruction stream) to ensure completion of this operation before
the execution of following instructions.

Note: The lower context can also be saved through execution of a SVLCX (Save Lower
Context) instruction.

15.6 Exiting an Interrupt Service Routine

When an ISR exits with an RFE (Return From Exception) instruction, the hardware
automatically restores the upper context. Register PCXI, which holds the Previous CPU
Priority Number (PCPN) and the Previous Global Interrupt Enable Bit (PIE), is a part of
this upper context. The value saved in PCPN is written to ICR.CCPN to set the CPU
priority number to the value before the interruption, and bit PIE is written to ICR.IE to
restore the state of this bit. The interrupted routine then continues.

Note: There is no automatic restoring of the lower context on an exit from an Interrupt
Service Routine. If the lower context was saved during the execution of the ISR,
either through execution of the BISR instruction or a SVLCX instruction, the ISR
must restore the lower context again via the RSLCX (Restore Lower Context)
instruction before it exits through RFI execution.
User’s Manual 15-15 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.7 Interrupt Vector Table

Interrupt Service Routines are associated with interrupts at a particular priority by way of
the Interrupt Vector Table. The Interrupt Vector Table is an array of Interrupt Service
Routine entry points.

When the CPU takes an interrupt, it calculates an address in the Interrupt Vector Table
that corresponds with the priority of the interrupt (the ICR.PIPN bit field). This address is
loaded in the program counter. The CPU begins executing instructions at this address in
the Interrupt Vector Table. The code at this address is the start of the selected Interrupt
Service Routine (ISR). Depending on the code size of the ISR, the Interrupt Vector Table
may only store the initial portion of the ISR, such as a jump instruction that vectors the
CPU to the rest of the ISR elsewhere in memory.

The Interrupt Vector Table is stored in code memory. The BIV register specifies the base
address of the Interrupt Vector Table. Interrupt vectors are ordered in the table by
increasing priority.

The Base of Interrupt Vector Table register (BIV) stores the base address of the Interrupt
Vector Table. It can be assigned to any available code memory. Its default on power-up
is fixed at 0000 0000H. However, the BIV register can be modified using the MTCR
instruction during the initialization phase of the system, before interrupts are enabled.
With this arrangement, it is possible to have multiple Interrupt Vector Tables and switch
between them by changing the contents of the BIV register.

Note: The BIV register is protected by the ENDINIT bit (see Chapter 20). Modifications
should only be done while the interrupt system is globally disabled (ICR.IE = 0).
Also, an ISYNC instruction should be issued after modifying BIV to ensure
completion of this operation before execution of following instructions.

When interrupted, the CPU calculates the entry point of the appropriate Interrupt Service
Routine from the PIPN and the contents of the BIV register. The PIPN is left-shifted by
five bits and ORed with the address in the BIV register to generate a pointer into the
Interrupt Vector Table. Execution of the ISR begins at this address. Due to this operation,
it is recommended that bits [9:7] of register BIV are set to 0 (see Figure 15-2). Note that
bit 0 of the BIV register is always 0 and cannot be written to (instructions have to be
aligned on even byte boundaries).
User’s Manual 15-16 V1.0, 2002-03

TC11IB
System Units

Interrupt System
Figure 15-2 Interrupt Vector Table Entry Address Calculation

Left-shifting the PIPN by 5 bits creates entries into the Interrupt Vector Table which are
evenly spaced 8 words apart. If an ISR is very short, it may fit entirely within the eight
words available in the vector table entry. Otherwise, the code at the entry point must
ultimately cause a jump to the rest of the ISR residing elsewhere in memory. Due to the
way the vector table is organized according to the interrupt priorities, the TC11IB offers
an additional option by allowing to span several Interrupt Vector Table entries so long as
those entries are otherwise unused. Figure 15-3 illustrates this.

The required size of the Interrupt Vector Table depends only on the range of priority
numbers actually used in a system. Of the 256 vector entries, 255 may be used. Vector
entry 0 is never used, because if ICR.PIPN is 0, the CPU is not interrupted. Distinct
interrupt handlers are supported, but systems requiring fewer entries need not dedicate
the full memory area required by the largest configurations.

00

0

0 0 0 0

591031

BIV

PIPN

Resulting Interrupt Vector Table Entry Address

OR
User’s Manual 15-17 V1.0, 2002-03

TC11IB
System Units

Interrupt System

Figure 15-3 Interrupt Vector Table

15.8 Usage of the TC11IB Interrupt System

The following sections give some examples of using the TC11IB interrupt system to
solve both typical and special application requirements.

15.8.1 Spanning Interrupt Service Routines Across Vector Entries

Each Interrupt Vector Table entry consists of eight words of memory. If an ISR can be
made to fit directly in the Interrupt Vector Table there is no need for a jump instruction to
vector to the rest of the interrupt handler elsewhere in memory. However, only the
simplest ISRs can fit in the eight words available to a single entry in the table. But it is
easy to arrange for ISRs to span across multiple entries, since the Interrupt Vector Table

8 W ords

8 W ords

M C A04781

Interrupt Vector Table

8 W ords

8 W ords

B IV P N = 0 (never used)

P N = 1

P N = 2

P N = 3

P N = 4

P N = 5

P N = 255

P riority N um ber

(m ay no t be used
if spanned by IS R
w ith P N = 2)

S erv ice
R outine
m ay span
severa l
en tries
User’s Manual 15-18 V1.0, 2002-03

TC11IB
System Units

Interrupt System
is ordered not by the interrupt source but by interrupt priority. This technique is explained
in this section.

In the example of Figure 15-3, entry locations 3 and 4 are occupied by the ISR for
entry 2. In Figure 15-3, the next available entry after entry 2 is entry 5. Of course, if this
technique is used, it would be improper to allow any SRN to request service at any of the
spanned vector priorities. Thus, priority levels 3 and 4 must not be assigned to SRNs
requesting CPU service. They can, however, be used to request PCP service.

There is a performance trade-off which may arise when using this technique because the
range of priority numbers used increases. This may have an impact on the number of
arbitration cycles required to perform arbitration. Consider the case in which a system
uses only three active interrupt sources, that is, where there are only three SRNs
enabled to request service. If these three active sources are assigned to priority numbers
1, 2, and 3, it would be sufficient to perform the arbitration in just one cycle. However, if
the ISR for interrupt priority 2 is spanned across three Interrupt Vector Table entries as
shown in Figure 15-3, the priority numbers 1, 2 and 5 would have to be assigned. Thus,
two arbitration cycles would have to be used to perform the full arbitration process.

The trade-off between the performance impact of the number of arbitration cycles and
the performance gain through spanning service routines can be made by the system
designer depending on system needs. Reducing the number of arbitration cycles
reduces the service request arbitration latency - spanning service routines reduces the
run time of service routines (and therefore also the latency for further interrupts at that
priority level or below). For example, if there are multiple fleeting measurements to be
made by a system, reducing arbitration latency may be most important. But if keeping
total interrupt response time to a minimum is most urgent, spanning Interrupt Vector
Table entries may be a solution.

15.8.2 Configuring Ordinary Interrupt Service Routines

When the CPU starts to service an interrupt, the interrupt system is globally disabled and
the CPU priority ICR.CCPN is set to the priority of the interrupt now being serviced. This
blocks all further interrupts from being serviced until the interrupt system is enabled
again.

After an ordinary ISR begins execution, it is usually desirable for the ISR to re-enable
global interrupts so that higher-priority interrupts (that is, interrupts that are greater than
the current value of ICR.CCPN) can be serviced even during the current ISR’s execution.
Thus, such an ISR may set ICR.IE = 1 again with, for instance, the ENABLE instruction.

If the ISR enables the interrupt system again by setting ICR.IE = 1 but does not change
ICR.CCPN, the effect is that from that point on the hardware can be interrupted by
higher-priority interrupts but will be blocked from servicing interrupt requests with the
same or lower priority than the current value of ISR.CCPN. Since the current ISR is
clearly also at this priority level, the hardware is also blocked from delivering further
User’s Manual 15-19 V1.0, 2002-03

TC11IB
System Units

Interrupt System
interrupts to it as well. (This condition is clearly necessary so that the ISR can service
the interrupt request atomically.)

When the ISR is finished, it exits with an RFE instruction. Hardware then restores the
values of ICR.CCPN and ICR.IE to the values of the interrupted program.

15.8.3 Interrupt Priority Groups

It is sometimes useful to create groups of interrupts at the same or different interrupt
priorities that cannot interrupt each other’s ISRs. For instance, devices which can
generate multiple interrupts, such as the General Purpose Timer, may need to have
interrupts at different priorities interlocked in this way. The TC11IB interrupt architecture
can be used to create such interrupt priority groups. It is effected by managing the
current CPU priority level ICR.CCPN in a way described in this section.

If it is wished, for example, to make an interrupt priority group out of priority numbers 11
and 12, one would not want an ISR executing at priority 11 to be interrupted by a service
request at priority 12, since this would be in the same priority group. One would wish that
only interrupts above 12 should be allowed to interrupt the ISRs in this interrupt priority
group. However, under ordinary ISR usage the ISR at priority 11 would be interrupted by
any request with a higher priority number, including priority 12.

If, however, all ISRs in the interrupt priority group set the value of ICR.CCPN to the
highest priority level within their group before they re-enable interrupts, then the desired
interlocking will be effected.

Figure 15-4 shows an example for this. The interrupt requests with the priority numbers
11 and 12 form one group, while the requests with priority numbers 14 through 17 form
another group. Each ISR in group 1 sets the value of ICR.CCPN to 12, the highest
number in that group, before re-enabling the interrupt system. Each ISR in group 2 sets
the value of ICR.CCPN to 17 before re-enabling the interrupt system. If, for example,
interrupt 14 is serviced, it can only be interrupted by requests with a priority number
higher than 17; therefore it will not be interrupted by requests from its own priority group
or requests with lower priority.

In Figure 15-4, the interrupt request with priority number 13 can be said to form an
interrupt priority group with just itself as a member.

Setting ICR.CCPN to the maximum value 255 in each service routine has the same
effect as not re-enabling the interrupt system; all interrupt requests can then be
considered to be in the same group.

Interrupt priority groups are an example of the power of the TC11IB priority-based
interrupt-ordering system. Thus the flexibility of interrupt priority levels ranges from all
interrupts in one group to each interrupt request building its own group, and to all
possible combinations in between.
User’s Manual 15-20 V1.0, 2002-03

TC11IB
System Units

Interrupt System

Figure 15-4 Interrupt Priority Groups

15.8.4 Splitting Interrupt Service Across Different Priority Levels

Interrupt service can be divided into multiple ISRs that execute at different priority levels.
For example, the beginning stage of interrupt service may be very time-critical, such as
to read a data value within a limited time window after the interrupt request activation.
However, once the time-critical phase is past, there may still be more to do — for
instance, to process the observation. During this second phase, it might be acceptable
for this ISR to be interrupted by lower-level interrupts. This can be performed as follows.

Say for example, the initial interrupt priority is fixed very high because response time is
critical. The necessary actions are carried out immediately by the ISR at that high-priority
level. Then the ISR prepares to invoke another ISR at a lower priority level through
software to perform the lower-priority actions.

To invoke an ISR through software, the high-priority ISR directly sets an interrupt request
bit in a SRN that will invoke the appropriate low-priority ISR. Then the high-priority ISR
exits.

When the high-priority ISR exits, the pending low-priority interrupt will eventually be
serviced (depending on the priority of other pending interrupts). When the low-priority
ISR eventually executes, the low-priority actions of the interrupt will be performed.

M C A04782

Interrupt Vector Table

P N = 255

P N = 18

P N = 17

P N = 16

P N = 15

P N = 14

P N = 13

P N = 12

P N = 11

P N = 10

P rio rity
G roup 2

P rio rity
G roup 1
User’s Manual 15-21 V1.0, 2002-03

TC11IB
System Units

Interrupt System
The inverse of this method can also be employed, where a low-priority ISR raises its own
priority level, or leaves interrupts turned off while it executes. For instance, the priority of
a service request might be low because the time to respond to the event is not critical,
but once it has been granted service, this service should not be interrupted. In this case,
the ISR could raise the value of ICR.CCPN to a priority that would exclude some or all
other interrupts, or simply leave interrupts disabled.

15.8.5 Using different Priorities for the same Interrupt Source

For some applications, the urgency of a service request may vary, depending on the
current state of the system. To handle this, different priority numbers (SRPNs) can be
assigned at different times to a service request depending on the application needs.

Of course, Interrupt Service Routines must be placed in the Interrupt Vector Table at all
addresses corresponding to the range of priorities used. If service remains the same at
different priorities, copies of the ISR can be placed at the possible different entries, or
the entries can all vector to a common ISR. If the ISR should execute different code
depending on its priority, one need merely put the appropriate ISR in the appropriate
entry of the Interrupt Vector Table.

This flexibility is another advantage of the TC11IB interrupt architecture. In traditional
interrupt systems where the interrupt vectors are ordered by interrupting source, the ISR
would have to check the current priority of the interrupt request and perform a branch to
the appropriate code section, causing a delay in the response to the request. In the
TC11IB, however, the extra check and branch in the ISR are not necessary, which
reduces the interrupt latency.

Because this approach may necessitate an increase in the range of interrupt priorities,
the system designer must trade off this advantage against any possible increase in the
number of arbitration cycles.

15.8.6 Software Initiated Interrupts

Software can set the service request bit in a SRN by writing to its Service Request
Control Register. Thus, software can initiate interrupts which are handled by the same
mechanism as hardware interrupts.

After the service request bit is set in an active SRN, there is no way to distinguish
between a software initiated interrupt request and a hardware interrupt request. For this
reason, software should only use SRNs and interrupt priority numbers that are not being
used for hardware interrupts.

The TC11IB architecture includes four Service Request Nodes which are intended solely
for the purpose of generating software interrupts. These SRNs are not connected to any
hardware that could generate a service request, and so are only able to be used by
software. Additionally, any otherwise unused SRN can be employed to generate
software interrupts.
User’s Manual 15-22 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.8.7 Interrupt Priority 1

Interrupt Priority 1 is the first and lowest-priority entry in the Interrupt Vector Table. It is
generally reserved for ISRs which perform task management. ISRs whose actions cause
software-managed tasks to be created post a software interrupt request at priority level 1
to signal the event.

The ISR that triggers this event can then execute a normal return from interrupt. There
is no need for it to check whether the ISR is returning to the background-task priority level
(priority 0) or is returning to a lower-priority ISR that it interrupted. When there is a
pending interrupt at a priority higher than the return context for the current interrupt, this
interrupt will then be serviced. When a return to the background-task priority level
(level 0) is performed, the software-posted interrupt at priority level 1 will be serviced
automatically.
User’s Manual 15-23 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.9 CPU Service Request Nodes

To support software initiated interrupts, the TC11IB contains four Service Request
Nodes which are not attached to triggering peripherals. These SRNs can only cause
interrupts when software sets the service request bit in one of their Service Request
Control Registers. These SRNs are called the CPU Service Request Nodes.

The PCP can also cause these SRNs to generate service requests. An external bus
master can also generate service requests this way.

Additionally, any otherwise unused SRN can be employed to generate software
interrupts.

Note: The CPU Service Request Control Registers are not bit-addressable.

CPU_SRC0
CPU Service Request Control Register 0
CPU_SRC1
CPU Service Request Control Register 1
CPU_SRC2
CPU Service Request Control Register 2
CPU_SRC3
CPU Service Request Control Register 3

Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number

TOS [11:10] rw Type of Service Control

SRE 12 rw Service Request Enable

SRR 13 rh Service Request Flag

CLRR 14 w Request Clear Bit

SETR 15 w Request Set Bit
User’s Manual 15-24 V1.0, 2002-03

TC11IB
System Units

Interrupt System
Note: See Section 15.2.1 for detailed register description.

15.10 External Interrupts

The TC11IB contains 24 Service Request Nodes (SRN) for generating external
interrupts which locate at GPIO port 3 and port 4. Each SRN contains a Service Request
Control Register and interface logic that connects it to the triggering unit on one side and
to the interrupt arbitration bus on the other side.

A rising or falling edge (or both) on the pin sets the Service Request flag (SRR) located
in the Service Request Control Register (SRC). The Trigger Edge Select Registers
(TES0 and TES1) provide 2 bits per interrupt for selecting the active edge. In addition, a
filter can be enabled so that spikes which may exist in a noisy environment will be
ignored. The Filter Enable Registers (FEN0 and FEN1) provide 2 bits per interrupt to
select the on/off function of the filter and its filter time. The duration of the filter time can
be either 1, 2 or 3 clock cycles. Bit SRR is cleared by hardware when the service request
is acknowledged.

With the filter enabled, a service request will be flagged only if the interrupt input signal
remains stable for at least n clocks after an active edge has been detected. The value of
n is as specified in the register FEN0/1. As an example, at 48MHz (slow FPI clock) and
with n=3, a filter time of about 60ns will be achieved. In applications where little or no

0 [9:8],
[31:16]

r Reserved

Field Bits Type Description
User’s Manual 15-25 V1.0, 2002-03

TC11IB
System Units

Interrupt System
noise is expected from the interrupt pins, the filters can be disabled. Figure 15-5
illustrates the block diagram.

Figure 15-5 Overview of External Interrupt Handling

15.10.1 Register Description
The 24 Service Request Control Registers for the external interrupts have the same
format. Each SRN can be set or reset by software via two software-initiated service
request control bits. The address map for registers dedicated to external interrupt
handling is listed in Table 15-2.

Table 15-2 Address Map for External Interrupt Registers

Register
Short Name

Register Long Name Address Description

EINT_SRC23 Service Request Control Reg. for Ext.
Interrupt 23

F000 0C7CH Page 15-29

EINT_SRC22 Service Request Control Reg. for Ext.
Interrupt 22

F000 0C78H Page 15-29

EINT_SRC21 Service Request Control Reg. for Ext.
Interrupt 21

F000 0C74H Page 15-29

EINT_SRC20 Service Request Control Reg. for Ext.
Interrupt 20

F000 0C70H Page 15-29

Edge Detect Filter

Sel M
U

X

SRR
GPIO

Service
Request

Flag

SRC
(Service
Request
Control

Register)

EXIxES
EXIxFE

FEN0/1
(Filter

Enable)

TES0/1
(Trigger
Edge)
User’s Manual 15-26 V1.0, 2002-03

TC11IB
System Units

Interrupt System
EINT_SRC19 Service Request Control Reg. for Ext.
Interrupt 19

F000 0C6CH Page 15-29

EINT_SRC18 Service Request Control Reg. for Ext.
Interrupt 18

F000 0C68H Page 15-29

EINT_SRC17 Service Request Control Reg. for Ext.
Interrupt 17

F000 0C64H Page 15-29

EINT_SRC16 Service Request Control Reg. for Ext.
Interrupt 16

F000 0C60H Page 15-29

EINT_SRC15 Service Request Control Reg. for Ext.
Interrupt 15

F000 0C5CH Page 15-29

EINT_SRC14 Service Request Control Reg. for Ext.
Interrupt 14

F000 0C58H Page 15-29

EINT_SRC13 Service Request Control Reg. for Ext.
Interrupt 13

F000 0C54H Page 15-29

EINT_SRC12 Service Request Control Reg. for Ext.
Interrupt 12

F000 0C50H Page 15-29

EINT_SRC11 Service Request Control Reg. for Ext.
Interrupt 11

F000 0C4CH Page 15-29

EINT_SRC10 Service Request Control Reg. for Ext.
Interrupt 10

F000 0C48H Page 15-29

EINT_SRC9 Service Request Control Reg. for Ext.
Interrupt 9

F000 0C44H Page 15-29

EINT_SRC8 Service Request Control Reg. for Ext.
Interrupt 8

F000 0C40H Page 15-29

EINT_SRC7 Service Request Control Reg. for Ext.
Interrupt 7

F000 0C3CH Page 15-29

EINT_SRC6 Service Request Control Reg. for Ext.
Interrupt 6

F000 0C38H Page 15-29

EINT_SRC5 Service Request Control Reg. for Ext.
Interrupt 5

F000 0C34H Page 15-29

EINT_SRC4 Service Request Control Reg. for Ext.
Interrupt 4

F000 0C30H Page 15-29

Table 15-2 Address Map for External Interrupt Registers (cont’d)

Register
Short Name

Register Long Name Address Description
User’s Manual 15-27 V1.0, 2002-03

TC11IB
System Units

Interrupt System
EINT_SRC3 Service Request Control Reg. for Ext.
Interrupt 3

F000 0C2CH Page 15-29

EINT_SRC2 Service Request Control Reg. for Ext.
Interrupt 2

F000 0C28H Page 15-29

EINT_SRC1 Service Request Control Reg. for Ext.
Interrupt 1

F000 0C24H Page 15-29

EINT_SRC0 Service Request Control Reg. for Ext.
Interrupt 0

F000 0C20H Page 15-29

FEN1 Filter Enable Register 1 F000 0C1CH Page 15-32

FEN0 Filter Enable Register 0 F000 0C18H Page 15-31

TES1 Trigger Edge Select Register 1 F000 0C14H Page 15-30

TES0 Trigger Edge Select Register 0 F000 0C10H Page 15-30

Table 15-2 Address Map for External Interrupt Registers (cont’d)

Register
Short Name

Register Long Name Address Description
User’s Manual 15-28 V1.0, 2002-03

TC11IB
System Units

Interrupt System
The general form of the Service Request Control Register is shown below.

EINT_SRC0-23
Service Request Control Register for External Interrupt 0-23

Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number

TOS [11:10] rw Type of Service Control

SRE 12 rw Service Request Enable

SRR 13 rh Service Request Flag

CLRR 14 w Request Clear Bit

SETR 15 w Request Set Bit

0 [9:8],
[31:16]

r Reserved
User’s Manual 15-29 V1.0, 2002-03

TC11IB
System Units

Interrupt System
External interrupts are triggered only on transitions of the interrupt request inputs.
Depending on the settings of the TES0/1 registers, rising or falling edges or both can
trigger an interrupt request. The registers TES0 and TES1 are defined as follows. \

TES0
Trigger Edge Select Register 0 Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EXI15ES EXI14ES EXI13ES EXI12ES EXI11ES EXI10ES EXI9ES EXI8ES

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI7ES EXI6ES EXI5ES EXI4ES EXI3ES EXI2ES EXI1ES EXI0ES

rw rw rw rw rw rw rw rw

Field Bits Type Description

EXIxES
(x=0,1...15)

[1:0]
...
[31:30]

rw External Interrupt Edge Selection Field
00H No interrupt is triggered (default)
01H Interrupt is triggered on positive edge (rising)
10H Interrupt is triggered on negative edge (falling)
11H Interrupt is triggered on both edges (rising and

falling)

TES1
Trigger Edge Select Register 1 Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI23ES EXI22ES EXI21ES EXI20ES EXI19ES EXI18ES EXI17ES EXI16ES

rw rw rw rw rw rw rw rw
User’s Manual 15-30 V1.0, 2002-03

TC11IB
System Units

Interrupt System
The effect of noise on the external interrupt request inputs can be minimized if a filter is
enabled. By setting the registers FEN0/1, the duration of the filter time − from 1 clock to
3 clocks − can be selected. The registers FEN0 and FEN1 are defined as follows. \

Field Bits Type Description

EXIxES
(x=16,17...23)

[1:0]
...
[15:14]

rw External Interrupt Edge Selection Field
00H No interrupt is triggered (default)
01H Interrupt is triggered on positive edge (rising)
10H Interrupt is triggered on negative edge (falling)
11H Interrupt is triggered on both edges (rising and

falling)

FEN0
Filter Enable Register 0 Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EXI15FE EXI14FE EXI13FE EXI12FE EXI11FE EXI10FE EXI9FE EXI8FE

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI7FE EXI6FE EXI5FE EXI4FE EXI3FE EXI2FE EXI1FE EXI0FE

rw rw rw rw rw rw rw rw

Field Bits Type Description

EXIxFE
(x=0,1...15)

[1:0]
...
[31:30]

rw External Interrupt Filter Enable Field
00H Filter is disabled (default)
01H Filter is enabled, Filter time is 1 clock cycle.
10H Filter is enabled, Filter time is 2 clock cycle.
11H Filter is enabled, Filter time is 3 clock cycle.
User’s Manual 15-31 V1.0, 2002-03

TC11IB
System Units

Interrupt System

15.11 PCI Interrupts

15.11.1 PCI Interrupt

There is a Service Request Node (SRN) dedicated for supporting PCI interrupts in the
TC11IB. Initiating of each individual PCI interrupt is done in the PCI block itself. When
any of these interrupts is active, an interrupt request signal is asserted. This signal,
generated with a 96 MHz clock, must be asserted for at least 2 clocks. It must be inactive
for a minimum of 2 clocks before it can be asserted again for the next interrupt request.

FEN1
Filter Enable Register 1 Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI23FE EXI22FE EXI21FE EXI20FE EXI19FE EXI18FE EXI17FE EXI16FE

rw rw rw rw rw rw rw rw

Field Bits Type Description

EXIxES
(x=16,17...23)

[1:0]
...
[15:14]

rw External Interrupt Filter Enable Field
00H Filter is disabled (default)
01H Filter is enabled, Filter time is 1 clock cycle.
10H Filter is enabled, Filter time is 2 clock cycle.
11H Filter is enabled, Filter time is 3 clock cycle.
User’s Manual 15-32 V1.0, 2002-03

TC11IB
System Units

Interrupt System
If an active interrupt request is detected, then the service request flag (bit SRR in register
PCI_SRC) is set. This bit is cleared by hardware when the interrupt request is serviced.
An overview of the PCI interrupt handling is shown in Figure 15-6.

Figure 15-6 Overview of PCI Interrupt Handling

15.11.2 PCI Software Interrupt

In addition, the TC11IB has 32 Service Request Nodes (SRNs) to support the PCI
software initiated interrupts. Each of these interrupt is assigned a unique FPI-address. A
write instruction to such an address is decoded to set the corresponding service request
flag (bit SRR) in the SRN. The data in the write instruction is irrelevant. This scheme is
illustrated in Figure 15-7.

Figure 15-7 PCI Software Initiated Interrupts

Detection
Logic SRR

SRC
(for PCI

Interrupt)

PCI Block
96 MHz

48 MHz

Interrupt Request

(min 2 clocks)

Decoder

SRR

SRC
(for PCI
Software

Interrupt 0)

SRR

SRC
(for PCI
Software

Interrupt 1)

SRR

SRC
(for PCI
Software

Interrupt 2)

SRR

SRC
(for PCI
Software

Interrupt 31)

A(0:31)

WR
User’s Manual 15-33 V1.0, 2002-03

TC11IB
System Units

Interrupt System
The assignment of the PCI software interrupts is listed in Table 15-3. These addresses
reside within the SCU address space.

Table 15-3 Address Assignment for PCI Software Interrupt Request Registers

Short Name Description Address

PCI_SW_IRQ31 PCI Software Interrupt Request 31 F000 01FCH

PCI_SW_IRQ30 PCI Software Interrupt Request 30 F000 01F8H

PCI_SW_IRQ29 PCI Software Interrupt Request 29 F000 01F4H

PCI_SW_IRQ28 PCI Software Interrupt Request 28 F000 01F0H

PCI_SW_IRQ27 PCI Software Interrupt Request 27 F000 01ECH

PCI_SW_IRQ26 PCI Software Interrupt Request 26 F000 01E8H

PCI_SW_IRQ25 PCI Software Interrupt Request 25 F000 01E4H

PCI_SW_IRQ24 PCI Software Interrupt Request 24 F000 01E0H

PCI_SW_IRQ23 PCI Software Interrupt Request 23 F000 01DCH

PCI_SW_IRQ22 PCI Software Interrupt Request 22 F000 01D8H

PCI_SW_IRQ21 PCI Software Interrupt Request 21 F000 01D4H

PCI_SW_IRQ20 PCI Software Interrupt Request 20 F000 01D0H

PCI_SW_IRQ19 PCI Software Interrupt Request 19 F000 01CCH

PCI_SW_IRQ18 PCI Software Interrupt Request 18 F000 01C8H

PCI_SW_IRQ17 PCI Software Interrupt Request 17 F000 01C4H

PCI_SW_IRQ16 PCI Software Interrupt Request 16 F000 01C0H

PCI_SW_IRQ15 PCI Software Interrupt Request 15 F000 01BCH

PCI_SW_IRQ14 PCI Software Interrupt Request 14 F000 01B8H

PCI_SW_IRQ13 PCI Software Interrupt Request 13 F000 01B4H

PCI_SW_IRQ12 PCI Software Interrupt Request 12 F000 01B0H

PCI_SW_IRQ11 PCI Software Interrupt Request 11 F000 01ACH

PCI_SW_IRQ10 PCI Software Interrupt Request 10 F000 01A8H

PCI_SW_IRQ9 PCI Software Interrupt Request 9 F000 01A4H

PCI_SW_IRQ8 PCI Software Interrupt Request 8 F000 01A0H

PCI_SW_IRQ7 PCI Software Interrupt Request 7 F000 019CH

PCI_SW_IRQ6 PCI Software Interrupt Request 6 F000 0198H

PCI_SW_IRQ5 PCI Software Interrupt Request 5 F000 0194H

PCI_SW_IRQ4 PCI Software Interrupt Request 4 F000 0190H
User’s Manual 15-34 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.11.3 PCI SRC Registers

The general form of the service Request Control Registers is shown below.

PCI_SW_IRQ3 PCI Software Interrupt Request 3 F000 018CH

PCI_SW_IRQ2 PCI Software Interrupt Request 2 F000 0188H

PCI_SW_IRQ1 PCI Software Interrupt Request 1 F000 0184H

PCI_SW_IRQ0 PCI Software Interrupt Request 0 F000 0180H

PCI_SW_SRC0-31
Service Request Control Register for PCI Software Interrupt 0-31
PCI_SRC
Service Request Control Register for PCI Interrupt Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number

TOS [11:10] rw Type of Service Control

SRE 12 rw Service Request Enable

SRR 13 rh Service Request Flag

CLRR 14 w Request Clear Bit

SETR 15 w Request Set Bit

0 [9:8],
[31:16]

r Reserved

Table 15-3 Address Assignment for PCI Software Interrupt Request Registers

Short Name Description Address
User’s Manual 15-35 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.12 Fast FPI Bus Control Unit Interrupt (BCU0)

The TC11IB specially implemented a pulse detection block which samples the interrupt
request input of the Bus Control Unit for Fast FPI (BCU0). This pulse detection logic is
clocked at 48 MHz (slow FPI clock) while the interrupt request input from BCU0 is
generated at 96 MHz (fast FPI clock). To ensure that no interrupt request is missed, the
interrupt request input signal must be asserted for at least 2 cycles of the 96MHz clock.
This signal must remain inactive for at least 2 clocks before it can be asserted again.

Figure 15-8 illustrates the handling of the BCU0 interrupt request. Figure 15-9 shows
the waveform of the interrupt request detection. If the request is maintained for at least
2 cycles of the fast FPI clock, then it can be detected on the rising edge of the slow FPI
clock.

Figure 15-8 Overview of BCU0 Interrupt Handling

Figure 15-9 BCU0 Interrupt Request Detection

SRR

SRC
(for BCU0
Interrupt)

Pulse Detection

48 MHz

Interrupt Request Signal

96 MHz
(min 2 clocks)

fast FPI clock
@96 MHz

Interrupt singal
from BCU0

slow FPI clock
@48 MHz
User’s Manual 15-36 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.12.1 BCU0 SRC Register

The general form of the service Request Control Registers is shown below.

BCU0_SRC
Service Request Control Register for BCU0 Interrupt Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number

TOS [11:10] rw Type of Service Control

SRE 12 rw Service Request Enable

SRR 13 rh Service Request Flag

CLRR 14 w Request Clear Bit

SETR 15 w Request Set Bit

0 [9:8],
[31:16]

r Reserved
User’s Manual 15-37 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.13 Ethernet Controller Interrupts

A similar pulse detection logic to the ones used for PCI and BCU0 interrupts, is
implemented in the TC11IB, to support the Ethernet Controller interrupts. There are
altogether nine interrupt signals from the Ethernet block.

Figure 15-10 illustrates the handling of Ethernet interrupt requests. The request signal
is generated based on the 96MHz clock; while the pulse detection logic is clocked by the
48MHz clock. To ensure that no interrupt request is missed, the request signal must be
asserted for at least 2 cycles of the 96MHz clock. The request signal must remain
inactive for at least 2 clocks before it can be asserted again.

Figure 15-10 Overview of Ethernet Interrupt Handling

SRR

SRC
(for Ethernet

Controller
Interrupt)

Pulse Detection

48 MHz

Interrupt Request Signal

96 MHz
(min 2 clocks)
User’s Manual 15-38 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.13.1 Ethernet Controller SRC Registers

The general form of the service Request Control Registers is shown below.

Ethernet_MACTX0SRC
MAC TX 0 Service Request Control Register
Ethernet_MACRX0SRC
MAC RX 0 Service Request Control Register
Ethernet_MACTX1SRC
MAC TX 1Service Request Control Register
Ethernet_MACRX1SRC
MAC RX 1 Service Request Control Register
Ethernet_RBSRC0
RB Service Request Control 0 Register
Ethernet_RBSRC1
RB Service Request Control 1 Register
Ethernet_TBSRC
TB Service Request Control Register
Ethernet_DRSRC
DR Service Request Control Register
Ethernet_DTSRC
DT Service Request Control Register Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number

TOS [11:10] rw Type of Service Control

SRE 12 rw Service Request Enable

SRR 13 rh Service Request Flag

CLRR 14 w Request Clear Bit

SETR 15 w Request Set Bit
User’s Manual 15-39 V1.0, 2002-03

TC11IB
System Units

Interrupt System
15.14 Service Request Register Table

Table 15-4 shows all SRN registers with their short and long name.

0 [9:8],
[31:16]

r Reserved

Table 15-4 Special Function Register Table of Service Request Control
Registers

Register
Short Name

Register Long Name Absolute Address

Bus Control Unit 0 (BCU0)

BCU0_SRC Service Request Control Register for BCU0
Interrupt

F000 0C04H

Bus Control Unit 1 (BCU1)

S_BCU_SRC BCU1 Service Request Control Register F000 02FCH

General Purpose Timer Unit 0 (GPTU0)

GPTU0_SRC7 GPTU0 Service Request Control Register 7 F000 06E0H

GPTU0_SRC6 GPTU0 Service Request Control Register 6 F000 06E4H

GPTU0_SRC5 GPTU0 Service Request Control Register 5 F000 06E8H

GPTU0_SRC4 GPTU0 Service Request Control Register 4 F000 06ECH

GPTU0_SRC3 GPTU0 Service Request Control Register 3 F000 06F0H

GPTU0_SRC2 GPTU0 Service Request Control Register 2 F000 06F4H

GPTU0_SRC1 GPTU0 Service Request Control Register 1 F000 06F8H

GPTU0_SRC0 GPTU0 Service Request Control Register 0 F000 06FCH

General Purpose Timer Unit 1(GPTU1)

GPTU1_SRC7 GPTU1 Service Request Control Register 7 F000 07E0H

GPTU1_SRC6 GPTU1 Service Request Control Register 6 F000 07E4H

GPTU1_SRC5 GPTU1 Service Request Control Register 5 F000 07E8H

GPTU1_SRC4 GPTU1 Service Request Control Register 4 F000 07ECH

GPTU1_SRC3 GPTU1 Service Request Control Register 3 F000 07F0H

GPTU1_SRC2 GPTU1 Service Request Control Register 2 F000 07F4H

GPTU1_SRC1 GPTU1 Service Request Control Register 1 F000 07F8H

GPTU1_SRC0 GPTU1 Service Request Control Register 0 F000 07FCH

Field Bits Type Description
User’s Manual 15-40 V1.0, 2002-03

TC11IB
System Units

Interrupt System
Asynchronous Serial Channels (ASC)

ASC_TSRC ASC Transmit Interrupt Service Request
Control Register

F000 08F0H

ASC_RSRC ASC Receive Interrupt Service Request
Control Register

F000 08F4H

ASC_ESRC ASC Error Interrupt Service Request
Control Register

F000 08F8H

ASC_TBSRC ASC Transmit Buffer Interrupt Service Req.
Control Register

F000 08FCH

Asynchronous Serial Interface (16X50)

16X50_SRC 16X50 Interrupt Service Request Control
Register

F000 09FCH

Synchronous Serial Channels (SSC)

SSC_TSRC SSC Transmit Interrupt Service Request
Control Register

F000 0AF4H

SSC_RSRC SSC Receive Interrupt Service Request
Control Register

F000 0AF8H

SSC_ESRC SSC Error Interrupt Service Request
Control Register

F000 0AFCH

MultiMediaCard Interface (MMCI)

MMCI_SRC MMCI Interface Interrupt Service Request
Control Register

F000 0BFCH

External Interrupts

EINT_SRC0 Service Request Control Register for
External Interrupt 0

F000 0C20H

EINT_SRC1 Service Request Control Register for
External Interrupt 1

F000 0C24H

EINT_SRC2 Service Request Control Register for
External Interrupt 2

F000 0C28H

EINT_SRC3 Service Request Control Register for
External Interrupt 3

F000 0C2CH

Table 15-4 Special Function Register Table of Service Request Control
Registers

Register
Short Name

Register Long Name Absolute Address
User’s Manual 15-41 V1.0, 2002-03

TC11IB
System Units

Interrupt System
EINT_SRC4 Service Request Control Register for
External Interrupt 4

F000 0C30H

EINT_SRC5 Service Request Control Register for
External Interrupt 5

F000 0C34H

EINT_SRC6 Service Request Control Register for
External Interrupt 6

F000 0C38H

EINT_SRC7 Service Request Control Register for
External Interrupt 7

F000 0C3CH

EINT_SRC8 Service Request Control Register for
External Interrupt 8

F000 0C40H

EINT_SRC9 Service Request Control Register for
External Interrupt 9

F000 0C44H

EINT_SRC10 Service Request Control Register for
External Interrupt 10

F000 0C48H

EINT_SRC11 Service Request Control Register for
External Interrupt 11

F000 0C4CH

EINT_SRC12 Service Request Control Register for
External Interrupt 12

F000 0C50H

EINT_SRC13 Service Request Control Register for
External Interrupt 13

F000 0C54H

EINT_SRC14 Service Request Control Register for
External Interrupt 14

F000 0C58H

EINT_SRC15 Service Request Control Register for
External Interrupt 15

F000 0C5CH

EINT_SRC16 Service Request Control Register for
External Interrupt 16

F000 0C60H

EINT_SRC17 Service Request Control Register for
External Interrupt 17

F000 0C64H

EINT_SRC18 Service Request Control Register for
External Interrupt 18

F000 0C68H

EINT_SRC19 Service Request Control Register for
External Interrupt 19

F000 0C6CH

Table 15-4 Special Function Register Table of Service Request Control
Registers

Register
Short Name

Register Long Name Absolute Address
User’s Manual 15-42 V1.0, 2002-03

TC11IB
System Units

Interrupt System
EINT_SRC20 Service Request Control Register for
External Interrupt 20

F000 0C70H

EINT_SRC21 Service Request Control Register for
External Interrupt 21

F000 0C74H

EINT_SRC22 Service Request Control Register for
External Interrupt 22

F000 0C78H

EINT_SRC23 Service Request Control Register for
External Interrupt 23

F000 0C7CH

PCI Interface (PCI)

PCI_SRC Service Request Control Register for PCI
Interrupt

F000 0C0CH

PCI_SW_SRC0 Service Request Control Register for PCI
Software Interrupt 0

F000 0C80H

PCI_SW_SRC1 Service Request Control Register for PCI
Software Interrupt 1

F000 0C84H

PCI_SW_SRC2 Service Request Control Register for PCI
Software Interrupt 2

F000 0C88H

PCI_SW_SRC3 Service Request Control Register for PCI
Software Interrupt 3

F000 0C8CH

PCI_SW_SRC4 Service Request Control Register for PCI
Software Interrupt 4

F000 0C90H

PCI_SW_SRC5 Service Request Control Register for PCI
Software Interrupt 5

F000 0C94H

PCI_SW_SRC6 Service Request Control Register for PCI
Software Interrupt 6

F000 0C98H

PCI_SW_SRC7 Service Request Control Register for PCI
Software Interrupt 7

F000 0C9CH

PCI_SW_SRC8 Service Request Control Register for PCI
Software Interrupt 8

F000 0CA0H

PCI_SW_SRC9 Service Request Control Register for PCI
Software Interrupt 9

F000 0CA4H

PCI_SW_SRC10 Service Request Control Register for PCI
Software Interrupt 10

F000 0CA8H

Table 15-4 Special Function Register Table of Service Request Control
Registers

Register
Short Name

Register Long Name Absolute Address
User’s Manual 15-43 V1.0, 2002-03

TC11IB
System Units

Interrupt System
PCI_SW_SRC11 Service Request Control Register for PCI
Software Interrupt 11

F000 0CACH

PCI_SW_SRC12 Service Request Control Register for PCI
Software Interrupt 12

F000 0CB0H

PCI_SW_SRC13 Service Request Control Register for PCI
Software Interrupt 13

F000 0CB4H

PCI_SW_SRC14 Service Request Control Register for PCI
Software Interrupt 14

F000 0CB8H

PCI_SW_SRC15 Service Request Control Register for PCI
Software Interrupt 15

F000 0CBCH

PCI_SW_SRC16 Service Request Control Register for PCI
Software Interrupt 16

F000 0CC0H

PCI_SW_SRC17 Service Request Control Register for PCI
Software Interrupt 17

F000 0CC4H

PCI_SW_SRC18 Service Request Control Register for PCI
Software Interrupt 18

F000 0CC8H

PCI_SW_SRC19 Service Request Control Register for PCI
Software Interrupt 19

F000 0CCCH

PCI_SW_SRC20 Service Request Control Register for PCI
Software Interrupt 20

F000 0CD0H

PCI_SW_SRC21 Service Request Control Register for PCI
Software Interrupt 21

F000 0CD4H

PCI_SW_SRC22 Service Request Control Register for PCI
Software Interrupt 22

F000 0CD8H

PCI_SW_SRC23 Service Request Control Register for PCI
Software Interrupt 23

F000 0CDCH

PCI_SW_SRC24 Service Request Control Register for PCI
Software Interrupt 24

F000 0CE0H

PCI_SW_SRC25 Service Request Control Register for PCI
Software Interrupt 25

F000 0CE4H

PCI_SW_SRC26 Service Request Control Register for PCI
Software Interrupt 26

F000 0CE8H

Table 15-4 Special Function Register Table of Service Request Control
Registers

Register
Short Name

Register Long Name Absolute Address
User’s Manual 15-44 V1.0, 2002-03

TC11IB
System Units

Interrupt System
PCI_SW_SRC27 Service Request Control Register for PCI
Software Interrupt 27

F000 0CECH

PCI_SW_SRC28 Service Request Control Register for PCI
Software Interrupt 28

F000 0CF0H

PCI_SW_SRC29 Service Request Control Register for PCI
Software Interrupt 29

F000 0CF4H

PCI_SW_SRC30 Service Request Control Register for PCI
Software Interrupt 30

F000 0CF8H

PCI_SW_SRC31 Service Request Control Register for PCI
Software Interrupt 31

F000 0CFCH

Ethernet Controller (Ethernet)

Ethernet_MACTX0
SRC

MAC TX 0 Service Request Control
Register

F000 0D10H

Ethernet_MACRX0
SRC

MAC RX 0 Service Request Control
Register

F000 0D14H

Ethernet_MACTX1
SRC

MAC TX 1 Service Request Control
Register

F000 0D18H

Ethernet_MACRX1
SRC

MAC RX 1 Service Request Control
Register

F000 0D1CH

Ethernet_RBSRC0 RB Service Request Control 0 Register F000 0D20H

Ethernet_RBSRC1 RB Service Request Control 1 Register F000 0D24H

Ethernet_TBSRC TB Service Request Control Register F000 0D28H

Ethernet_DRSRC DR Service Request Control Register F000 0D2CH

Ethernet_DTSRC DT Service Request Control Register F000 0D30H

Peripheral Control Processor (PCP)

PCP_SRC11 PCP Service Request Control Register 11 F000 3FD0H

PCP_SRC10 PCP Service Request Control Register 10 F000 3FD4H

PCP_SRC9 PCP Service Request Control Register 9 F000 3FD8H

PCP_SRC8 PCP Service Request Control Register 8 F000 3FDCH

PCP_SRC7 PCP Service Request Control Register 7 F000 3FE0H

PCP_SRC6 PCP Service Request Control Register 6 F000 3FE4H

Table 15-4 Special Function Register Table of Service Request Control
Registers

Register
Short Name

Register Long Name Absolute Address
User’s Manual 15-45 V1.0, 2002-03

TC11IB
System Units

Interrupt System
PCP_SRC5 PCP Service Request Control Register 5 F000 3FE8H

PCP_SRC4 PCP Service Request Control Register 4 F000 3FECH

PCP_SRC3 PCP Service Request Control Register 3 F000 3FF0H

PCP_SRC2 PCP Service Request Control Register 2 F000 3FF4H

PCP_SRC1 PCP Service Request Control Register 1 F000 3FF8H

PCP_SRC0 PCP Service Request Control Register 0 F000 3FFCH

OCDS

CPU_SBSRC Software Break Service Request Control
Register

F7E0 FFBCH

CPU

CPU_SRC3 CPU Service Request Control Register 3 F7E0 FFF0H

CPU_SRC2 CPU Service Request Control Register 2 F7E0 FFF4H

CPU_SRC1 CPU Service Request Control Register 1 F7E0 FFF8H

CPU_SRC0 CPU Service Request Control Register 0 F7E0 FFFCH

LCU

LCU_SRC LCU Service Request Control Register F87F FEFCH

Table 15-4 Special Function Register Table of Service Request Control
Registers

Register
Short Name

Register Long Name Absolute Address
User’s Manual 15-46 V1.0, 2002-03

TC11IB
System Units

Trap System
16 Trap System
The TC11IB trap system provides a means for the CPU to service conditions that are so
critical that they must not be postponed. Such conditions include both catastrophic
developments, such as an attempt by the CPU to execute an illegal instruction, as well
as routine developments such as system calls. This chapter describes the trap system
for the TC11IB. Topics covered include trap types, trap handling, and non-maskable
interrupts (NMIs). Traps direct the processor to execute Trap Service Routines (TSR)
stored in a Trap Vector Table.

16.1 Trap System Overview

Traps break the normal execution of code, much like interrupts, but traps are different
from interrupts in these ways:

• Trap Service Routines (TSR) reside in the Trap Vector Table, which is separate from
the Interrupt Vector Table.

• A trap does not change the CPU’s interrupt priority, so the ICR.CCPN field is not
changed.

• Traps cannot be disabled by software. Traps are always active.
• The return address, saved when a Trap Service Routine is invoked, is the address of

the instruction in progress at the moment the trap was raised, whereas the return
address of an interrupt is the address of the instruction that would have been executed
next if the interrupt had not occurred.

The CPU aborts the instruction in progress when a trap occurs, and forces execution to
the appropriate TSR. The TSR decides whether the situation is correctable or not. If not,
the TSR takes appropriate action, which may involve aborting the current task, or even
resetting the TC11IB. If the situation is routine or correctable, the TSR performs
whatever action is necessary, then exits, whereupon the CPU re-executes the previously
aborted instruction.

Traps may arise within the CPU, for instance, as a side-effect of the execution of
instructions. These traps are typically synchronous with the processor instruction clock.
They may also be generated by events external to the CPU, such as a peripheral or
external NMI signal. Hardware-generated traps are typically asynchronous with the
processor instruction clock.

Traps can signal a variety of routine or serious events. For instance, traps can be used to

• Implement memory protection and virtual memory
• Provide unprivileged applications access to privileged system services
• Manage task-based context-switching
• Respond to urgent external conditions, such as an NMI
• Respond to urgent internal conditions, such as signals from the Watchdog Timer, the

LMB Bus, the Fast FPI Bus, the Slow FPI Bus or the PLL
• Detect access to memory by other system components
User’s Manual 16-1 V1.0, 2002-03

TC11IB
System Units

Trap System
• Signal events from task to task
• Administer overflow and underflow of hardware tables and lists
• Recover from catastrophic software errors

Many traps arise as a consequence of the execution of instructions:

• The SYSCALL instruction generates a trap that is usually intended to signal a request
for system services by an unprivileged application.

• An attempt to execute an illegal instruction opcode produces a trap as a side-effect.
The instruction is aborted, and a trap is invoked. This protects a system from poorly-
written or damaged programs.

• When an application attempts to execute an unimplemented instruction opcode, the
trap that results can invoke a TSR to emulate the operation of that instruction in
software, thereby extending the instruction set.

• If an application attempts to access protected memory, the resulting trap may be used
by the system to read in pages from memory that the application needs.

• If an arithmetic operation produces an invalid result, a trap is generated. In some
cases, the TSR may attempt to correct the result through software, or it may cause the
application to terminate.

Other uses of traps include:

• Context management
• Recovery from FPI Bus error signals
• Access to memory by a peripheral
• Handling the Non-Maskable “Interrupt” (actually trap) signal from the external NMI

input, from the Watchdog Timer, or from the PLL if it loses stable clock signals

When a hardware trap condition is detected, the processor’s trap control system supplies
a two-part number that identifies the cause of the trap. The first part of the number is a
three-bit Trap Class Number (TCN); the second part is an eight-bit Trap Identification
Number (TIN). The TCN is used to index the Trap Vector Table to identify the proper TSR
to handle the trap. The TIN is loaded into register D15 of the TSR’s context to further
identify the precise cause of the trap. The TSR must examine the TIN in software.
User’s Manual 16-2 V1.0, 2002-03

TC11IB
System Units

Trap System
16.2 Trap Classes

The TC11IB has eight trap classes, as shown in Table 16-1. Each trap has a Trap
Identification Number (TIN), that identifies the number of the trap within its class. When
the CPU hardware goes to service a trap, the TIN is loaded into register D15 before the
first instruction of the trap handler is executed. A trap is completely identified by its Trap
Class Number (TCN) and its TIN.

Table 16-1 summarizes and classifies all TC11IB-supported traps. In the column “Type”,
an “S” stands for a Synchronous trap, while “A” indicates an Asynchronous trap. “SW”
and “HW” indicate a Software trap or a Hardware trap, respectively. The column “Saved
PC” states which Program Counter value is saved during the trap entry. “ThisPC”
indicates that the PC value of the instruction causing the trap is saved, while “NextPC”
is the PC value pointing to the instruction which would have been executed next.

Table 16-1 TC11IB Supported Traps

Trap ID
(TIN)

Trap
Name

Trap
Type

Saved PC Description

Class 0 - MMU (TCN = 0)

0 MMUVAF S, HW ThisPC MMU: Virtual Address Fill

1 MMUVAP S, HW ThisPC MMU: Virtual Address Protection

Class 1 - Internal Protection Traps (TCN = 1)

1 PRIV S, HW ThisPC Privileged Instruction

2 MPR S, HW ThisPC Memory Protection: Read Access

3 MPW S, HW ThisPC Memory Protection: Write Access

4 MPX S, HW ThisPC Memory Protection: Execution Access

5 MPP S, HW ThisPC Memory Protection: Peripheral Access

6 MPN S, HW ThisPC Memory Protection: Null Address

7 GRWP S, HW ThisPC Global Register Write Protection

Class 2 - Instruction Errors (TCN = 2)

1 IOPC S, HW ThisPC Illegal Opcode

4 ALN S, HW ThisPC Data Address Alignment Error

5 MEM S, HW ThisPC Invalid Memory Address

Class 3 - Context Management (TCN = 3)

1 FCD S, HW ThisPC Free Context List Depleted (FCX==LCX)

2 CDO S, HW ThisPC Call Depth Overflow

3 CDU S, HW ThisPC Call Depth Underflow
User’s Manual 16-3 V1.0, 2002-03

TC11IB
System Units

Trap System
Note: The normal trap entry mechanism is not used, instead, a jump to the FCU trap
handler is performed.

4 FCU S, HW see Note Free Context List Underflow (FCX==0)

5 CSU S, HW ThisPC Context List Underflow (PCX==0)

6 CTYP S, HW ThisPC Context Type Error (PCXI.UL is wrong)

7 NEST S, HW ThisPC Nesting Error: RFE with non-zero call
depth

Class 4 - System Bus Errors (TCN = 4)

1 PSE S, HW ThisPC Bus Error on Program Fetch Operation

2 DSE S, HW ThisPC Bus Error on Data Load Operation

3 DAE A, HW ThisPC Bus Error on Data Store Operation

Class 5 - Assertion Traps (TCN = 5)

1 OVF S, SW ThisPC Arithmetic Overflow

2 SOVF S, SW ThisPC Sticky Arithmetic Overflow

Class 6 - System Call (TCN = 6)
1) SYS S, SW NextPC System Call

Class 7 - Non-Maskable Interrupt (TCN = 7)

0 NMI A, HW NextPC Non-Maskable Interrupt
1) For the system call trap via the SYSCALL instruction, the TIN is created from an immediate constant in the

SYSCALL instruction supplied by the calling software. The range of values for this constant is 0 to 255,
inclusive.

Table 16-1 TC11IB Supported Traps (cont’d)

Trap ID
(TIN)

Trap
Name

Trap
Type

Saved PC Description
User’s Manual 16-4 V1.0, 2002-03

TC11IB
System Units

Trap System
16.2.1 Synchronous Traps

Synchronous traps are associated with the execution, or attempted execution, of
processor instructions. The trap is taken immediately and serviced before execution can
proceed beyond that instruction (except for the SYSCALL instruction).

16.2.2 Asynchronous Traps

Asynchronous traps are similar to interrupts, in that they are associated with hardware
conditions detected externally and signaled back to the processor. Some asynchronous
traps result indirectly from instructions that have been executed previously, but the direct
association with those instructions has been lost. Others such as the NMI arise strictly
from external events.

Note: Due to a missing trap queue in the TriCore architecture, it is possible to lose
asynchronous traps (e.g. caused by an FPI Bus write operation) if several traps
are generated within a very short time frame.

16.2.3 Hardware Traps

Hardware traps are generated as a result of problems encountered while executing
processor instructions. Examples include attempting to execute an illegal instruction
opcode, attempting to access protected memory, and attempting to access data memory
at a misaligned address.

16.2.4 Software Traps

Software traps are used to make system calls and test assertions in software. For
example, a client application can call a privileged system function by executing the
SYSCALL instruction, which invokes a TSR to begin executing in privileged mode.

There is a single entry in the Trap Vector Table for the SYSCALL trap. An application
executing the SYSCALL instruction must embed a system-defined eight-bit immediate
constant in the SYSCALL instruction, which becomes the TIN for the SYSCALL trap.
Thus the application can signal its need for specific privileged services.
User’s Manual 16-5 V1.0, 2002-03

TC11IB
System Units

Trap System
16.2.5 Trap Descriptions

In this section, each of the traps listed in Table 16-1 is described in more detail.

MMU Trap

The MMU can generate the following traps:

• VAF (Virtual Address Fill)
• VAP (Virtual Address Protection)

The Virtual Address Fill trap is generated if PTE based translation is required for a virtual
address and the PTE corresponding to the translation is missing in the MMU. The Virtual
Address Protection trap is generated if the access is disallowed.

PRIV Trap

The PRIV trap is detected in the decode stage of the load/store pipeline. The PRIV trap
is generated whenever an attempt is made to execute a protected system instruction in
User Mode. The protected system instructions are:

– MTCR
– BISR

A PRIV trap is also taken whenever an attempt is made to execute one of the following
instructions in User Mode 0:

– ENABLE
– DISABLE

MPR Trap

Read memory protection violations are detected in the execute stage of the load/store
pipeline. The MPR trap is generated for LD/LDMST and SWAP instructions when the
memory protection system is enabled and the effective address does not lie within any
range with read permissions enabled.

MPW Trap

Write memory protection violations are detected in the execute stage of the load/store
pipeline. The MPW trap is generated for ST/LDMST and SWAP instructions when the
memory protection system is enabled and the effective address does not lie within any
range with read permissions enabled.

MPX Trap

The Execution Access Memory Protection Trap is detected in the fetch stage. The MPX
trap is generated when the memory protection system is enabled and the PC does not
lie within any range with execute permissions enabled.
User’s Manual 16-6 V1.0, 2002-03

TC11IB
System Units

Trap System
MPP Trap

The Peripheral Access Memory Protection Trap is detected in the execute stage of the
load/store pipeline. It is generated when either segment 14 or 15 is targeted by any
memory operation while the machine is in User Mode 0.

MPN Trap

The Null Address Memory Protection Trap is detected in the execute stage of the load/
store pipeline. It is generated when any memory operation targets address 0.

GRWP Trap

The GRWP trap is detected in the decode stage of the load/store pipeline. The GRWP
trap is generated whenever an attempt is made to execute an instruction that modifies
one of the four global registers, A0, A1, A8 and A9, while the Global Write Enable
(PSW_GW) is 0.

IOPC Trap

The IOPC trap can be detected in either the integer or load/store decode stages. The
IOPC trap is raised when an invalid instruction is decoded, that is, the instruction in the
decode stage does not map onto a known opcode.

ALN Trap

The ALN trap is detected in the execute stage of the load/store pipeline. The trap is
raised whenever a memory operation does not conform to the expected memory
alignment constraints.

MEM Trap

The MEM trap is detected in the execute stage of the load/store pipeline. The trap is
raised whenever an attempt is made to access an invalid memory address such as:

– An effective address that lies in a different segment to the base address
– An address that crosses a segment boundary
– An address range in the DMU or PMU that does not map onto an implemented area

of memory
– An address in the Core SFRs (CSFRs)

FCD Trap

The FCD trap is detected in the decode stage of the load/store unit. An FCD trap is raised
whenever a save context operation is performed and the Free Context List Pointer (FCX)
equals the contents of the Free Context Limit Pointer (LCX).
User’s Manual 16-7 V1.0, 2002-03

TC11IB
System Units

Trap System
CDO Trap

The CDO trap is detected in the decode stage of the load/store pipeline. The trap results
when a call is attempted and the call-depth limit has been reached (call-depth counter
overflow).

CDU Trap

The CDU trap is detected in the decode stage of the load/store pipeline. The trap results
when a RET instruction is attempted and the call-depth counter equals 0.

FCU Trap

The Free Context List Underflow Trap is one of the most serious error conditions in the
machine. The trap results when a save context operation is performed and the FCX
equals 0. This trap is also raised if any error occurs during a context save operation.

The normal trap entry mechanism is not taken, instead a jump to the FCU trap handler
is performed.

CSU Trap

The CSU trap is detected in the decode stage of the load/store pipeline. The trap results
when a restore-context operation is performed and Previous Context Pointer
(PCXI.PCX) equals 0.

CTYP Trap

The CTYP trap is detected in the decode stage of the load/store pipeline. The trap is
raised when a context-restore operation is performed on an incorrect context type. That
is if a restore lower context is performed when the PCXI.UL = 1, or a restore upper
context is performed when the PCXI.UL = 0.

NEST Trap

The Nesting Error Trap (is detected in the decode stage of the load/store pipeline. The
NEST trap results when an RFE instruction is attempted and the call depth counter does
not equal 0.

PSE Trap

The Program Fetch Synchronous Error Trap is detected in the integer or load/store
decode stage. The PSE trap is raised when the fetch of an instruction from the Program
Memory Unit (PMU) results in an error (e.g. fetch from a reserved address).
User’s Manual 16-8 V1.0, 2002-03

TC11IB
System Units

Trap System
DSE Trap

The Data Load/Store Synchronous Error Trap is detected in the execute stage of the
load/store unit. The DSE trap is generated by the DMU on a cache management error,
DMU control register access error, FPI Bus access error, or a DMU memory range error.
The exact cause of the error can be read in the DMU Synchronous Trap Flag Register,
DMU_STR. DSE traps occur in general on load accesses to the DMU.

DAE Trap

The Data Load/Store Asynchronous Error Trap is an asynchronous trap. The DSE trap
is generated by the DMU on either a cache management error, DMU control register
access error, FPI Bus access error, or a DMU memory range error. The exact cause of
the error can be read via the DMU Asynchronous Trap Flag Register, DMU_ATR. DAE
traps occur in general on store accesses to the DMU.

OVF Trap

The OVF trap is detected in the execute stage of the load/store pipeline. The trap is
raised by the TRAPV instruction when the instruction is executed and the Overflow Flag,
PSW.V, is set.

SOVF Trap

The SOVF trap is detected in the execute stage of the load/store pipeline. The trap is
raised by the TRAPSV instruction when the instruction is executed and the Sticky
Overflow Flag, PSW.SV, is set.

SYS Trap

The SYS trap is detected in the decode stage of the load/store pipeline. The trap is raised
implicitly by the SYSCALL instruction. For the system call trap via the SYSCALL
instruction, the TIN is created from an immediate constant in the SYSCALL instruction
supplied by the calling software. The range of values for this constant is 0 through 255.

NMI Trap

The NMI is an asynchronous trap. The generation of the NMI is handled by the Power-
Watchdog-Reset (PWR) block in the system. The source can be the external NMI input,
a Watchdog Timer error condition, or a loss of stable clock signal in the PLL.
User’s Manual 16-9 V1.0, 2002-03

TC11IB
System Units

Trap System
16.3 Trap Vector Table

The entry-points of all Trap Service Routines are stored in code memory in the Trap
Vector Table. The BTV register specifies the base address of the Trap Vector Table in
code memory. It can be assigned to any available code memory. Its default on power-up
is fixed at A000 0100H. However, the BTV register can be modified using the MTCR
instruction during the initialization phase of the system. With this arrangement, it is
possible to have multiple Trap Vector Tables and switch between them by changing the
contents of the BTV register.

Note: The BTV register is protected by the ENDINIT bit. An ISYNC instruction should be
issued after modifying BTV so as to avoid untoward pipeline behavior.

When a trap event occurs, a trap identifier is generated by the hardware detecting the
event. The trap identifier is made up of a Trap Class Number (TCN) and a Trap
Identification Number (TIN).

The TCN is left-shifted by five bits and ORed with the address in the BTV register to form
the entry address of the TSR. Due to this operation, it is recommended that bits [7:5] of
register BTV are set to 0 (see Figure 16-1). Note that bit 0 of the BTV register is always
0 and can not be written to (instructions have to be aligned on even byte boundaries).

Left-shifting the TCN by 5 bits creates entries into the Trap Vector Table which are
evenly spaced 8 words apart. If a trap handler (TSR) is very short, it may fit entirely within
the eight words available in the Trap Vector Table entry. Otherwise, the code at the entry
point must ultimately cause a jump to the rest of the TSR residing elsewhere in memory.

Unlike the Interrupt Vector Table, entries in the Trap Vector Table cannot be spanned.

Figure 16-1 Trap Vector Table Entry Address Calculation

M C A04783

0

0000

57831

B TV TC N

O R

R esu lting T rap V ector Table En try A ddress
User’s Manual 16-10 V1.0, 2002-03

TC11IB
System Units

Trap System
16.3.1 Entering a Trap Service Routine

The following actions are performed to enter a TSR when a trap event is detected by the
hardware:

1. The upper context of the current task is saved1).
2. The interrupt system is globally disabled (ICR.IE = 0).
3. The current CPU priority number (CCPN) is not changed.
4. The PSW is set to a default value:

– All permissions are enabled: PSW.IO = 10B
– Memory protection is switched to PRS 0: PSW.PRS = 00B.
– The stack pointer bit is set for using the interrupt stack: PSW.IS = 1.
– The call-depth counter is cleared, the call depth limit is set for 64: PSW.CDC = 0.

5. The stack pointer, A10, is reloaded with the contents of the Interrupt Stack Pointer,
ISP, if the PSW.IS bit of the interrupted routine was set to 0 (using the user stack),
otherwise it is left unaltered.

6. The Trap Vector Table is accessed to fetch the first instruction of the TSR. The
effective address is the contents of the BTV register ORed with the Trap Class
Number (TCN) left-shifted by 5.

Although traps leave the ICR.CCPN unchanged, TSRs still begin execution with
interrupts disabled. They can therefore perform critical initial operations without
interruption, until they specifically re-enable interrupts.

Since entry into a trap handler is only determined by the TCN, software in the TSR must
determine the exact cause of the trap by evaluation of the TIN stored in register D15.

1) If a context-switch trap occurs while the CPU is in the process of saving the upper context of the current task,
the pending ISR will not be entered, the interrupt request will be left pending, and the CPU will enter the
appropriate trap handling routine instead.
User’s Manual 16-11 V1.0, 2002-03

TC11IB
System Units

Trap System
16.4 Non-Maskable Interrupt

Although called an interrupt, the non-maskable interrupt (NMI) is actually serviced as a
trap, since it is not interruptible and does not follow the standards for regular interrupts.

In the TC11IB, three different events can generate a NMI trap:

• A transition on the NMI input pin
• An error or wake-up signal from the Watchdog Timer
• The PLL upon loss of external clock stability

The type of an NMI trap is indicates in the NMI Status Register (NMISR).

16.4.1 NMI Status Register

The source of a NMI trap can be identified through three status bits in NMISR. The bits
in NMISR are read-only; writing to them has no effect.

The CPU detects a zero-to-one transition of the NMI input signal as indicating an NMI
trap event. It then sets NMISR.NMIEXT. If the Watchdog Timer times out, it sets
NMISR.NMIWDT. If the PLL loses its clock signal, it sets NMISR.PLL1.

The bits in NMISR are ORed together to generate an NMI trap request to the CPU. If one
of the NMISR bits is newly asserted while another bit is set, no new NMI trap request is
generated. All flags are cleared automatically after a read of NMISR. Therefore, after
reading NMISR, the NMI TSR must check all bits in NMISR to determine whether there
have been multiple causes of an NMI trap.

Note: The NMISR register is located in the address range reserved for the System
Control Unit (SCU).

User’s Manual 16-12 V1.0, 2002-03

TC11IB
System Units

Trap System
16.4.2 External NMI Input

An external NMI event is generated when a one-to-zero transition is detected at the
external NMI input pin. NMISR.NMIEXT is set in this case. The NMI pin is sampled at the
system clock frequency. A transition is recognized when one sample shows a 1 and the
next sample shows a 0. Subsequent 0-samples or a 0-to-1 transition do not trigger any
action.

16.4.3 Phase-Locked Loop NMI

The PLL clock generation unit sets the NMIPLL flag when it detects a loss in the
synchronization with the external oscillator clock input. This condition means that the
PLL clock frequency is no longer stable, and that the PLL will now decrease to its base
frequency.

NMISR
NMI Status Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 NMI
WDT

NMI
PLL

NMI
EXT

r rh rh rh

Field Bits Type Description

NMIEXT 0 rh External NMI Flag
0 No external NMI request has occurred
1 An external NMI request has been detected

NMIPLL 1 rh PLL NMI Flag
0 No PLL NMI has occurred
1 The PLL has lost the lock to the external crystal

NMIWDT 2 rh Watchdog Timer NMI Flag
0 No watchdog NMI occurred
1 The Watchdog Timer has entered the pre-

warning phase due to a watchdog error.

0 [31:3] r Reserved; read as 0.
User’s Manual 16-13 V1.0, 2002-03

TC11IB
System Units

Trap System
16.4.4 Watchdog Timer NMI

The Watchdog Timer sets the NMIWDT flag for two conditions:

– A Watchdog Timer error has occurred
– Bit 15 of the Watchdog Timer is set while the CPU is in idle mode

A Watchdog Timer error can produce an NMI event because

– Access to register WDT_CON0 was attempted improperly, or
– The Watchdog Timer overflowed either in Time-Out Mode or in Normal Watchdog

Timer Mode.

When the CPU is in Idle Mode and the Watchdog Timer is not disabled, an increment of
the Watchdog Timer counter from 7FFFH to 8000H (that is, when bit 15 of the timer is set
to 1) sets the NMIWDT bit to wake up the CPU.
User’s Manual 16-14 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17 Peripheral Control Processor
This chapter describes the Peripheral Control Processor (PCP), its architecture,
programming model, registers, and instructions.

17.1 Peripheral Control Processor Overview

The Peripheral Control Processor (PCP) performs tasks that would normally be
performed by the combination of a DMA controller and its supporting CPU interrupt
service routines in a traditional computer system. It could easily be considered as the
host processor’s first line of defense as an interrupt-handling engine. The PCP can off-
load the CPU from having to service time-critical interrupts. This provides many benefits,
including:

• Avoiding large interrupt-driven task context-switching latencies in the host processor
• Reducing the cost of interrupts in terms of processor register and memory overhead
• Improving the responsiveness of interrupt service routines to data-capture and data-

transfer operations
• Easing the implementation of multitasking operating systems.

The PCP has an architecture that efficiently supports DMA type transactions to and from
arbitrary devices and memory addresses within the TC11IB and also has reasonable
stand alone computational capabilities.

17.2 PCP Architecture

The PCP is made up of several modular blocks as follows. Please refer to Figure 17-1.

• PCP Processor Core
• Code Memory (PCODE)
• Parameter Memory (PRAM)
• PCP Interrupt Control Unit (PICU)
• PCP Service Request Nodes (PSRN)
• System bus interface to the Slow Flexible Peripheral Interface (FPI Bus)
User’s Manual 17-1 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Figure 17-1 PCP Block Diagram

17.2.1 PCP Processor

The PCP Processor is the main engine of the PCP. It contains an instruction pipeline, a
set of general purpose registers, an arithmetic/logic unit (ALU), as well as control and
status registers and logic. Its instruction set is optimized especially for the tasks it has to
perform. Table 17-1 provides an overview of the PCP instruction set.

The PCP processor core receives service requests from peripherals or other modules in
the system via its Interrupt Control Unit (PICU) and executes a Channel Program (see
Section 17.3) selected via the priority number of each service request. It first restores
the channel program’s context from the PRAM and then starts to execute the channel
program’s instructions stored in the code memory (PCODE). Upon an exit condition, it
terminates the channel program and saves its context into PRAM. It is then ready to
receive the next service request.

The PCP processor core is capable of suspending execution of a Channel Program on
receipt of a service request with a higher priority than the channel currently being
executed. The core will automatically resume processing of the original Channel

M C B 04784

P C P
P rocessor

C ore

P C P S erv ice
R eq. N odes

P S R N s

P C P In terrupt
C ontro l U n it

P IC U

P aram ete r
M em ory
P R A M

C ode
M em ory
P C O D E

FP I-In terface

P C P In terrupt
A rb itra tion B us

C P U In terrup t
A rb itra tion B us

FP I B us
User’s Manual 17-2 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Program once the higher priority request (or requests) has been processed. A Channel
the has been suspended in this way is termed as a Suspended Channel.

The PCP is fully interrupt-driven, meaning it is only activated through service requests;
there is no main program running in the background as with a conventional processor.

17.2.2 PCP Code Memory

The Code Memory (PCODE) of the PCP holds the channel programs, consisting of PCP
instructions. All instructions of the PCP are 16 bits long; thus, the PCP accesses its code
memory in 16-bit (half-word) quantities. With the 16-bit Program Counter (PC) of the
PCP, a maximum of 64 K instructions can be addressed. This results in a maximum size
of the PCP code memory of 128 KBytes. The actual type (Flash, ROM, SRAM, etc.) and
size of the code memory is implementation specific; see Section 17.15 for the
implemented type and size of the code memory in this derivative.

The PCP code memory is viewed from the FPI Bus as a 32-bit wide memory, that must
be accessed with 32-bit (word) accesses, and is addressed with byte addresses. Thus,
care has to be taken when calculating PCP instruction FPI addresses. See Section 17.9
for details.

Note: The PCP has a “Harvard” architecture and therefore cannot directly access code
memory other than reading instructions from it. It is recommended that the PCP
should not access PCODE via the FPI Bus.

Table 17-1 PCP Instruction Set Overview

Instruction Group Description

DMA primitives Efficient DMA channel implementation

Load/Store Transfer data between PRAM or FPI memory and the general
purpose registers, as well as move or exchange values
between registers

Arithmetic Add, subtract, compare and complement

Divide/Multiply Divide and multiply

Logical And, Or, Exclusive Or, Negate

Shift Shift right or left, rotate right or left, prioritize

Bit Manipulation Set, clear, insert and test bits and multiple bits set/clear

Flow Control Jump conditionally, jump long, exit

Miscellaneous No operation, Debug
User’s Manual 17-3 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.2.3 PCP Parameter RAM

The PCP Parameter RAM (PRAM) is the local holding place for each Channel Program’s
context, and for general data storage, for example, constants, variables and
semaphores. It is also an area that the PCP and the host processor or other FPI Bus
masters can use to communicate and share data.

While a portion of the PRAM is always implicitly used for the context save areas of the
channel programs, the remaining area can be used for channel-specific or general data
storage. A programmable 8-bit data pointer (DPTR), concatenated with a 6-bit offset, is
provided for arbitrary access to the PRAM. The effective address is a 14-bit word
address, allowing a PRAM size of up to 64 KBytes. The actual type (SRAM, DRAM, etc.)
and size of the parameter RAM is implementation specific; see Section 17.15 for the
implemented size of the PRAM in this derivative.

Both the PCP and FPI Bus masters address the PRAM as 32-bit words. There is no
concept of half-word or byte accesses to PRAM. FPI Bus masters must, however, use
byte addresses in order to access PRAM memory. As for the code memory, care has to
be taken when calculating PRAM FPI addresses. See Section 17.9 for details.

17.2.4 Slow FPI Bus Interface

The PCP can access all peripheral units on the FPI Bus and other resources through the
FPI Bus interface. The PCP can become an FPI Bus slave, so that other FPI Bus master
may access code and PRAM memory and the control and status registers in the PCP.

The Code Memory and PRAM Memory blocks are visible to FPI Bus masters as a block
of memory on the FPI Bus. If an FPI Bus master accesses PCP Code or PRAM memory
concurrently with the PCP, the external FPI Bus master is given precedence over the
PCP to avoid deadlocks. The PCP access is stalled for several cycles until the FPI Bus
master has completed its access. If an FPI Bus master performs an atomic read-modify-
write access to a PCP memory block, any concurrent PCP access to that block is stalled
for the duration of the atomic operation.

17.2.5 PCP Interrupt Control Unit and Service Request Nodes

The PCP is activated in response to an interrupt request programmed for PCP service
in one of the service request nodes of the system (nodes associated with a peripheral,
the CPU, external interrupts, etc.). The PCP Interrupt Control Unit (PICU) determines the
request with the currently highest priority and routes the request together with its priority
number to the PCP processor core. It also acknowledges the requesting source when
the PCP starts the service of this interrupt.

The PCP itself can generate service requests to either the CPU or itself through a
number of PCP Service Request Nodes (PSRNs). The PSRNs are also used to store all
information required by the PCP core to allow the later restart of a Channel program
User’s Manual 17-4 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
when it is suspended in favour of a higher priority Service Request. Please refer to
Section 17.5.3 for more detailed information on the operation of these nodes.

17.3 PCP Programming Model

The PCP programming model can be viewed as a set of autonomous programs, or tasks,
called Channel Programs, that share the processing resources of the PCP. Channel
Programs may be short and simple, or very complex, but, they can coexist persistently
within the PCP.

From a programming point of view, the individual parts of a channel program are its
instruction sequence in the code memory and its context in the parameter RAM. It uses
the instruction set and the general purpose registers (R0 - R7) of the PCP processor core
to perform the necessary operations, and to communicate with the various resources of
the on-chip and off-chip system depending on its task in the application.

These parts of the programming model are discussed in the following sections (with the
obvious exception of the system environment outside of the scope of the PCP).

17.3.1 General Purpose Register Set of the PCP

The program-accessible register file of the PCP is composed of eight 32-bit General
Purpose Registers (GPRs). These registers are all accessible by PCP programs directly
as part of the PCP instruction set. Source and destination registers must be specified in
most instructions. These registers are referenced to in this document as Rn or R[n],
where n is in the range 0..7.

Table 17-2 Directly Accessible Registers

Register Implicit Use Description

R0 Accumulator Implicit target for some arithmetic and logical instructions

R1 – 32-bit general-use register

R2 Return
Address

32-bit general-use register

R3 – 32-bit general-use register

R4 SRC (Source) Source Pointer for BCOPY/COPY instructions

R5 DST
(Destination)

Destination Pointer for BCOPY/COPY instructions
User’s Manual 17-5 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
R7 is the only one of the eight registers that may not be used as a full GPR. The most
significant 16 bits of R7 may not be written, and will always read back as 0. However, no
error will occur when writing to the most significant 16 bits.

Note: The general purpose registers of the PCP are not memory-mapped into the overall
address space. They can only be directly accessed through PCP instructions. The
contents of all or some of the registers are part of a channel program’s context
stored in the PRAM between executions of the channel program. This context is
then accessible from outside the PCP.

17.3.1.1 Register R0

R0 is used as an implicit operand destination for some instructions. These are detailed
in the individual instruction descriptions.

17.3.1.2 Registers R1, R2, and R3

R1, R2, and R3 are general-use registers. It is recommended that, by convention, R2
should be used as a return address register when call and return program structures are
used.

17.3.1.3 Registers R4 and R5

Registers R4 and R5 are also general-use registers. However, the BCOPY/COPY
instructions implicitly use R5 and R6 as full 32-bit address pointers (R4 is used as the
source address and R5 as the destination address). As the BCOPY/COPY instruction
use these registers to maintain the address pointers, either or both R5 and R6 values
may or may not be modified by the BCOPY/COPY instruction depending on the options
used in the instruction.

17.3.1.4 Register R6

Register R6 may also be used as a general-use register. Again however, there are some
instructions that use fields within R6. If the BCOPY, COPY or EXIT instructions are used,
then the field R6.CNT1 can be optionally implicitly used as a counter. In the case of the

R6 CPPN/SRPN/
TOS/CNT1

CNT1: Transfer Count for BCOPY/COPY.
TOS: Type of Service.
SRPN: 8-bit field used for posting interrupt on EXIT

instruction.
CPPN: Current PCP Priority Number

R7 DPTR/Flags PRAM Data Pointer (DPTR) and Status Flags

Table 17-2 Directly Accessible Registers

Register Implicit Use Description
User’s Manual 17-6 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
BCOPY and COPY instructions, R6.CNT1 can be used as an "outer loop counter" to
streamline the movement of large amounts of data. R6.CNT1 can also (optionally) be
decremented by an exit instruction which allows a channel to maintain a count of the
number of times that it has been invoked. If an EXIT instruction is used that causes an
interrupt, R6.SRPN and R6.TOS must be configured properly prior to execution of the
EXIT. The TOS field selects the destination for the request (e.g. TriCore CPU or PCP),
the SRPN selects the priority of the requested interrupt. If interrupt priority management
is used, then R6.CPPN must be set to the priority level at which the channel shall run at
its next invocation, before the EXIT is executed. The fields for R6 are shown below.

17.3.1.5 Register R7

Register R7 is an exception with respect to the other registers in that not all bits within
the register can be written, and the implicit use of the remaining bits virtually excludes
the use of R7 as a general purpose register. R7 serves purposes similar to those of a
Program Status Word found in traditional processors.

R7 holds the flag bits, a channel enable/disable control bit, and the PRAM data pointer
(DPTR). The upper 16 bits of R7 are reserved.

PCP Register R6 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CPPN SRPN

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOS 0 CNT1

rw rw rw

Field Bits Type Description

CNT1 [11:0] rw General-use/Outer Loop Count for BCOPY, COPY
or EXIT Instruction

TOS [15:14] rw General-use/Type Of Service for EXIT Interrupt

SRPN [23:16] rw General-use/Service Request Priority Number for
EXIT Interrupt

CPPN [31:24] rw General-use/PCP Priority Number Posted to PICU

0 [13:12] rw General-use
User’s Manual 17-7 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Most instructions of the PCP update the flags (CN1Z, V, C, N, Z) in R7 according to the
result of their operation. See Table 17-16 for details on the flag updates of the individual
instructions. The values of the flag bits in R7 maintain their state until another instruction
that updates their state is executed.

Note: Implicit updates to the flags caused by instruction take precedence over any bits
that are explicitly moved to R7. For example, if a MOV instruction is used to place
0000FF03H in R7, then the bit positions for the Z (zero) and N (negative) flags are
being written with 1. The MOV instruction, however, implicitly updates the Z and
N flag bits in R7 as a result of its operation. Because the number is not negative,
and not zero, it will update the Z and N flags to 0. As a result, the value left in R7
after the MOV is complete will be 0000FF00H (i.e C = 1, Z = 0, N = 0).
It is recommended that only SET and CLR instructions should be used to explicitly
modify flags in R7.

The data pointer, R7.DPTR, is the means of accessing PRAM variables
programmatically. It points to a 64-word PRAM segment that may be addressed by
instructions which can use the PRAM for source or destination operands (xx.P and xx.PI
instructions). The 8 bits of the DPTR are concatenated with a 6-bit offset value (either
specified in the instruction as an immediate value or contained in one of the registers) to
give a 14 bit (word) address. A program is able to update the DPTR value dynamically,
in order to index more than 64 words of PRAM.

The channel enable control bit, R7.CEN, allows the enabling or disabling of specific
channel programs. If an interrupt request is received for a channel which is disabled, an
error is forced and an error interrupt to the CPU is activated.

The interrupt of channel enable control bit, R7.IEN, allows the enabling or disabling of
channel interruption on a channel to channel basis. When R7.IEN is 0, the channel will
continue execution regardless of the priority of any new Service Requests. When R7.IEN
is 1 and conditions allow, the channel will be suspended on receipt of a higher priority
Service Request.

The 16-bit Program Counter, R7.PC, points to the next instruction location. This allows
an address range of up to 64K instructions. But this field is neither read (Read as 0) nor
directly written via PCP instructions. The value of PC is saved in the context save area
as part of a context save.

17.3.2 Contexts and Context Models

After initialization, the instruction sequence of a PCP channel program is, permanently
stored (i.e. usually at least as long as the application is running) in the code memory, and
data parameters are held in the parameter RAM. These will remain stored regardless of
whether a particular channel program is currently idle or is executing (although, of
course, the value of data variables in the PRAM might be modified by the PCP or other
FPI Bus masters). The contents of the general purpose registers of the PCP (used as
User’s Manual 17-8 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
address pointers, data variables, intermediate results, etc.) however, are usually only
valid for a given channel program as long as it is executing. If another channel program
is executed, it will re-use the general purpose register according to its needs.

Thus, the state of the general purpose registers of a channel program (termed the
“Context” of the channel) needs to be preserved while a channel program is not being
executed. The content of the registers needs to be saved when execution of a channel
program finishes, and needs to be restored before execution starts again.

The PCP implements automatic handling of these context save and restore operations.
On termination of a channel program, the state of all or some of the general purpose
registers is automatically copied to a defined area in the PRAM (Context Save). If the
same channel program is re-activated, the contents of the registers are restored by

PCP Register R7 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PC

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DPTR 0 CEN IEN CN1
Z V C N Z

rw rw rw rw rw rw rw rw rw

Field Bits Type Description

Z 0 rw Zero

N 1 rw Negative

C 2 rw Carry

V 3 rw Overflow

CNZ 4 rw Outer Loop Counter 1 Zero Flag

IEN 5 rw Interrupt of Channel Enable Control Bit
0 Channel is not interruptible
1 Channel can be suspended in favour of a higher
priority Service Request

CEN 6 rw Channel Enable Control Bit

DPTR [15:8] rw Data Pointer Segment Address for PRAM
accesses

0 7 rw Reserved; should always be written with 0.

PC [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 17-9 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
copying the values from the same defined PRAM area into the appropriate registers
(Context Restore).

The defined area in the PRAM for the context save and restore operations is called the
Context Save Area (CSA). Each channel program has its own individual, predefined
region in the CSA. When a service request is accepted by the PCP, the service request
priority number (SRPN) associated with the request is used to select the channel
program and its respective CSA region.

17.3.2.1 Context Models

A Context Model is a means of selecting whether some or all of the registers are saved
and restored when a context switch occurs. In order to serve different application needs
in terms of PRAM space usage, the PCP offers a choice between three different context
models:

• Full Context: Eight Registers (8 × 32-bit words) are saved/restored per channel.
• Small Context: Four Registers (4 × 32-bit words) are saved/restored per channel.
• Minimum Context Model: Two Registers (2 × 32-bit words) are saved/restored.

As illustrated in Figure 17-2, the contents of R0 through R7 constitute the Full Context
of a channel program. A Small Context consists of R4 through R7. Use of the small
context model allows for correct operation of DMA channels, as well as channels which
are not required to save large amounts of data in their contexts between invocations. A
Minimum Context saves and restores only R6 and R7.

To distinguish the actual register contents from the copies stored in the PRAM context
regions, the term CRx is used throughout the rest of this document to refer to the register
values in the context regions. Registers R6 and R7 are always handled in a special way
during context save and restore operations, this is described in detail in
Section 17.3.2.3.

The context model is selected via a bit field (PCP_CS.CS) in the global PCP control
register PCP_CS, this is a global setting (i.e. the selected context model is used for all
channels). Once a context model has been selected (during PCP configuration) and the
PCP has been started the PCP must continue to use that context model. Attempting to
change the context model in use during PCP operation will lead to invalid context restore
operations which will in turn lead to invalid PCP operation.

In the case of small and minimum context models, the unsaved and unrestored registers
(shaded in Figure 17-2) can be thought of as global registers that any Channel Program
can use or change, or reference as constants — for example as base address pointers
(see Section 17.13.2 for more detail).
User’s Manual 17-10 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Figure 17-2 PCP Context Models

M C A04785

R 0

R 1

R 2

R 3

R 4

R 5

R 6

R 7

Stored Context in PRAM

R 0

R 1

R 2

R 3

R 4

R 5

R 6

R 7

PCP Register Set

R esto re

S ave

8 W ordsFu ll C ontex t

R 0

R 1

R 2

R 3

R 4

R 5

R 6

R 7

R 4

R 5

R 6

R 7

S m all C on tex t
R es to re

S ave

4 W ords

R 0

R 1

R 2

R 3

R 4

R 5

R 6

R 7

R 6

R 7

M in im um C ontex t

R es to re

S ave

2 W ords
User’s Manual 17-11 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.3.2.2 Context Save Area

The Context Save Area (CSA) is a region in PRAM reserved for storing the contexts for
all channel programs (while any particular channel is not executing). Each channel’s
context is stored in a region of the CSA based on the channel number. The channel
number is equal to the priority number (SRPN) of the service request. The PCP uses this
number to calculate the start address of the context of the associated channel program.
The size of a context is determined by the context model that the PCP has been
initialized to use. As all channels use the same context size, the PRAM address (word
address) of the context for a particular channel is simply calculated by multiplying the
channel number by the number of registers in the context (8 for full context, 4 for small
context and 2 for minimum context). Figure 17-3 shows the resulting PRAM layout, and
from this it can be seen that changing the context model also changes the base address
for all regions within the CSA. Thus, the chosen context model may only be set when the
PCP is initialized, and may not be changed during operation.

The context save area in the PRAM starts at address 00H and grows upward. It is
partitioned into equally sized regions, where the size of these regions is determined by
the selected context model. The priority number (SRPN) of a service request is used to
access the appropriate context region for the associated channel program. Since a
request with an SRPN of 00H is not considered as valid request in the TriCore
Architecture, the bottom region (context region 0) of the CSA is never used for an actual
context.

The total size of the CSA depends on the context model and the number of service
request numbers used in a given system. Each priority number used in a service request
node which can activate interrupts to the PCP must be represented through a dedicated
context region in the PRAM. The highest address range in the PRAM used for a context
region is determined by the highest priority number presented to the PCP with a service
request.

The range of usable priority numbers is further determined by the size of the
implemented PRAM and by the space required for other variables and global data
located in the PRAM. See Section 17.15 for the implemented size of the PRAM in this
derivative. As an example, a PRAM memory of 2 KBytes, solely used for the CSA, can
store up to 255 minimum contexts, allowing the highest SRPN used for a PCP service
request to be 255 (remember, an SRPN of 0 and an associated context region is never
used; the valid SRPNs and the context and channel numbers range from 1 to 255). With
a small context model, 127 contexts can be stored, resulting in 127 being the highest
usable SRPN in this configuration. Finally, a full context model allows 63 context areas,
with 63 being the highest usable SRPN. Interrupt requests to the PCP with priority
numbers that would cause loading of a context from outside the available PRAM area
must not be generated. Invalid PCP operation will result should this situation be allowed
to occur. The PCP can be optionally configured such that if an interrupt request is
received that would cause loading of a context from outside the available PRAM area
User’s Manual 17-12 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
then an error exit is forced, and an error interrupt to the CPU is activated (see
Section 17.6.1).

If portions of the PRAM are used for other variables and global data, the space available
for the CSA and the range of valid SRPNs is reduced by the memory space required for
this data. For best utilization of PRAM it is advisable to have the CSA grow upwards as
a contiguous area without any ‘holes’, meaning that all SRPNs in the range 1..max. are
actually used to place interrupt requests on the PCP. Unused regions within the CSA
(that is, the unused region at the base of the CSA and any context regions associated
with unused channels) cannot be used for general variable storage.
User’s Manual 17-13 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Figure 17-3 Context Storage in PRAM

When choosing the context model for a given application, the following considerations
can be helpful. When choosing the small or the minimum context models, save and
restore operations for registers not handled in the automatic context operations can still
be handled through explicit load and store instructions under control of the user. This
may be advantageous for applications where the majority of the channels don’t need the

4 W ords
not used

C ontext
#1

P R AM
M em ory

8 W ords
not used

C ontext
#1

C ontext
#2

M C A 04786

Full Context

SR PN = 1C R 7
C R 6
C R 5
C R 4
C R 3
C R 2
C R 1
C R 0

00H

08H

10H
SR PN = 2C R 7

C R 6
C R 5
C R 4
C R 3
C R 2
C R 1
C R 0

n1×8H
S R P N = n1

C ontext
#n1

31 0

SR P N = 1

00H

04H

0C H

C R 7
C R 6
C R 5
C R 4
C R 7
C R 6
C R 5
C R 4

08H

C ontext
#2

SR P N = 2

C ontex t
#3

SR P N = 3

C ontex t
#n2

SR P N = n2

Small Context

31 0

M inimum Context

31 0

00H

2 W ords
not used

SR P N = 1
C ontext

#1C R 7
C R 6

02H

04H
SR P N = 2

C ontext
#2C R 7

C R 6
06H

C ontext
#3

08H

SR P N = 3

n3×2H

C ontext
#n3 SR P N = n3

P R AM
M em ory

P R AM
M em ory

N ote : A ll addresses in th is figu re a re w ord addresses.

n2×4H
User’s Manual 17-14 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
full context, and only some would require more context to be saved. In this case, a
smaller context model can be used, and the channels which would require more register
to be saved/restored would do this via explicit load and store instructions. This is
especially advantageous if the channel program can be designed such that the initial real
time response operations can be executed using only the registers which have been
automatically restored. Then, as the timing requirements of the service are relaxed,
further register contents can be restored from PRAM through regular load instructions.
Of course, the contents of these registers needs to be explicitly saved, through regular
store instructions, before the exit of the channel program.

The criteria for choosing the context model are listed in the following:

• Size of PRAM memory implemented in a given derivative
• Amount of channels (= SRPNs) which need to be used in a system
• Amount of PRAM used for general variables and globals
• Amount of context (register content) which need to be saved and restored quickly by

most of the most important channels

While registers R0 through R5 are always restored in a normal manner (according to the
context size), the registers R6 and R7 merit discussion regarding context restore
operations. The memory location CR7 in a context region is used to hold two different
pieces of information: namely the lower part of register R7, and the PC value of the
channel. Similarly, the memory location CR6 in a context region can also be used to hold
two different pieces of information: namely the value to be restored to register R6, and
the Operating Priority (CPPN) value of the channel. This leads to the Restore/Save
operations described in the following two sections.

17.3.2.3 Context Restore Operation for CR6 and CR7

The operation of R6 and R7 context restore varies according to whether the channel
program that is starting is a new channel program (i.e. a channel program that is starting
in response to the receipt of a new Service Request) or a suspended channel program
(i.e. a channel program that is re-starting after being suspended in favour of a higher
priority channel program). In addition, when a new channel program is starting, the
context restore operation depends on the channel start mode that has been selected.
(see Section 17.3.3).

Channel Resume Mode

Figure 17-4 illustrates the operation of a context restore for a new channel program
when Channel Resume Mode has been selected. The PC is loaded from CR7[31:16] and
the lower half of R7 is loaded from CR7[15:0]. The operating priority of the channel is
taken from CR6[31:24] and all of R6 is loaded from CR6.
User’s Manual 17-15 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Figure 17-4 Context Restore for CR6 and CR7 in Channel Resume Mode

Channel Restart Mode

Figure 17-5 illustrates the operation of a context restore for a new channel program
when Channel Restart Mode has been selected. The PC is loaded with the channel entry
entry table address and the lower half of R7 is loaded from CR7[15:0]. The operating
priority of the channel is taken from CR6[31:24] and all of R6 is loaded from CR6.

31 16 0

C P P N
PCP Interrupt
Control Reg.
PCP_ICR

0 A R B
C TL P IP N 0 IE

31 16 0

C N T1C P P N S R P N TO S

31 16 0

C N T1C P P N S R P N TO S

PCP
Register R6

31 16 0

C P C C FLA G S Stored Content
CR7 in PRAMC D P TR

31 16 0

0 FLA G SC D P TR
PCP
Register R7

16

P C

0
PCP Program
Counter

Stored Content
CR6 in PRAM
User’s Manual 17-16 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Figure 17-5 Context Restore for CR6 and CR7 in Channel Restart Mode

Suspended Channel Restart

Figure 17-6 illustrates the operation of a context restore for a suspended channel
program. The PC is loaded from CR7[31:16] (regardless of the Channel Start Mode) and
the lower half of R7 is loaded from CR7[15:0]. All of R6 is loaded from CR6. The figure
also shows how the operating priority of the channel (PCP_IR.CPPN) is restored from
the Service Request Node that was used to store the Suspended Interrupt Request.

31 16 0

C P P N
PCP Interrupt
Control Reg.
PCP_ICR

0 A R B
CTL P IP N 0 IE

31 16 0

C N T1C P P N S R P N TO S

31 16 0

C N T1C P P N S R P N TO S

PCP
Register R6

31 16 0

C P C C FLA G S Stored Content
CR7 in PRAMCD P TR

31 16 0

0 FLA G SC D P TR
PCP
Register R7

16

P C

0
PCP Program
Counter

Stored Content
CR6 in PRAM

2*S R P N

16 0
User’s Manual 17-17 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Figure 17-6 Context Restore for CR6 and CR7 Of Suspended Channel Restart

17.3.2.4 Context Save Operation for CR6 and CR7

The operation of R6 and R7 context save varies according to whether the save operation
is the result of a channel exit condition or whether the channel is being suspended in
favour of a higher priority channel program.

31 16 0

C P P N
PCP Interrupt
Control Reg.
PCP_ICR

0 A R B
C TL P IP N 0 IE

31 16 0

CN T1C P P N S R P N TO S

31 16 0

C N T1C P P N S R P N TO S

PCP
Register R6

31 16 0

C P C C FLA G SStored Content
CR7 in PRAM C DP TR

31 16 0

0 FLA G SD P TR
PCP
Register R7

16

P C

0
PCP Program
Counter

Stored Content
CR6 in PRAM

31 16 0

S RP N0
R
R
Q

S R NC0 0
S
R
R

S
R
E

T
O
S

0
PCP Interrupt
Req. Node
PCP_SRNx

C hannel
Num ber

N ote: D uring a context res tore for a suspended channel, the
P C P _S RC N x.S RN C fie ld (n=9,10,11) is used to de term ine
the channel num ber.
User’s Manual 17-18 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Channel Resume Mode

Figure 17-7 illustrates the operation of a context save for a channel exit when Channel
Resume Mode has been selected. The value written to CR7 is created by concatenating
the 16-bit PC value with the lower 16-bit of R7. CR6 is written with the value taken from
R6.

Figure 17-7 Context Save for CR6 and CR7 in Channel Resume Mode

Channel Restart Mode

Figure 17-8 illustrates the operation of a context save for a channel exit when Channel
Restart Mode has been selected. This is same as for Channel Resume mode except that
the PC value is discarded and the appropriate channel entry table address is written to
CR7[31:16].

31 16 0

C N T1C P P N S R P N TO S

31 16 0

C N T1C P P N S R P N TO SPCP
Register R6

31 16 0

C P C C FLA G SStored Content
CR7 in PRAM C D P TR

31 16 0

0 FLA G SC D P TR
PCP
Register R7

16

P C

0
PCP Program
Counter

Stored Content
CR6 in PRAM

N ote : W hen the con text save is due to execution o f an E X IT
instruction w ith E P = 0, the P C is loaded w ith the appropria te
channe l en try tab le address prio r to be ing saved.
User’s Manual 17-19 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Figure 17-8 Context Save for CR6 and CR7 in Channel Restart Mode

Channel Suspended

Figure 17-9 illustrates the operation of a context save for a channel which is being
suspended. This is same as for Channel Program Resume mode except that an interrupt
request is created to allow the channel to be restarted at a later time. This restore
operation utilizes one of the three specially extended Service Request Nodes to store
the interrupt request. The information stored as part of the interrupt request is channel
number (SRPN) and the operating priority (CPPN) with which the channel was operating
prior to being suspended. This operation in conjunction with the suspended channel
restore operation shown in Figure 17-6 allows the temporary suspension of a channel
in favour of higher priority channel.

31 16 0

C N T1C P P N S R P N TO S

31 16 0

C N T1C P P N S R P N TO SPCP
Register R6

31 16 0

C P C C FLA G SStored Content
CR7 in PRAM

C D P TR

31 16 0

0 FLA G SC D P TR
PCP
Register R7

16

2*S R P N

0

Stored Content
CR6 in PRAM
User’s Manual 17-20 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Figure 17-9 Context Save for CR6 and CR7 Of Channel Suspend

17.3.2.5 Initialization of the Contexts

The programmer is responsible for configuring each Channel Program’s context before
commencing operation. Because this must be done by writing to the PCP across the FPI
Bus, it is important to understand exactly where each Channel Program’s context is from
the FPI Bus perspective (see Page 17-45 for details).

31 16 0

C P P N
PCP Interrupt
Control Reg.
PCP_ICR

0 A R B
C TL P IP N 0 IE

31 16 0

C N T1C P P N S R P N TO S

31 16 0

C N T1C P P N S R P N TO S

PCP
Register R6

Stored Content
CR6 in PRAM

31 16 0

S R P N0
R
R
Q

S R N C0 0
S
R
R

S
R
E

T
O
S

0
PCP Interrupt Service
Request Node.
PCP_SRNx (x=9,10,11)

1S R P N1

08

31 16 0

C P C C FLA G SStored Content
CR7 in PRAM C D P TR

31 16 0

0 FLA G SC D P TR
PCP
Register R7

16

P C

0
PCP Program
Counter
User’s Manual 17-21 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.3.2.6 Context Save Optimization

The PCP has an optimized context switching strategy consisting of optimization of both
context load and store. During a context load where the channel that is starting is also
the last channel that the PCP was running, then the PCP general purpose registers
already contain the values appropriate to the channel. In this case there is no need to
reload the context (i.e. the PCP can immediately continue operation at the appropriate
point in the code without having to perform a context load). During a Context Store (i.e.
the PCP exits a channel as a result of EXIT or DEBUG instructions or exits in response
to a higher priority channel interrupt) only those registers that have ben updated (i.e. was
written to) since the context was loaded are saved to the context save area.

17.3.3 Channel Programs

The PCP code memory (PCODE) is used to store the instruction sequences, the
Channel Programs, for each of the PCP channels. The individual channel programs for
the individual PCP service requests can be usually viewed as independent and separate
programs. There is no background program defined and running for the PCP in TC11IB
as there would be with traditional processors.

When the PCP receives a service request for a specific channel program, it needs to
exactly determine which channel program to activate and where to start its execution. To
accommodate different application needs, the PCP architecture allows the selection of
two different entry methods into the channel programs:

• Channel ReStart Mode
• Channel Resume Mode

Channel Restart Mode forces the PCP to begin each Channel Program from a known
fixed point in code memory that is related to the interrupt number. At the entry point
related to the interrupt number in question there will typically be a jump instruction which
vectors the PCP to the main body of the channel program. This is identical to the
traditional interrupt vector jump table. In Channel Restart Mode, channel code execution
will always start at the same address in the interrupt entry table each time the channel is
requested.

Channel Resume Mode allows the PCP to begin execution at the PC address restored
as part of the channel program context. This mode allows for code to be contiguous and
start at any arbitrary address. It also allows for the implementation of interrupt-driven
state machines, and even the sharing of code across multiple programs with different
context.

The selection of one of the two modes is a global PCP setting, that is, it applies to all
channels. Selection is made via the PCP_CS.RCB bit in the PCP configuration register
PCP_CS (see Section 17.11.2).
User’s Manual 17-22 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.3.3.1 Channel Restart Mode

Channel Restart Mode is selected with PCP_CS.RCB = 1. In this mode, the PCP views
the code memory as being partitioned into an interrupt entry table at the beginning of the
code memory, and a general code storage area above this table.

The interrupt entry table consists of two instruction slots (2 × 16-bit) for each channel.
When a PCP service request is received, the PCP calculates the start PC for the
requested channel by a simple equation based on the service request priority number
(SRPN) of that request (PC = 2 × SRPN). It then executes the instruction found on that
address. If more than two instructions are required for the operation of the channel
program, then one of the instructions within the interrupt entry table must be a jump to
the remainder of the channel’s code. The PCP executes the channel’s code until an exit
condition or higher priority interrupt is detected.

It is recommended that all EXIT instructions for all channels should use the EP = 0
setting when the PCP is operated in Channel Restart Mode (see Section 17.12.15).

Note that when Channel Restart Mode is in use, a Channel Entry Table must be provided
with a valid entry for every channel being used. Figure 17-10 shows an example of Code
Memory organization when Channel Restart Mode has been selected. Failure to provide
a valid entry for all channels that are in use will lead to invalid PCP operation.

17.3.3.2 Channel Resume Mode

Channel Resume Mode is selected with PCP_CS.RCB = 0. In this mode, the user can
arbitrarily determine the address at which the channel program will be started the next
time it is invoked. For this purpose, the PC is saved and restored as part of the context
of a PCP channel.

Additional flexibility is available when Channel Resume Mode is globally selected by
configuring each EXIT instruction to determine the channel start address to be used on
the next invocation of a channel (see Section 17.12.15). When the EP = 0 setting is
used the PC value saved in the channel’s context (saved in CPC) is the address of the
appropriate location in the channel entry table. This forces the channel to start at the
appropriate location in the interrupt entry table at next invocation. When the EP = 1
setting is used the PC value saved in the channel’s context is the address of the
instruction immediately following the EXIT instruction. The use of the EP = x setting with
the EXIT instruction allows the mixture of channels that use a Channel Restart strategy
with others using a Channel Resume strategy, and also allows individual channels to use
either strategy as appropriate on different invocations.

Note: A valid entry within a Channel Entry Table must be provided for every channel that
uses an EXIT instruction with the EP = 0 setting when Channel Resume Mode has
been selected. Failure to provide a valid entry for such channels will lead to invalid
PCP operation.
User’s Manual 17-23 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Figure 17-10 Examples of Code Memory Organization for Channel Restart and
Channel Resume Modes

Note: The Code Memory address offsets in the above figure are shown as PCP
instruction (half-word) offsets. To obtain FPI address offsets (byte offset) multiply
each offset by two.

C ode M em ory
P C O D E

Instruc tion #1
2 H alf-w ords

no t used

Instruc tion #2

M C A04788
00 H

02 H
SR P N = 1

C hanne l
#1

04 H

Instruc tion #2
Instruc tion #1

C hanne l
#2 SR P N = 2

SR P N = 3
06 H

Instruc tion #2
Instruc tion #1

C hanne l
#3

S R P N = n1n1×2 H
Instruc tion #1
Instruc tion #2C hanne l

#1

C hannel #1
M ain C ode

C hannel #3
M ain C ode

C hannel #n1
M ain C ode

C hannel #2
M ain C ode

Channel Restart Mode

16 0

C hannel
E ntry
Tab le

Channel Resum e Mode

16 0

C hanne l #1
M a in C ode

00H

C hanne l #3
M a in C ode

C hanne l #n1
M ain C ode

C hanne l #2
M a in C ode

C ode M em ory
P C O D E
User’s Manual 17-24 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.4 PCP Operation

This section describes how to initialize the PCP, how to invoke a Channel Program, and
the general operation of the PCP.

17.4.1 PCP Initialization

The PCP is placed in a quiescent state when the TC11IB is first powered-on or reset.
Before a Channel Program can be enabled, the PCP as a whole must be initialized by
some other FPI Bus master, typically the CPU. Initialization steps include:

• Configure global PCP registers
– Initialize PCP Control and Status Register (with PCP_CS.EN = 0)
– Configure interrupt system via PCP_ICR.

• Load Channel Programs into the code memory PCODE.
• Load initial context (if/as required) of Channel Programs in PRAM (R0–R7 for

Maximum context, R4–R7 for Small context, R6–R7 for Minimum context). Only those
registers in each channel whose initial content is required on first invocation of the
channel need to be loaded. This may need to include the initial PC, depending on the
value of PCP_CS.RCB.

• Clear R7 in the context for unused channels.
• Enable PCP operation PCP_CS.EN = 1.

Now, the PCP is able to begin accepting interrupts and executing Channel Programs.

17.4.2 Channel Invocation and Context Restore Operation

A Channel Program is started when any one of the following conditions occurs:

• The current round of PCP interrupt arbitration results in a winning interrupt number
(SRPN) and the PCP is currently quiescent (has exited the previous channel and
stored the context for that channel)

• The current round of PCP interrupt arbitration results in a winning interrupt number
(SRPN) which is greater than the current channel priority, R7.IEN ==1 and suitable
Service Request Node space is available in the PSRN

When this happens, the winning SRPN becomes the current interrupt and a context
restore operation occurs before the Channel Program can begin operation as follows.

• The context of the Channel (= winning SRPN) is restored from PRAM into the general
purpose registers from the appropriate address within the CSA. Depending on the
value of PCP_CS.CS, a Full, Small, or Minimum Context restore is performed.

• The new priority level of the PCP is taken from R6.CPPN field and is written to
PCP_ICR.CPPN. This value can be useful during debugging, as the CPPN of the
currently executing or last-executed Channel Program can be read from PCP_ICR.
After the Channel Program starts, the value of R6 may be changed without altering
the value of the effective CPPN, because updates to the value of R6.CPPN have no
effect until the next invocation of the Channel Program.
User’s Manual 17-25 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
• If the R7.CEN bit is clear (0), then an error has occurred because a disabled Channel
Program has been invoked, the PCP_ES.DCR bit is set to flag the error, and the
Channel Program performs an error exit.

• If the R7.CEN bit is set (1), then code execution begins at the value of the restored PC
or at the address of the interrupt routine in the Channel Entry Table, depending on the
value of PCP_CS.RCB.

17.4.3 Channel Exit and Context Save Operation

The context of a channel program must be saved when it terminates. Four events can
cause the termination of a channel program:

• Execution of the EXIT instruction (normal termination)
• A higher priority interrupt causes suspension of the Channel and the start of a new

Channel Program
• Occurrence of an error
• Execution of the DEBUG instruction (channel termination is optional). The DEBUG

instruction must be only used in DEBUG mode, otherwise an Illegal Operation (IOP)
error will be generated.

These channel termination possibilities are described in the next sections.

17.4.3.1 Normal Exit

Under normal circumstances, a channel program finishes by executing an EXIT
instruction. This instruction has several setting fields which allow the user to specify a
number of optional actions to be performed during the channel exit sequence. These
optional actions are:

• Decrement counter CNT1.
• Set the start PC for the next channel invocation to the next instruction address

(Channel Resume) or to the channel entry address (Channel Restart)
• Disable further invocations of this channel.
• Generate an interrupt request to the CPU or to the PCP itself.

When the EXIT instruction is executed, the following sequence occurs:

• If EC = 1 is specified Counter R6.CNT1 is decremented and the CN1Z flag is updated.
• If ST = 1 is specified bit R7.CEN (Channel Enable) is cleared (i.e. the channel is

disabled).
• If EP = 0 is specified or PCP_CS.RCB = 1 (Channel Restart Mode has been selected)

the PCP program counter to be saved to context location CR7.PC is set to the
appropriate channel entry table address. If EP = 1 is specified and PCP_CS.RCB = 1
(Channel Resume Mode has been selected) the PCP program counter to be saved to
context location CR7.PC is set to the address of the instruction immediately following
the EXIT instruction.
User’s Manual 17-26 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
• If INT = 1 is specified and the specified condition cc_B is True, then an interrupt
request is raised according to the SRPN value held in R6.SRPN. The interrupt is
asserted via one of the PCP_SRCx registers, where x is determined by the
combination of the value of R6.TOS and the list of free entries. This allows the
conditional creation of a service request to the CPU or PCP with the SRPN value
indicated in register R6.SRPN.

• The channel program’s context (including all register modifications caused within this
EXIT sequence) is saved to the appropriate region in the PRAM Context Save Area.
Depending on the value of PCP_CS.CS, either a Full, Small, or Minimum Context
save is used.

Note: Particular attention must be paid to the values of R6 and R7 prior to execution of
the EXIT instruction. When posting an interrupt request, one must ensure that
R6.SRPN and R6.TOS contain the correct values to generate the required
interrupt request. When using the Outer Loop Counter (CNT1), one must ensure
the value in R6.CNT1 will provide the required function. When using interrupt
priority management, one must ensure the R6.CPPN contains the interrupt priority
with which the channel is to run on next invocation. If the channel is to be
subsequently re-invoked, one must ensure that the Channel Enable Bit (R7.CEN)
is set.

17.4.3.2 Exit as a Result of an Interrupt

If all requirements are in place for a Channel to be interrupted and an SRPN which is of
higher value than the currently posted CPPN wins arbitration then an interrupt occurs.
On interrupt the following sequence of events occurs:

• The PC (R7.PC) is stored such that code execution will continue from the correct
address on return (note that this is always the case regardless of the value of
CS.RCB). This "return address" is the next instruction address (“NextPC”) unless the
interrupt is serviced during execution of a BCOPY or COPY instruction configured (via
CNC) to use an outer loop counter (all other instructions complete their operation
before an interrupt can be serviced), in which case the PC remains at the current
instruction address.

• The channel number (SRPN) of the currently executing channel is recorded to allow
the correct context to be loaded on channel resumption.

• The priority (CPPN) of the currently executing channel is recorded to allow proper
interrupt arbitration to be performed to decide when the channel should be resumed.

• A "Suspended Interrupt" request is raised in the PSRN to allow operation of the
channel to be resumed at the appropriate time.

• The context is saved back to the PRAM Context Save Area. Depending on the chosen
context size (PCP_ES.CS) a Full, Small, or Minimum Context save is performed.

The PCP Core may now begin the Channel Start Sequence for the new channel.
User’s Manual 17-27 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.4.3.3 Error Condition Channel Exit

PCP error conditions can occur for a variety of reasons (e.g. an invalid operation code
was executed by a Channel Program, or an FPI Bus error occurred). When an error
condition occurs, the PCP Error Status register (PCP_ES) is updated to reflect the error
and the Channel Program is aborted. The error exit sequence is as follows:

• The channel enable bit R7.CEN is cleared. This means the channel program will be
unable to restart until another FPI Bus master has re-configured the channel
program’s stored context to set CR7.CEN to 1 again.

• The PC of the instruction which was executing when the error occurred is stored in
PCP_ES.EPC.

• The number of the channel program which was executing when the error occurred is
stored in PCP_ES.EPN.

• The error type is set in the appropriate field of register PCP_ES.
• The context is saved back to the PRAM Context Save Area. Depending on the chosen

context size (PCP_ES.CS) a Full, Small, or Minimum Context save is performed.
• If the error condition was not due to an FPI Bus error, then an interrupt request to the

CPU is generated with the priority number stored in register PCP_CS.ESR.

The repetitive posting of PCP Error Interrupts will not cause an overwhelming number of
interrupts to the CPU. In this situation, the PCP’s CPU service request queue will quickly
fill and force the PCP to stall until the CPU can resolve the situation.

Note: An error condition (other than an FPI Bus error) will result in an interrupt being sent
to the CPU. This interrupt routine which responds to this interrupt must be capable
of dealing with the cause as recorded in PCP_ES, and it must be able to restore
the channel program to operation. This minimum required to restart the channel;
[program is to set the context value of CR7.CEN = 1.

17.4.4 Debug Exit

If the DEBUG instruction is programmed to stop the channel program execution
(SDB = 1 has been specified), the PCP performs an exit sequence which is very similar
to the error exit sequence, with the exception that no interrupt request to the CPU is
generated. This sequence is:

• If RTA = 0, then the channel enable bit R7.CEN is cleared optionally according to the
SDB setting. This means the channel program will be unable to restart until another
FPI Bus master has reconfigured the channel program’s stored context to set
CR7.CEN to 1 again. Otherwise, the R7.CEN bit remains unchanged and the PC is
decremented (such that it points to the DEBUG instruction)

• If EDA = 1, a break-point event is generated
• If DAC = 1, then the PCP_CS.EN bit is cleared. This means that the PCP will not

execute any further channel programs until the PCP_CS.EN bit is set by another FPI
Bus master.
User’s Manual 17-28 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
• The address of the DEBUG instruction (i.e. the current PC) is stored in register
PCP_ES.PC.

• The current channel number is stored in register PCP_ES.PN.

The execution of the current channel program is stopped at the point of the DEBUG
instruction. This instruction only disables the current channel, the PCP will continue to
operate, accepting service requests for other channels as they arise.

Note: The DEBUG instruction must be only used in DEBUG mode. Otherwise, an “Illegal
Operation” (IOP) error will be generated.

17.5 PCP Interrupt Operation

The PCP Interrupt Control Unit (PICU) and the PCP’s Service Request Nodes
(PCP_SRC0..11) are similar to the CPU’s ICU and all other SRNs in the system. They
do, however, have some special characteristics, which are described in the following
sections. Figure 17-11 shows an overview of the PCP interrupt scheme.
User’s Manual 17-29 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Figure 17-11 PCP Interrupt Block Diagram

17.5.1 Issuing Service Requests to CPU or PCP

The PCP may use one of three mechanisms to raise an interrupt request to the CPU or
itself. The first, and most inefficient, method is where a PCP channel program issues
service requests by performing an FPI Bus write operation to an external service request
node (SRN). Alternatively the PCP can raise a Service Request using one of its own
internal SRNs. An interrupt can only be generated by the PCP via an internal SRN when
executing an EXIT instruction or when an error condition occurs. In the following
descriptions, PCP service requests triggered through an EXIT instruction or the
suspended operation are called “implicit” PCP service requests to distinguish them from
the “explicit” way of generating a service request through an FPI Bus write to a service
request node external to the PCP.

P C P _S R C 0

P C P _S R C 1

P C P _S R C 4

S E LE C T

S uspend ed
In te rrup t

Take n

P C P
In terrup t
C ontro l

Un it
P IC U

Q ueue
E xis ts

Q ueue
Fu ll

N esting
A va ilab le C P P N

W inn ing S R P N ,
P rio rity & In te rrup t

Type
P C P C ore

P C P A rb itra tion B us

P C P _S R C 5

S E LE C T

P C P _S R C 6
S E LE C T

P C P _S R C 7

S E LE C T

P C P _S R C 8

S E LE C T

S R P N TO S

P S R N

P C P _S R C2

P C P _S R C3

P C P _S R C9

P C P _S R C10

P C P _S R C11

C P U A rb itra tion B us

PC P
Q ue ue

 Fu ll

PC P
Q ue ue
W in ner
User’s Manual 17-30 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.5.2 PCP Interrupt Control Unit

The Interrupt Control Unit of the PCP, PICU, operates in a similar manner to the Interrupt
Control Unit, ICU, of the CPU. The PICU manages the PCP service request arbitration
bus and handles the communication of service requests and priority numbers to and
from the PCP kernel. The PCP_ICR register is provided to control and monitor the
arbitration process.

When one or more service requests to the PCP are activated, the PICU performs an
arbitration round to determine the request with the highest priority. It then places the
priority number of this “winning” service request into the PIPN field of register PCP_ICR
and generates a service request to the PCP kernel.

If the PCP kernel is currently busy processing a channel program, the new request is left
pending until the current channel program has finished.

When the PCP kernel is ready to accept a new service request, it calculates the context
start address from the Pending Interrupt Priority Number, PIPN, stored in register ICR
and begins with the context restore. It notifies the PICU of the acceptance of this request,
and in turn the PICU acknowledges the winner of the last arbitration round. This service
request node then resets its Service Request Flag, SRR.

There is one special condition where the PICU operates differently to the CPU Interrupt
Control Unit. This special operation is described in Section 17.5.5.1.

The PCP interrupt arbitration can be adapted to the application’s needs and
characteristics through controls in register PCP_ICR. Bit field PCP_ICR.ARBCYC
controls the number of arbitration cycles per arbitration round (one through four cycles),
while bit PCP_ICR.ONECYC controls whether one arbitration cycle equals one or two
system (FPI) clock cycles.

17.5.3 PCP Service Request Nodes (PSRN)

The PCP contains twelve service request nodes including twelve service request control
registers, PCP_SRC0..11, which are provided for implicit PCP service requests. The
service request control registers differ from standard SRC registers in that they are fully
controlled by the PCP kernel. They are read-only registers during PCP operation. One
can not generate interrupts by writing to them.

The twelve service request nodes are split into four groups.

The first group, containing registers PCP_SRC0 and PCP_SRC1, handles implicit PCP
service requests targeted to the CPU. The Type of Service control fields, TOS, of these
registers hard-wired to 00B, directing the requests to the CPU.

The second group, registers PCP_SRC2 and PCP_SRC3, handles the service requests
targeted to the PCP itself. The respective TOS field of these registers are hard-wired to
01B, directing the requests to the PCP.
User’s Manual 17-31 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
The third group, registers PCP_SRC4, PCP_SRC5, PCP_SRC6, PCP_SRC7 and PCP
SRC8, has programmable TOS (Type Of Service) field which allow these registers to be
assigned (at configuration time) to any of the available Interrupt Buses.

The last group, registers PCP_SRC9, PCP_SRC10 and PCP_SRC11, is an extended
version of a standard Service Request Node. They handle the service requests targeted
to the PCP itself which also includes service requests representing a suspended
interrupt. The respective TOS field of these registers are hard-wired to 01B, directing the
requests to the PCP.

The service request enable bits, SRE, of the PCP_SRCx registers are hard-wired to 1,
meaning these service requests are always enabled.

Note: programming a PCP_SRCx register (x= 4 to 8) with TOS value representing a
non-available interrupt bus (10B or 11B in the TC11IB)will disable Service Request
Node x.

The actual service request flag, SRR, and the service request priority number, SRPN, of
the PCP_SRCx registers is updated by the PCP when it generates an implicit service
request. The way this is performed is described in the following section.

The twelve service request nodes in the four types described above are implemented as
a queue with two entries. When the PCP generates an implicit service request, it places
the request into the next available free entry of the appropriate queue rather than writing
it into a specific register. Queue management logic automatically ensures proper
handling of the queue. In the case where both entries of a queue are filled with pending
service requests, the queue management reports this condition to the PCP kernel via a
‘queue full’ signal.

In the following descriptions, the terms “CPU Queue” and “PCP Queue” are used to refer
to the queues in the four groups of PCP service request nodes.

17.5.4 Issuing PCP Service Requests

The PCP can issue implicit service requests on the execution of an EXIT instruction,
when suspending a channel or when an error occurs during a channel program
execution. While the service request generation for the EXIT instruction is optional, a
service request is always generated when a channel is suspended or an error occurs.
Further differences between these three mechanisms are detailed in the following
sections.

17.5.4.1 Service Request on EXIT Instruction

An implicit PCP service request is issued when the INT field of the EXIT instruction is set
to 1 and the specified condition code, cc_B, of this instruction is true. Such a service
request can be issued to either the CPU or to the PCP itself, depending on the
programmed value in the TOS field of register R6. The PCP examines the TOS field in
register R6 and issues a service request to the appropriate queue of the service request
User’s Manual 17-32 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
nodes. Along with this request, it passes the service request priority number stored in the
SRPN field of register R6 to the queue. If the queue has a free entry left, the service
request flag, SRR, of the associated service request register, PCP_SRCx, will be set,
and the service request priority number will be written to the SRPN field of the SRC
register. Please see Section 17.5.5.1 for the case there is no free entry in the queue.

Because the desired service request is programmed through the TOS and SRPN fields
in register R6, each channel program can issue its individual service request. Note that
this register needs to be programmed properly if a service request is to be generated by
the EXIT instruction.

17.5.4.2 Service Request on Suspension of Interrupt

An implicit PCP service request is issued when the PCP suspends execution of the
ongoing channel program in favour of a service request with a higher priority. Such a
service request is always issued to the PCP’s own interrupt bus and is stored in one of
the three extended Service Request Nodes (PCP_SRC9, PCP_SRC10 and
PCP_SRC11). Along with this request, it passes the current channel operating priority
(CPPN) as a Service Request Priority Number and also the channel number (the original
SRPN). The service request flag, SRR, and the Restart Request flag, RRQ, of the
associated service request register, PCP_SRCx, will be set. The Operating Priority will
be written to the SRPN field and the Channel Number will be written to the SRNC field
of the SRC register.

Use of the Operating Priority as the SRPN for resumption of the channel program
ensures that during following arbitration rounds the PCP will resume execution of the
suspended channel program at the appropriate time.

The PCP treats an interrupt request with the RRQ bit set in a special fashion. In this case,
the PCP clears the interrupt request bit in the appropriate internal Service Request Node
but does not issue an interrupt acknowledge to any external nodes. This prevents the
unwanted clearing of external service requests with an SRPN that matches the priority
of a suspended channel.

Note: The PCP will only suspend channel operation when there are two or more free
service Request Nodes with the appropriate TOS value for the PCP and one of the
free Service Request Nodes is an Extended Service Request Node. This allows
for the posting of an interrupt request to the PCP on exit from the new channel
program.

17.5.4.3 Service Request on Error

While a service request triggered through an EXIT instruction is optional and can be
issued either to the CPU or to the PCP itself, a service request due to an error condition
will always be automatically issued and will always be directed to the CPU. The PCP
issues a service request to the CPU queue of the service request nodes. Along with this
User’s Manual 17-33 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
request, it passes the service request priority number stored in the ESR field of register
PCP_CS to the queue. If the queue has a free entry left, the service request flag, SRR,
of the associated service request register, PCP_SRCx, will be set, and the service
request priority number will be written to the SRPN field of the SRC register. See
Section 17.5.5.1 for the case when there is no free entry in the queue.

Due to the fact that the priority number is stored in the global control register PCP_CS,
all channel programs share the same service request routine in case of an error. The
exact cause of the error and the channel number of the program which was executed
when the error occurred can be determined through examination of the contents of the
Error/Debug Status Register, PCP_ES.

17.5.5 Queue Management Control and Status Logic

The PSRN Queue Management Control and Status Logic allocates Interrupt Requests
posted by the PCP Core to the appropriate SRNs and also generates Status Signals to
ensure the correct operation of the PCP. It should be noted that the PCP Core operates
from the viewpoint of TOS (Type Of Service) while the PSRN has fixed interrupt ports.
The Queue Management Logic is responsible for handling the transfer of any interrupt
request raised by the PCP, with its associated TOS value, to an SRN connected to the
appropriate interrupt bus (as defined by the TOS Mapping Input).

17.5.5.1 Queue Full Operation

Queuing the implicit service requests typically allows the PCP to continue with the next
service request without stalling. The depth of the queue and the number of channel
programs using them determines the stall rate. Depending on the selected service
provider (via R6.TOS in case of an EXIT interrupt or always to the CPU in case of an
error interrupt) the request is routed to a free entry in the appropriate queue.

If no free entries are available in a queue at the time the PCP wants to post a request to
that queue, the PCP is forced to stall until an entry becomes clear. This ensures that the
PCP does not lose any interrupts. An entry in a queue becomes free when its service
request flag, SRR, is cleared through an acknowledge from the PICU (that is, the CPU
or PCP, as appropriate, has started to service this request).

One special case needs to be resolved for the PCP related queue through special
operation of the PICU. Consider the case where the PCP queue is full, meaning registers
PCP_SRC2, PCP_SRC3 and PCP_SRC9 to PCP_SRC11 are already loaded with
pending service requests to the PCP. If the PCP kernel now needed to post an additional
service request into that queue, a deadlock situation would be generated: The PCP
would stall, since there is not a free entry in the PCP queue in which to place the request.
In turn, as the PCP is stalled, it cannot accept new service requests and so the PCP
service request queue cannot be emptied. This would result in a deadlock of the PCP.
User’s Manual 17-34 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
To avoid such a deadlock, the PICU performs a special arbitration round as soon as the
PCP queue becomes full. In this arbitration round, only the service request nodes
assigned to the PCP queue are allowed to participate; all service requests from nodes
external to the PCP are excluded, regardless of whether their priorities are higher or
lower than those of the PCP queue. In this way, it is guaranteed that one entry in the PCP
queue gets serviced, freeing one slot in the queue.

The PCP programmer needs to carefully consider this special operation. It ensures that
deadlocks are avoided, but it implies that if too many PCP channel programs post
service requests to the PCP (self-interrupt), the PCP will have to service these rather
than outside interrupt sources. Depending on the priority given to these requests, this
could undermine an otherwise appropriate use of the interrupt priority scheme. It is
recommended to design the system such that in most cases, high priority numbers can
be assigned to these self-interrupts, such that they can win normal arbitration rounds,
avoiding the situation where the PCP queue becomes full.

Note: If the CPU queue is full, the PCP can continue to operate until it needs to post
another service request to the CPU queue.

17.6 PCP Error Handling

The PCP contains a number of fail-safe mechanisms to ensure that error conditions are
handled gracefully and predictably. In addition to providing an extra level of system
robustness suitable for high integrity and safety critical systems these mechanisms can
often ease the task of finding programming errors during the development process.
Whenever an error is detected the channel program that was executing exits and the
PCP_ES register is updated with information to allow determination of the error that
occurred, the instruction address and the channel program that was executing when the
error occurred (see Section 17.4.3.3).

17.6.1 Enforced PRAM Partitioning

As previously discussed PRAM can be considered as being split into two distinct areas.
The lower of these two areas is the Context Save Area (see Section 17.3.2.2) used for
storing context information for each active channel while the channel program is not
actually executing. The remainder of PRAM is available for general use and is typically
used to hold variables and global data.

The default configuration of the PCP allows the PCP to use PRAM as a single area.
While this default configuration allows complete flexibility regarding the use of PRAM,
this flexibility also introduces the possibility of invalid PCP operation as a result of the
following issues:

• Any channel program is allowed to write to any PRAM location (including any location
in the CSA). This means that a channel program may be inadvertently programmed
to corrupt the context save region belonging to another channel causing invalid
operation of the corrupted channel when it next executes.
User’s Manual 17-35 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
• Generation of an interrupt request to the PCP with a priority number that would cause
loading of a context from outside the CSA will cause the spurious execution of a
channel program with an invalid context loaded from outside the CSA.

To avoid spurious PCP operation as a result of either of these programming errors, the
PCP can be optionally configured via the global PCP control register (PCP_CSA) to
enforce strict partitioning of PRAM. PRAM partitioning is selected by programming
PCP_CS.PPE = 1 and the size of the CSA in use is selected via the PCP_CS.PPS bit
field (see Section 17.11.2). When PRAM partitioning has been enabled a PCP Error will
be generated on either of the following events:

• A channel program executes a PRAM write instruction with a target area within the
CSA. This prevents a channel corrupting the context save region of any other channel.

• An incoming interrupt request causes the PCP to attempt to load a context from
outside the CSA. This prevents the PCP from running an invalid channel program as
a result of an invalid interrupt request.

Note: Enabling PRAM partitioning (PCP_CS.PPE = 1) with a CSA size of zero
(PCP_CS.PPS = 0) is an invalid setting and will cause a PCP Error Event
whenever any interrupt request is received by the PCP.

17.6.2 Channel Watchdog

The Channel Watchdog is a PCP internal watchdog which optionally allows the user to
ensure that the PCP will not become locked into executing a single channel due to an
endless loop or unexpected software sequence. As each channel executes the PCP
maintains an internal count of the number of instructions that have been read from
CMEM since the channel started. If the watchdog function is enabled (by programming
PCP_CS.CWE = 1) and the internal instruction fetch counter reaches the threshold
programmed by the user (programmed via PCP_CS.CWT) then a PCP Error is
generated. The threshold setting (PCP_CS.CWT) is global to all channels. From this it
follows that the threshold must be selected to be greater than the maximum number of
instructions that can be fetched by any channel program, taking all channels into
consideration. It should be noted that the instruction width of the PCP is 16 bits and that
therefore execution of an instruction that is encoded into 32 bits (e.g. LDL.IL) will
generate two CMEM instruction reads, and therefore will cause the internal watchdog
counter to be incremented twice.

Note: Enabling the Channel Watchdog function (PCP_CS.CWE = 1) with a threshold of
zero (PCP_CS.CWT = 0) is an invalid setting and will cause a PCP Error Event
whenever any interrupt request is received by the PCP.
User’s Manual 17-36 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.6.3 Invalid Opcode

The PCP includes the Invalid Opcode mechanism to check that each instruction fetched
from CMEM represents a legal instruction. If the PCP attempts to execute an illegal
instruction, then a PCP Error is generated.

17.6.4 Instruction Address Error

An Instruction Address Error is generated if the PCP attempts to execute an instruction
from an illegal address. An address is considered to be illegal if:

• The address is outside the available CMEM area (see Section 17.15 for the CMEM
size implemented in this derivative)

and/or

• The specified address could not be contained in the 16 bit PC (i.e. an address
calculation yielded a 16 bit unsigned overflow).

The second of these cases can result from an address calculation either from the
execution of a PC relative jump instruction (either a JC, JC.I, or JL instruction) or the PC
being incremented following execution of the previous instruction.

17.7 PCP Reset

The PCP can be reset in two ways:

17.7.1 Hard Reset

Hard Reset is forced when the reset signal is asserted. This forces a reset of all PCP
blocks. The effect of Hard Reset is to:

• Halt any operating channel.
• Reset all control registers to their default values.
• Reset the PCP Processing Core to the default state.
• Reset the FPI Bus Interface.

17.7.2 Soft Reset

Soft Reset is generated by setting bit RST of PCP_CS. Soft reset differs from hard reset
in that the interrupt system is not reset. Specifically all interrupt nodes are not completely
reset, and the PCP Interrupt Control Unit (PICU) is also not affected. This strategy
prevents loss of synchronization between any interrupt node and the Arbitration Unit
(ICU) to which it is connected due to one, but not the other being reset. The effect of Soft
Reset is to:

• Halt any operating channel.
• Reset all control registers except PCP_ICR and PCP_SRCx registers to their default

values.
User’s Manual 17-37 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
• Clear all SRR and RRQ bits in all PCP_SRCx registers (all other bits are unchanged).
• Reset the PCP Processing Core to the default state.
• Reset the FPI Bus Interface.

Note: As the PCP is closely coupled to the FPI bus, it is impossible to clearly partition
the domains that are affected by reset. Generation of a Soft Reset is likely to cause
an FPI bus error as the PCP’s interface to the FPI is also reset. Based on this, it
is recommended that Soft Reset should not be used, but that a System Wide Hard
Reset should be generated instead. Soft Reset may still however prove useful in
a debugging environment. In case of Soft Reset to be used, the PCP must be in
idle state, i.e. PCP is not active on FPI bus as a slave or a master.

17.8 Instruction Set Overview

The following subsections present an overview of the instruction set and the available
addressing modes of the PCP in the TC11IB.

17.8.1 DMA Primitives

Table 17-3 DMA Transfer Instructions

DMA
Transfer

COPY Move value from FPI Bus source address location to FPI Bus
destination address location. Optionally increment or
decrement source and destination pointer registers. Optionally
repeat instruction until counter CNT1 reaches 0.

BCOPY Move a block of data from FPI Bus source address location to
FPI Bus destination address location. Optionally increment or
decrement source and destination pointer registers. Counter
CNT0 controls the block size and CNT1 implements automatic
multiple block transfers.
User’s Manual 17-38 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.8.2 Load and Store

Note: If a conditional instruction’s condition code is false, the operation will be treated as
a “No Operation”. Register values will not be changed and the flags will not be
updated.

Note: The use of R7 as a PRAM offset with the LD.P and ST.P instructions is not
allowed. The PCP will generate an illegal Opcode Error Exit if this instruction is
encountered using R7 as a PRAM offset.

Table 17-4 Load and Store Instructions

Load LD.F Load value from FPI Bus address location into register (FPI
Bus address = register content)

LD.I Load immediate value into register

LD.IF Load value from FPI Bus address location into register (FPI
Bus address = register content + immediate offset)

LD.P Load value from PRAM address location into register (PRAM
address = DPTR + register offset)

LD.PI Load value from PRAM address location into register (PRAM
address = DPTR + immediate offset)

LDL.IL Load 16-bit immediate value into lower bits [15:0] of register

LDL.IU Load 16-bit immediate value into upper bits [31:16] of register

Store ST.F Store register value to FPI Bus address location
(FPI Bus address = register content)

ST.IF Store register value to FPI Bus address location
(FPI Bus address = register content + immediate offset)

ST.P Store register value to PRAM address location
(PRAM address = DPTR + register offset)

ST.PI Store register value to PRAM address location
(PRAM address = DPTR + immediate offset)

Move MOV Conditionally move register value to register
User’s Manual 17-39 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.8.3 Exchange Instructions

17.8.4 Arithmetic and Logical Instructions

Arithmetic instructions that are fully register-based execute conditionally depending on
the specified Condition Code A. All other arithmetic instructions such as PRAM (.PI),
indirect (.I), and FPI (.F and .IF) execute unconditionally.

Note: If a conditional instruction’s condition code is false, the operation will be treated as
a “No Operation”. Register values will not be changed and the flags will not be
updated.

Table 17-5 Exchange Instructions

Exchange XCH.F Exchange contents between FPI Bus address location and
register

XCH.PI Exchange contents between PRAM address location and
register

Table 17-6 Arithmetic Instructions

Add ADD Add register to register (conditionally)

ADD.I Add immediate value to register

ADD.F Add content of FPI Bus address location to register
(Byte, Half-word or Word)

ADD.PI Add content of PRAM address location to register

Subtract SUB Subtract register from register (conditionally)

SUB.I Subtract immediate value from register

SUB.F Subtract content of FPI Bus address location from register
(Byte, Half-word or Word)

SUB.PI Subtract content of PRAM address location from register

Compare COMP Compare register to register (conditionally)

COMP.I Compare immediate value to register

COMP.F Compare content of FPI Bus address location to register
(Byte, Half-word or Word)

COMP.PI Compare content of PRAM address location to register

Negate NEG Negate register (2’s complement, conditionally)
User’s Manual 17-40 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Logical instructions that are fully register-based execute conditionally as determined by
the specified Condition Code A. All other logical instructions, such as PRAM (.PI),
indirect (.I), and FPI (.F and .IF) execute unconditionally.

Note: If a conditional instruction’s condition code is false, the operation will be treated as
a “No Operation”. Register values will not be changed and the flags will not be
updated.

Table 17-7 Logical Instructions

Logical
And

AND Register AND register (conditionally)

AND.F Content of FPI Bus address location AND register (Byte,
Half-word or Word)

AND.PI Content of PRAM address location AND register

Logical Or OR Register OR register (conditionally)

OR.F Content of FPI Bus address location OR register (Byte,
Half-word or Word)

OR.PI Content of PRAM address location OR register

Logical
Exclusive-
Or

XOR Register XOR register (conditionally)

XOR.F Content of FPI Bus address location XOR register (Byte,
Half-word or Word)

XOR.PI Content of PRAM address location XOR register

Logical Not NOT Invert register (1’s complement, conditionally)

Shift SHL Shift left register

SHR Shift right register

Rotate RL Rotate left register

RR Rotate right register

Prioritize PRI Calculate position of first set bit (1-bit) in register, from left

Memory
Read/
Modify/
Write

MCLR.PI Clear specified bits within a PRAM address location

MSET.PI Set specified bits within a PRAM address location
User’s Manual 17-41 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.8.5 Bit Manipulation

All bit manipulation instructions except INB are executed unconditionally. If conditional
bit handling is required, INB should be used.

17.8.6 Flow Control

Note: If a conditional instruction’s condition code is false, the operation will be treated as
a “No Operation”. Register values will not be changed and the flags will not be
updated.

Table 17-8 Bit Manipulation Instructions

Set Bit SET Set bit in register

SET.F Set bit in FPI Bus address location

Clear Bit CLR Clear bit in register

CLR.F Clear bit in FPI Bus address location

Insert Bit INB Insert carry flag into register
(position given by content of a register)

INB.I Insert carry flag into register
(position given by immediate value)

Check Bit CHKB Set carry flag depending on value of specified register bit

Table 17-9 Flow Control Instructions

Jump JC Jump conditionally to PC + short immediate offset address

JC.A Jump conditionally to immediate absolute address

JC.I Jump conditionally to PC + register offset address

JC.IA Jump conditionally to register absolute address

JL Jump unconditionally to PC + long immediate offset address

Exit
Channel

EXIT Unconditionally exit channel program execution (optionally
generate interrupt request and/or inhibit channel)

No
Operation

NOP Low-power No-Operation

Debug DEBUG Conditionally generate debug event (optionally stop channel
program execution)
User’s Manual 17-42 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.8.7 Addressing Modes

The PCP needs to address locations in memory in different ways, as determined by the
type of memory being accessed and the type of action being performed on that location.

17.8.7.1 FPI Bus Addressing

The PCP performs all FPI system bus accesses in Supervisor mode. All FPI Bus
accesses from the PCP are indirect to some extent. The main indirect addressing on the
FPI Bus uses a 32-bit absolute address located in the general purpose register indicated
in the instruction. This address must be properly aligned for the type of data access —
byte, half-word or word. If it is not aligned, the results are undefined.

– Effective Target Address [31:0] = <R[a]>

where a is the number of the register, for instance, R2. Instructions using this address
mode are indicated through the “.F” suffix.

For indirect-plus-immediate addressing on the FPI Bus, the 32-bit absolute address
located in the general purpose register indicated in the instruction is added to the
immediate 5-bit offset value encoded in the instruction. This address must be properly
aligned for the type of data access (byte, half-word or word). If it is not aligned, the results
are undefined.

– Effective Target Address [31:0] = <R[a]> + #offset5

where a is the number of the register and #offset5 is a 5-bit immediate offset value.
Instructions using this addressing mode are indicated through the “.IF” suffix (only
available for load and store, LD.IF and ST.IF).

This addressing mode is particularly useful for managing peripherals, where the
peripheral base address is held in R[a], and the offset can index directly into a specific
control register.

The BCOPY and COPY instructions use the indirect absolute addressing with predefined
PCP registers. Register R4 is used as the source address pointer, while R5 represents
the destination address pointer.

– Effective Source Address [31:0] = <R4>
– Effective Destination Address [31:0] = <R5>

Note: All FPI Bus accesses by the PCP are performed in Supervisor mode.

Note: The PCP is not allowed to access its own registers via instructions executed in the
PCP.
User’s Manual 17-43 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.8.7.2 PRAM Addressing

The PRAM is always addressed indirectly by the PCP. The normal address used is the
value of the R7.DPTR field (8 bits) concatenated with an immediate 6-bit offset value
encoded in the instruction, yielding a 14-bit word address. This enables access to
16 KWords (64 KBytes). Because R7.DPTR is part of a channel program’s context, a
channel program may alter the DPTR value at any time.

– Effective PRAM Address[13:0] = <R7.DPTR> << 6 + #offset6

Instructions using this addressing mode are indicated through the “.PI” suffix.

To provide effective indexing into large tables or stores of data, an alternate form of
indirect addressing can also be used on load and store operations to PRAM. The value
of the DPTR field (8 bits) is concatenated with the least significant 6 bits of R[a], again
yielding a 14-bit word address. The most significant bits [31..6] of R[a] are ignored.

– Effective PRAM Address[13:0] = <R7.DPTR> << 6 + <R[a][5:0]>

Instructions using this addressing mode are indicated through the “.P” suffix (load and
store only, LD.P and ST.P).

17.8.7.3 Bit Addressing

Single bits can be addressed in the PCP general purpose registers or in FPI Bus address
locations. A 5-bit value indicates the location of a bit in the register specified in the
instruction. This bit location is either given through an immediate value in the instruction
or through the lower five bits of a second register (indirect addressing).

– Effective Bit Position[0..31] = #imm5
– Effective Bit Position[0..31] = <R[a][4:0]>

The immediate bit addressing is used by instructions SET and CLR and their variants as
well as by INB.I and CHKB. Indirect bit addressing is used by the INB instruction only.

17.8.7.4 Flow Control Destination Addressing

The Jump instructions are split into two groups: PC-relative jumps and jumps to an
absolute address.

For PC-relative jumps, the destination address is a positive or negative offset from the
PC of the next instruction. The offset is either contained in the lower 16 bits of a register
(the upper 16 bits are ignored), or is given as immediate value of the instruction. The
immediate values are sign-extended to 16 bits. If the effective jump address is outside
the available CMEM area (or the jump address calculation caused an overflow), then a
PCP Error Condition has occurred.

– Effective JUMP Address[15:0] = NextPC + Signed(R[a][15:0]); +/- 32K instructions
– Effective JUMP Address[15:0] = NextPC + Sign-Extend(#offset10);

+/- 512 instructions
User’s Manual 17-44 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
– Effective JUMP Address[15:0] = NextPC + Sign-Extend(#offset6);
+/- 32 instructions

The function NextPC indicates the instruction that would be fetched next by the program
counter. Instructions using this addressing are JL, JC and JC.I.

For absolute addressing, the actual address in code memory where program flow is to
resume is either an immediate value #imm16 in the code memory location immediately
following the Jump instruction, or it is contained in the lower 16 bits of a register. If the
value is greater than the PC size implemented, an error condition has occurred.

– Effective JUMP Address[15:0] = #imm16
– Effective JUMP Address[15:0] = <R[a]>

Instructions using these addressing modes are JC.A (immediate absolute address) and
JC.IA (indirect absolute address).

17.9 Accessing PCP Resources from the FPI Bus

Any FPI Bus master can access the three distinct PCP address ranges from the FPI Bus
side. Accesses to the PCP control register, the parameter RAM (PRAM), and the code
memory (PCODE) are detailed in the following sections. Note that the PCP itself is not
allowed to access its control registers through PCP instructions.

17.9.1 Access to the PCP Control Registers

FPI Bus accesses to the PCP control registers must always be performed in Supervisor
Mode with word accesses; byte or half-word accesses will result in a bus error.

All PCP control registers can be read at any time. Write operations are only possible to
the PCP_CS register, all other register are read-only. Register PCP_CS can be
optionally ENDINIT protected via bit PCP_CS.EIE (see Section 17.11.2).

17.9.2 Access to the PRAM

FPI Bus accesses to the PRAM must always be performed with word accesses; byte or
half-word accesses will result in a bus error.

Attention needs to be paid when accessing the context save areas and data sections of
the PCP channel programs. The location of a specific channel’s context save area is
dependent on the chosen context model, full, small or minimum context. Table 17-10
shows these addresses.
User’s Manual 17-45 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor

Note: Since channel #0 is not defined (no service request with SRPN = 0), the first area
is not an actual context save area. It is recommended that this area should not be
used by PCP channel programs.

The FPI Bus address of a word location pointed to by the data pointer R7_DPTR is
calculated by the following formula:

– Effective FPI Bus address[31:0] = (PRAM Base Address) + (<DPTR> << 6)

17.9.3 Access to the PCODE

FPI Bus accesses to the code memory PCODE must always be performed with word
accesses; byte or half-word accesses will result in a bus error.

When using a channel entry table, the FPI Bus address of a specific channel’s entry
location is given by the following formula:

– Effective FPI Bus address[31:0] = (PCODE Base Address) + 04H × Channel Numb.

The FPI Bus address of an instruction pointed to by the PCP program counter, PC, is
calculated by the following formula:

– Effective FPI Bus address[31:0] = (PCODE Base Address) + <PC> << 1

Table 17-10 FPI Bus Access to Context Save Areas

Channel # Full Context Small Context Minimum Context

0 (see
note)

PRAM Base Address +
00H

PRAM Base Address +
00H

PRAM Base Address +
00H

1 PRAM Base Address +
20H

PRAM Base Address +
10H

PRAM Base Address +
08H

2 PRAM Base Address +
40H

PRAM Base Address +
20H

PRAM Base Address +
10H

3 PRAM Base Address +
60H

PRAM Base Address +
30H

PRAM Base Address +
18H

n PRAM Base Address +
n × 20H

PRAM Base Address +
n × 10H

PRAM Base Address +
n × 08H
User’s Manual 17-46 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.10 Debugging the PCP

For debugging the PCP a special instruction, DEBUG, is provided. This instruction can
only be used when the PCP is in Debug Mode. It can be placed at important locations
inside the code to track and trace program execution. The execution of the instruction
depends on a condition code specified with the instruction. The actions programmed for
this instruction will only take place if the specified condition is true.

The following actions are performed when the DEBUG instruction is executed and the
condition code is true:

– store the current PC, i.e. the address of the DEBUG instruction, in register
PCP_ES.EPC

– store the current channel number in register PCP_ES.EPN

In addition, the following operations can be programmed through fields in the DEBUG
instruction:

– optionally stop the channel program execution (instruction field SDB)
– optionally generate an external debug event at pin BRKOUT (instruction field EDA)
– optionally prevent the PCP from executing any further channel programs

(instruction field DAC)
– optionally cause the PCP to decrement the PC prior to saving the channel context

(instruction field RTA)

If the DEBUG instruction is programmed to stop the channel program execution, the
action taken by the PCP depends on the value of the RTA instruction field:

– If RTA == 0, the PCP disables further invocations of the current channel through
clearing bit R7.CEN, and then performs a context save. The execution of this
channel is stopped at the point of the DEBUG instruction. If the DAC instruction field
== 0, the PCP will continue to operate to accept service requests for other channels
as they arise. Since the stopped channel was disabled before saving its context,
service requests for this channel will result in an error exit. When re-enabling the
channel, its enable bit CEN in the saved context location CR7 must be set.

– If RTA == 1, the PCP does not modify bit R7.CEN (i.e. the channel remains
enabled), decrements the PC (so that it again points to the DEBUG instruction), and
then performs a context save. The execution of this channel is stopped at the point
of the DEBUG instruction. If the DAC instruction field == 0, The PCP will continue
to operate, accepting service requests for other channels as they arise.Since the
stopped channel was not disabled before saving its context, service requests for
this channel will not result in an error exit but will simply cause re-execution of the
DEBUG instruction and hence a repeat of the channel exit.

Note: When a channel is stopped by DEBUG the context of the stopped channel will be
saved to the appropriate region of the CSA before the channel terminates. Where
a Small or Minimum Context model is being used the values of the general
purpose registers not included in the context will not be saved, and indeed these
User’s Manual 17-47 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
register values may be changed by the operation of another active channel. In this
case, the required registers should be explicitly saved to PRAM by store
instructions prior to execution of the DEBUG instruction.

If the DEBUG instruction is programmed to stop all channel program execution, the PCP
disables further invocations of any channel through clearing bit PCP_CS.EN. The
execution of this channel is only stopped according to the SDB instruction field value.
The PCP will only start to re-accept service requests when PCP_CS.EN is written to 1.

Note: If PCP_CS.RCB = 0 (Channel Resume Mode), then the channel program will
begin executing at whatever PC is restored from the context location CR7.PC
which will allow a channel program to resume from the instruction following the
DEBUG instruction. If PCP_CS.RCB = 1 (Channel Restart Mode), then the
channel program is forced to always start at its channel entry table location no
matter what the restored context value is for the PC. This means that in Channel
Restart Mode it is not possible to restart the channel program from where it was
halted by the debug event. It is recommended that when using Channel Restart
Mode the user should also program all EXIT instructions with the “EP = 0” setting
to allow selection of Channel Resume Mode for debugging without changing
operation of the channel programs.
User’s Manual 17-48 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11 PCP Registers

The PCP can be viewed as being a peripheral on the FPI Bus. As with any other
peripheral, there are control registers, normally set by the CPU acting as an external FPI
Bus master to the PCP during initialization. Control registers select the operating modes
of the PCP, and status registers provide information about the current state of the PCP
to the external Bus master. Figure 17-12 gives an overview of the PCP registers.

Figure 17-12 PCP Registers

Table 17-11 PCP Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

PCP_CLC PCP Clock Control Register 0000H Page 17-51

PCP_CS PCP Control/Status Register 0010H Page 17-51

PCP_ES PCP Error/Debug Status Register 0014H Page 17-54

PCP_ICR PCP Interrupt Control Register 0020H Page 17-56

PCP_ITR PCP Interrupt Threshold Control Register 0024H Page 17-57

PCP_ICON PCP Interrupt Configuration Register 0028H Page 17-59

PCP_SSR PCP Stall Status Register 002CH Page 17-60

PCP_FTD PCP Feature Disable/Test Register 0030H Page 17-62

PCP_SRC11 PCP Service Request Control Register 11 00D0H Page 17-76

P C P _C LC

P C P _C S

P C P _S R C 0

Control Registers Interrupt Registers

P C P _S R C 1

P C P _S R C 2P C P _E S

P C P _IC R P C P _S R C 3

P C P _S R C 4

P C P _S R C 5

P C P _S R C 6

P C P _S R C 7

P C P _S R C 8

P C P _S R C 9

P C P _S R C 10

P C P _S R C 11

 P C P _ITR

 P C P _IC O N

 P C P _S S R

 P C P _FTD
User’s Manual 17-49 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
The control registers are accessible by any master via the FPI Bus. The control registers
must be configured at initialization and then left unaltered. This is typically done by the
CPU. The only setting that can be dynamically modified is the PCP_CS.EN bit. All other
bits must only be modified when PCP_CS.EN == 0 and PCP_CS.RS == 0.

The PCP control and status registers are accessible only to the CPU when it is operating
in Supervisor mode. PCP control and status registers must be accessed with 32-bit read
and write operations only.

PCP_SRC10 PCP Service Request Control Register 10 00D4H Page 17-74

PCP_SRC9 PCP Service Request Control Register 9 00D8H Page 17-72

PCP_SRC8 PCP Service Request Control Register 8 00DCH Page 17-71

PCP_SRC7 PCP Service Request Control Register 7 00E0H Page 17-70

PCP_SRC6 PCP Service Request Control Register 6 00E4H Page 17-69

PCP_SRC5 PCP Service Request Control Register 5 00E8H Page 17-68

PCP_SRC4 PCP Service Request Control Register 4 00ECH Page 17-67

PCP_SRC3 PCP Service Request Control Register 3 00F0H Page 17-66

PCP_SRC2 PCP Service Request Control Register 2 00F4H Page 17-65

PCP_SRC1 PCP Service Request Control Register 1 00F8H Page 17-64

PCP_SRC0 PCP Service Request Control Register 0 00FCH Page 17-63

Table 17-11 PCP Registers

Register
Short Name

Register Long Name Offset
Address

Description
see
User’s Manual 17-50 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.1 PCP Clock Control Register, PCP_CLC

17.11.2 PCP Control and Status Register, PCP_CS

This register can be ENDINIT-protected via bit EIE.

PCP_CLC
PCP Clock Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCG
DIS 0

rw r

Field Bits Type Description

PCGDIS 0 rw PCP Clock Gating Disable
0 PCP Internal Clock stops when PCP is idle.

(default)
1 PCP Internal Clock always runs

0 [31:16]
[14:0]

r Reserved; read as 0; should be written with 0.

PCP_CS
PCP Control/Status Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ESR CWT CWE

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPS 0 PPE CS EIE RCB 0 RS RST EN

rw r rw rw rw rw r rh rwh rw
User’s Manual 17-51 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Field Bits Type Description

EN 0 rw PCP Enable
0 PCP is disabled for operation (default)
1 PCP is enabled for operation

Note: This bit does not enable/disable clocks for
power saving. It stops the PCP from accepting
new service requests.

RST 1 rwh PCP Reset Request
0 No PCP reset operation is requested
1 PCP reset is requested. Halt any operating

channel. Reset all control registers to default
values. Reset PCP state to default value.

This bit is always read as 0, but is written with 1 to
initiate a Software reset.

RS 2 rh PCP Run/Stop Status Flag
0 PCP is stopped or idle (default)
1 PCP is currently running

RCB 4 rw Restart Channel at Base
0 Channel resume operation mode selected;

channel start PC is taken from restored context
1 Channel restart operation mode selected;

channel start PC is derived from the requested
channel number (= priority number of service
request)

Note: This is a global control bit and applies to all
channels.

EIE 5 rw ENDINIT Enable
0 Writes to PCP_CS are enabled if ENDINIT-

protection is generally enabled (see note)
1 Writes to PCP_CS are disabled if ENDINIT-

protection is generally enabled (see note)

CS [7:6] rw Context Size Selection
00 Use Full Context for all channels
01 Use Small Context for all channels
10 Use Minimum Context for all channels
11 Reserved
User’s Manual 17-52 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
PPE 8 rw PRAM Partitioning Enable
0 PRAM is not partitioned (Default)
1 PRAM is partitioned

Note: When partitioned, the PRAM is divided into two
areas (CSA and reminder). A PCP error will be
generated on an inappropriate action in either
region (PCP write operation with a target
address in the CSA or context restore from
outside the CSA).

PPS [15:11] rw PRAM Partition Size
0H Reserved
1H CSA contains 9 context save regions
...
nH CAS contains 1 + 8 x n context save regions

Note: The actual size of the CSA (in words) is given by
the formula (8 x ’n’ + 1) x ‘x’, where ‘n’ is the PPS
value and ‘x’ is the number of registers in the
selected context model. This setting also
controls the number of channels that can be
invoked, e.g. setting this field to 1 will give a
CSA containing 9 context save regions, channel
0 can not be used so this setting allows the use
of 8 channels (Channels 1 to 8). Do not set this
field to 0 when PPE = 1 as this will disable all
channels.

CWE 16 rw Channel Watchdog Enable
0 Disable Channel Watchdog
1 Enable Channel Watchdog Checking

Note: When enabled the Channel Watchdog counts
the number of instructions executed since the
channel started. If this number exceeds the
Channel Watchdog Threshold then a PCP error
is generated.

CWT [23:17] rw Channel Watchdog Threshold
0H Reserved
1H Threshold = 16 instructions
...
nH Threshold = 16 x n instructions

Field Bits Type Description
User’s Manual 17-53 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.3 PCP Error/Debug Status Register, PCP_ES

This is a read-only register, providing state information about error and debug conditions.

ESR [31:24] rw Error Service Request Number
SRPN for interrupt to CPU on an error condition.
00H No interrupt request posted (default)
value n Post n as SRNP interrupt to CPU on an error
condition (n not equal 00H)

0 3,
[10:9]

r Reserved; read as 0; should be written with 0.

PCP_ES
PCP Error/Debug Status Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EPC

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EPN PPC CWD 0 DBE IAE DCR IOP BER

rh rh rh r rh rh rh rh rh

Field Bits Type Description

BER 0 rh Bus Error Flag
Set if the last error/debug event was an error
generated by an FPI Bus error or an invalid address
access, otherwise clear.

Note: An FPI Bus error event does not cause the PCP
to post an error interrupt to the CPU. An FPI Bus
error interrupt is however generated by the FPI
control logic.

IOP 1 rh Invalid Opcode
Set if the last error/debug event was an error
generated by the PCP attempting to execute an Invalid
Opcode (i.e. the value fetched from CMEM for
execution by the PCP did not represent a valid
instruction), otherwise clear.

Field Bits Type Description
User’s Manual 17-54 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
DCR 2 rh Disabled Channel Request Flag
Set if the last error/debug event was an error
generated by receipt of an interrupt request with an
SRPN that attempted to start a disabled PCP channel,
otherwise clear.

IAE 3 rh Instruction Address Error
Set if the last error/debug event was an error
generated by the PCP attempting to fetch an
instruction from an address outside the implemented
CMEM range as a result of a jump or branch
instruction, otherwise clear.

DBE 4 rh Debug Event Flag
Set if the last error/debug event was a debug event.

Note: A debug event does not cause the posting of an
interrupt to the CPU.

CWD 6 rh Channel Watchdog Triggered
Set if the last error/debug event was an error
generated by a channel program attempting to
execute more instructions than allowed by
PCP_CS.CWN.

PPC 7 rh PRAM Partitioning Check
Set if the last error/debug event was an error
generated by a channel program attempting to
perform a write to a PRAM address within the Context
Save Area or receipt of an interrupt request that would
have caused a context restore from outside the CSA.

EPN [15:8] rh Error Service Request Priority Number
Channel number of the channel that was operating
when the last error/debug event occurred. The value
stored is the service request priority number which
invoked this channel (= channel number), NOT the
current PCP priority number stored in field CPPN in
register PICR. Default = 00H

EPC [31:16] rh Error PC
PC value of the instruction that was executing when an
error or debug event occurred. Default = 0000H.

0 5 r Reserved; read as 0.

Field Bits Type Description
User’s Manual 17-55 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Note: An interrupt request with the SRPN held in PCP_CS.ESR is posted to the CPU
whenever a PCP error event, other than an FPI Bus error, occurs. FPI Bus error
interrupt generation is automatically handled by the FPI Bus control logic rather
than by the PCP. The execution of a DEBUG instruction is not classed as an error
event and does not therefore generate an interrupt request to the CPU. The entire
contents of the register are updated whenever there is a debug or an error event
detected (i.e. all status/error bits, other than the bit representing the last PCP
error/debug event, are cleared). This register therefore only provides a record of
the last error/debug event encountered. The only way to clear this register is to
reset the PCP.

17.11.4 PCP Interrupt Control Register, PCP_ICR

This register controls the operation of the PCP Interrupt Control Unit (PICU).

PCP_ICR
PCP Interrupt Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0
P

ONE
CYC

PARBCYC PIPN

r rw rw rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IE CPPN

r rh rh

Field Bits Type Description

CPPN [7:0] rh Current PCP Priority Number
This field indicates the current priority level of the PCP
and is automatically updated by hardware on entry into
an Interrupt Service Routine.

IE 8 rh Interrupt Enable
This status bit is updated by hardware according to the
state of the PCP register bit R7.IEN.

PIPN [23:16] rh Pending Interrupt Priority Number
This read-only field is updated by the PICU at the end
of each arbitration process and indicates the priority
number of a pending request. PIPN is set to 00H when
no request is pending and at the beginning of a new
arbitration process.
User’s Manual 17-56 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.5 PCP Interrupt Threshold Register, PCP_ITR

This register specifies the number of active interrupt entries and priority control.

PARBCYC [25:24] rw Number of Arbitration Cycles Control
This bit field controls the number of arbitration cycles
used to determine the request with the highest priority.
It follows the same coding scheme as described for the
CPU interrupt arbitration.
00 Four arbitration cycles (default)
01 Three arbitration cycles
10 Two arbitration cycles
11 One arbitration cycle

PONECYC 26 rw Clocks per Arbitration Cycle Control
This bit determines the number of clocks per arbitration
cycle.
0 Two clocks per arbitration cycle (default)
1 One clock per arbitration cycle

0 [15:9],
[31:27]

r Reserved; read as 0; should be written with 0.

PCP_ITR
PCP Interrupt Thrilled Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 ITL

r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ITP

r rw

Field Bits Type Description
User’s Manual 17-57 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
This bit field specifies the number of active interrupt entries at which an warning interrupt
should be issued to the interrupt queue associated with interrupt port 0 (i.e. when the
number of active port 0 interrupt requests stored in all SRCx registers reaches this value
then an interrupt is posted to port 0 with the priority programmed into the ITP field). When
ITL is programmed to 0 or is >= the number of SRCx registers that can contain port 0
interrupt requests then the threshold warning mechanism is disabled).

Field Bits Type Description

ITP [7:0] rw PCP Interrupt Threshold Service Request Priority
Number
This field contains the interrupt priority that is to be
posted to the interrupt queue associated with Interrupt
Port 0 when the threshold condition is reached. (setting
this value to 0 or disables the threshold detection
mechanism).

ITL [19:16] rw Interrupt Threshold Level
This bit field specifies the number of active interrupt
entries at which an warning interrupt should be issued
to the interrupt queue associated with interrupt port 0
(i.e. when the number of active port 0 interrupt
requests stored in all SRCx registers reaches this
value then an interrupt is posted to port 0 with the
priority programmed into the ITP field). When ITL is
programmed to 0 or is >= the number of SRCx
registers that can contain port 0 interrupt requests then
the threshold warning mechanism is disabled).

0 [15:8],
[31:20]

r Reserved; read as 0; should be written with 0.
User’s Manual 17-58 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.6 PCP Interrupt Configuration Register, PCP_ICON

This is a read-only register, providing state information about interrupt configuration.

PCP_ICON
PCP Interrupt Configuration Register Reset Value: 0000 03E4H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IP3E IP2E IP1E IP0E P3T P2T P1T P0T

r r r r r r r r r

Field Bits Type Description

P0T [1:0] r PCP Interrupt Bus 0 TOS Mapping
This field reflects the TOS associated with Interrupt
Bus 0 (CPU interrupt arbitration bus). The PCP should
use this value in R6.TOS when it wishes to raise an
interrupt request via interrupt bus 0.

P1T [3:2] r PCP Interrupt Bus 1 TOS Mapping
This field reflects the TOS associated with Interrupt
Bus 1(PCP interrupt arbitration bus). The PCP should
use this value in R6.TOS when it wishes to raise an
interrupt request to itself (the PCP is always
connected to Interrupt Port 1).

P2T [5:4] r PCP Interrupt Bus 2 TOS Mapping
This field reflects the TOS associated with Interrupt
Bus 2.

Note: Interrupt bus 2 is not available in the TC11IB.

P3T [7:6] r PCP Interrupt Bus 3 TOS mapping
This field reflects the TOS associated with Interrupt
Bus 3.

Note: Interrupt bus 3 is not available in the TC11IB.

IP0E 8 r PCP Interrupt Bus 0 Enable
This bit reflects the status of interrupt bus 0.(CPU
interrupt arbitration bus). Interrupt bus 0 is always
enabled.
User’s Manual 17-59 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.7 PCP Stall Status Register, PCP_SSR

This register contains the stall status information.

IP1E 9 r PCP Interrupt Bus 1 Enable
This bit reflects the status of interrupt bus 1 (PCP
interrupt arbitration bus). Interrupt bus 1 is always
enabled.

IP2E 10 r PCP Interrupt Bus 2 Enable
This bit reflects the status of interrupt bus 2. Interrupt
bus 2 is always disabled (not implemented in the
TC11IB).

IP3E 11 r PCP Interrupt Bus 3 Enable
This bit reflects the status of interrupt port 3. Interrupt
bus 3 is always disabled (not implemented in the
TC11IB).

0 [31:12] r Reserved; read as 0; should be written with 0.

PCP_SSR
PCP Stall Status Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 SCHN

r rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST 0 STOS SSRN

rh r rh rh

Field Bits Type Description

SSRN [7:0] rh PCP Stalled Service Request Number
This field shows the Service Request Number which
was being posted when the last (or present) stall
condition occurred This field can only be cleared by a
reset.

Field Bits Type Description
User’s Manual 17-60 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
STOS [9:8] rh PCP Stalled Type of Service
This field shows the Type-Of-Service to which an
interrupt was being posted which caused the last (or
present) stall condition (i.e. the service request queue
that was full when the PCP attempted to post a request
to it). This field can only be cleared by a reset.

ST 15 rh PCP Stalled Status
This bit shows the stalled status of the PCP.
0 PCP is not stalled
1 PCP is stalled

SCHN [23:16] rh PCP Stalled Channel Number
This field shows the channel number of the channel
that was executing when the last (or present) stall
condition occurred. This field can only be cleared by a
reset.

0 [14:10]
[31:24]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 17-61 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.8 PCP Feature Test/Disable Register, PCP_FTD

PCP_FTD
PCP Feature Test/Disable Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PCD
E TME DCS

O DNI DCR
O

r rw rw rw rw rw

Field Bits Type Description

DCRO 0 rw PCP Disable Context Restore Optimization
0 Context Restores are optimized.
1 Context Restored are not optimized.

DNI 1 rw PCP Disable Nested Interrupts
0 Nested Interrupts are enabled
1 Nested Interrupts are disabled

DCSO 2 rw PCP Disable Context Store Optimization
0 Context Stores are optimized
1 Context Stores are not optimized

TME 3 rw Test Memory Error
0 No memory error
1 Generate memory error

Note: This bit simulates the error signal that would be
generated by a memory (CMEM or PRAM) that
has an error status output. When the bit is
written to 1, any channel that is executing and
any subsequent channels will perform an Error
Exit associated with a memory error. The bit
must be re-written to 0 to allow normal PCP
operation to resume.
User’s Manual 17-62 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.9 PCP Service Request Control Register 0

PCDE 5 rw Prevent Channel Disable on Illegal Exit Instruction
0 Disable the channel if an illegal TOS/SRPN

value is posted via an EXIT instruction.
1 Do not disable the channel if an illegal TOS/

SRPN value is posted via an EXIT instruction.

0 [31:5] r Reserved; read as 0; should be written with 0.

PCP_SRC0
PCP Service Request Control Register 0 Reset Value: 0000 1000H
(Service Request Node for Interrupt Bus 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r r r r

Field Bits Type Description

SRPN [7:0] r PCP Node 0 Service Request Priority Number
SRPN Entry in SRC0 (Default = 0)

TOS [11:10] r PCP Node 0 Type of Service Control
Always read as 00B. This means TOS is associated
with interrupt bus 0 (CPU interrupt arbitration bus).

SRE 12 r PCP Node 0 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 0 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 17-63 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.10 PCP Service Request Control Register 1

PCP_SRC1
PCP Service Request Control Register 1 Reset Value: 0000 1000H
(Service Request Node for Interrupt Bus 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r r r r

Field Bits Type Description

SRPN [7:0] r PCP Node 1 Service Request Priority Number
SRPN entry in SRC1 (Default = 0)

TOS [11:10] r PCP Node 1 Type of Service Control
Always read as 00B. This means TOS is associated
with interrupt bus 0 (CPU interrupt arbitration bus).

SRE 12 r PCP Node 1 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 1 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0.
User’s Manual 17-64 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.11 PCP Service Request Control Register 2

PCP_SRC2
PCP Service Request Control Register 2 Reset Value: 0000 1400H
(Service Request Node for Interrupt Bus 1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r r r r

Field Bits Type Description

SRPN [7:0] r PCP Node 2 Service Request Priority Number
SRPN entry in SRC2 (Default = 0)

TOS [11:10] r PCP Node 2 Type of Service Control
Always read as o1B. This means TOS is associated
with interrupt bus 1(PCP interrupt arbitration bus)

SRE 12 r PCP Node 2 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 2 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0.
User’s Manual 17-65 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.12 PCP Service Request Control Register 3

PCP_SRC3
PCP Service Request Control Register 3 Reset Value: 0000 1400H
(Service Request Node for Interrupt Bus 1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r r r r

Field Bits Type Description

SRPN [7:0] r PCP Node 3 Service Request Priority Number
SRPN entry in SRC3 (Default = 0)

TOS [11:10] r PCP Node 3 Type of Service Control
Always read as 01B. This means TOS is associated
with interrupt bus 1 (PCP interrupt arbitration bus)

SRE 12 r PCP Node 3 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 3 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0.
User’s Manual 17-66 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.13 PCP Service Request Control Register 4

PCP_SRC4
PCP Service Request Control Register 4 Reset Value: 0000 1000H
(Service Request Node programmable for any Interrupt Bus)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r rw r r

Field Bits Type Description

SRPN [7:0] r PCP Node 4 Service Request Priority Number
SRPN entry in SRC4 (Default = 0)

TOS [11:10] rw PCP Node 4 Type of Service Control
PCP Service Request Node 4 Type-of-Service
Control. Value depends on the interrupt mapping
that has been selected. This bit field must be written
at PCP configuration time and not subsequently
modified while the PCP is operating.

SRE 12 r PCP Node 4 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 4 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0.
User’s Manual 17-67 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.14 PCP Service Request Control Register 5

PCP_SRC5
PCP Service Request Control Register 5 Reset Value: 0000 1000H
(Service Request Node programmable for any Interrupt Bus)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r rw r r

Field Bits Type Description

SRPN [7:0] r PCP Node 5 Service Request Priority Number
SRPN entry in SRC5 (Default = 0)

TOS [11:10] rw PCP Node 5 Type of Service Control
PCP Service Request Node 5 Type-of-Service
Control. Value depends on the interrupt mapping
that has been selected. This bit field must be written
at PCP configuration time and not subsequently
modified while the PCP is operating.

SRE 12 r PCP Node 5 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 5 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0.
User’s Manual 17-68 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.15 PCP Service Request Control Register 6

PCP_SRC6
PCP Service Request Control Register 6 Reset Value: 0000 1000H
(Service Request Node programmable for any Interrupt Bus)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r rw r r

Field Bits Type Description

SRPN [7:0] r PCP Node 6 Service Request Priority Number
SRPN entry in SRC6 (Default = 0)

TOS [11:10] rw PCP Node 6 Type of Service Control
PCP Service Request Node 6 Type-of-Service
Control. Value depends on the interrupt mapping
that has been selected. This bit field must be written
at PCP configuration time and not subsequently
modified while the PCP is operating.

SRE 12 r PCP Node 6 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 6 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0.
User’s Manual 17-69 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.16 PCP Service Request Control Register 7

PCP_SRC7
PCP Service Request Control Register 7 Reset Value: 0000 1000H
(Service Request Node programmable for any Interrupt Bus)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r rw r r

Field Bits Type Description

SRPN [7:0] r PCP Node 7 Service Request Priority Number
SRPN entry in SRC7 (Default = 0)

TOS [11:10] rw PCP Node 7 Type of Service Control
PCP Service Request Node 7 Type-of-Service
Control. Value depends on the interrupt mapping
that has been selected. This bit field must be written
at PCP configuration time and not subsequently
modified while the PCP is operating.

SRE 12 r PCP Node 7 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 7 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0.
User’s Manual 17-70 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.17 PCP Service Request Control Register 8

PCP_SRC8
PCP Service Request Control Register 8 Reset Value: 0000 1000H
(Service Request Node programmable for any Interrupt Bus)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r rw r r

Field Bits Type Description

SRPN [7:0] r PCP Node 8 Service Request Priority Number
SRPN entry in SRC8 (Default = 0)

TOS [11:10] rw PCP Node 8 Type of Service Control
PCP Service Request Node 8 Type-of-Service
Control. Value depends on the interrupt mapping
that has been selected. This bit field must be written
at PCP configuration time and not subsequently
modified while the PCP is operating.

SRE 12 r PCP Node 8 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 8 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0.
User’s Manual 17-71 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.18 PCP Service Request Control Register 9

PCP_SRC9
PCP Service Request Control Register 9 Reset Value: 0000 1400H
(Service Request Node with Suspended Interrupt Capability)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 RRQ 0 SRCN

r rh r rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r rw r r

Field Bits Type Description

SRPN [7:0] r PCP Node 9 Service Request Priority Number
SRPN entry in SRC9 (Default = 0)
When the PCP interrupt request contained within
SRC9 was raised by the PCP core when executing
an EXIT instruction then this field contains the SRPN
value taken from R6 when the exit instruction was
executed. When the PCP interrupt request contained
within SRC9 was raised by the PCP core when
suspending execution of a channel program in order
to service a higher priority interrupt then this field
contains the CPPN value of the PCP when the
interrupt was suspended.

TOS [11:10] rw PCP Node 9 Type of Service Control
Always reads as the TOS associated with interrupt
bus 1 (PCP interrupt arbitration bus).

SRE 12 r PCP Node 9 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 9 Service Request Flag
0 No service request (Default)
1 Valid active service request
User’s Manual 17-72 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
SRCN [23:16] rh PCP Node 9 Service Request Channel Number
Channel Number Entry in SRC9 (Default = 0). When
the PCP interrupt request contained within SRC9
was raised by the PCP core when executing an EXIT
instruction, then this field contains the SRPN value
taken from R6 when the exit instruction was
executed. When the PCP interrupt request contained
within SRC9 was raised by the PCP core when
suspending execution of a channel program in order
to service a higher priority interrupt, then this field
contains the channel number of the channel that was
suspended.

RRQ 28 rh PCP Node 9 Channel Restart Request
Set when the SRC9 register contains an active
service request that is associated with a suspended
interrupt (i.e. a channel that has been interrupted by
a higher priority channel).
0 The interrupt is not suspended
1 The interrupt is suspended
RRQ is always 0 when SRR is 0.

0 [9:8],
[15:14],
[27:24]
[31:29]

r Reserved; read as 0.

Field Bits Type Description
User’s Manual 17-73 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.19 PCP Service Request Control Register 10

PCP_SRC10
PCP Service Request Control Register 10 Reset Value: 0000 1400H
(Service Request Node with Suspended Interrupt Capability)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 RRQ 0 SRCN

r rh r rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r rw r r

Field Bits Type Description

SRPN [7:0] r PCP Node 10 Service Request Priority Number
SRPN entry in SRC10 (Default = 0)
When the PCP interrupt request contained within
SRC10 was raised by the PCP core when executing
an EXIT instruction then this field contains the SRPN
value taken from R6 when the exit instruction was
executed. When the PCP interrupt request contained
within SRC10 was raised by the PCP core when
suspending execution of a channel program in order
to service a higher priority interrupt then this field
contains the CPPN value of the PCP when the
interrupt was suspended.

TOS [11:10] rw PCP Node 10 Type of Service Control
Always reads as the TOS associated with interrupt
bus 1 (PCP arbitration bus).

SRE 12 r PCP Node 10 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 10 Service Request Flag
0 No service request (Default)
1 Valid active service request
User’s Manual 17-74 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
SRCN [23:16] rh PCP Node 10 Service Request Channel Number
Channel Number Entry in SRC10 (Default = 0).
When the PCP interrupt request contained within
SRC10 was raised by the PCP core when executing
an EXIT instruction, then this field contains the
SRPN value taken from R6 when the exit instruction
was executed. When the PCP interrupt request
contained within SRC10 was raised by the PCP core
when suspending execution of a channel program in
order to service a higher priority interrupt, then this
field contains the channel number of the channel that
was suspended.

RRQ 28 rh PCP Node 10 Channel Restart Request
Set when the SRC10 register contains an active
service request that is associated with a suspended
interrupt (i.e. a channel that has been interrupted by
a higher priority channel).
0 The interrupt is not suspended
1 The interrupt is suspended
RRQ is always 0 when SRR is 0.

0 [9:8],
[15:14],
[27:24]
[31:29]

r Reserved; read as 0.

Field Bits Type Description
User’s Manual 17-75 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.11.20 PCP Service Request Control Register 11

PCP_SRC11
PCP Service Request Control Register 11 Reset Value: 0000 1400H
(Service Request Node with Suspended Interrupt Capability)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 RRQ 0 SRCN

r rh r rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r rw r r

Field Bits Type Description

SRPN [7:0] r PCP Node 11 Service Request Priority Number
SRPN entry in SRC11 (Default = 0)
When the PCP interrupt request contained within
SRC11 was raised by the PCP core when executing
an EXIT instruction then this field contains the SRPN
value taken from R6 when the exit instruction was
executed. When the PCP interrupt request contained
within SRC11 was raised by the PCP core when
suspending execution of a channel program in order
to service a higher priority interrupt then this field
contains the CPPN value of the PCP when the
interrupt was suspended.

TOS [11:10] rw PCP Node 11 Type of Service Control
Always reads as the TOS associated with interrupt
bus 1 (PCP arbitration bus).

SRE 12 r PCP Node 11 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 11 Service Request Flag
0 No service request (Default)
1 Valid active service request
User’s Manual 17-76 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
SRCN [23:16] rh PCP Node 11 Service Request Channel Number
Channel Number Entry in SRC11 (Default = 0).
When the PCP interrupt request contained within
SRC11 was raised by the PCP core when executing
an EXIT instruction, then this field contains the
SRPN value taken from R6 when the exit instruction
was executed. When the PCP interrupt request
contained within SRC11 was raised by the PCP core
when suspending execution of a channel program in
order to service a higher priority interrupt, then this
field contains the channel number of the channel that
was suspended.

RRQ 28 rh PCP Node 11 Channel Restart Request
Set when the SRC11 register contains an active
service request that is associated with a suspended
interrupt (i.e. a channel that has been interrupted by
a higher priority channel).
0 The interrupt is not suspended
1 The interrupt is suspended
RRQ is always 0 when SRR is 0.

0 [9:8],
[15:14],
[27:24]
[31:29]

r Reserved; read as 0.

Field Bits Type Description
User’s Manual 17-77 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12 PCP Instruction Set Details

This section describes the instruction set architecture of the PCP in detail.

17.12.1 Instruction Codes and Fields

All PCP instructions use a common set of fields to describe such things as the source
register, and the state of flags. Additionally, many instructions (including arithmetic and
many flow control instructions), are conditionally executed.

The descriptions of the PCP instructions are based on the following conventions.

< > Implicit source/destination are contents of brackets

>>, << Shift left or right, respectively.

[] Indirect access based on contents of brackets (de-reference).

#immNN Immediate value encoded into an instruction with width NN.

#offsetNN Address offset immediate value with width NN.

NextPC The current executing instruction’s address + 1.
(The next instruction to be fetched.)

cc_A, cc_B Condition Code CONDCA/CONDCB.
User’s Manual 17-78 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.1.1 Conditional Codes

Many PCP instructions have the option of being executed conditionally. The condition
code of an instruction is the field that specifies the condition to be tested before the
instruction is executed. Depending on the type of instruction there are 8 or 16 condition
codes available. The set of 8-condition codes is referred to as CONDCA, while the set
of 16-condition codes is referred to as CONDCB. The condition codes are based on an
equation of the Flags held in R7. See Table 17-12.

Table 17-12 Condition Codes

Description CONDCA/B Test (Flag Bits) Code Mnemonic

Unconditional A / B – 0H cc_UC

Zero/Equal A / B Z = 1 1H cc_Z

Not Zero/Not Equal A / B Z = 0 2H cc_NZ

Overflow A / B V = 1 3H cc_V

Carry/Unsigned Less Than/
Check Bit True

A / B C = 1 4H cc_C,
cc_ULT

Unsigned Greater Than A / B C OR Z = 0 5H cc_UGT

Signed Less Than A / B N XOR V = 1 6H cc_SLT

Signed Greater Than A / B (N XOR V) OR Z = 0 7H cc_SGT

Negative B N = 1 8H cc_N

Not Negative B N = 0 9H cc_NN

Not Overflow B V = 0 AH cc_NV

No Carry/Unsigned Greater
than or Equal

B C = 0 BH cc_NC,
cc_UGE

Signed Greater Than or
Equal

B N XOR V = 0 CH cc_SGE

Signed Less than or Equal B (N XOR V) OR Z = 1 DH cc_SLE

CNT1 Equal Zero B CN1Z = 1 EH cc_CNZ

CNT1 Not Equal Zero B CN1Z = 0 FH cc_CNN
User’s Manual 17-79 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.1.2 Instruction Encoding

Most instructions are encoded in 16 bits. This allows two instruction to be fetched out of
32 bit instruction memory per access. For example a COPY and an EXIT instruction can
be fetched simultaneously, performing a simple DMA transaction.Table 17-13 lists the
instruction field definitions of the PCP instruction set architecture.

Note: The exact syntax for these fields may be different depending on which tool (e.g.
assembler) is used. Please refer to the respective tool descriptions.

Table 17-13 Instruction Field Definitions

Symbol Syntax Description

CNC

CNC = 00

CNC = 01

CNC = 10

CNC = 11

Counter Control
This field is used by the BCOPY/COPY instruction to control the
number of repetitions of the data transfer. See also Figure 17-
14.
Decrement CNT0 after each transfer. Continue until CNT0 = 0
and proceed to next instruction
Post Decrement CNT0 after each instruction transfer. Continue
until CNT0 = 0, then decrement CNT1 and proceed to next
instruction.
Post Decrement CNT0 after each instruction transfer. Continue
until CNT0 = 0, then Decrement CNT1. Reload CNT0 value and
continue. Continue until CNT1 = 0, then proceed to next
instruction.
Reserved.

RC0

RC0=000
RC0=001
...
RC0=111

RC0 = 0
RC0 = 1
RC0 = 2
RC0 = 3
Others

Counter RC0 Reload Value
Counter RC0 is an implicit counter used by the COPY
instruction. The reload value given in the instruction specifies
how many data transfers are to be performed by the instruction.
See also Figure 17-13.
Perform 8 data transfers
Perform 1 data transfers
...
Perform 7data transfers
Block Size Control
This field is used by the BCOPY instruction to control the Block
size
8 words
Reserved (error)
2 words
4 words
Reserved (error)
User’s Manual 17-80 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
DAC
DAC = 0

DAC = 1

Disable All Channels Control.
Allow the PCP to continue to execute Channel Programs in
response to Service Requests.
Clear CS.EN which stops the PCP executing and further
channel programs

cc_A,
cc_B

see
Table 17-
12

Condition Code
Specifies conditional execution of instruction according to
CONDCA or CONDCB.

EC
EC = 0
EC = 1

Exit Count Control
No action
Decrement CNT1

EDA
EDA = 0
EDA = 1

External Debug Action
No External Debug Action caused
Cause an External Debug Action (breakpoint pin etc.)

EP
EP = 0

EP = 1

Entry Point Control
Set the PC to Channel Program Start. EP = 0 assumes that a
Channel Entry Table exists in the base of Code Memory. Failure
to provide one will cause improper operation.
Set the PC to the address contained in NextPC (next instruction)
address.

INT
INT = 0
INT = 1

Interrupt Control
No Interrupt
INT = 1 AND (cc_B = True) means Issue Interrupt

RTA
RTA = 0

RTA = 1

Return to This Address
The channel is disabled (R7.CEN = 0) and the PC value stored
in the context is NextPC
Allow further Channel Program execution and decrement PC so
that DEVUG instruction is re-executed on next invocation.

Note: This field has no effect id SDB==0.

SIZE
SIZE = 00
SIZE = 01
SIZE = 10
SIZE = 11

Data Size Control
Byte (8-bit)
Half-word (16-bit)
Word (32-bit)
Reserved

Table 17-13 Instruction Field Definitions (cont’d)

Symbol Syntax Description
User’s Manual 17-81 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
SRC+-
SRC (00)
SRC+ (01)
SRC- (10)
(11)

Source Address Pointer Control
No Change (SRC)
Post Increment by Size (SRC+)
Post Decrement by Size (SRC-)
Reserved

DST+-
DST (00)
DST+ (01)
DST- (10)
(11)

Destination Address Pointer Control
No Change (DST)
Post Increment by Size (DST+)
Post Decrement by Size (DST-)
Reserved.

S/C
S/C = 0
S/C = 1

Test Bit Control
Check for Clear (0)
Check for Set (1)

SDB
SDB = 0
SDB = 1

Stop on Debug
Continue running if debug event triggered
Stop PCP if debug event triggered

ST
ST = 0
ST = 1

Stop Channel
Continue channel execution, Leave Channel Program enabled
Stop Channel Program execution, Perform actions according to
RTA setting

Table 17-13 Instruction Field Definitions (cont’d)

Symbol Syntax Description
User’s Manual 17-82 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.2 Counter Operation for COPY Instruction

Figure 17-13 Counter Operation for COPY Instruction

M C A 04791

D ATA T ransfe r

C O P Y
Instruc tion

C N T0 = 0 ?

N ex t
Instruc tion

C N T0 := R C 0

C N T0 := C N T0 - 1

C N C = ?

C N T1 := C N T1 - 1 C N T1 := C N T1 - 1

C N T1 = 0 ?

no

yes

00 10

01

yes

no
User’s Manual 17-83 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.3 Counter Operation for BCOPY Instruction

Figure 17-14 Counter Operation for BCOPY Instruction

B C O P Y
Ins truc tion

N ext
Ins truc tion

D A TA Transfe r

(B lock s ize de term ined
by R C 0 fie ld)

C N C = ?

C N T1 := C N T1 - 1 C N T1 := C N T1 - 1

C N T1 = 0 ?

00 10

01

yes

no
User’s Manual 17-84 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.4 Divide and Multiply Instructions

The PCP provides Multiply and Divide capabilities (unsigned values only). All Multiply
and Divide instructions operate on 8 bits of data (taken from the dividend for divide, from
the multiplicand for multiply). This strategy allows the user to implement the appropriate
number of instructions (“steps”) as required for his data format.

Each execution of a divide instruction (DSTEP) performs a division which generates
8 bits of result, and also manipulates the registers being used to allow the execution of
consecutive divide (DSTEP) instructions to build divide algorithms in multiples of 8 bits.

Each execution of a multiply instruction (MSTEP.L and MSTEP.U) performs a
multiplication on 8 bits of data (taken from the multiplicand) and also manipulates the
registers to allow execution of consecutive multiply instructions to build multiply
algorithms in multiples of 8 bits.

The following restrictions apply to the use of Divide and Multiply instructions:

– The first instruction of any divide sequence must be the DINIT (initialization)
instruction. Any additional instructions, other than MINIT, MSTEP.L or MSTEP.U, may
also be used within the sequence as long as they do not modify any of the registers
used for division (R0, Ra and Rb). All subsequent divide instructions within the
sequence (DSTEP) must use the same register for dividend and the same register for
divisor as was used in the preceding DINIT instruction.

– The first instruction of any multiply sequence must be the MINIT (initialization)
instruction. Any additional instructions, other than DINIT or DSTEP, may also be used
within the sequence as long as they do not modify any of the registers used for
multiplication (R0, Ra and Rb). All subsequent multiply instructions within the
sequence (MSTEP.L and MSTEP.U) must use the same register for multiplicand and
the same register for multiplier as was used in the preceding MINIT instruction.

– Neither of the operand registers (Ra or Rb) may be R0 (which is used implicitly within
all the instructions) or R7 (flag register). In addition, the same register may not be
supplied as both operand registers of an instruction (e.g. DSTEP R3, R3 is invalid).

Note: Failure to adhere to these restrictions will yield undefined results.

Note: Special care must be taken when using Multiply and Divide sequences when a
Channel Program is interruptible. In this case it must be ensured that a sequence
can not be corrupted by the execution of Multiply or Divide instructions executed
by a higher priority channel. The R7.IEN bit can be used to ensure that a sequence
is not interruptible.

In the following descriptions attached to each Multiply/Divide instruction a Pseudo Code
Model is supplied to provide an unambiguous definition of the function of each
instruction. The Model provided for the DSTEP and MSTEP32 instructions uses 32 bit
unsigned integer arithmetic, ignoring any possible overflows. The model supplied for the
MSTEP64 uses a 40-bit unsigned multiply and then shifts this result right by 8 bits
(discards the least significant 8 bits of the 40-bit result).
User’s Manual 17-85 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
The DSTEP instruction also has some conditions stipulated regarding input values to the
instruction. Use of the Model for the DSTEP instruction with invalid input values will yield
an invalid result.
User’s Manual 17-86 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.4.1 Divide Instructions.

17.12.4.2 Multiply Instructions.

Table 17-14 Divide Instructions

DINIT Syntax DINIT Rb, Ra

Description Initialize Divide/Multiply logic ready for divide sequence.

Operation Clear R0
If value of Ra is 0 then set V (to flag divide by 0 error)
otherwise clear V
If value of Rb is 0 and the value of Ra is not 0 then set Z
(to flag a zero result)

Flags Z - set if Rb (dividend) = 0 and Ra (divisor) does not = 0,
otherwise cleared
V - set if Ra (divisor) = 0, otherwise cleared.
All other flags unaffected

DSTEP Syntax DSTEP Rb, Ra

Description Perform an unsigned divide step, generating 8 bits of
result.

Operation Shift R0 left by 8 bits, copy the MS byte of Rb into LS
byte of R0
Shift Rb left by 8 bits and add (R0 divided by Ra)
Load R0 with (the remainder of R0 divided by Ra)
(see note below regarding the size of the “R0 divided by
Ra” result)

Flags All flags unaffected

Table 17-15 Multiply Instructions

MINIT Syntax MINIT Rb, Ra

Description Initialize Divide/Multiply logic ready for multiply
sequence.

Operation Clear R0
If value of R[a] is zero or value of Rb is zero then set Z
(to flag zero result) else clear Z.

Flags Z - set if result will be 0 (Ra = 0 or Rb = 0), cleared
otherwise
All other flags unaffected
User’s Manual 17-87 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.5 ADD, 32-Bit Addition

MSTEP.L Syntax MSTEP.L Rb, Ra

Description Perform an unsigned multiply step, using eight bits of
data taken from Rb, keeping the LS 32 bits of a potential
64 bit result

Operation Left rotate Rb by 8 bits
Left shift R0 by 8 bits
Add (Ra multiplied by the LS 8 bits of Rb) to R0

Flags All flags unaffected

MSTEP.U Syntax MSTEP.U Rb, Ra

Description Perform an unsigned multiply step, using eight bits of
data taken from Rb, keeping a 40 bit result (when
executed 4 times this compiles a full 32x32 bit multiply
64 bit result).

Operation Add (Ra multiplied by the LS 8 bits of Rb) to R0 (1)
Shift Rb right by 8 bits
Copy the LS 8 bits of the result of (1) above to the MS 8
bits of Rb
Copy the MS 32 bits of the result of (1) above to R0

Flags All flags unaffected

ADD Syntax ADD Rb, Ra, cc_A

Description If the condition CONDCA is true, then add the contents of
register Ra to the contents of register Rb; place the result in
Rb. If CONDCA is false, no operation is performed.

Operation if (CONDCA = True) then R[b] = R[b] + R[a] else NOP

Flags N, Z,

ADD.I Syntax ADD.I Ra, #imm6

Description Add the zero-extended immediate value imm6 to the
contents of register Ra; place the result in Ra.

Operation R[a] = R[a] + zero_ext(imm6)

Flags N, Z

Table 17-15 Multiply Instructions
User’s Manual 17-88 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.6 AND, 32-Bit Logical AND

ADD.F Syntax ADD.F Rb, [Ra], Size

Description Add the contents of the address location specified by the
contents of register Ra to the contents of register Rb; place
the result in Rb.

Note: Byte and Half-word values are zero-extended.

Operation R[b] = R[b] + zero_ext(FPI[R[a]])

Flags N, Z

ADD.PI Syntax ADD.PI Ra, [#offset6]

Description Add the contents of the PRAM location specified by the
addition of contents of the PRAM Data Pointer, shifted left by
six bits, and the zero-extended 6-bit value offset6 to the
contents of register Ra; place the result in Ra.

Operation R[a] = R[a] + PRAM[(DPTR<<6) + zero_ext(#offset6)]

Flags N, Z

AND Syntax AND Rb, Ra, cc_A

Description If the condition CONDCA is true, then perform a bitwise
logical AND of the contents of register Ra and the contents of
register Rb; place the result in Rb. If CONDCA is false, no
operation is performed.

Operation if (CONDCA = True) then R[b] = R[b] AND R[a] else NOP

Flags N, Z

AND.F Syntax AND.F Rb, [Ra], Size

Description Perform a bitwise logical AND of the contents of the address
location, specified by the contents of register Ra, and the
contents of register Rb; place the result in Rb.

Operation R[b] = R[b] AND zero_ext(FPI[R[a]])

Flags N, Z
User’s Manual 17-89 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.7 BCOPY, DMA Instruction

AND.PI Syntax AND.PI Ra, [#offset6]

Description Perform a bitwise logical AND of the contents of the PRAM
location specified by the addition of contents of the PRAM
Data Pointer, shifted left by six bits, and the zero-extended
6-bit value offset6, and the contents of register Ra; place the
result in Ra.

Operation R[a] = R[a] AND PRAM[(DPTR<<6) + zero_ext(#offset6)]

Flags N, Z

BCOPY Syntax BCOPY DST+-, SRC+-, CNC, RC0

Description Allows the PCP to perform DMA type transfers using FPI
block transfers.

Moves a block of data of FPI Bus source location to FPI Bus
destination location using FPI burst mode. Source location is
pointed to by the contents of register R4; destination location
is pointed to by the contents of register R5. Options (see
alsoTable 17-13):
Source pointer (SRC+-): Increment, decrement or
unchanged;
Destination pointer (SRC+-): Increment, decrement or
unchanged;
Counter control (CNC): Optionally decrement the R6.CNT1
field and use it as an outer loop counter to implement
automatic multiple block transfers.
Counter 0 reload value (RC0): Control the block size.

Operation temp = zero_ext(FPI[R[4]]); value loaded and extended
depending on SIZE
FPI(R[5]) = temp
R4 = R4 +/- n; n depending on SRC+- and CNT0
R5 = R5 +/- n; n depending on DST+- and CNT0
for counter operation see Figure 17-14 and Table 17-13.

Flags CN1Z
User’s Manual 17-90 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.8 CHKB, Check Bit

17.12.9 CLR, Clear Bit

17.12.10 COMP, 32-Bit Compare

CHKB Syntax CHKB Ra, #imm5, S/C

Description If bit imm5 of register Ra is equal to the specified test value
S/C then set the carry flag R7.C, else clear the carry flag.

Operation if (R[a][imm5] = S/C) then R7_C = 1 else R7_C = 0

Flags C

CLR Syntax CLR Ra, #imm5

Description Clear bit imm5 of register Ra to 0.

Operation R[a][imm5] = 0

Flags None

CLR.F Syntax CLR.F [Ra], #imm5, Size

Description Clear bit imm5 of the address location specified through the
contents of register Ra to 0. This instruction is executed
using a locked read-modify-write FPI Bus transaction.

Operation FPI[(R[a])][imm5] = 0

Flags None

COMP Syntax COMP Rb, Ra, cc_A

Description If the condition CONDCA is true, then subtract the contents
of register Ra from the contents of register Rb; set the flags
in register R7 according to the result of the subtraction;
discard the subtraction result. If CONDCA is false, no
operation is performed.

Operation if (CONDCA = True) then R7_FLAGS = Flags(R[b] - R[a])

Flags N, Z, V, C
User’s Manual 17-91 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
COMP.I Syntax COMP.I Ra, #imm6

Description Subtract the sign-extended immediate value imm6 from the
contents of register Ra; set the flags in register R7 according
to the result of the subtraction; discard the subtraction result.

Operation R7_FLAGS = Flags(R[a] - sign_ext(imm6))

Flags N, Z, V, C

COMP.F Syntax COMP.F Rb, [Ra], Size

Description Subtract the contents of the address location specified by the
contents of register Ra from the contents of register Rb; set
the flags in register R7 according to the result of the
subtraction; discard the subtraction result.

Operation R7_FLAGS = Flags(R[b] - sign_ext(FPI[R[a]]))

Flags N, Z, V, C

COMP.PI Syntax COMP.PI Ra, [#offset6]

Description Subtract the contents of the PRAM location specified by the
addition of contents of the PRAM Data Pointer, shifted left by
six bits, and the zero-extended 6-bit value offset6, from the
contents of register Ra; set the flags in register R7 according
to the result of the subtraction; discard the subtraction result.

Operation R7_FLAGS = Flags(R[a] - PRAM[(DPTR<<6) +
zero_ext(#offset6)])

Flags N, Z, V, C
User’s Manual 17-92 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.11 COPY, DMA Instruction

COPY Syntax COPY DST+-, SRC+-, CNC, RC0, SIZE

Description Moves the contents of FPI Bus source location to FPI Bus
destination location. Source location is pointed to by the
contents of register R4; destination location is pointed to by
the contents of register R5. Options (see alsoTable 17-13):
Source pointer (SRC+-): Increment, decrement or
unchanged;
Destination pointer (SRC+-): Increment, decrement or
unchanged;
Counter control (CNC): Optionally decrement the R6.CNT1
field and use it as an outer loop counter to implement
automatic multiple block transfers.
Counter 0 reload value (RC0): After every transfer, CNT0 is
decremented. The COPY instruction is repeated until CNT0
reaches zero.
Data transfer width (SIZE): byte, half-word, word (pointers
are incremented/decremented based upon SIZE).

Operation temp = zero_ext(FPI[R[4]]); value loaded and extended
depending on SIZE
FPI(R[5]) = temp
R4 = R4 +/- n; n depending on SRC+- and SIZE
R5 = R5 +/- n; n depending on DST+- and SIZE
for counter operation see Figure 17-14 and Table 17-13.

Flags CN1Z
User’s Manual 17-93 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.12 DEBUG, Debug Instruction

Note: If the condition code is false, the instruction will be treated as a NOP. i.e. no
registers will be modified and flags will not be updated and no external debug
action will be asserted and the channel will not exit.

17.12.13 DINIT, Divide Initialization Instruction

DEBUG Syntax DEBUG EDA, SDB, DAC, RTA, cc_B

Description Conditionally cause a debug event if condition CONDCB is
true. Optionally stop channel execution (SDB = 1) and/or
generate an external debug event (EDA = 1).

Operation if (CONDCB = True) then
 if (EDA = 1) then activate BRK_OUT pin
 if (SDB = 1) then
 if(RTA = 0) then

R7_CEN = 0; disable further channel invocation
else
PC = PC-1
endif

 save_context
 idle

endif
if (DAC = 1)
PCP_CS.EN = 0
endif

 set ES.DBE; indicate debug event
 ES.PC = NextPC
 ES.PN = channel_number
endif

Flags none

DINIT Syntax DINIT <R0>, Rb, Ra

Description Initialize Divide logic ready for divide sequence (Rb / Ra) and
Clear R0. If value of Ra is 0 then set V (to flag divide by 0
error) otherwise clear V. If value of Rb is 0 and value of Ra is
not 0 then set Z (to flag a zero result) otherwise clear Z.

Operation R0 = 0

Flags Z, V
User’s Manual 17-94 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.14 DSTEP, Divide Instruction

Note: The value in Ra must always be greater than the value in R0 prior to execution of
the DSTEP instruction. If the rules specified in Section 17.12.4 are followed then
the above description and operation are correct. Failure to adhere to these rules
will yield undefined results.

DSTEP Syntax DSTEP <R0>, Rb, Ra

Description Perform 1 step (eight bits) of an unsigned 32- by 32-bit divide
(Rb / Ra). Shift R0 left by 8 bits, copy the most significant byte
of Rb into LS byte of R0. Shift Rb left by 8 bits and add (R0
divided by Ra). Load R0 with (the remainder of R0 divided by
Ra).

Operation R0 = (R0 << 8) + (Rb >> 24)
Rb = (Rb << 8) + R0 / Ra
R0 = R0 % Ra

Flags Z
User’s Manual 17-95 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.15 EXIT, Exit Instruction

17.12.16 INB, Insert Bit

EXIT Syntax EXIT EC, ST, INT, EP, cc_B

Description Unconditionally exit channel program execution. Optionally
decrement counter CNT1 (EC = 1), disable further channel
invocation (ST = 1), generate an interrupt request (INT = 1)
if condition CONDCB is true. Field EP is used to set the
channel code entry point in Channel Resume Mode to either
the address of the next instruction (EP = 1) or to the start
address of the channel (EP = 0). The EXIT instruction is
finished with a context save operation.

Note: The EP option is only in effect when Channel Resume
operation is globally selected through
PCP_CS.RCB = 0. If PCP_CS.RCB = 1, Channel
restart mode is selected for all channels, and the EP
field of the EXIT instruction is disregarded.

Operation if (EC = 1) then CNT1 = CNT1 - 1
if (ST = 1) then R7_CEN = 0
if ((INT = 1) AND (cc_B = True)) then
activate_interrupt_request
if (EP = 1) then R7_PC = NextPC else R7_PC =
channel_entry_point
save_context

Flags CN1Z

INB Syntax INB Rb, Ra, cc_A

Description If CONDCA is true, then insert the carry flag R7.C into
register Rb at the bit position specified through bits [4..0] of
register Ra. If CONDCA is false, no operation is performed.

Operation if (CONDCA = True) then R[b][R[a][4:0]] = R7_C else NOP

Flags None
User’s Manual 17-96 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.17 JC, Jump Conditionally

INB.I Syntax INB.I Ra, #imm5

Description Insert the carry flag R7.C into register Ra at the bit position
specified through the immediate value imm5.

Operation R[a][imm5] = R7_C

Flags None

JC Syntax JC offset6, cc_B

Description If CONDCB is true, then add the sign-extended value
specified by offset6 to the contents of the PC, and jump to
that address. If CONDCB is false, no operation is performed.

Operation if (CONDCB = True) then (PC = PC + sign_ext(offset6)) else
NOP

Flags None

JC.A Syntax JC.A #address16, cc_B

Description If CONDCB is true, then load the value specified by
address16 into the PC, and jump to that address. If
CONDCB is false, no operation is performed.

Operation if (CONDCB = True) then (PC = address16) else NOP

Flags None

JC.I Syntax JC.I Ra, cc_B

Description If CONDCB is true, then add the value specified by Ra[15:0]
to the contents of the PC, and jump to that address. Value
Ra[15:0] is treated as a signed 16-bit number. If CONDCB is
false, no operation is performed.

Operation if (CONDCB = True) then (PC = PC + (R[a][15:0])) else NOP

Flags None

JC.IA Syntax JC.IA Ra, cc_B

Description If CONDCB is true, then load the value specified by Ra[15:0]
into the PC, and jump to that address. Value Ra[15:0] is
treated as an unsigned 16-bit number. If CONDCB is false,
no operation is performed.

Operation if (CONDCB = True) then (PC = (R[a][15:0])) else NOP

Flags None
User’s Manual 17-97 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.18 JL, Jump Long Unconditional

17.12.19 LD, Load

JL Syntax JL offset10

Description Add the sign-extended value specified by offset10 to the
contents of the PC, and jump to that address.

Operation PC = PC + sign_ext(offset10)

Flags None

LD.F Syntax LD.F Rb, [Ra], Size

Description Load the zero-extended contents of the address location
specified by the contents of register Ra into register Rb.

Operation R[b] = zero_ext(FPI[R[a]])

Flags N, Z

LD.I Syntax LD.I Ra, #imm6

Description Load the zero-extended value specified by imm6 into register
Ra.

Operation R[a] = zero_ext(imm6)

Flags N, Z

LD.IF Syntax LD.IF [Ra], #offset5, Size

Description Load the zero-extended contents of the address location,
specified by the addition of the contents of register Ra and
the value specified by imm5, into register R0.

Operation R[0] = zero_ext(FPI[R[a] + zero_ext(imm5)])

Flags N, Z

LD.P Syntax LD.P Rb, [Ra], cc_A

Description If condition CONDCA is true, then load the contents of the
PRAM address location, specified by the addition of contents
of the PRAM Data Pointer, shifted left by six bits, and the
zero-extended 6-bit value Ra[5:0] into register Rb. If
condition CONDCA is false, no operation is performed.

Operation if (CONDCA = True) then R[b] = PRAM[(DPTR<<6) +
zero_ext(R[a][5:0])] else NOP

Flags N, Z
User’s Manual 17-98 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.20 LDL, Load 16-bit Value

17.12.21 PRAM Bit Instructions

LD.PI Syntax LD.PI Ra, [#offset6]

Description Load the contents of the PRAM location specified by the
addition of contents of the PRAM Data Pointer, shifted left by
six bits, and the zero-extended 6-bit value offset6 into
register Ra.

Operation R[a] = PRAM[(DPTR<<6) + zero_ext(offset6)]

Flags N, Z

LDL.IL Syntax LDL.IL Ra, #imm16

Description Load the immediate value imm16 into the lower bits of
register Ra (bits [15:0]). Bits [31:16] of register Ra are
unaffected. Value imm16 is treated as an unsigned 16-bit
number.

Operation R[a][15:0] = imm16

Flags N, Z

LDL.IU Syntax LDL.IU Ra, #imm16

Description Load the immediate value imm16 into the upper bits of
register Ra (bits [31:16]). Bits [15:0] of register Ra are
unaffected.

Operation R[a][31:16] = imm16

Flags N, Z

MCLR.PI Syntax MCLR.PI Ra, #offset6

Description Perform an AND of the contents of the specified register with
the contents of the PRAM location specified by the addition
of contents of the PRAM Data Pointer, shifted left by six bits,
and the zero-extended 6-bit value offset. Write the result
back to the PRAM location

Operation Ra = PRAM[DPTR<<6 + #offset6]=
Ra .AND. PRAM[DPTR<<6 + #offset6]

Flags N,Z
User’s Manual 17-99 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Note: MCLR and MSET are read/modify/write operations that can not be interrupted by
an access from another FPI master. They can be used to implement semaphore
systems.

17.12.22 Multiply Initialization Instruction

17.12.23 MOV, Move Register to Register

MSET.PI Syntax MSET.PI Ra, #offset6

Description Perform an OR of the contents of the specified register with
the contents of the PRAM location specified by the addition
of contents of the PRAM Data Pointer, shifted left by six bits,
and the zero-extended 6-bit value offset. Write the result
back to the PRAM location

Operation Ra = PRAM[DPTR<<6 + #offset6]=
Ra .OR. PRAM[DPTR<<6 + #offset6]

Flags N,Z

MINIT Syntax MINIT <R0>, Rb, Ra

Description Initialize Multiply logic ready for multiply sequence. Clear R0.
If value of Ra is zero or value of Rb is zero then set Z (to flag
zero result) else clear Z.

Operation R0 = 0

Flags Z

MOV Syntax MOV Rb, Ra, cc_A

Description If condition CONDCA is true, then move the contents of
register Ra into register Rb. If CONDCA is false, no operation
is performed.

Operation if (CONDCA = True) then R[b] = R[a] else NOP

Flags N, Z
User’s Manual 17-100 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.24 Multiply Instructions

Note: In the case of the MSTEP64 instruction above the “temp” variable is a 40 bit
variable and all calculations are performed using 40 bit unsigned arithmetic. All
other calculations use 32 bit unsigned arithmetic.

MSTEP.L Syntax MSTEP.L <R0>, Rb, Ra

Description Perform an unsigned multiply step, using eight bits of data
taken from Rb, keeping the least significant 32 bits of a
potential 64 bit result.
Left rotate Rb by 8 bits. Shift R0 left by 8 bits. Add (Ra
multiplied by the least significant 8 bits of Rb) to R0. If value
of R0 is zero then set Z (to signal zero result) else clear Z.

Operation Rb = (Rb << 8) + (Rb >> 24)
R0 = (R0 << 8) + (Rb & 0xff) × Ra

Flags Z

MSTEP.U Syntax MSTEP.U <R0>, Rb, Ra

Description Perform an unsigned multiply step, using eight bits of data
taken from Rb, keeping 40 bits of a potential 64 bit result.
Add (Ra multiplied by the least significant 8 bits of Rb) to R0
and retain the 40 bit result (shown as temp below). Store the
most significant 32 bits of the result (temp) in R0. Shift Rb
right by 8 bits. Store the least significant 8 bits of the first
result (temp) in the most significant 8 bits of Rb.
If value of R0 is zero then set Z (to signal zero result) else
clear Z.

Operation temp = R0 + Ra × (Rb & 0xff)
R0 = temp >> 8
Rb = (Rb >> 8) + ((temp & 0xff) << 24)

Flags Z
User’s Manual 17-101 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.25 NEG, Negate

17.12.26 NOP, No Operation

17.12.27 NOT, Logical NOT

NEG Syntax NEG Rb, Ra, cc_A

Description If condition CONDCA is true, then move the 2’s complement
of the contents of register Ra into register Rb. If CONDCA is
false, no operation is performed.

Operation if (CONDCA = True) then R[b] = (- R[a]) else NOP

Flags N, Z

NOP Syntax NOP

Description No operation. The NOP instruction puts the PCP in low-
power operation.

Operation no operation

Flags None

NOT Syntax NOT Rb, Ra, cc_A

Description If condition CONDCA is true, then move the 1’s complement
of the contents of register Ra into register Rb. If CONDCA is
false, no operation is performed.

Operation if (CONDCA = True) then R[b] = NOT(R[a]) else NOP

Flags N, Z
User’s Manual 17-102 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.28 OR, Logical OR

OR Syntax OR Rb, Ra, cc_A

Description If the condition CONDCA is true, then perform a bitwise
logical OR of the contents of register Ra and the contents of
register Rb; place the result in Rb. If CONDCA is false, no
operation is performed.

Operation if (CONDCA = True) then R[b] = R[b] OR R[a] else NOP

Flags N, Z

OR.F Syntax OR.F Rb, [Ra], Size

Description Perform a bitwise logical OR of the contents of the address
location, specified by the contents of register Ra, and the
contents of register Rb; place the result in Rb.

Operation R[b] = R[b] OR zero_ext(FPI[R[a]])

Flags N, Z

OR.PI Syntax OR.PI Ra, [#offset6]

Description Perform a bitwise logical OR of the contents of the PRAM
location specified by the addition of contents of the PRAM
Data Pointer, shifted left by six bits, and the zero-extended
6-bit value offset6, and the contents of register Ra; place the
result in Ra.

Operation R[a] = R[a] OR PRAM[(DPTR<<6) + zero_ext(#offset6)]

Flags N, Z
User’s Manual 17-103 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.29 PRI, Prioritize

17.12.30 RL, Rotate Left

PRI Syntax PRI Rb, Ra, cc_A

Description If condition CONDCA is true, then find the bit position of the
most significant 1 in register Ra and put the number into
register Rb. The bit location, 31..0, is encoded as a 5-bit
number stored in Rb[4:0]. If the contents of Ra is zero, bit
Rb[5] is set, while all other bits in Rb are cleared. If CONDCA
is false, no operation is performed.

Operation if (CONDCA = False) then
 NOP
else
 if (R[a] = 0) then
 R[b] = 0x20
 else
 R[b] = bit_pos(most_significant_1(R[a]))

Flags N, Z

RL Syntax RL Ra, #imm5

Description Rotate the contents of register Ra to the left by the number of
bit positions specified through the 5-bit value imm5. The
values defined for imm5 are 1, 2, 4 and 8. The carry flag,
R7.C, is set to the last bit shifted out of bit 31 of register Ra.

Operation tmp = R[a]
R[a] = R[a] << imm5; imm5 = 1, 2, 4, 8
R7_C = last bit shifted out of R[a]
tmp = tmp >> 32 - imm5
R[a] = tmp OR R[a]

Flags N, Z
User’s Manual 17-104 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.31 RR, Rotate Right

17.12.32 SET, Set Bit

RR Syntax RR Ra, #imm5

Description Rotate the contents of register Ra to the right by the number
of bit positions specified through the 5-bit value imm5. The
values allowed for imm5 are 1, 2, 4 and 8.

Operation tmp = R[a]
R[a] = R[a] >> imm5; imm5 = 1, 2, 4, 8
tmp = tmp << 32 - imm5
R[a] = tmp OR R[a]

Flags N, Z

SET Syntax SET Ra, #imm5

Description Set bit imm5 of register Ra to 1.

Operation R[a][imm5] = 1

Flags None

SET.F Syntax SET.F [Ra], #imm5, Size

Description Set bit imm5 of the address location specified through the
contents of register Ra to 1. This instruction is executed using
a locked read-modify-write FPI Bus transaction.

Operation FPI[(R[a])][imm5] = 1

Flags None
User’s Manual 17-105 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.33 SHL, Shift Left

17.12.34 SHR, Shift Right

SHL Syntax SHL Ra, #imm5

Description Shift the contents of register Ra to the left by the number of
bit positions specified through the 5-bit value imm5. The
values allowed for imm5 are 1, 2, 4 and 8. The carry flag,
R7.C, is set to the last bit shifted out of bit 31 of register Ra.
Zeros are shifted in from right.

Operation R[a] = R[a] << imm5; imm5 = 1, 2, 4, 8
R7_C = last bit shifted out of R[a]

Flags N, Z, C

SHR Syntax SHR Ra, #imm5

Description Shift the contents of register Ra to the right by the number of
bit positions specified through the 5-bit value imm5. The
values allowed for imm5 are 1, 2, 4 and 8. Zeros are shifted
in from left.

Operation R[a] = R[a] >> imm5; imm5 = 1, 2, 4, 8

Flags N, Z
User’s Manual 17-106 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.35 ST, Store

ST.F Syntax ST.F Rb, [Ra], Size

Description Store the contents of register Rb to the address location
specified by the contents of register Ra. When the Size is byte
or half-word, the data is stored with the internal LSB (bit 0)
properly aligned to the correct FPI Bus byte or half-word lane.

Operation FPI[R[a]] = R[b]

Flags None

ST.IF Syntax ST.IF [Ra], #offset5, Size

Description Store the contents of R0 to the address location specified by
the addition of the contents of register Ra and the value
specified by imm5. When the Size is byte or half-word, the
data is stored with the internal LSB (bit 0) properly aligned to
the correct FPI Bus byte or half-word lane.

Operation FPI[R[a] + zero_ext(imm5)] = R[0]

Flags None

ST.P Syntax ST.P Rb, [Ra], cc_A

Description If condition CONDCA is true, then store the contents of Rb to
the PRAM address location specified by the addition of the
contents of the PRAM Data Pointer, shifted left by six bits, and
the zero-extended 6-bit value Ra[5:0]. If condition CONDCA
is false, no operation is performed.

Operation if (CONDCA = True) then PRAM[(DPTR<<6) +
zero_ext(R[a][5:0])] = R[b] else NOP

Flags None

ST.PI Syntax ST.PI Ra, [#offset6]

Description Store the contents of register Rb to the PRAM location
specified by the addition of the contents of the PRAM Data
Pointer, shifted left by six bits, and the zero-extended 6-bit
value offset6.

Operation PRAM[(DPTR<<6) + zero_ext(offset6)] = R[b]

Flags None
User’s Manual 17-107 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.36 SUB, 32-Bit Subtract

SUB Syntax SUB Rb, Ra, cc_A

Description If the condition CONDCA is true, then subtract the contents of
register Ra from the contents of register Rb; place the result
in Rb. If CONDCA is false, no operation is performed.

Operation if (CONDCA = True) then R[b] = R[b] - R[a] else NOP

Flags N, Z, V, C

SUB.I Syntax SUB.I Ra, #imm6

Description Subtract the zero-extended immediate value imm6 from the
contents of register Ra; place the result in Ra.

Operation R[a] = R[a] - zero_ext(imm6)

Flags N, Z, V, C

SUB.F Syntax SUB.F Rb, [Ra], Size

Description Subtract the zero-extended contents of the address location
specified by the contents of register Ra from the contents of
register Rb; place the result in Rb.

Operation R[b] = R[b] - zero_ext(FPI[R[a]])

Flags N, Z, V, C

SUB.PI Syntax SUB.PI Ra, [#offset6]

Description Subtract the contents of the PRAM location specified by the
addition of contents of the PRAM Data Pointer, shifted left by
six bits, and the zero-extended 6-bit value offset6 from the
contents of register Ra; place the result in Ra.

Operation R[a] = R[a] - PRAM[(DPTR<<6) + zero_ext(#offset6)]

Flags N, Z, V, C
User’s Manual 17-108 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.37 XCH, Exchange Instructions

XCH.F Syntax XCH.F Rb, [Ra], Size

Description Exchange contents of Rb and FPI address specified by the
contents of register Ra. When Size is byte or half word, the
value is stored with the internal LSB (bit 0) properly aligned to
the correct FPI byte or half-word lane.

Operation Rb = FPI[Ra] and FPI[Ra] = Rb

Flags N, Z

XCH.PI Syntax XCH.PI Ra, [#offset6]

Description Perform exchange of the contents of the PRAM location
specified by the addition of contents of the PRAM Data
Pointer, shifted left by six bits, and the zero-extended 6-bit
value offset6, and the contents of register Ra;

Operation R[a] = PRAM[(DPTR<<6) + zero_ext(#offset6)] and
PRAM[(DPTR<<6) + zero_ext(#offset6)] = R[a]

Flags N, Z
User’s Manual 17-109 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.38 XOR, 32-Bit Logical Exclusive OR

XOR Syntax XOR Rb, Ra, cc_A

Description If the condition CONDCA is true, then perform a bitwise
logical Exclusive-OR of the contents of register Ra and the
contents of register Rb; place the result in Rb. If CONDCA is
false, no operation is performed.

Operation if (CONDCA = True) then R[b] = R[b] XOR R[a] else NOP

Flags N, Z

XOR.F Syntax XOR.F Rb, [Ra], Size

Description Perform a bitwise logical Exclusive-OR of the contents of the
address location, specified by the contents of register Ra, and
the contents of register Rb; place the result in Rb.

Operation R[b] = R[b] XOR zero_ext(FPI[R[a]])

Flags N, Z

XOR.PI Syntax XOR.PI Ra, [#offset6]

Description Perform a bitwise logical Exclusive-OR of the contents of the
PRAM location specified by the addition of contents of the
PRAM Data Pointer, shifted left by six bits, and the zero-
extended 6-bit value offset6, and the contents of register Ra;
place the result in Ra.

Operation R[a] = R[a] XOR PRAM[(DPTR<<6) + zero_ext(#offset6)]

Flags N, Z
User’s Manual 17-110 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.12.39 Flag Updates of Instructions

Most instructions update the state flags in R7. In Table 17-16, each instruction is shown
with the flags that it updates.

Table 17-16 Flag Updates

Instruction CN1Z V C N Z

ADD – yes yes yes yes

AND – – – yes yes

BCOPY yes1) – – – –

CHKB – – yes – –

CLR – – – – –

COMP – yes yes yes yes

COPY yes – – – –

DEBUG – – – – –

DINIT – yes – – yes

DSTEP – – – – –

EXIT yes – – – –

INB – – – – –

JC – – – – –

JL – – – – –

LD – – – yes2) yes

LDL – – – yes yes

MCLR – – – yes yes

MINIT – – – – yes

MOV – – – yes yes

MSET – – – yes yes

MSTEP.L – – – – –

MSTEP.U – – – – –

NEG – yes yes yes yes

NOP – – – – –

NOT – – – yes yes

OR – – – yes yes

PRI – – – yes3) yes
User’s Manual 17-111 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
1) CN1Z is only modified by the BCOPY, COPY or EXIT instructions and then only when the instruction has been
configured to decrement R6.CNT1 (for BCOPY/COPY CNC = 1 or CNC = 2, for EXIT, EC = 1). All other
instructions have no effect on the CN1Z flag.

2) When the instruction is LD.I, this flag is always cleared as bit 31 of the result is always 0.

3) This flag is always cleared as bit 31 of the result is always 0.

17.13 Programming of the PCP

In this section, several techniques are outlined to help design Channel Programs. There
are also examples on configuring a Channel Program’s context.

17.13.1 Initial PC of a Channel Program

A Channel Program can begin operation at the Channel Entry Table location
corresponding to the priority of the interrupt. This is much like an interrupt vector location
for that channel in a traditional processor architecture. When the Channel Program is
started, the PC is set to 2 times the Channel Number (SRPN). Since the base of the
Channel Entry Table is the bottom of the code memory (PCODE) address range, and
since each entry in the table is two instructions long, this address computation results in
the first instruction of the Channel Program for that SRPN being fetched from memory
for execution.

Alternately, the Channel Program can be made to begin executing at whatever address
its restored context holds in R7.PC.

If PCP_CS.RCB = 1, then the Channel Program is forced to always start at its Channel
Entry Table location regardless of the PC value stored in the CSA. If PCP_CS.RCB = 0,
then the Channel Program will simply begin executing at whatever PC value is restored
in the context R7.PC.

RR – – – yes yes

RL – – yes yes yes

SET – – – – –

SHR – – – yes yes

SHL – – yes yes yes

ST – – – – –

SUB – yes yes yes yes

XCH – – – yes yes

XOR – – – yes yes

Table 17-16 Flag Updates (cont’d)

Instruction CN1Z V C N Z
User’s Manual 17-112 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
It is important to be aware of the implications of these two approaches on how code
memory should be configured, and what the initial value of the PC should be in the
Channel Program’s context that is loaded in the PRAM Context Save Area at boot time.

17.13.1.1 Channel Entry Table

When PCP_CS.RCB = 1, the program counter of the PCP is vectored to the appropriate
channel entry table each time a channel program is invoked by the receipt of an interrupt.
The PCP is forced to start executing from its channel entry table location regardless of
its previous context or PC state.

If the EXIT instruction is executed with EP = 0, the PC saved during the context save
operation will be the channel entry table location for that channel. That means that the
next time the Channel Program is started, it will begin operation at the appropriate
location in the Channel Entry Table.

Note: If EP = 0 is set in any Channel Program, or if PCP_CS.RCB = 1, a Channel Entry
Table must be provided at the base of Code Memory. Otherwise this table is not
needed.

17.13.1.2 Channel Resume

When PCP_CS.RCB = 0, the program counter of the PCP is vectored to the address that
is restored from the Channel Program’s context. This means that before exiting, a
Channel Program must itself arrange for where it will resume execution by configuring
the value of its PC in its saved context so that it restarts at the desired location.

In this way, arbitrarily complex interrupt-driven state machines can be created as
individual Channel Programs. Channel Programs that always start at their beginning,
that pick up where they left off, or pick up elsewhere, or that have a mix of these
approaches can be constructed.

An example of a restarting Channel Program is shown below. Before exiting, the channel
branches back to the address of the START label minus 1 (note that START – 1 = CH16)
and then exits. This will leave the next value of the PC in the Channel Program’s context
as the address of the START label.

CH16: ;Channel Program 16
EXIT EC=1 ST=0 INT=0 EP=1 cc_UC ;exit, no intr., leave PC @ next

START: ;nominal channel start address
ST.IF base #0x8 SIZE=32 ;output note from R0
JC CH16, cc_UC ;loop back before exit

Note that when the Channel Program is originally configured by the programmer, the PC
field in the R7 context of this Channel Program should also be set to the address of the
START label.

Similarly, an interrupt-driven state machine can be created by exiting with the next PC
value pointing to the start of the next state in a state machine implemented by the
User’s Manual 17-113 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Channel Program. The next example (see below) shows a program starting at the
address to the STATE0 label. It proceeds after the first interrupt to STATE1 – 1, where
the Channel Program is left ready for the next state, STATE1 in the state machine. After
the next interrupt it executes to address STATE2 – 1 and the Channel Program is left
ready for the next state, STATE2. After another interrupt, it proceeds through STATE2.
The Channel Program jumps back to START, which is STATE0 – 1. The state machine
has gone through one cycle and it is ready to restart in STATE0.

;This program is intended to test the sequence of exit/operate just
;as if you were implementing an interrupt driven state machine.
;It requires a periodic sequence of interrupts.

START:
EXIT EC=1,ST=0,INT=0,EP=1,cc_UC ;begin exit

STATE0:
COMP.I R5,#0x0 ;compare to interrupt number it should be
JC ERROR,cc_NZ ;jump to error routine if not correct
ADD.I R5,#0x1 ;increment state number
EXIT EC=1,ST=0,INT=0,EP=1,cc_UC ;begin exit

STATE1:
COMP.I R5,#0x1 ;compare to interrupt number it should be
JC ERROR,cc_NZ ;jump to error routine if not correct
ADD.I R5,#0x1 ;increment state number
EXIT EC=1,ST=0,INT=0,EP=1,cc_UC ;begin exit

STATE2:
COMP.I R5,#0x2 ;compare to interrupt number it should be
JC ERROR,cc_NZ ;jump to error routine if not correct
LD.I R5,#0x0 ;reset state number
JC START,cc_UC ;jump back to start of state machine

The last state could just as easily have ended with an EXIT that resets the PC to the
Channel Entry Table (EP = 0) rather than jumping back to START.

17.13.2 Channel Management for Small and Minimum Contexts

If Small or Minimum Contexts are being used, only some of the registers are saved and
restored. The integrity of the general purpose registers that are not included in the
context must be handled explicitly by Channel Programs, since these are not saved and
restored with the context of the interrupted Channel Program.

Channel Programs may still use all registers reliably. Channel Programs can be so
designed that they either ignore the values in unsaved registers, or those registers are
used to store constants that no Channel Program changes. Hence they never need to
be saved and restored. Alternately, Channel Programs can use these unused general
purpose registers as temporary variables as long as the values of such registers can not
be corrupted by the interrupt of the channel program by a higher priority channel.
User’s Manual 17-114 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.13.3 Unused Registers as Globals or Constants

Registers R0 through R3 (for the Small Context model), or R0 through R5 (for the
Minimum Context Model) can be used to store constants such as addresses that are
available to all Channel Programs. Hence, these registers hold global data, and no
Channel Program is allowed to change them.

Since the general purpose registers of the PCP are not directly accessible from the FPI
Bus, there does need to be an initial Channel Program that sets these values at or near
boot time. There are two choices here. A boot-time interrupt Channel Program can be
invoked once to perform initialization, or there can be a program that routinely loads
these values as a matter of course, and is invoked at boot time or as upon receipt of the
very first interrupt.

17.13.4 Dispatch of Low Priority Tasks

A higher-priority Channel Program may wish to start a low-priority background task, or
periodically pause and re-start itself later when there is no other action required at the
moment. This can be accomplished in several ways, as follows.

– Post an SRPN to a free SRN on the FPI Bus, then EXIT.
– Perform an EXIT, posting the interrupt to the PCP, and indicating the Channel

Number to be started.
– Use a single Channel Program as a list-driven or state-driven task dispatcher.

The first approach is straightforward to program, but uses a system SRN resource. It’s
advantage is that it allows continuous channel operation without using the interrupt
queue or risk blocking other uses of the PCP.

The second approach can be implemented by having a looping Channel Program
continue operation in the background. It will also always be superseded by any higher
priority tasks.

The third approach uses a Channel Program to dispatch other non-interrupt-driven
Channel Programs in an arbitrary order determined by the Channel Program dispatcher.
In this way, multiple tasks could be continuously operated without over-using the PCP
service-request queue. This approach would be useful when the aim is to poll for Service
Requests in the peripheral SRN’s rather than having them started by PCP hardware.

17.13.5 Code Reuse Across Channels (Call and Return)

A special Jump instruction is included in the PCP instruction set to allow subroutines to
be called from multiple Channel Programs. A routine may be jumped to directly, and then
returned from using the JC.IA instruction. JC.IA allows a calling Channel Program to set
aside a register for its return address, which will typically be the value of the next PC.
The called subprogram can then execute a JC.IA, to the address stored in the register
specified, causing a return-from-subroutine operation. The programmer must adopt and
User’s Manual 17-115 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
enforce a calling convention to determine which register holds the return address.
Register R2 is conventionally used for this purpose.

For example:

Main Routine: Subroutine:
LD.IL R2,#RETURN SUB: MOV...
JC.A #SUB ADD...

RETURN: MOV
... JC.IA R2

17.13.6 Case-like Code Switches (Computed Go-To)

The JC.I instruction can be used to implement a multi-way branch for branch-on-bit or
branch-on-state conditional branches. This instruction allows a conditional relative jump
based on an index held in a register. If this instruction is combined with a table of jump
addresses, a switch-type statement can be implemented. The default case, that is when
the condition code = False, is the next instruction, as is the jump with register index = 0.
The table can be any arbitrary length. The index register should be checked for range
before the jump into the table is performed.

For Example:

COMP R3,#5 ;compare R3 to #5 - the number of entries
;in the table

JC.I R3,cc_ULE
DEFAULT: JL #case_0 ;destination if R3 = 0 or condition = false

JL #case_1 ;destination if R3 = 1
JL #case_2 ;destination if R3 = 2
JL #case_3 ;destination if R3 = 3
JL #case_4 ;destination if R3 = 4
JL #case_5 ;destination if R3 = 5

17.13.7 Simple DMA Operation

A simple interrupt driven DMA requires at least the Small Context model to operate
properly. Its operation is comprised of three stages, as follows:

• The device interrupts the PCP to indicate it is ready to receive or provide data.
• The PCP moves the amount of data that it is programmed to move
• The PCP finishes and (optionally) interrupts the CPU to notify it that the DMA is

complete.

There are two options for implementing this simple DMA Operation.

17.13.7.1 COPY Instruction

A simple DMA Channel Program can consist of just two instructions (COPY and EXIT).
In the example below, a device interrupts the PCP to notify it that it has data in its output
User’s Manual 17-116 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
buffer, which is four words deep. The COPY instruction copies 4 words to memory at a
time. It decrements CNT1 (which is initialized by the CPU in CR6_CNT1 context) after
each 4 word transfer. The EXIT command then executes, and if CNT1 was decremented
to zero (0), the condition code cause it to issue an interrupt with the value held R6.SRPN.

COPY DST+, SRC, CNC=1, RC0=4, SIZE=32 ; Do the peripheral to
; memory DMA

EXIT EC=0, ST=0, INT=1, EP=0, cc_CNZ ; Done burst so exit

In the example above, the COPY instruction increments the destination held in R5
(DST+), and the source address is left constant in R4 (SRC). All permutations of
decrement, increment or do not modify can be applied to either pointer register (R4 and
R5) by use of the SRC and DST fields (SRC-, SRC+, or SRC and DST-, DST+, or DST).

Building on this basic DMA method, Scatter and Gather DMA channels can be created.

17.13.7.2 BCOPY Instruction (Burst Copy)

The BCOPY instruction is in principle similar to the COPY instruction except that it uses
the FPI Burst mode to perform the transfers rather than performing individual reads/
writes. As for the COPY instruction, the FPI bus is locked between the burst read and
burst write to ensure that a valid set of data is transferred. The BCOPY instruction allows
support of all burst sizes supported by FPI Burst Mode except a burst size of 1 (i.e. 2, 4
or 8 words). The CNT0 field is used to control the burst size. Both the Source and
Destination addresses (R4 and R5) must be correctly aligned for the burst size being
used. If either address is incorrectly aligned the PCP will generate an “Illegal Operation”
Error Exit.
User’s Manual 17-117 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.14 PCP Programming Notes and Tips

This section discusses constraints on the use of the PCP and points out some non-
obvious issues.

17.14.1 Notes on PCP Configuration

• Only one context model may be used at a time for all channels, and the PCP must
remain in that context model once started and configured.

• In order for a specific Channel Program to be enabled, its context must have
R7.CEN = 1. If R7.CEN = 0 then the Channel Program will terminate when invoked,
and cause a Disabled Channel Request error.

• The Channel Context Address from the FPI Bus as viewed during channel
configuration is as follows:
– Full Context Model: PRAM Base + 20H × n
– Small Context Model: PRAM Base + 10H × n
– Minimum Context Model: PRAM Base + 08H × n

where n is the Channel Number.
• PCP_CS.RCB and context must be consistent. If RCB is configured to 0, then each

Channel Program will start at the PC restored from its context. If the wrong address is
pre-configured in the context, the Channel Program will not operate properly.

• The programmer of the PCP may lock PCP_CS by setting PCP_CS.EIE = 1. When
the global ENDINIT bit is set, the PCP_CS register will no longer be writable, and
attempting to do so will cause an FPI Bus error.

• An error condition will result in an interrupt being sent to the local FPI Bus master. The
targeted interrupt service routine must be capable of dealing with the cause as
recorded in PCP_ES, and, if required, it must be able to return the halted Channel
Program to operation. The minimum required to do that is to set the context value of
R7.CEN = 1.

• The only PCP register bit that can be dynamically modified during PCP operation is
the PCP_CS.EN bit. When writing to any other PCP register bits, one must ensure that
the PCP is disabled (PCP_CS.EN = 0) and that the PCP is quiescent (PCP_CS.RS =
0).

17.14.2 General Purpose Register Use

• The most significant 16 bits of R7 may not be written, and will always read back as 0.
However, no error will occur if a write to the most significant 16 bits occurs.

• Care must be taken with the use of R6 as a general-use register to ensure that R6
contains the correct value prior to execution of the EXIT command. As R6 contains
the CNT1 (counter used in COPY and optionally in EXIT instructions), SRPN and TOS
(Service Request number to use during optional interrupt at Channel Program EXIT)
fields it is recommended that R6 should not be used to pass values from one
invocation of a channel program to the next invocation.
User’s Manual 17-118 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
• If PRAM is to be accessed programmatically, then R7.DPTR must be configured
properly as a pointer into the PRAM. This points to the 64-word segment that may be
addressed by the xx.P instructions and the xx.PI instructions. It is not recommended
to set R7.DTPR to point into the Context Save Area. Special care must be taken that
the Context PRAM is not overwritten.

• The programmer must be careful, when updating R7.DTPR (or any other field in R7),
not to inadvertently clear R7.CEN. This would cause the Channel Program to
generate a disabled channel interrupt to the CPU when the next interrupt request to
the channel occurs.

• Any update to the Flags that is caused by an instruction (e.g. MOV R7, R0 which
updates Z and N) takes precedence over any explicit bits that are moved to R7. See
Section 17.3.1.5.

• The interrupt system assumes SRPN 0 is not a request. Full Context packing leaves
the least significant 8 × 32-bit entries where channel 0 would normally be un-used.
That is, PRAM Base -> PRAM Base + 1 channel. In addition, for Small Context, the
least significant 4 × 32-bit entries are un-used, and for Minimum Context the least
significant 2 × 32-bit entries are un-used. These “un-used” entries should not be used
by channel programs.

• If EP = 0 is used, or if PCP_CS.RCB = 1, a Channel Entry Table must be provided at
the base of Code Memory.

• If there is a plan to use the Small or Minimum Context model, and the lower registers
are to hold global values, then there needs to be an initial Channel Program that sets
these values at or near boot time. There are at least two choices for how to implement
this. For instance, a boot interrupt Channel Program can be invoked once to perform
initialization, or there can be a program that routinely loads these values as a matter
of course, and it is invoked at boot time, or at the very first interrupt. See
Section 17.13.3.

• When using Small or Minimum Context models and allowing a channel to be
interrupted, care must be taken to ensure that the value of any registers that are not
included in the context but are being used by a channel are not corrupted by
interruption of the channel and subsequent operation of a higher priority channel.
Particular care must be taken when using instructions that use R0 implicitly. If
necessary critical instruction sequences should be protected by use of the R7.IEN bit.

17.14.3 Use of Channel Interruption

When a channel program consists of only a few instructions, it is best to configure the
channel to be non-interruptible. This increases overall efficiency by removing the context
save/restore overhead that would be incurred if the channel is interruptible.
User’s Manual 17-119 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.14.3.1 Dynamic Interrupt Masking

A channel program can dynamically control whether it can be interrupted by use of the
R7.IEN bit. When masking interrupts (by clearing R7.IEN), it must be noted that there is
a delay of one instruction before the mask becomes effective. As a result the instruction
that clears R7.IEN must be placed at least one instruction before the instruction
sequence that is to be uninterruptible. As an example consider the following sequence:

Formatting
CLR R7, IEN; Clear the R7.IEN bit

; Interrupt can occur here
NOP

; Interrupt can occur here
; First instruction of non-interruptible code sequence

17.14.3.2 Control of Channel Priority (CPPN)

The PCP provides three extended Service Request Nodes (PCP_SRC9, PCP_SRC10
and PCP_SRC11) which allow storage of suspended channel interrupt requests. This
allows interrupt nesting to a depth of four. This limit on the nesting depth carries the
danger that a high priority service request will not be serviced because the PCP’s
interrupt nesting depth has been exceeded.

It is recommended that a four level grouping scheme should be adopted to avoid this
problem. All PCP interrupt sources should be listed in order of their SRPNs(service
Request Priority Numbers). This list should then be subdivided into four contiguous
groups, Group 0 being the lowest priority and Group 3 being the highest. The context
save area for each channel program should be configured such that CR6.CPPN contains
the SRPN value of the highest channel program within the group to which the channel
belongs. As each channel starts the Operating Priority (CPPN) of the channel is loaded
from the context. AS a result, with the scheme recommended above, any channel
program will run with the priority of the highest SRPN within the group. As a result the
channel can only be interrupted by a service request from a higher priority group (e.g. a
Group 0 channel program can be interrupted by a new service request for a channel in
any group from 1 to 3, a group 2 channel program can only be interrupted by a new
service request for a channel in group 3).

Note: When using this scheme, each channel program must ensure that, prior to
channel exit, the R6.CPPN field contains the appropriate value to ensure that
when the channel is next invoked it will run at the correct priority.

17.14.4 Implementing Divide Algorithms

As discussed in Section 17.12.4, a divide algorithm must always start with a DINIT
instruction followed by a number of DSTEP instructions (up to four depending on the
data width that is required). Prior to execution of any DSTEP instruction R0 always
contains either 0 (if this is the first DSTEP instruction in a divide sequence R0 contains
User’s Manual 17-120 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
0 due to the preceding DINIT instruction), or the remainder from the previous DSTEP
instruction). The dividend to be used in this step is generated in R0 by taking 256 × the
remainder of the last DSTEP instruction (R0 << 8) and adding the most significant byte
of Rb (Rb >> 24) as the least significant byte of the new dividend.

Since the remainder of the last DSTEP instruction is by definition always less than the
divisor (Ra) it can be guaranteed that the result of the division of the dividend (calculated
as above) by the divisor (Ra) can always be contained within an 8 bit result. The
description given in Section 17.12.14 only holds true under this condition. If the
restrictions on the use of the DSTEP instruction (specified within Section 17.12.4) are
adhered to then the above condition is always met and this description of the instruction
is correct. Failure to adhere to these conditions will lead to invalid results which are
outside the scope of this document.

During execution of a divide sequence Rb is used both to compile the final divide result
and to hold the remnants of the original dividend. For example in a 32-/32-bit divide
sequence (which consists of 4 DSTEP instructions - see below) Rb will have the
following content:

– After the 1st DSTEP instruction:
The least significant 3 bytes (24 bits) of the original 32-bit dividend (held in the most
significant 3 bytes of Rb) and the most significant byte of the final result (held in the
least significant byte of Rb).

– After the 2nd DSTEP instruction:
The least significant 2 bytes (16 bits) of the original 32-bit dividend (held in the most
significant 2 bytes of Rb) and the most significant 2 bytes of the final result (held in
the least significant 2 bytes of Rb).

– After the 3rd DSTEP instruction:
The least significant byte of the original 32-bit dividend (held in the most significant
byte of Rb) and the most significant 3 bytes of the final result (held in the least
significant 3 bytes of Rb).

– After the final DSTEP instruction:
The 32 bit final result.

Note that the DSTEP instruction always uses the divisor as a 32 bit value. In any divide
sequence the dividend can be 8, 16, 24 or 32 bits (according to the number of DSTEP
instructions in the sequence) but the divisor is always 32 bits. Prior to the DINIT
instruction the dividend must always occupy the appropriate most significant bits within
the 32 bit dividend register (Rb).

Divide Examples

Example of a 32/32 bit divide (R5 / R3):

DINIT R5, R3 ;Initialize ready for the divide
JC HANDLE_DIVIDE_BY_ZERO, cc_V ;V flag was set so jump to divide

;by zero error handler
User’s Manual 17-121 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
DSTEP R5, R3 ;4 DSTEP instructions
;(4 * 8 = 32 bit

DSTEP R5, R3 ; divide)
DSTEP R5, R3
DSTEP R5, R3

After this sequence R5 holds the result, R0 the remainder and R3 is unchanged.

Example of a 8/32 bit divide (R4 / R2):

RR R4, 8 ;Rotate R4 right by 8 to move
;least significant byte into
;most significant byte

DINIT R4, R2 ;Initialize ready for the divide
JC HANDLE_DIVIDE_BY_ZERO, cc_V ;V flag was set so jump to divide

;by zero error handler
DSTEP R4, R2 ;DSTEP instruction

;(1 * 8 = 8 bit divide)

After this sequence R4 holds the result, R0 the remainder and R2 is unchanged.

Note that the above example is specified as being a 8/32 bit divide rather than an 8/8 bit
divide (see comments above).

17.14.5 Implementing Multiply Algorithms

As discussed in Section 17.12.4, a multiply algorithm must always start with a MINIT
instruction followed by a number of MSTEP32 or MSTEP64 instructions. The MSTEP32
instruction is used to compile a multiplication result contained in 32 bits, discarding any
overflows. The MSTEP64 instruction is used to compile a 64-bit multiplication result with
the least significant 32 bits of the result contained in Rb and the most significant 32 bits
of the result contained in R0.

Multiply Examples

Example of a 32 × 8 bit multiply (R4 × R1) yielding a 32 bit result (R4 = 32 bit, R1 = 8 bit):

RR R1, 8 ;Rotate least significant byte of R1 to most
;significant byte

MINIT R1, R4 ;Initialize ready for multiply
MSTEP32 R1, R4 ;Perform one MSTEP32 instruction

;(8 bit multiply)

After this sequence, R0 holds the result, R1 is left unchanged (right rotated by RR
instruction then left rotated by MSTEP32 instruction), R4 is unchanged. The result is only
valid if there is no overflow (i.e. the product of the 8-bit number in R1 multiplied by the
32-bit number in R4 can be contained within 32 bits). It is the users responsibility to
ensure that this is the case. The overflow condition cannot be detected after execution
of the multiply sequence.
User’s Manual 17-122 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
Example of a 32 × 16 bit multiply (R3 × R2) yielding a 32 bit result
(R3 = 32 bit, R2 = 16 bit):

RR R2, 8 ;Perform two 8 bit rotations (RR instructions)
;to get original least significant 16 bits into
;most significant 16 bits

RR R2, 8
MINIT R2, R3 ;Initialize ready for multiply
MSTEP32 R2, R3 ;Perform two MSTEP32 instructions

;(16 bit multiply)
MSTEP32 R2, R3

After this sequence R0 holds the result, R2 is left unchanged (right rotated by two RR
instructions then left rotated by two MSTEP32 instructions), R3 is unchanged. The
comment above regarding overflow also applies to this sequence.

Example of a 32 × 32 bit multiply (R5 × R2) yielding a 64 bit result
(R5 = 32 bit, R2 = 32 bit):

MINIT R2, R5 ;Initialize ready for multiply
MSTEP64 R2, R5 ;Perform 4 MSTEP64 instructions(64 bit multiply)
MSTEP64 R2, R5
MSTEP64 R2, R5
MSTEP64 R2, R5

After this sequence R0 and R2 hold the result (most significant word in R0, least
significant word in R2), R5 is unchanged. There is no possibility of overflow as the result
of 32 × 32 bits can always be contained in 64 bits.
User’s Manual 17-123 V1.0, 2002-03

TC11IB
System Units

Peripheral Control Processor
17.15 PCP Implementation in TC11IB

The addresses of the PCP registers and memories in the TC11IB are given in the
following subsections:

17.15.1 PCP Memories

In the TC11IB, the location of the registers and the memories sizes of the PRAM and the
PCODE are given in Table 17-17.

Note: “BE” means that in case of an access to this address region a bus error is
generated.

17.15.2 PCP Register Address Range

In the TC11IB the registers of the PCP are located in the following address range:

– Module Base Address: F000 3F00H
Module End Address: F000 3FFFH.

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 17-11)

Table 17-17 General Block Address Map

Unit Address
Range

Access Mode Size

Read Write

PCP PCP Registers F000 3F00H -
F000 3FFFH

see
Table 17-11

256 Bytes

Reserved F000 4000H -
F000 FFFFH

BE BE –

PCP Data Memory (PRAM)
(static RAM)

F001 0000H -
F001 0FFFH

nE, 32 nE, 32 4 KBytes

Reserved F001 1000H -
F001 FFFFH

BE BE –

PCP Code Memory (PCODE)
(static RAM)

F002 0000H -
F002 3FFFH

nE, 32 nE, 32 16 KBytes
User’s Manual 17-124 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
18 LMB Bus, FPI Buses, and Bus Control
This chapter provides an overview of the internal Local Memory Bus (LMB), the Fast
Flexible Peripheral Interconnect (F_FPI) Bus, the Slow Flexible Peripheral Interconnect
(S_FPI) Bus, the corresponding Bus Control Units (LCU, BCU0 and BCU1), the LMB-FPI
(LFI) Bridge, and the FPI-FPI (FFI) Bridge for the TC11IB. Topics covered in this chapter
also include the bus characteristics, bus arbitration, scheduling, prioritizing, error
conditions, and debugging support.

18.1 Fast FPI Bus and Slow FPI Bus Overview

In the TC11IB, the TriCore system is located on the LMB Bus, while the peripherals are
divided between two FPI Buses based on their performance. The use of two FPI Buses
provides better support for the large number of peripherals requiring an FPI Bus. The
FPI-FPI Bridge is a bidirectional bridge that splits the 32-bit FPI-Bus into two branches
with different FPI-clock speeds (96MHz/48MHz). The Fast FPI Bus (F_FPI) runs at a
speed of 96 MHz. This is the FPI Bus to which most of the high-performance peripherals,
such as ComDRAM, PCI-FPI etc., are connected. The Slow FPI Bus (S_FPI) runs at half
the speed of its fast counterpart. The S_FPI Bus is used to connect other standard
peripherals.

These two FPI Buses interconnect most of the functional units of the TC11IB, such as
the on-chip peripheral components. The Fast FPI Bus also interconnects the TC11IB to
external components by way of the External Bus Controller Unit (EBU). Figure 18-1
illustrates the FPI Buses and the modules connected with them.

The FPI Buses are designed for quick acquisition by on-chip functional units and quick
data transfer. The low setup overhead of the FPI Bus access protocol guarantees fast
FPI Bus acquisition, required for time-critical applications.

The FPI Buses are designed to sustain high transfer rates. For example, a peak transfer
rate of up to 800 Mbps can be achieved with a 100 MHz bus clock and 32-bit data bus.
Multiple data transfers per bus arbitration cycle allow the FPI Bus to operate at close to
its peak bandwidth.

Additional features of the FPI Bus include:

• Multiple bus masters supported
• Demultiplexed address/data operation supported
• Clock synchronization supported
• Scalable address and data buses; address bus up to 32-bits wide and data bus up to

64-bits wide
• Data transfer types include 8-, 16-, 32- and 64-bit sizes
• Single- and multiple-data transfers per bus acquisition cycle
• Split read transfers supported
• Burst transfer capability
• Minimized EMI and power consumption by design
User’s Manual 18-1 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
Functional units of the TC11IB are connected to the FPI Buses via the FPI Bus
interfaces. The FPI Bus interfaces act as bus agents, requesting bus transactions on
behalf of their functional unit, or responding to transaction requests.

There are three types of bus agents:

• Master agents can initiate and control FPI Bus transactions
• Slave agents respond to FPI Bus transaction requests to read or write internal

registers and memories
• Master-Slave agents support advanced features, such as split read transfer support

and error acknowledgement generation. Depending on the type of transaction, these
agents may act as master or slave or both.

When an FPI Bus master seeks to initiate a transfer on an FPI Bus, it first signals a
request for bus ownership. When bus ownership is granted, it initiates an FPI Bus read
or write transaction. The unit targeted by the transaction becomes the FPI Bus slave, and
responds with the requested action.

Some functional units operate only as slaves, while others can operate as either masters
or slaves. The FFI Bridge typically operates as Slow FPI Bus master. The LFI bridge
typically operates as Fast FPI Bus master. Standard on-chip peripheral units are typically
FPI Bus slaves. The interface type (M/S = Master/Slave interface) of the various modules
in the TC11IB can be seen in Figure 18-1.

To increase availability of the bus, read transaction may be split into two independent
transfers: first, the transfer request with some additional information on data type and
block size, and, later, the transfer of the requested data from the slave to the master. For
the second part, the slave becomes the master on the bus and the requesting master
becomes the slave. Agents supporting this type of transfer are called master-slave
agents.

FPI Bus arbitration is performed by the on-chip FPI Bus Control Unit (BCU). In case of
bus errors, the BCU generates an interrupt request to the CPU, and can provide
debugging information about the error to the CPU.
User’s Manual 18-2 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
Figure 18-1 TC11IB Bus System Block Diagram

18.2 Local Memory Bus Overview (LMB)

The local memory bus is a synchronous, pipelined, split bus with support for variable
block size transfer. This 96 MHz, 64-bit wide data bus supports TriCore system with fast
response time and is optimized for speed. It allows the Data memory Unit (DMU) and
Program memory Unit (PMU) to have fast access to local memory and reduces the load
on the FPI Bus.

PC I

PC I
D M A C om D RA M

External Bus Unit (EBU)

M aste r

M
/S

S lave

Fa
st

 F
PI

 B
us

M
/S

Ethernet
Controller

T
ransm

it
M

/S
S

lave
R

eceive
M

/S
S

lave

S
la

ve

BC U 0

S
la

ve

LF IM
/S

M
/S

FF IM
/S

M
/S

Sl
ow

 F
PI

 B
us

LM
B

 B
us

M M CI

S
la

ve
G PTU0/1

S
la

ve

1 6X 50

S
la

ve

AS C

S
la

ve

SS C

S
la

ve

G P IO

S
la

ve
P CP

M
/S

D ebug

B C U1

S
lave

Boot-
RO M

S
lave

S CU

S
lave

LM U

S
lave

T riCo re
C P U

D M U

M M U

P M UM
/S

M
/S

E x terna l B us

S
la

ve C P S
Interrup t

M
/S
User’s Manual 18-3 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
All signals on the bus relate to the positive clock edge. The LMB supports 8-,16-, 32-,
and 64-bit single beat transactions and variable length 64-bit block transfers. The bus is
also designed to support multiple master/slaves and slaves, as shown in Figure 18-1.

Features

• Optimized for high-speed and high-performance
• 32-bit address, 64-bit data busses
• Slave controlled wait state insertion
• Address pipelining (max depth - 2)
• Split transactions
• Variable block length: 2, 4, or 8 beats of 64-bit data

The LMB is functionally similar to the FPI Bus. A complete bus transaction includes four
phases: Arbitration phase, Address phase, Data phase, and Termination phase. LMB
Bus arbitration is performed by the on-chip LMB Bus Control Unit (LCU). In case of bus
errors, the LCU generates an interrupt request to the CPU, and can provide debugging
information about the error to the CPU.

As shown in Figure 18-1, if any master of the LMB Bus—such as the CPU—wants to
access any peripheral on the Slow FPI Bus, it must go from the LMB to the Fast FPI Bus
via the LFI bridge, then to the Slow FPI Bus via the FFI Bridge. The Data Memory Unit
(DMU) typically operates as Fast FPI Bus master.

18.3 FPI-FPI Bridge

Because of the large number of peripherals located on the FPI Bus in the TC11IB, the
FPI-FPI Bridge will be used there as a bidirectional bridge to split the 32-Bit FPI- Bus into
two branches with different FPI-clock speeds (96MHz/48MHz). Unidirectional FPI-FPI
bridge circuitry can be used to interface the two FPI buses at a frequency ratio of 2:1.

The FPI-FPI bridge is transparent. It is a unidirectional bridge that forwards transactions
from a primary FPI Bus to a secondary FPI Bus. The forwarding of the read and write
transactions is done via an internal pipeline. Hence, it is ensured that the ordering of the
transactions will not be changed. The FPI Slave interface of the bridge is connected to
the primary FPI Bus and the FPI Master Interface is connected to the secondary FPI Bus.
Master and Slave are connected via an internal interface. This internal interface consists
of some sideband signals and three buffers: command buffer (cbuf), read-data buffer
(rbuf), and write-data buffer (wbuf). The depths of the FIFOs must be adapted to the
system needs. For single transaction support, only FIFOs with a depth of one will be
needed; but, for single transaction block support data, FIFOs with a depth of eight would
be required. For multi-transaction and block transaction support, the command FIFO
must be increased as well. The FIFO controllers and FIFO memory modules are placed
in the bridge. The bridge is also prepared to support any FIFO depth configuration for the
internal buffers, so it can be adapted to different requirements of supported transaction
types (single, block) and pipeline depth.
User’s Manual 18-4 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
The interface of the bridge to the Fast FPI Bus is defined as primary FPI Bus (p_) and
the interface to the Slow FPI Bus is defined as secondary FPI bus (s_). In the TC11IB,
the bi-directional FPI-FPI Bridge contains two unidirectional FPI-FPI bridge circuits
(shown in Figure 18-2). The bridge supports block transactions in both directions,
therefore both unidirectional FPI bridges have the same internal FIFO configuration:

• cbuf (command buffer) depth: 1
• wbuf (write buffer) depth: 8
• rbuf (read buffer) depth: 8

Figure 18-2 FPI-FPI Bridge

Features

• Single/Block Data Read/Write Transactions (8/16/32-Bit)
• FPI-RMW Support
• Optimized for FPI-Bus frequency ratios 2:1
• FPI Master ID (TAG) visible to addressed slaves

Fast FP I S low F PI

U nid irection FP I-FP I B ridge (2 :1 M ode)

FPI
Slave

FPI
Master

CMD
Buffer

Write
Buffer

Read
Buffer

U nid irection FP I-FP I B ridge (1 :2 M ode)

FPI
Slave

FPI
Master

CMD
Buffer

Write
Buffer

Read
Buffer
User’s Manual 18-5 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
• Special Retry/Abort functionality

Note: Block Transaction support depends on generic settings and the depth of the
bridge’s internal read- and write data buffer.

18.3.1 FFI Bridge Control Register

The Register FFI_CON provides flexibility in the configuration of the maximum read wait
states used by the slow-to-fast FFI Bridge and the fast-to-slow FFI Bridge.

Table 18-1 FFI Register

Register
Short Name

Register Long Name Absolute
Address

Description
see

FFI_CON FFI Control Register F000 0058H Page 18-6

FFI_CON
FFI Bridge Control Register Reset Values: 0000 0101H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMRW SMRW

rw rw

Field Bits Type Description

SMRW [7:0] rw Secondary Maximum Read Wait State
This value is to be used by the slow-to-fast FFI Bridge
to determine maximum read wait state. Access longer
than this will be treated as delayed-read access.

PMRW [15:8] rw Primary Maximum Read Wait State
This value is to be used by the slow-to-fast FFI Bridge
to determine maximum read wait state. Access longer
than this will be treated as delayed-read access.

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 18-6 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
18.4 LMB-FPI Bridge

The LMB-FPI(LFI) block provides circuitry to interface (bridge) the Fast FPI Bus to the
Local Memory Bus (LMB), as well as to the LMB’s Local Bus Control Unit (LBCU). FIFOs
are implemented to decouple the transfer of data between the FPI Bus and the LMB Bus.
This compensates for mismatches in relative bus performance and allows each bus to
operate at its own optimal rate. The block diagram is shown in Figure 18-3
.

Figure 18-3 LFI Block Diagram

Features

• Burst/Single transactions, from the FPI to the LMB and from the LMB to the FPI.
• Pipelined transactions on both sides of the bridge (pipeline with two stages), with the

the exception that FPI transactions to LMB slaves are not pipelined on the LMB.
• Split LMB to FPI read transactions (freeing the LMB during long FPI read

transactions). This feature is programmable.
• High efficiency and performance:

– Fastest access across the bridge takes three cycles, using a bypass.
– There are no dead cycles on arbitration.

• Supports all FPI data sizes: singles (byte/hword/word) or bursts (BTR2/BTR4/ BTR8).
• Supports most LMB data sizes, singles (byte, hword, word and dword) and bursts

(BTR2 and BTR4).
• Can act as the default master on the FPI side.
• Can handle abort, error and retry conditions on both sides of the bridge.
• The LMB clock is off when no transactions are issued to the LFI from both buses and

none is in process in the LFI. The clock to LCU is never off.

Fast FPI Bus

LMB Bus

Data
FIFOData FIFO Address

FIFO
Address

FIFO

LCU
LMB Arbiter

FPI to LMB
Control

LMB to FPI
Control

32 b its
address

32 b its
data

64 b its
da ta

32 b its
address

FP I
con tro ls

LM B
con tro ls

Clock
Control

LTF FTL
User’s Manual 18-7 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
18.4.1 LFI Configuration Register

The LFI has one configuration register that can be addressed as an LMB slave.

Note: Due to the current implementation of the LFI, it is recommended that bit SPLT
should be set to 1 after the CPU has booted code from BootROM. If the CPU is
booted from an external memory, then this bit must be set to 1 by the bootcode.
Failing to do so may result in loss of read accesses to registers with a destructive
effect as well as CPU access to FPI being blocked by any heavy traffic of FPI
peripherals accessing the LMB.

Table 18-2 LFI Register

Register
Short Name

Register Long Name Absolute
Address

Description
see

LFI_CON LFI Control Register F87F FF10H Page 18-8

LFI_CON
LFI Configuration Register Reset Value: 0000 0306H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 SPL
T

r r r r r r rw

Field Bits Type Description

SPLT 0 rw Split Mode Functionality
0 All transactions are taken as non-split

transactions.
1 All transaction are taken as split transactions.

1 [9:8]
[2:1]

r Reserved.

0 [31:10]
,[7:3]

r Reserved. Read as ‘0’ always.
User’s Manual 18-8 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
18.5 Bus Control Units

Each of the three buses—Local Memory Bus (LMB), Fast FPI Bus (F_FPI), and Slow FPI
Bus (S_FPI)—in the TC11IB has its own Bus Control Unit. They are functionally
equivalent and differ only in the number of masters they have to arbitrate and the
different address maps they have to take care of for error processing.

This section provides a description of the FPI-Bus Control Units. The description applies
as well to the LMB-Bus Control Unit, with some exceptions.

The on-chip FPI Bus Control Unit provides bus arbitration, bus error handling, and debug
information for error cases. Its design optimizes the speed of bus arbitration.
Additionally, it is designed for low power consumption and low EMI.

The BCU arbitrates among the FPI Bus agents to determine the next FPI Bus master. It
drives the bus if no other FPI Bus agent is assigned bus ownership to prevent the FPI
Bus from electrically floating. It acts as a bus slave when its registers are targeted by an
FPI Bus transaction.

Figure 18-4 shows the block diagram of the BCU.

Figure 18-4 FPI Bus Control Unit Block Diagram

The Error Processing Unit is responsible for gathering information and loading the debug
registers in the event of a bus error. The default FPI driver becomes active only when no
other bus master is able to drive the bus. The Clock Control Unit, if enabled, awakens
the BCU only as needed. The “Request_FPI_Bus” lines signal a request to the BCU from

BCU

M C B04793

C
on

tr
ol

 &
 D

eb
ug

 R
eg

is
te

rs

D e fau lt FP I
D rive r

C lock
C ontro l

A rb itra tion
U n it

E rro r
P rocess ing

U n it

In terrup t R eques t

G rant_FP I_B us

R equest_FP I_B us

FP I B us
User’s Manual 18-9 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
a bus master and the “Grant_FPI_Bus” lines are used to grant bus ownership. The
control registers control the general operation of the BCU.

18.5.1 FPI Bus Arbitration

The Arbitration Unit (AB) of the BCU determines whether it is necessary to arbitrate for
FPI Bus ownership, and, if so, determines which available bus requestor gets the FPI
Bus for the next data transfer. During arbitration, the bus is granted to the requesting
agent with the highest priority. If no request is pending, the bus is granted to a default
master. If no bus master takes the bus, the BCU itself will drive the FPI Bus to prevent it
from floating electrically.

18.5.1.1 Arbitration Priority
Different arbitration priorities apply to the different buses, as shown in Table 18-3,
Table 18-4, Table 18-5, and Table 18-6 (lower numbers are higher priority).

.

Table 18-3 Priority of LMB-Bus Agents

Priority Agent Comment

0 (high) LFI Bridge

1 Data Memory Unit (DMU) Default master

2 (low) Program Memory Unit (PMU)

Table 18-4 Priority of F_ FPI-Bus Agents (F_BCU_CON.PMS=0)

Note: F_BCU_CON.PMS=0) is default after Reset

Priority Agent Comment

0 (high) Any bus requestor meeting the starvation
protection criteria is assigned this priority

Highest priority; used
only for starvation
protection

1 PCI Bridge

2 Ethernet Unit Receiver

3 Ethernet Unit Transmitter

4 PCI DMA Contr.

5 EBU (XMI)

6 F_FPI-Bus Bridge

7 (low) LMB-Bus Bridge Lowest priority; Default
master
User’s Manual 18-10 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
.

.

In normal operation, one of the bus masters automatically serves as default master. The
bus is granted to this default master whenever there is no request from any other bus
master. In this way, the bus is always driven by one of the masters. In some exceptional
circumstances, however, the BCU must drive the FPI Bus. These conditions include:

• After reset
• A non-existing module is accessed (error)
• A time-out condition occurs (error)
• No other master can be granted to the FPI Bus

Table 18-5 Priority of F_ FPI-Bus Agents (F_BCU_CON.PMS=1)

Priority Agent Comment

0 (high) Any bus requestor meeting the starvation
protection criteria is assigned this priority

Highest priority; used
only for starvation
protection

1 F_FPI-Bus Bridge

2 PCI Bridge

3 Ethernet Unit Receiver

4 Ethernet Unit Transmitter

5 PCI DMA Contr.

6 EBU (XMI)

7 (low) LMB-Bus Bridge Lowest priority; Default
master

Table 18-6 Priority of S_ FPI-Bus Agents

Priority Agent Comment

0 (high) Any bus requestor meeting the starvation
protection criteria is assigned this priority

Highest priority; used
only for starvation
protection

1 TCU (Test and Debug Unit)

2 PCP Default master

3 (low) FPI-Bus Bridge Lowest priority
User’s Manual 18-11 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
18.5.1.2 Bus Starvation Protection (not LMB Bus)

Because assignment of priorities to these six bus agents is fixed, it is possible that a
lower-priority requestor may never be granted the bus if a higher-priority requestor
continuously asks for, and receives, bus ownership. To protect against bus starvation of
lower-priority masters, an optional feature of the TC11IB can detect such cases and
momentarily raise the priority of the lower-priority requestor to the highest priority (above
all other priorities), thereby guaranteeing it access.

Starvation protection employs a counter that is incremented each time an arbitration is
performed by the BCU. When this counter reaches a user-programmable threshold
value, all bus request lines are sampled, and, for each active bus request, a request flag
is set in an internal BCU register. This flag is reset automatically when a master is
granted the bus.

When the counter reaches the threshold value, it is automatically reset to 0 and starts
counting up again. When the next period is finished, the request lines are sampled again.
If an active request is detected, for which the request flag set during the last sample is
still set, it means that this master was not granted the bus during the previous period.
This master will now be set to the highest priority and will be granted service. If there are
several masters for which this starvation condition applies, they are served in the order
of their hardwired priority ranking.

Starvation protection can be enabled or disabled through the CON.SPE bit. The sample
period of the counter is programmed through the CON.SPC bit field. This bit field should
be set to a value at least equal to or greater than the number of masters. Its reset value
is 40H.

18.5.2 Error Handling

Two classes of error condition can arise on the FPI Bus:

• A slave indicates a severe problem—such as an unaligned data access request, by
returning an error code instead of an acknowledge

• A time-out is detected for the current bus operation (indicates a non-responding slave)

Three classes of error condition can arise on the Local Memory Bus:

• A master accesses the un-implemented slave address
• A slave indicates a severe problem with an error acknowledge code
• Split Response fails

A bus error condition causes the BCU to issue an interrupt request to the selected
service provider (usually the CPU), and, if enabled, causes the BCU to capture
information about the bus error condition for debugging.

Bus error information gathering is enabled by default. It can be disabled by setting the
CON.DBG bit to 0. If a bus error occurs when enabled, the status of the bus, including
address, data, and the control information, is captured into registers EADD, EDAT, and
User’s Manual 18-12 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
ECON, respectively. Kernel software must read the debug information in response to the
interrupt to examine and resolve the problem.

Note: If the CPU itself caused the bus error either through a load/store operation via the
DMU or an instruction fetch operation via the PMU, a bus trap is issued to the CPU
in addition to the interrupt issued by the BCU. To handle this condition, the trap
routine in the kernel software must read the BCU error status registers and then
clear the interrupt request from the BCU.

Interpreting the BCU Error Information

Some knowledge about the operation of the internal FPI Bus is required in order to
interpret the captured information in case of a bus error. Although the address and data
values captured in registers EADD and EDAT, respectively, are self-explanatory, the
captured FPI Bus control information needs some more explanation.

Register ECON captures the state of the read (RDN), write (WRN), Supervisor Mode
(SVM), acknowledge (ACK), ready (RDY), abort (ABT), time-out (TOUT), identification
(TAG), and operation code (OPC) lines of the FPI Bus.

The read and write signals are active-low. For regular read or write accesses, only one
of these lines is activated (set to 0). There is one special case defined for the FPI Bus.
If a master performs a read-modify-write transaction (for example, to modify a bit in a
peripheral register), this transaction is indicated by both lines, read and write, being
activated in the first access (read access).

The supervisor mode signal is set to 1 for an access in Supervisor Mode, and set to 0 for
an access in User Mode. The ready signal indicates the end of a transfer. It is normally
driven to 1 in the (last) data cycle. During wait state insertion, ready is driven to 0.

Under certain conditions, a master can abort a transfer that has already started. This is
indicated with the abort signal set to 0.

The time-out signal indicates if there was no response on the bus to an access, and the
programmed time (via CON.TOUT) has elapsed. TOUT is set to one in this case. An
acknowledge code must be driven by the selected slave during each data cycle of an
access.These codes are listed in Table 18-7 and Table 18-8.

Table 18-7 FPI Bus Acknowledge Codes

Code (ACK) Description

00B NSC: No Special Condition.

01B ERR: Bus Error, last data cycle is aborted.

10B SPT: Split Transaction (not used in the TC11IB)

11B RTY: Retry. Slave can currently not respond to the access. Master
needs to repeat the access later.
User’s Manual 18-13 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
Each master on the FPI Bus is assigned a 4-bit identification number, the TAG (see
Table 18-9). This makes it possible to distinguish which master has performed the
current transaction.

Transactions on the FPI Buses and the LMB Bus are classified via a 4-bit operation
code, listed in Table 18-10 and Table 18-11. Note that the split transactions (OPC =
1000B to 1110B) are not used for the FPI Buses in the TC11IB.

Table 18-8 LMB Bus Acknowledge Codes

Code (ACK) Description

000B NSC: No Special Condition.

001B SPT: Split Transaction

010B RTY: Retry. Slave can currently not respond to the access. Master
needs to repeat the access later.

011B ERR: Error Transaction.

111B BTNS: Block Transfer Not Supported.

others Reserved

Table 18-9 FPI Bus TAG Assignments in the TC11IB

TAG-Number Module Description

0 TCU Test Control Unit

1 EBU Master part of External Bus Controller

2 PCP Peripheral Control Processor

3 DMU Data Memory Unit

4 PMU Program Memory Unit

5 PCI PCI DMA

6 ERU Ethernet Receive Unit

7 ETU Ethernet Transmit Unit

8 PCI PCI Bridge

9..15 --- Reserved
User’s Manual 18-14 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control

Block Transfer (BTRx)

These opcodes are used to initiate block data read or write transfers of various block
lengths: 2 to 4 double words.

Table 18-10 FPI Bus Operation Codes (OPC)

OPC Description OPC Description

0000B Single Byte Transfer (8-bit) 1000B Split Block Transfer Request
(1 transfer)

0001B Single Half-Word Transfer (16-bit) 1001B Split Block Transfer Request
(2 transfers)

0010B Single Word Transfer (32-bit) 1010B Split Block Transfer Request
(4 transfers)

0011B Single Double-Word Transfer
(64-bit)

1011B Split Block Transfer Request
(8 transfers)

0100B 2-Word Block Transfer 1100B Split Block Response

0101B 4-Word Block Transfer 1101B Split Block Failure

0110B 8-Word Block Transfer 1110B Split Block End

0111B Reserved 1111 No operation

Table 18-11 LMB Bus Operation Codes (OPC)

OPC Description OPC Description

0000B Single Byte Transfer (8-bit) 1000B Split Block Transfer Request
(2 transfers)

0001B Single Half-Word Transfer (16-bit) 1001B Split Block Transfer Request
(4 transfers)

0010B Single Word Transfer (32-bit) 1010B Split Block Transfer Request
(8 transfers)

0011B Single Double-Word Transfer
(64-bit)

1011B Reserved

0100B Reserved 1100B Split Block Response (2 transfers)

0101B Split Response Failure 1101B Split Block Response (4 transfers)

0110B Reserved 1110B Split Block Response (8 transfers)

0111B Reserved 1111 Split Single Data Transfer
Response
User’s Manual 18-15 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
Split Response Single Data Transfer (SSDTx)

This opcode is used by slaves that support split transaction. The slave drives this opcode
during a split transaction response along with the ID of the former requestor on the Tag
bus and the prior sent target address on the Address bus. The response data size (byte,
half, word or double), is identical to the original request with a single data beat. This
response can also be used for multiple beat responses on a split block transfer request.

Split Response Block Transfer (BSTRx)

This opcode is used by slaves that support split transaction. The slave drives this opcode
during a split transaction response along with the ID of the former requestor on the Tag
bus and the prior sent target address on the Address bus. The response block lengths:
2 to 8.

Split Response Failure (SRF)

This opcode is used by slaves that support split transaction. The slave drives this opcode
together with the prior sent target address on the Address bus and the ID of the former
requestor on the Tag bus to inform the former requestor that it can not return a valid data
response due to an error, such as a parity error.

18.5.3 BCU Power Saving Mode

The BCU can be configured so that it shuts down automatically when not needed by
disabling its internal clock. When it is needed again—for instance, when a bus request
signal is received from a master—the BCU will enable its clock and perform the
arbitration. If no further bus activity is required after the transfer has completed, the BCU
will automatically shut off its clock and return to idle mode.

Automatic power management is controlled through the CON.PSE bit. When set to 1,
power management is disabled, and the BCU clock is always active. This might be
required, for instance, to debug both the active and idle FPI Bus states of an application
via an external emulator or other debugging hardware.
User’s Manual 18-16 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
18.5.4 F_FPI Bus Address Map

The BCU on the F_FPI bus must react on valid addresses being sent out by the master
agents.

Table 18-12 F_FPI Bus Address Map

Seg Address Size Target Action

15 F880 0000H - FFFF FFFFH 120 MB Reserved Generate bus error

F800 0000H - F87F FFFFH 8 MB LMB area LFI Bridge

F7E2 0000H - F7FF FFFFH 15 x 128
KB

- Generate bus error

F7E1 0000H - F7E1 FFFFH 64 KB Core SFR Select the module

F7E0 FF00H - F7E0 FFFFH 256 B CPS Select the module

F200 0600H - F7E0 FEFFH ~ 94 MB - Generate bus error

F200 0000H - F200 05FFH 6x256 byte F_FPI area Select the module

F100 0000H - F1FF FFFFH 16 MB PCI
Configuration
Space

Select the module

F050 0000H - F0FF FFFFH 11 MB - Generate bus error

F040 0000H - F04F FFFFH 1 MB PCI-FPI Bridge Select the module

F000 0000H - F03F FFFFH 4 MB S_FPI area FPI Bridge

14 E880 0000H - EFFF FFFFH 120 MB - Generate bus error

E000 0000H - E87F FFFFH 136 MB LMB area LFI Bridge

13 DF00 0000H - DFFF FFFFH 16 MB S_FPI area FPI Bridge

D800 0000H - DEFF FFFFH 112 MB LMB area LFI Bridge

D000 0000H - D7FF FFFFH 128 MB - Generate bus error

12 C000 0000H - CFFF FFFFH 256 MB - Generate bus error

11 BFFF 0000H - BFFF FFFFH 1 MB - Generate bus error

BFE0 0000H - BFEF FFFFH 1 MB Com-DRAM Select the module

B000 0000H - BFDF FFFFH 254 MB PCI Space Select the module
User’s Manual 18-17 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
Note: If ‘empty’ addresses are accessed within module areas, the module will generate
an access error if required. Otherwise, the access will be terminated by a bus
timeout.

18.5.5 S_FPI Bus Address Map

The BCU on the S_FPI bus must react on valid addresses being sent out by the master
agents.

10 A000 0000H - AFFF FFFFH 256 MB LMB area LFI Bridge

9 9FF0 0000H - 9FFF FFFFH 1 MB - Generate bus error

9FE0 0000H - 9FEF FFFFH 1 MB ComDRAM
(mirrored)

Select the module

9000 0000H - 9FDF FFFFH 254 MB PCI Space
(mirrored)

Select the module

8 8000 0000H - 8FFF FFFFH 256 MB LMB area LFI Bridge

0..7 0000 0000H - 7FFF FFFFH 2 GB PCI Select the module

Table 18-13 S_FPI Bus Address Map

Seg Address Size Target Action

15 F040 0000H - FFFF FFFFH 252 MB LMB/F_FPI area FPI Bridge

F010 0000H - F03F FFFFH 3 MB Reserved

F000 0000H - F00F FFFFH 1 MB Infineon Peripherals Select the module

14 E000 0000H - EFFF FFFFH 256 MB LMB/F_FPI area FPI Bridge

13 DFFF C000H - DFFFFFFFH ~16 KB Boot ROM Select the module

DF00 0000H - DFFF BFFFH ~16 MB Reserved BootROM
space

Generate bus
error

D000 0000H - DEFF FFFFH 240 MB LMB area FPI Bridge

12 C000 0000H - CFFF FFFFH 256 MB LMB area FPI Bridge

11 B000 0000H - BFFF FFFFH 256 MB F_FPI area FPI Bridge

10 A000 0000H - AFFF FFFFH 256 MB LMB area FPI Bridge

9 9000 0000H - 9FFF FFFFH 256MB F_FPI area FPI Bridge

8 8000 0000H - 8FFF FFFFH 256 MB LMB area FPI Bridge

0..7 0000 0000H - 7FFF FFFFH 2 GB F_FPI area FPI Bridge

Table 18-12 F_FPI Bus Address Map (cont’d)
User’s Manual 18-18 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
Note: If ‘Reserved’ addresses are accessed within module areas, the module will result
in unexpected behavior in some pins or generate an access error if required.
Otherwise, the access will be terminated by a bus timeout.

18.5.6 BCU Registers

The BCU registers can be divided into three types, as shown in Figure 18-5.

Figure 18-5 BCU Registers

Table 18-14 BCU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

BCU0_CON BCU0 Control Register 0010H Page 18-20

BCU0_ECON BCU0 Error Control Capture Register 0020H Page 18-24

BCU0_EADD BCU0 Error Address Capture Register 0024H Page 18-25

BCU0_EDAT BCU0 Error Data Capture Register 0028H Page 18-25

BCU0_SRC BCU0 Service Request Control Register F000
0C04H

Page 18-28

BCU1_CON BCU1 Control Register 0010H Page 18-22

BCU1_ECON BCU1 Error Control Capture Register 0020H Page 18-24

BCU1_EADD BCU1 Error Address Capture Register 0024H Page 18-25

BCU1_EDAT BCU1 Error Data Capture Register 0028H Page 18-25

BCU1_SRC BCU1 Service Request Control Register 00FCH Page 18-28

LCU_EATT LCU1 Error Attribute Capture Register 0020H Page 18-27

B C U 0_C O N B C U 0_E C O N

Control Registers Data Registers

B C U 0_E A D D

B C U 0_E D A T

Interrupt Registers

B C U 1_C O N

B C U 1_E C O N

B C U 1_E A D D

B C U 1_E D A T

LC U _E A D D

LC U _E D A T

B C U 0_S R C

B C U 1_S R C

LC U _S R C

LC U _E A TT
User’s Manual 18-19 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
In the TC11IB, the registers of the BCU are located in the address range:

– BCU0 Module Base Address: F200 0000H
BCU0 Module End Address: F200 00FFH

– BCU1 Module Base Address: F000 0200H
BCU1 Module End Address: F000 02FFH

– LCU Module Base Address: F87F FE00H
LCU Module End Address: F87F FEFFH

– Absolute Register Address = Module Base Address + Offset Address
(see Table 18-14)

Note: The BCU allows word accesses only (32-bit) to its control and data registers. Byte
and half-word accesses will result in a bus error.

18.5.6.1 BCU Control Register

The BCU Control Register controls the overall operation of the BCU, including setting the
starvation sample period, the bus timeout period, enabling starvation-protection mode,
and error handling. There is a slight difference in the CON registers for the slow and fast
FPI-Bus: the Fast FPI-Bus BCU allows the arbitration priorities to be modified for better
debugging support. The LMB-Bus BCU has no control register.

LCU_EADD LCU1 Error Address Capture Register 0024H Page 18-26

LCU_EDAT LCU Error Data Capture Register 0028H Page 18-26

LCU_SRC LCU Service Request Control Register 00FCH Page 18-28

BCU0_CON
BCU0 Control Register Reset Value: 4009 FFFFH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SPC 0 PMS SPE PSE 0 DBG

rw r rw rw rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOUT

rw

Table 18-14 BCU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see
User’s Manual 18-20 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
Field Bits Type Description

TOUT [15:0] rw BCU0 Bus Time-Out Value
The bit field defines the number of FPI Bus timeout
cycles. Default after reset is FFFFH (= 65536 bus
cycles).

DBG 16 rw BCU0 Debug Trace Enable
0 BCU0 debug trace disabled. No error

information captured.
1 BCU0 debug trace enabled (default after reset).

Error information is captured in registers
BCU0_EADD, BCU0_EDAT, and
BCU0_ECON.

PSE 18 rw BCU0 Power Saving (Automatic Clock Control)
Enable
0 BCU0 power saving disabled (default after

reset)
1 BCU0 power saving enabled

SPE 19 rw BCU0 Starvation Protection Enable
0 BCU0 protection disabled
1 BCU0 protection enabled (default after reset)

PMS 20 rw BCU0 Priority Mode Selection
0 BCU0 standard priority mode (default after

reset)
1 BCU0 debug priority mode

SPC [31:24] rw BCU0 Sample Period Control
Defines the sample period for the starvation counter.
Must be larger than the number of masters. The reset
value is 40H.

0 17,
[23:21]

r Reserved; read as 0; should be written with 0.
User’s Manual 18-21 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control

BCU1_CON
BCU1 Control Register Reset Value: 4009 FFFFH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SPC 0 SPE PSE 0 DBG

rw r rw rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOUT

rw

Field Bits Type Description

TOUT [15:0] rw BCU1 Bus Timeout Value
The bit field defines the number of FPI Bus time-out
cycles. Default after reset is FFFFH (= 65536 bus
cycles).

DBG 16 rw BCU1 Debug Trace Enable
0 BCU1 debug trace disabled. No error

information captured.
1 BCU1 debug trace enabled (default after reset).

Error information is captured in registers
BCU0_EADD, BCU0_EDAT, and
BCU0_ECON.

PSE 18 rw BCU1 Power Saving (Automatic Clock Control)
Enable
0 BCU1 power saving disabled (default after

reset)
1 BCU1 power saving enabled

SPE 19 rw BCU1 Starvation Protection Enable
0 BCU1 protection disabled
1 BCU1 protection enabled (default after reset)

SPC [31:24] rw BCU1 Sample Period Control
Defines the sample period for the starvation counter.
Must be larger than the number of masters. The reset
value is 40H.

0 17,
[23:21]

r Reserved; read as 0; should be written with 0.
User’s Manual 18-22 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
18.5.6.2 BCU Debug Registers

The capture of bus error conditions is enabled by setting CON.DBG to 1. In case of a bus
error, information about the condition will then be stored in the BCU debug registers. The
BCU debug registers can then be examined by software to help determine the cause of
the error.

If enabled, and a bus error occurs, the BCU Error Control Capture Register, ECON, will
hold the captured FPI Bus control information, and a count of the number of bus errors.
The BCU Error Address Capture Register, EADD, will store the captured FPI Bus
address, and the BCU Error Data Capture Register, EDAT, will store the captured FPI
Bus data.

If the capture of bus error conditions is disabled (BCU_CON.DBG = 0), these registers
remain untouched.

Note: These registers store only the first error. In case of multiple bus errors, an error
counter ECON[15:0] shows the number of bus errors since the first error occurred.
A hardware reset clears this 16-bit counter to 0, but the counter can be set to any
value through software. This counter is prevented from overflowing, so a value of
216 - 1 indicates that at least many errors have occurred, but there may have been
more. After ECON has been read, the ECON, EADD and EDAT registers are re-
enabled to trace FPI Bus activity.

User’s Manual 18-23 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control

BCU0_ECON
BCU0 Error Control Capture Register Reset Value: 0000 0000H
BCU1_ECON
BCU1 Error Control Capture Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OPC TAG RDN WRN SVM ACK ABT RDY T
OUT

rwh rwh rwh rwh rwh rwh rwh rwh rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ERRCNT

rwh

Field Bits Type Description

ERRCNT [15:0] rwh Number of FPI Bus Error Counter
ERRCNT is incremented on each occurrence of an
FPI Bus error. ERRCNT is reset to 0000H after the
BCUx_ECON register is read (x=0,1).

TOUT 16 rwh State of FPI Bus Timeout Signal (active high)

RDY 17 rwh State of FPI Bus Ready Signal
(active high)

ABT 18 rwh State of FPI Bus Abort Signal
(active low)

ACK [20:19] rwh State of FPI Bus Acknowledge Signal

SVM 21 rwh State of FP Bus Supervisor Mode Signal
(active high)

WRN 22 rwh State of FPI Bus Write Signal
(active low).

RDN 23 rwh State of FPI Bus Read Signal
(active low).

TAG [27:24] rwh FPI Bus Tag Number
see Table 18-9

OPC [31:28] rwh FPI Bus Operation Code
see Table 18-10
User’s Manual 18-24 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control

18.5.6.3 LCU Debug Registers

The LCU follows the LMB states. If any error occurs on LMB bus, LCU will issues an LMB
error interrupt, and captures the status of the LMB bus, including the address, attributes
and data, into registers EADD, EATT and EDAT, respectively. If there are multiple errors,
only the information of the first error is captured. Software should read the debug
information in response to the interrupt to examine and resolve the problem.

The error capture registers are written on the first error detected on the LMB bus. Once
an error transaction is captured, the LEATT lock bit is set. No further error transaction

BCU0_EADD
BCU0 Error Address Capture Register Reset Value: 0000 0000H
BCU1_EADD
BCU1 Error Address Capture Register Reset Value: 0000 0000H

31 0

FPIADR

rwh

Field Bits Type Description

FPIADR [31:0] rwh Captured FPI Bus Address (in case of a bus error)

Note: If there are multiple errors, only the address of
the first error is captured.

BCU0_EDAT
BCU0 Error Data Capture Register Reset Value: 0000 0000H
BCU1_EDAT
BCU1 Error Data Capture Register Reset Value: 0000 0000H

31 0

FPIDAT

rwh

Field Bits Type Description

FPIDAT [31:0] rwh Captured FPI Bus Data (in case of a bus error)

Note: If there are multiple errors, only the data for the
first error are captured.
User’s Manual 18-25 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
information will be captured by the error capture registers until the LEATT Lock bit is
cleared, by writing 1 into it. After reset, the values of these registers are undefined.

The EADD register captures the Local bus Address of the transaction that got an error
indication. If there are multiple errors, only the address of the first error is captured.

The EDAT register captures the Local Bus Data of the write transaction that got an error
indication. If there are multiple errors, only the data of the first error is captured.

LCU_EADD
Error Address Capture Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LMBADR

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LMBADR

r

Field Bit Type Description

LMBADR [31:0] r Captured LMB-Bus Address (in case of a bus
error).

Note: If there are multiple errors, only the address of
the first error is captured.

LCU_EDAT
Error Data Capture Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LMBDAT

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LMBDAT

r

User’s Manual 18-26 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
The EATT register captures the Local bus Attributes of the transaction that got an error
indication. If there are multiple errors, only the data of the first error is captured.

Field Bit Type Function

LMBDAT [31:0] r Captured LMB-Bus Data (in case of a bus error).

Note: If there are multiple errors, only the data for the
first error are captured.

LCU_EATT
Error Attribute Capture Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OPC 0 TAG RD WR ACK 0

rw r rw rw rw rw r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 LOC
K

r rw

Field Bit Type Description

LOCK [0] rw Lock Bit

ACK [21:20] rw State of LMB-Bus Acknowledge Signal.
see Table 18-8

WR 22 rw State of LMB-Bus Write Signal (active low).

RD 23 rw State of LMB-Bus Read Signal (active low).

TAG [26:24] rwh LMB-Bus Tag Number.
see Table 18-9

OPC [31:28] rwh LMB-Bus Operation Code.
see Table 18-11

0 [19:1]
27

r Reserved; read as 0; should be written with 0.
User’s Manual 18-27 V1.0, 2002-03

TC11IB
System Units

LMB Bus, FPI Buses, and Bus Control
18.5.6.4 BCU Service Request Control Register

In case of a bus error, the BCU generates an interrupt request to the selected service
provider (usually the CPU). This interrupt request is controlled through a standard
service request control register.

Note: Further details of interrupt handling and processing are described in Chapter 15
in this User’s Manual.

BCU0_SRC
BCU0 Service Request Control Register Reset Values: 0000 0000H
BCU1_SRC
BCU1 Service Request Control Register Reset Values: 0000 0000H
LCU_SRC
LCU Service Request Control Register Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number

TOS [11:10] rw Type of Service Control

SRE 12 rw Service Request Enable

SRR 13 rh Service Request Flag

CLRR 14 w Request Clear Bit

SETR 15 w Request Set Bit

0 [9:8],
[31:16]

r Reserved; read as 0; should be written with 0.
User’s Manual 18-28 V1.0, 2002-03

TC11IB
System Units

System Timer
19 System Timer

19.1 Overview

This chapter describes the System Timer (STM). The TC11IB’s STM is designed for
global system timing applications requiring both high precision and long range. The STM
has the following features:

• Free-running 56-bit counter
• All 56 bits can be read synchronously
• Different 32-bit portions of the 56-bit counter can be read synchronously
• Driven by clock, fSTM = 48 MHz.
• Counting begins at power-on reset
• Continuous operation is not affected by any reset condition except power-on reset

Special STM register semantics provide synchronous views of the entire 56-bit counter,
or 32-bit subsets at different levels of resolution.

The maximum clock period is 256 × 1 / fSTM. At fSTM = 48 MHz, for example, the STM
counts 47.6 years before overflowing. Thus, it is capable of continuously timing the entire
expected product life-time of a system without overflowing.

19.2 Kernel Functions

The STM is an upward counter, running with the system clock frequency
(fSTM = fSYSCLK = 48MHz). It is enabled per default after reset, and immediately starts
counting up. Other than via reset, it is impossible to affect the contents of the timer during
normal operation of the application, it can only be read, but not written to. Depending on
the implementation of the clock control of the STM, the timer can optionally be disabled
or suspended for power-saving and debugging purposes via a clock control register.

Due to the 56-bit width of the STM, it is impossible to read its entire contents with one
instruction. It needs to be read with two load instructions. Since the timer would continue
to count between the two load operations, there is a chance that the two values read are
not be consistent (due to possible overflow from the low part of the timer to the high part
between the two read operations). To enable a synchronous and consistent reading of
the STM contents, a capture register (CAP), is implemented. It latches the contents of
the high part of the STM each time the low part, TIM0, is read. Thus, it holds the upper
value of the timer at exactly the same time when the lower part is read. The second read
operation would then read the contents of the CAP to get the complete timer value.

The System Timer can also be read in sections from seven registers, TIM0 through
TIM6, which select increasingly higher-order 32-bit ranges of the System Timer. These
can be viewed as individual 32-bit timers, each with a different resolution and timing
range.
User’s Manual 19-1 V1.0, 2002-03

TC11IB
System Units

System Timer
Figure 19-1 is an overview on the System Timer module. It shows the options for
reading parts of STM contents.

Figure 19-1 General Block Diagram of the STM Module

STM Module

00 H C A P

TIM 6

TIM 5

TIM 4

TIM 3

TIM 2

TIM 1

TIM 0

00 H

55 47 39 31 23 15 7

56-B it S ys tem T im er

A ddress
D ecoder

C lock
C ontro l

E nab le /
D isab le

P O R S T

fS TM

M C A04795
User’s Manual 19-2 V1.0, 2002-03

TC11IB
System Units

System Timer
Table 19-1 is an overview on the individual timer registers with their resolution and
timing range. As an example, the values for a 48 MHz system frequency are given.

Table 19-1 System Timer Resolutions and Ranges

Register STM
Bits

Resolution [s] Range [s] Example Frequency: 48 MHz
fSTM = fSYSCLK

Resolution Range

TIM0 [31:0] fSTM 232 / fSTM 20.83 ns 89.48 s

TIM1 [35:4] 16 / fSTM 236 / fSTM 333.33 ns 1431.66 s

TIM2 [39:8] 256 / fSTM 240 / fSTM 5.33 µs 381.77 min

TIM3 [43:12] 4096 / fSTM 244 / fSTM 85.33 µs 101.8 h

TIM4 [47:16] 65536 / fSTM 248 / fSTM 1.36 ms 67.87 days

TIM5 [51:20] 220 / fSTM 252 / fSTM 21.85 ms 2.98 yr

TIM6 [55:32] 232 / fSTM 256 / fSTM 89.48 s 47.6 yr

CAP [55:32] 232 / fSTM 256 / fSTM 89.48 s 47.6 yr
User’s Manual 19-3 V1.0, 2002-03

TC11IB
System Units

System Timer
19.3 Kernel Registers

The STM registers can be divided into two types, as shown in Figure 19-2.

Figure 19-2 SFRs of the STM Module

Note: All STM kernel register names described in this section will be referenced in other
parts of this TC11IB User’s Manual with the module name prefix “STM_”.

Table 19-2 STM Kernel Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

TIM0 Timer Register 0 0010H Page 19-5

TIM1 Timer Register 1 0014H Page 19-5

TIM2 Timer Register 2 0018H Page 19-5

TIM3 Timer Register 3 001CH Page 19-5

TIM4 Timer Register 4 0020H Page 19-6

TIM5 Timer Register 5 0024H Page 19-6

TIM6 Timer Register 6 0028H Page 19-6

CAP Timer Capture Register 002CH Page 19-6

M C A04796

TIM 0

Data Registers

TIM 1

TIM 2

TIM 3

TIM 4

TIM 5

TIM 6

C A P
User’s Manual 19-4 V1.0, 2002-03

TC11IB
System Units

System Timer
TIM1 to TIM6 provide 32-bit views at varying resolutions of the underlying STM counter.

TIM0
Timer Register 0 Reset Value: 0000 0000H

31 0

STM[31:0]

r

TIM1
Timer Register 1 Reset Value: 0000 0000H

31 0

STM[35:4]

r

TIM2
Timer Register 2 Reset Value: 0000 0000H

31 0

STM[39:8]

r

TIM3
Timer Register 3 Reset Value: 0000 0000H

31 0

STM[43:12]

r

User’s Manual 19-5 V1.0, 2002-03

TC11IB
System Units

System Timer
Note: CAP captures the system timer bits [55:32] when a read of TIM0 (contains the
system timer bits [31:0]) is performed in order to enable software to operate with
a coherent value of all the 56 bits of the system timer.

Note: The bits in registers CAP - TIM0 are all read only.

TIM4
Timer Register 4 Reset Value: 0000 0000H

31 0

STM[47:16]

r

TIM5
Timer Register 5 Reset Value: 0000 0000H

31 0

STM[51:20]

r

TIM6
Timer Register 6 Reset Value: 0000 0000H

31 24 23 0

0 STM[55:32]

 r r

CAP
Timer Capture Register Reset Value: 0000 0000H

31 24 23 0

0 STM_CAP[55:32]

 r r
User’s Manual 19-6 V1.0, 2002-03

TC11IB
System Units

System Timer
19.4 External Register

The clock control register allows to switch the System Timer on or off. After power-on
reset, the System Timer is always enabled and starts counting. The System Timer can
be disabled by setting bit DISR to 1.

Figure 19-3 STM External Register

STM_CLC
System Timer Clock Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DIS
S

DIS
R

r r rw

Field Bits Type Description

DISR 0 rw Module Disable Request Bit
Used for enable/disable control of the module.
0 No disable requested
1 Disable requested

DISS 1 r Module Disable Status Bit
Bit indicates the current status of the module
0 Module is enabled
1 Module is disabled

0 [31:2] r Reserved; read as 0; should be written with 0;

M C A04797

S TM _C LC

Control Register

S TM _C LC : S ys tem T im er C lock C ontro l R eg iste r
User’s Manual 19-7 V1.0, 2002-03

TC11IB
System Units

System Timer
19.5 STM Register Address Ranges

In the TC11IB, the registers of the STM module are located in the following address
range:

– Module Base Address: F000 0300H
Module End Address: F000 03FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 19-2)
User’s Manual 19-8 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20 Watchdog Timer
This chapter describes the TC11IB Watchdog Timer (WDT). Topics include an overview
of the Watchdog Timer function and descriptions of the registers, the password
protection scheme, accessing registers, modes, and initialization.

20.1 Watchdog Timer Overview

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and
recover from software or hardware failure. The WDT helps to abort an accidental
malfunction of the TC11IB in a user-specified time period. When enabled, the WDT will
cause the TC11IB system to be reset if the WDT is not serviced within a user-
programmable time period. The CPU must service the WDT within this time interval to
prevent the WDT from causing a TC11IB system reset. Hence, routine service of the
WDT confirms that the system is functioning properly.

In addition to this standard “Watchdog” function, the WDT incorporates the EndInit
feature and monitors its modifications. A system-wide line is connected to the ENDINIT
bit implemented in a WDT control register, serving as an additional write-protection for
critical registers (besides Supervisor Mode protection). Registers protected via this line
can only be modified when Supervisor Mode is active and bit ENDINIT = 0.

Because servicing the Watchdog and modifications of the ENDINIT bit are critical
functions that must not be allowed in case of a system malfunction, a sophisticated
scheme is implemented which requires a password and guard bits during accesses to
the WDT control register. Any write access that does not deliver the correct password or
the correct value for the guard bits is regarded as a malfunction of the system, and a
Watchdog reset is triggered. In addition, even after a valid access has been performed
and the ENDINIT bit has been cleared to provide access to the critical registers, the
Watchdog imposes a time-limit for this access window. If ENDINIT has not been properly
set again before this limit expires, the system is assumed to malfunction, and a
Watchdog reset is triggered. These stringent requirements, although not a guarantee,
nevertheless provide a high degree of assurance of the robustness of system operation.

A further enhancement in the TC11IB’s Watchdog Timer is its reset prewarning
operation. Instead of immediately resetting the device on the detection of an error, as
known from standard Watchdogs, the WDT first issues an Non-maskable Interrupt (NMI)
to the CPU before finally resetting the device at a specified time period later. This gives
the CPU a chance to save system state to memory for later examination of the cause of
the malfunction, an important aid in debugging.
User’s Manual 20-1 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.2 Features of the Watchdog Timer

The major features of the WDT are summarized here. The Watchdog Timer is
implemented in the System Control Unit (SCU) module of the TC11IB. Figure 20-1 gives
an overview of its interface signals.

• 16-bit Watchdog counter.
• Selectable input frequency: fSYSCLK/256 or fSYSCLK/16384 (fSYSCLK = 48 MHz).
• 16-bit user-definable reload value for normal Watchdog operation, fixed reload value

for Time-Out and Prewarning Modes.
• Incorporation of the ENDINIT bit and monitoring of its modifications.
• Sophisticated password access mechanism with fixed and user-definable password

fields.
• Proper access always requires two write accesses. The time between the two

accesses is monitored by the WDT and limited.
• Access Error Detection: Invalid password (during first access) or invalid guard bits

(during second access) trigger the Watchdog reset generation.
• Overflow Error Detection: An overflow of the counter triggers the Watchdog reset

generation.
• Watchdog function can be disabled; access protection and ENDINIT monitor function

remain enabled.
• Double Reset Detection: If a Watchdog induced reset occurs twice without a proper

access to its control register in between, a severe system malfunction is assumed and
the TC11IB is held in reset until a power-on reset. This prevents the device from being
periodically reset if, for instance, connection to the external memory has been lost
such that even system initialization could not be performed.

• Important debugging support is provided through the reset prewarning operation by
first issuing an NMI to the CPU before finally resetting the device after a certain period
of time.

Figure 20-1 Interface of the WDT Inside and Outside the SCU Module

M C A04798

SCU Module

To C P U
N M I

To S ys tem
E ND IN IT

To S ys tem
R eset

W atchdog Tim er (W DT)A ddress
D ecoder

W D TTIM [15] W D T_R S TW D T_N M I

fSY SC LK
User’s Manual 20-2 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.3 The EndInit Function

Because understanding of the ENDINIT bit and its function is an important prerequisite
for the descriptions in the following sections, its function is explained first.

There are a number of registers in the TC11IB that are usually programmed only once
during the initialization sequence of the application. Modification of such registers during
normal application run can have a severe impact on the overall operation of modules or
the entire system.

While the Supervisor Mode, which allows writes to registers only when it is active,
provides a certain level of protection against unintentional modifications, this might not
provide enough security for system critical registers.

The TC11IB provides one more level of protection for such registers via the EndInit
feature. This is a highly secure write protection scheme that makes unintentional
modifications of registers protected by this feature nearly impossible.

The EndInit feature consists of an ENDINIT bit incorporated in the Watchdog Timer
control register, WDT_CON0. A system-wide line is connected to this bit. Registers
protected via EndInit use the state of this line to determine whether or not writes are
enabled. Writes are only enabled if ENDINIT = 0 and Supervisor Mode is active. Write
attempts if this condition is not true will cause a bus error, the register contents will not
be modified in this case.

An additional line, controlled through a separate bit, to protect against unintentional
writes does provide an extra level of security. However, to get the highest level of
security, this bit is incorporated in the highly secure access protection scheme
implemented in the Watchdog Timer. This is a complex procedure, that makes it nearly
impossible for the ENDINIT bit to be modified unintentionally. It is explained in the
following sections. In addition, the WDT monitors ENDINIT modifications by starting a
time-out sequence each time software opens access to the critical registers through
clearing ENDINIT to 0. If the Time-out period ends before ENDINIT is set to 1 again, a
malfunction of the software and/or the hardware is assumed and the device is reset.

The access protection scheme and the EndInit time-out operation of the WDT is
described in the following sections. Table 20-1 lists the registers that are protected via
the EndInit feature in the TC11IB.
User’s Manual 20-3 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.4 Watchdog Timer Operation

The following sections describe the registers, the operation, and different modes of the
WDT, as well as the password access mechanism. Figure 20-2 gives an example for the
operation of the Watchdog Timer. A rough description of the sequence of events in this
figure is provided here. Refer to the following sections for a detailed explanation.

1. Time-Out Mode is automatically entered after reset. Timer counts with slowest input
clock.

2. Time-Out Mode terminated and Normal Mode is entered by setting ENDINIT to 1.
3. Normal Mode is terminated and Time-Out Mode is entered through a password

access to WDT_CON0. The reload value was set to REL_1.
4. Time-Out Mode is terminated and Normal Mode entered again by setting ENDINIT to

1. The reload value WDTREL has been changed to REL_2 and the timer input clock
was set to the fast clock.
Events 3) and 4) constitute a Watchdog Timer service sequence.

5. The Watchdog Timer was not serviced and continued to count until overflow. Reset
Prewarning Mode is entered. Timer counts with selected fast input clock. Watchdog
operation cannot be altered or stopped in this mode.

6. Timer continued to count until overflow, generating a Watchdog Timer reset.
7. Time-Out Mode is automatically entered after reset. Timer counts with slowest input

clock.
8. Time-Out Mode is terminated and Normal Mode is entered again.

Table 20-1 TC11IB Registers Protected via the EndInit Feature

Normal Mode Description

mod_CLC All clock control registers of the individual peripheral modules are
EndInit-protected.

BTV, BIV, ISP Trap and interrupt vector table pointer as well as the interrupt stack
pointer are EndInit-protected.

WDT_CON1 The Watchdog Timer Control Register 1, which controls the disabling
and the input frequency of the Watchdog Timer, is EndInit-protected. In
addition, its bits will only have an effect on the WDT when ENDINIT is
properly set to 1 again.
User’s Manual 20-4 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
Figure 20-2 Example for an Operation Sequence of the Watchdog Timer

20.4.1 WDT Register Overview

Two control registers, WDT_CON0 and WDT_CON1, and one status register, WDT_SR,
serve for communication of the software with the WDT. This section provides a short
overview and describes the access mechanisms of the WDT registers. Detailed layout
and bit descriptions of the registers are given in Section 20.6.

Register WDT_CON0 holds the ENDINIT bit, a register lock status bit (WDTLCK), an
8-bit user-definable password field (WDTPW), and the user-definable reload (start)
value (WDTREL) for the Watchdog Timer in Normal Mode.

Register WDT_CON1 contains two bits. Bit WDTIR is a request bit for the Watchdog
Timer input frequency selection, while bit WDTDR is a request bit for the Disable Mode
of the WDT. These two bits are only request bits in that they do not actually control the
input frequency and disabling of the WDT. They can be modified only when the ENDINIT
bit is 0, but they will have an effect only when ENDINIT is properly set to 1 again.

The status register WDT_SR holds information about the current conditions of the WDT.
It contains the current timer count value (WDTTIM), three bits indicating the mode of
operation (WDTTO for Time-Out Mode, WDTPR for Prewarning Mode, and WDTDS for
Disable Mode), and the error indication bits for timer overflow (WDTOE) and access
error (WDTAE).

While WDT_SR is a read-only register, the control registers can be read and written.
Reading these registers is always possible; a write access, however, must follow certain

M C T04799

R E L_1

R E L_2

FFFC H

FFFF H

1)

2)

3)
4)

5)

W D T R ese t

8)

6) 7)

T im e-O ut
M ode

N orm a l
M ode

T im e-
O ut
M ode

T im e-O ut
M ode

P rew arn ing
M ode

N orm al
M ode
User’s Manual 20-5 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
protocols. Register WDT_CON1 is Supervisor Mode and EndInit-protected, thus,
Supervisor Mode must be active and bit ENDINIT must be 0 for a successful write to this
register. If one or both conditions are not met, a bus error will be generated, and the bits
in WDT_CON1 will be not modified.

Register WDT_CON0 requires a much more complex write procedure as it has a special
write protection mechanism. Proper access to WDT_CON0 always requires two write
accesses in order to modify its contents. The first write access requires a password to
be written to the register to unlock it. This access is called Password Access. Then, the
second access can modify the register’s contents. It is called Modify Access. When the
modify access completes, WDT_CON0 is locked again automatically. (Even if no
parameters are changed in the second write access, it is still called a modify access.) If
the Modify Access sets WDT_CON0.ENDINIT = 0, then other protected system
registers, such as WDT_CON1, are unlocked and can be modified.

Note: WDT_CON0 is automatically re-locked after a modify access, so a new password
access must be performed to modify it again. Note further that the WDT switches
to Time-Out Mode as a side-effect of a successful password access, so that
protected registers can remain unlocked at most for the duration of one Time-out
Period. Otherwise, the system will be forced to reset.

20.4.2 Modes of the Watchdog Timer

The Watchdog Timer can operate in one of four different modes:

• Time-Out Mode
• Normal Mode
• Disable Mode
• Prewarning Mode

The following description provides a short overview of these modes and how the WDT
changes from one mode to the other. As well as these major operating modes, the WDT
has special behavior during power-saving and OCDS suspend modes. Detailed
discussions of each of the modes can be found in Section 20.4.6.

Figure 20-3 provides a state diagram of the different modes of the WDT and the
transition possibilities. Please refer to the description for the conditions for changing from
one state to the other.
User’s Manual 20-6 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer

Figure 20-3 State Diagram of the Modes of the WDT

20.4.2.1 Time-Out Mode

The Time-Out Mode is the default mode after a reset. It is also always entered when a
valid password access to register WDT_CON0 is performed (see Section 20.4.3). The
timer is set to a predefined value and starts counting upwards. Time-Out Mode can only
be exited properly by setting ENDINIT to one with a correct access sequence. If an
improper access to the WDT is performed, or if the timer overflows before ENDINIT is
set to 1, a Watchdog Timer NMI request (WDT_NMI) is requested, and Prewarning
Mode is entered. A reset of the TC11IB is imminent and can no longer be stopped.

A proper exit from Time-Out Mode can either be to the Normal or the Disable Mode,
depending on the state of the disable request bit, WDTDR, in register WDT_CON1.

20.4.2.2 Normal Mode

In Normal Mode (WDTDR = 0), the WDT operates in a standard Watchdog fashion. The
timer is set to a user-defined start value, and begins counting up. It has to be serviced
before the counter overflows. Servicing is performed through a proper access sequence
to the WDT control register WDT_CON0. This reloads the timer with the start value, and
normal operation continues.

If the WDT is not serviced before the timer overflows, or if an invalid access to the WDT
is performed, a system malfunction is assumed. Normal Mode is terminated, a Watchdog
Timer NMI request (WDT_NMI) is requested, and Prewarning Mode is entered. A reset
of the TC11IB is imminent and can no longer be stopped.

M C A 04800

R ese t

T im e-O ut
M ode

Norm a l
M ode

P rew arn ing
M ode

D isab le
M ode
User’s Manual 20-7 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
Because servicing the WDT is an access sequence, first requiring a valid password
access to register WDT_CON0, the WDT will enter Time-Out Mode until the second
proper access is performed.

20.4.2.3 Disable Mode

Disable Mode is provided for applications which truly do not require the Watchdog Timer
function. It can be entered from Time-Out Mode when the disable request bit WDTDR is
set to 1. The timer is stopped in this mode. However, disabling the WDT does only stop
it from performing the standard Watchdog function (Normal Mode), eliminating the need
for timely service of the WDT. It does not disable Time-Out and Prewarning Mode. If an
access to register WDT_CON0 is performed in Disable Mode, Time-Out Mode is entered
if the access was valid, and Prewarning Mode is entered if the access was invalid. Thus,
the ENDINIT monitor function as well as (a part of) the system malfunction detection will
still be active.

20.4.2.4 Prewarning Mode

Prewarning Mode is entered always when a Watchdog error is detected. This can be an
overflow of the timer in Normal or Time-Out Mode, or an invalid access to register
WDT_CON0. Instead of immediately generating a reset of the device, as known from
other Watchdog timers, the TC11IB Watchdog Timer provides the system with a chance
to save important state information before the reset occurs. This is done through first
activating an NMI trap request to the CPU, warning it about the coming reset (reset
prewarning). If the CPU is still able to do so (depending on the type and severity of the
detected malfunction), it can react on the Watchdog NMI request and can save important
system state to memory. This saved system state can then be examined during
debugging to determine the cause of the malfunction. If the part would be immediately
reset on the detection of a Watchdog error, this debugging information would never be
available, and investigating the cause of the malfunction would be a very difficult task.

In Prewarning mode, after having generated the NMI request, the WDT counts for a
specified period of time, and then generates a Watchdog reset for the device. This reset
generation cannot be avoided in this mode; the WDT does not react anymore to
accesses to its registers, nor will it change its state. This is to prevent a malfunction from
falsely terminating this mode, disabling the reset, and letting the device to continue to
function improperly.

Note: In Prewarning Mode, it is not required for the part waits for the end of this mode
and the reset. After having saved required state in the NMI routine, software can
execute a soft reset to shorten the time. However, the state of the Watchdog
Status Register should also be saved in this case, because the error flags
contained in it will be cleared due to the soft reset (this is not the case if the
Watchdog reset is awaited).
User’s Manual 20-8 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.4.3 Password Access to WDT_CON0

A correct password must be written to register WDT_CON0 in order to unlock it for
modifications. Software must either know the correct password in advance or it can
compute it at runtime. The password required to unlock the register is formed by a
combination of bits in registers WDT_CON0 and WDT_CON1, plus a number of guard
bits. Table 20-2 summarizes the requirements for the password.

When reading register WDT_CON0, bit positions [7:4] always return 0s. As can be seen
from Table 20-2, the password is designed such that it is not possible to just read the
contents of a register and use this as the password. The password is never identical to
the contents of WDT_CON0 or WDT_CON1, it is always required to modify the read
value (at least bits 1 and [7:4]) to get the correct password. This prevents a malfunction
from accidentally reading a WDT register’s contents and writing it to WDT_CON0 as an
unlocking password.

If the password matches the requirements, WDT_CON0 will be unlocked as soon as the
password access has finished. The unlocked condition will be indicated by
WDT_CON0.WDTLCK = 0.

If WDT_CON0 is successfully unlocked, a subsequent write access can modify it, as
described in Section 20.4.4.

If an improper password value is written to WDT_CON0 during the password access, a
Watchdog Access Error condition exists. Bit WDTAE is set and the Prewarning Mode is
entered.

The user-definable password, WDTPW, provides additional options for adjusting the
password requirements to the application’s needs. It can be used, for instance, to detect
unexpected software loops or to monitor the execution sequence of routines. See
Section 20.5.4.

Table 20-2 Password Access Bit Pattern Requirements

Bit Position Required Value

0 Current state of the ENDINIT bit, WDT_CON0.ENDINIT

1 Fixed; must be written with 0.

2 Current state of the input frequency request bit, WDT_CON1.WDTIR

3 Current state of the input frequency request bit, WDT_CON1.WDTDR

[7:4] Fixed; must be written to 1111B

[15:8] Current value of user-definable password field, WDT_CON0.WDTPW

[31:16] Current value of user-definable reload value, WDT_CON0.WDTREL
User’s Manual 20-9 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.4.4 Modify Access to WDT_CON0

If WDT_CON0 is successfully unlocked as described in Section 20.4.3, the following
write access to WDT_CON0 can modify it. However, also this access must follow certain
requirements in order to be accepted and regarded as valid. Table 20-3 lists the required
bit patterns. If the access does not follow these rules, a Watchdog Access Error condition
is detected, bit WDTAE is set and the Prewarning Mode is entered.

After the modify access has completed, WDT_CON0.WDTLCK is set to 1 again by
hardware, automatically re-locking WDT_CON0. Before the register can be modified
again, a valid password access must be executed again.

20.4.5 Term Definitions for WDT_CON0 Accesses

To simplify the descriptions in the following sections, a number of terms are defined to
indicate the type of access to register WDT_CON0:

Watchdog Access Sequence: Two accesses to register WDT_CON0 consisting of first
a Password Access followed by a Modify Access. The two accesses do not have to be
adjacent accesses, any number of accesses to other addresses can be between these
accesses unless the Time-out Period is not exceeded.

Password Access: The first access of a Watchdog Access Sequence to register
WDT_CON0 intended to open WDT_CON0 for modifications. This access needs to write
a defined password value to WDT_CON0 in order to successfully open WDT_CON0.

Valid Password Access: A Password Access with the correct password value. A Valid
Password Access opens register WDT_CON0 for one, and only one, Modify Access. Bit
WDTLCK is set to 0 after this access. The Watchdog Timer is placed into the Time-Out
Mode after a Valid Password Access in Normal Mode or Disabled Mode.

Table 20-3 Modify Access Bit Pattern Requirements

Bit Position Value

0 User definable; desired value for the ENDINIT bit, WDT_CON0.ENDINIT.

1 Fixed; must be written with 1.

2 Fixed; must be written with 0.

3 Fixed; must be written with 0.

[7:4] Fixed; must be written with 1111B.

[15:8] User-definable; desired value of user-definable password field,
WDT_CON0.WDTPW.

[31:16] User-definable; desired value of user-definable reload value,
WDT_CON0.WDTREL.
User’s Manual 20-10 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
Modify Access: The second access of an Watchdog Access Sequence to register
WDT_CON0 intended to modify parameters in WDT_CON0. The parameters that can
be modified are WDTREL, WDTPW and ENDINIT. Special guard bits in WDT_CON0
must be written with predefined values in order for this access to be accepted.

Valid Modify Access: A Modify Access with the correct guard bit values. The values
written to WDTREL, WDTPW, and ENDINIT are in effect after completion of this access.
Bit WDTLCK is automatically set to 1 after this access. Register WDT_CON0 is locked
until it is re-opened with a Valid Password Access again.

20.4.6 Detailed Descriptions of the WDT Modes

The following subsections provide detailed descriptions of each of the modes of the
WDT. The entry conditions and actions, operation in this mode, as well as exit conditions
and the succeeding mode are listed for each mode.

20.4.6.1 Time-Out Mode Details

Time-Out Mode is the default after reset, and is entered each time a Valid Password
Access to register WDT_CON0 is performed.

Table 20-4 WDT Time-Out Mode

State /
Action

Description

Entry – Automatically after any reset.
– If a valid password was written to WDT_CON0 in Normal or Disable Mode

Actions
on Entry

– WDTTIM is set to FFFCH; WDTTO is set to 1; WDTDS is set to 0.
– ENDINIT = 0 if mode entered through reset; otherwise, it retains its

previous value.
– Bits WDTAE and WDTOE depend on their state before the reset if the

reset was caused by the Watchdog. For any other reset (POR, HRST,
SRST, PWDRST), they are 0.

– WDTIS retains its previous value.
– After reset, EndInit is 0. Thus, access to EndInit-protected registers is

enabled. If Time-Out Mode was entered through other reasons, ENDINIT
might or might not be 0.
User’s Manual 20-11 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.4.6.2 Normal Mode Details

Normal Mode can be entered from Time-Out Mode only if bit WDT_CON1.WDTDR is set
to 0 before proper termination of Time-Out Mode. The WDT operates as a standard
Watchdog in this mode, requiring timely service to prevent a timer overflow.

Opera-
tion

– Timer starts counting up from FFFCH; increments with clock rate
determined through WDTIS (0 after reset, slowest clock).

– Access to registers WDT_CON0 is possible. Access to register
WDT_CON1 is possible if ENDINIT = 0.

– Restarting Time-Out Mode is not possible: A valid password access in this
mode does not invoke another Time-out sequence (it does not reload the
timer, etc.). A modify access to WDT_CON0 writing a 0 to ENDINIT does
not terminate Time-Out Mode.

– It is not possible to change the reload value or frequency in Time-Out
Mode, as this would require setting EndInit to 1, which terminates Time-
Out Mode. Reload value is not used until Normal mode is entered.

Exit a) Writing ENDINIT to 1 with a valid Modify Access (a Valid Password
Access must have been executed first).

b) Timer WDTTIM overflows from FFFFH to 0000H.
c) An invalid access to WDT_CON0 (either during the password or the

modify access)

Next
Mode

Depending on the Exit condition:
a1) If WDTDR = 0 (no disable request), the WDT enters the Normal Mode.
a2) If WDTDR = 1 (disable request), the WDT enters the Disable Mode.
b) Bit WDTOE is set to 1, and the WDT enters the Prewarning Mode.
c) Bit WDTAE is set to 1, and the WDT enters the Prewarning Mode

Table 20-5 WDT Normal Mode

State /
Action

Description

Entry – Only from Time-Out Mode by writing ENDINIT to 1 with a Valid Modify
Access (a Valid Password Access must have been executed first), while
bit WDTDR = 0.

Actions
on Entry

– WDTTIM is loaded with the value of WDTREL.
– Bits WDTAE, WDTOE, WDTPR, WDTTO, and WDTDS are cleared to 0.

Table 20-4 WDT Time-Out Mode

State /
Action

Description
User’s Manual 20-12 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.4.6.3 Disable Mode Details

Disable Mode is provided for applications which truly do not require the Watchdog Timer
function. It can only be entered from Time-Out Mode if bit WDT_CON1.WDTDR is set to
1 before proper termination of Time-Out Mode. The counter stops in this mode,
eliminating the need for a WDT service. However, if an access to register WDT_CON0
is performed, the WDT will leave Disable Mode. Disable Mode does not stop the
detection of access errors and the entry of Prewarning Mode nor the entry of Time-Out
Mode on a Valid Password Access.

Operation – WDTTIM starts counting up from reload value with frequency selected
through WDTIS.

Exit a) A valid password access to register WDTCON.
b) Timer WDTTIM overflows from FFFFH to 0000H.
c) An invalid access to WDT_CON0 (either during the password or the

modify access)

Next
Mode

Depending on Exit condition:
a) Time-Out Mode.
b) Prewarning Mode, bit WDTOE is set to 1 (overflow error).
c) Prewarning Mode, bit WDTAE is set to 1 (access error).

Table 20-6 WDT Disable Mode

State /
Action

Description

Entry – Only from Time-Out Mode by writing ENDINIT to 1 with a Valid Modify
Access (a Valid Password Access must have been executed first), while
bit WDTDR = 1.

Actions
on Entry

– Bits WDTAE, WDTOE, WDTPR, and WDTTO are cleared. Bit WDTDS
is set to 1.

– Timer WDTTIM is stopped (it retains its current value).

Operation –

Exit a) Valid password access to register WDTCON.
b) Invalid access to WDT_CON0 (either during the password or the modify

access)

Next
Mode

Depending on Exit condition:
a) Time-Out Mode.
b) Prewarning Mode, bit WDTAE is set to 1 (access error).

Table 20-5 WDT Normal Mode

State /
Action

Description
User’s Manual 20-13 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.4.6.4 Prewarning Mode Details

Prewarning Mode is always entered immediately after a Watchdog error condition was
detected. This can be either an access error to register WDT_CON0 or an overflow of
the counter in Normal or Time-Out Mode. This mode indicates that a reset of the device
is imminent. Operation of the WDT in this mode can not be altered or stopped, except
through a reset.

Table 20-7 WDT Prewarning Mode

State /
Action

Description

Entry Detection of a Watchdog error:
– Overflow of timer WDTTIM.
– Access error to register WDT_CON0 (either on a password or modify

access) in Time-Out, Normal, or Disable modes.

Actions
on Entry

– NMIWDT in register NMISR is set (this triggers an NMI request to the
CPU).

– WDTTIM is set to FFFCH.
– WDTPR is set to 1; WDTDS is set to 0; WDTIS retains its value.
– WDTTO retains its previous value: if entry into Prewarning Mode was

from Time-Out Mode, WDTTO is 1. In all other cases, WDTTO is 0.
– Bits WDTAE and WDTOE indicate whether Prewarning Mode was

entered due to an access or an overflow error. They have been set
accordingly on exit of the previous mode.

Operation – Timer WDT_TIM starts counting up from FFFCH with frequency
selected through WDTIS.

– Register WDT_CON0 can be accessed in this mode as usual. However,
the WDT will not change its mode anymore, regardless whether valid or
invalid accesses are made to WDT_CON0. For invalid accesses to
WDT_CON0 (password or modify access), however, bit WDTAE in
WDT_SR will be set.

– Register WDT_CON1 can not be written to in Prewarning Mode, even if
bit ENDINIT = 0. Write access to WDT_CON1 is totally prohibited. A
write attempt will generate a bus error in this mode.

Exit – Prewarning Mode can not be disabled, prolonged, or terminated (except
through a reset). The timer will increment until it overflows from FFFFH
to 0000H, which then causes a system reset. Bit WDTRST in register
RSTSR is set in this case.

Next Mode Reset
User’s Manual 20-14 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
Note: In Prewarning Mode, it is not required that the part waits for the end of the
Time-out Period and the reset. After having saved required state in the NMI
routine, software can execute a soft reset to shorten the time. However, the state
of the Watchdog Status Register should also be saved in this case, since the error
flags contained in it will be cleared due to the soft reset (this is not the case if the
Watchdog reset is awaited).

20.4.6.5 WDT Operation During Power-Saving Modes

If the CPU is in Idle Mode, Sleep Mode, or Deep Sleep Mode, it cannot service the
Watchdog Timer because no software is running. When in Deep Sleep, only an external
event can awaken the system. Excluding this case, and the case where the system is
running normally, a strategy for managing the WDT is needed while the CPU is in Idle
Mode or Sleep Mode. There are two ways to manage the WDT in these cases. First, the
Watchdog can be disabled before idling the CPU. This has the disadvantage that the
system will no longer be monitored during the idle period.

A better approach to this problem relies upon a wake-up features of the WDT. Whenever
the CPU is put in Idle or Sleep Mode and the WDT is not disabled, it causes the CPU to
be awakened at regular intervals. The Watchdog Timer triggers an NMI trap request
when its count value (WDT_SR.WDTTIM) transitions from 7FFFH to 8000H, that is, when
the most significant bit of the WDT counter changes its state from 0 to 1. The WDT also
sets the NMISR.NMIWDT bit at this time to indicate to the CPU that the WDT caused the
NMI. The CPU is awakened by the NMI trap, and can then service the Watchdog Timer
in the usual manner, reset NMISR.NMIWDT, and then return to its former power-
management mode.

This operation does not cause a WDT error condition. The WDT continues to operate in
Normal Mode after generating this wake-up NMI. However, if the CPU does not service
the WDT in the NMI trap routine, it will continue to run, eventually causing an overflow,
which will cause the WDT to enter Prewarning Mode.

Note: Before switching into a non-running power-management mode, software should
perform a Watchdog service sequence. With the Modify Access, the Watchdog
reload value, WDT_CON0.WDTREL, should be programmed such that the wake-
up occurs after a period which best meets application requirements. The
maximum period between NMI requests is one-half of the maximum Watchdog
Timer period.

20.4.6.6 WDT Operation in OCDS Suspend Mode

When the On-Chip Debugging System (OCDS) is enabled after reset (through the
OCDSE pin), the WDT will automatically stop when OCDS Suspend Mode is activated.
It will resume operation after the Suspend Mode is deactivated.
User’s Manual 20-15 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.4.6.7 Double Watchdog Error.

It is possible that severe system malfunctions may not be corrected even by a system
reset. If application code cannot be executed properly because of a system fault, then
the WDT initialization code itself might not be able to execute to service the WDT, with
the result that two WDT-initiated resets might occur back-to-back. A feature of the WDT
detects such Double Watchdog Errors and suspends all system operations after the
second reset occurs. This feature prevents the TC11IB from executing random wrong
code for longer than the Time-out Period, and prevents the TC11IB from being
repeatedly reset by the Watchdog Timer.

Double Watchdog Errors are detected with the aid of the error-indication flags
WDT_SR.WDTOE and WDT_SR.WDTAE. Ordinarily, software clears these bits to 0
during normal WDT service. But, these bits are not cleared when a reset is caused by
the WDT. Because the error bits are preserved across resets, the WDT can examine
them if it times out again. If either error bit is still set when a new Watchdog Timer Error
occurs, then there must have been a preceding WDT-initiated reset without intervening
software service of the WDT. Hence, this is a Double Watchdog Error condition. In this
case the WDT will generate another reset after the termination of the Prewarning Mode,
but this time the TC11IB will be held in the reset state until a power-up reset is generated
by external hardware.

20.4.7 Determining WDT Periods

The WDT uses the same clock, fSYSTEM, as the System Control Unit (SCU) in which it is
integrated. In the TC11IB, this clock is equal to the system clock, fSYSCLK = 48 MHz. A
clock divider in front of the Watchdog Timer provides two output frequencies, fSYSCLK/
256 and fSYSCLK/16384. Bit WDTIS selects between these options.

When the WDT is in Normal Mode, the duration of a WDT cycle is defined as a Normal
Period, as described in Section 20.4.7.2.

When the WDT is in Time-Out Mode or Prewarning Mode, the duration of a WDT cycle
is defined as a Time-out Period, as described in Section 20.4.7.1.

The general form to calculate a Watchdog period is:

[20-1]

The parameter startvalue represents the fixed value FFFCH for the calculation of the
Time-out Period, and the user-programmable reload value WDTREL for the calculation
of the Normal Period. Note that the exponent (1 - WDTIS) × 6 results to 0 if WDTIS is 1,
and to 6 if WDTIS is 0. This results in the value 256 being multiplied by either 1 (20 = 1)
or by 64 (26), giving the two divider factors 256 and 16384.

period
216 startvalue–() 256× 2

1 WDTIS–() 6××
fSYSCLK

---=
User’s Manual 20-16 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
Note: Because there is no synchronization of the clock divider to the mode transitions of
the Watchdog, the next clock pulse, incrementing the counter, may come after one
clock divider period, or immediately after the counter was reloaded. Thus, it is
recommended that the reload value is programmed to a value which results in one
clock pulse more than the required period.

20.4.7.1 Time-out Period

The duration of Time-Out Mode and Prewarning Mode is determined by the Time-out
Period described here. The Time-out Period that occurs immediately after reset is
governed entirely by system defaults, as no software is been able to run at this point; it
is described separately below.

Time-out Period After Reset

After reset, the initial count value for the timer is fixed at FFFCH when the WDT clock
starts running. The WDT counts up at a rate determined by WDT_SR.WDTIS, which is
0 after any reset (fSYSCLK/16384). Counting up from FFFCH, it takes four clocks for the
counter to overflow, so the Time-out Period defaults to a period of 4 × 16384/fSYSCLK =
65536/fSYSCLK. This establishes the real-time deadline for software to initialize the
Watchdog and critical system registers, and to then set ENDINIT. For example, the
Time-out Period after reset would correspond to 1.36 ms @ 48 MHz system frequency.

Changing the input frequency selection via WDT_CON1.WDTIR during this initial
Time-out Period has no immediate effect, because frequency selection is actually
determined by WDT_SR.WDTIS, but WDT_CON1.WDTIR is only copied into
WDT_SR.WDTIS after WDT_CON0.ENDINIT has been set to 1, that is, after Time-Out
Mode has been properly exited. Hence, the new input frequency will become effective
only in a subsequent Time-out Period.

Time-out Period During Normal Operation

As after reset, the WDT counter is initially set to FFFCH when Time-Out Mode is entered,
and Time-Out Mode expires when the counter overflows. However, there are two
differences to the Time-out Period after reset. First, the input frequency can be either
fSYSCLK/256 or fSYSCLK/16384, depending on the programmed state of bit
WDT_SR.WDTIS before the Time-out Period was entered. Second, because there is no
synchronization of the clock divider to the mode transitions of the Watchdog, the next
clock pulse, incrementing the counter to FFFDH, may come after one clock divider
period, or immediately after the counter was initially set to FFFCH. Thus, the minimum
duration of the Time-out Period in the latter case will only be three counter clocks. The
possible minimum and maximum periods are given in Table 20-8.
User’s Manual 20-17 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
The WDT input clock rate can not be changed during the Time-out Period. The control
bit for the input clock rate, WDT_SR.WDTIS, is loaded from WDT_CON1.WDTIR when
WDT_CON0.ENDINIT is set to 1, that is, after Time-Out Mode has been properly exited.
Hence, the new input frequency will become effective only in the subsequent Time-out
Period.

Note: In Prewarning Mode, it is not required that the part waits for the end of the
Time-out Period and the reset. After having saved required state in the NMI
routine, software can execute a soft reset to shorten the time. However, the state
of the Watchdog Status Register should also be saved in this case, since the error
flags contained in it will be cleared due to the soft reset (this is not the case if the
Watchdog reset is awaited).

20.4.7.2 Normal Period

The duration of Normal Mode can be varied by two parameters: the input clock and the
reload value.

The system clock, fSYSCLK, can be divided by either 256 or 16384. WDT_SR.WDTIS
selects the input clock divider. The default value of WDTIS after reset is 0, corresponding
to a frequency of fSYSCLK/16384.

When the Watchdog Timer is serviced in Normal Mode, it is reloaded with the 16-bit
reload value, WDT_CON0.WDTREL.

The Watchdog Timer Period can be varied over a wide range with these two parameters.
Again, since there is no synchronization of the clock divider to the mode transitions of
the Watchdog, the next clock pulse, incrementing the counter, may come after one clock
divider period, or immediately after the counter was reloaded. Thus, it is recommended
that the reload value is programmed to a value which results to one clock pulse more
than the required period. Using a reload value of FFFFH could therefore lead to an
immediate overflow of the timer. Thus, the examples given in Table 20-9 are only shown
with a maximum reload value of FFFEH.

Table 20-8 Time-out Period During Normal Operation

WDTIS Min/
Max

Period Example
@ fSYSCLK = 48 MHz

0 min. 3 × 16384/fSYSCLK = 49152/fSYSCLK 1.02 ms

max. 4 × 16384/fSYSCLK = 65536/fSYSCLK 1.36 ms

1 min. 3 × 256/fSYSCLK = 768/fSYSCLK 16 µs

max. 4 × 256/fSYSCLK = 1024/fSYSCLK 21 µs
User’s Manual 20-18 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.4.7.3 WDT Period During Power-Saving Modes

Care needs to be taken when programming the WDT reload value before going to Idle
or Sleep Mode. As described in Section 20.4.6.5, the state of bit 15 of the Watchdog
counter is used to wake up from these modes through a Watchdog NMI request. Thus,
the reload value should be chosen such that it is less then 7FFEH (bit 15 = 0), otherwise
an immediate wake-up could occur. Only half of the maximum periods shown in
Table 20-9 can be used for the wake-up period.

20.5 Handling the Watchdog Timer

This section describes methods of handling the Watchdog Timer function.

20.5.1 System Initialization

After any reset, the Watchdog Timer is put in Time-Out Mode, and
WDT_CON0.ENDINIT is 0, providing access to sensitive system registers. Changes to
the operation of the Watchdog Timer controlled by WDT_CON1 become effective only
after WDT_CON0.ENDINIT has been set to 1 again. Thus, changes to the WDT mode
bits in WDT_CON1 do not interfere with the Time-out operation of the Watchdog Timer
after reset. Table 20-10 shows the default contents of the Watchdog Timer registers.

Table 20-9 Timer Periods in Normal Mode

WDTIS Reload
Value

Min/
Max

Period Example
@ fSYSCLK = 48 MHz

0 0000H min. 65535 × 16384/fSYSCLK =
1073725440/fSYSCLK

22.4 s

max. 65536 × 16384/fSYSCLK =
1073741824/fSYSCLK

22.4 s

FFFEH min. 1 × 16384/fSYSCLK = 16384/fSYSCLK 341.3 µs

max. 2 × 16384/fSYSCLK = 32768/fSYSCLK 682.7 µs

1 0000H min. 65535 × 256/fSYSCLK =
16776960/fSYSCLK

349.5 ms

max. 65536 × 256/fSYSCLK =
16777216/fSYSCLK

349.5 ms

FFFEH min. 1 × 256/fSYSCLK = 256/fSYSCLK 5.3 µs

max. 2 × 256/fSYSCLK = 512/fSYSCLK 10.7 µs
User’s Manual 20-19 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
Because the Watchdog Timer is in Time-Out Mode after reset, WDT_CON0.ENDINIT
must be set to 1 before the Time-out Period expires. This means that initialization of
ENDINIT-protected system registers must be complete before the expiration of the
Time-out Period, defined in Section 20.4.7.1. To set WDT_CON0.ENDINIT to 1, a Valid
Password Access to WDT_CON0 must be performed first. During the subsequent Valid
Modify Access, WDT_CON0.ENDINIT must be set to 1, which will exit Time-Out Mode.
The Watchdog Timer is switched to the operation determined by the new values of
WDTIS and WDTDS.

Note: The action described above must absolutely be performed during initialization of
the device to properly terminate this mode. Even if the Watchdog function will not
be used in an application and the WDT will be disabled, a valid access sequence
to the WDT is mandatory. Otherwise, the Watchdog counter will overflow,
Prewarning Mode will be entered, and a Watchdog reset will occur at the end of
the Time-out Period.

Bit fields WDT_CON0.WDTREL and WDT_CON0.WDTPW can optionally be changed
during the Valid Modify Access, but it is not required. WDT_CON0.ENDINIT can be set
to 1 or 0, however, setting ENDINIT to 0 does not stop Time-Out Mode. Any values
written to WDTREL, WDTPW, and ENDINIT are stored in WDT_CON0, and
WDT_CON0 is automatically locked (WDTLCK = 1) after the modify access is finished.

20.5.2 Re-opening Access to Critical System Registers

If some or all of the system’s ENDINIT-protected registers must be changed during run
time of an application, access can be re-opened. To do this, WDT_CON0 must first be
unlocked with a Valid Password Access. In the following Valid Modify Access, ENDINIT

Table 20-10 Watchdog Timer Default Values After Reset

Register Default
Contents

Description

WDT_CON0 FFFC 0002H Reload value is FFFCH, WDTPW is 0; WDT_CON0 is
locked (WDTLCK = 1); ENDINIT is 0.

WDT_CON1 0000 0000H Watchdog Timer disable request is 0; input clock request
set to fSYSCLK/16384.

WDT_SR FFFC 001UH The Watchdog counter contains FFFCH (the initial
Time-out value); WDT is operating in Time-Out Mode
(WDTTO = 1); WDT is enabled (WDTDS = 0); input
clock is fSYSCLK/16384.
Bits WDTOE and WDTAE are set to 0 after a power-on,
a hard or a soft reset. In case of a reset caused by the
WDT, these two bits are set depending on the error
condition that caused the Watchdog reset.
User’s Manual 20-20 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
can be set to 0. Access to ENDINIT-protected registers is now open again. However,
when WDT_CON0 is unlocked, the WDT is automatically switched to Time-Out Mode.
Thus, the access window is time-limited. Time-Out Mode is only terminated after
ENDINIT has been set to 1 again, requiring another Valid Password and Valid Modify
Access to WDT_CON0.

If the WDT is not used in an application and is therefore disabled
(WDT_SR.WDTDS = 1), the above described case is the only occasion when
WDT_CON0 must be accessed again after the system is initialized. If there are no further
changes to critical system registers needed, no further accesses to WDT_CON0,
WDT_CON1, or WDT_SR are necessary. However, it is always recommended that the
Watchdog Timer be used in an application for safety reasons.

20.5.3 Servicing the Watchdog Timer

If the Watchdog Timer is used in an application and is enabled (WDT_SR.WDTDS = 0),
it must be regularly serviced to prevent it from overflowing.

Service is performed in two steps. a Valid Password Access followed by a Valid Modify
Access. The Valid Password Access to WDT_CON0 automatically switches the WDT to
Time-Out Mode. Thus, the modify access must be performed before the Time-out
expires or a system reset will result.

During the following modify access, the strict requirement is that WDT_CON0.ENDINIT
as well as bit 1 and bits [7:4] are written with 1’s, while bits [3:2] are written with 0’s.

Note: ENDINIT must be written with 1 even if it is already set to 1 to perform a proper
service.

Changes to the reload value WDTREL, or the user-definable password WDTPW, are not
required. However, changing WDTPW is recommended so that software can monitor
Watchdog Timer service operations throughout the duration of an application program
(see Section 20.5.4).

If WDT service is properly executed, Time-Out Mode is terminated, and the Watchdog
Timer switches back to its former mode of operation, and Watchdog Timer service is
complete.

20.5.4 Handling the User-Definable Password Field

WDT_CON0.WDTPW is an 8-bit field that can be set by software to any arbitrary value
during a Modify Access. Settings of this field have no effect on the operation of the WDT,
other than the role it plays in forming the password bit pattern, as discussed in
Section 20.4.3.

The purpose of this field is to support further enhancements to the password protection
scheme. For the following description, it is assumed that software does at least not fully
compute the value for the Password Access from the contents of registers WDT_CON0
User’s Manual 20-21 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
and WDT_CON1, but uses a predefined constant, embedded in the instruction stream,
for the password (this is at least necessary for the user-definable password field
WDTPW). For example, software can modify this field each time it executes a Watchdog
service sequence. The next service sequence needs to take this new value into account
for its Password Access. And it again changes the value during its Modify Access. Up to
256 different password values can be used. In this way, each service sequence is
unique. If a malfunction occurs that, for instance, would result in the omission of one or
more of these service sequences, the next service sequence would most probably not
write the correct password. This service sequence would rely on the password value
programmed during the normally preceding service sequence. However, if this one was
skipped, the password value required by the contents of the Watchdog registers is the
one programmed at the last service sequence executed before the malfunction had
occurred. A Watchdog error condition would be detected in this case.

In the same manner, the Watchdog would detect the malfunction if a service sequence
would be executed twice due to a falsely performed jump. Figure 20-4 illustrates these
examples.
User’s Manual 20-22 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer

Figure 20-4 Detection of False Jumps and Loops

Other schemes are possible. Consider the case in which a routine determines some
conditions that alter the program flow. One of two or more different paths will be executed
next depending on these conditions. Before branching to the appropriate routine(s),
software performs a Watchdog service and sets the new password value for WDTPW
such that it depends on these conditions, that is, some or all of these condition codes
can be incorporated into WDTPW. The next service sequence is performed at the point
where the different paths come together again. To determine the correct password,
software uses a value returned from the path which was executed. This value must
match the value in WDTPW, otherwise the wrong path was executed. Figure 20-5
shows an example for this.

M C A04801

P assw ord access:
w rite xy H to W D TP W

M odify access:
set W D TP W to 10H

W D TP W = 10HN ext expected

S erv ice
S equence
n

P assw ord access:
w rite 10 H to W D TP W

M odify access:
set W D TP W to 11H

W D TP W = 11HN ext expected

S erv ice
S equence
n + 1

P assw ord access:
w rite 11 H to W D TP W

M odify access:
set W D TP W to 12H

W D TP W = 12HN ext expected

S erv ice
S equence
n + 2

M ultip le
E xecution
o f S erv ice :

E xpected
W D TP W = 11 H

W D TP W
W ritten = 10 H

== >
A ccess E rror

O m iss ion
o f S erv ice :

E xpected
W D TP W = 10 H

W D TP W
W ritten = 11 H

== >
A ccess E rror
User’s Manual 20-23 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
It is also possible to have the different paths of a program compute the full or partial
password to unlock register WDT_CON0. The password will only match at the next
service sequence if all the expected paths and calculation routines have been executed
properly. If one or more steps would have been omitted or a wrong path was executed
due to a malfunction, the Watchdog failure mechanism will detect this and issue a reset
of the device (after the prewarning phase).

Figure 20-5 Monitoring Program Sequences

M C A 04802

D eterm ine b ranch
cond ition:
P W := A o r B o r C

P assw ord access :
w rite xyH to W D TP W

M odify access :
se t W D TP W to P W

Perform
Branch

P ath B
...
...
P W := B
R etu rn (P W)

P ath A
...
...
P W := A
R eturn (P W)

P ath C
...
...
P W := C
R etu rn (P W)

W D TP W = P WNext expec ted

Serv ice
Sequence
n

Passw ord access :
w rite P W to W D TPW

M odify access :
...

Serv ice
Sequence
n + 1

P assw ord is on ly correct if the
correct pa th w as execu ted
User’s Manual 20-24 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.5.5 Determining the Required Values for a WDT Access

As described in Section 20.4.3 and Section 20.4.4, the values required for the
password and modify accesses to register WDT_CON0 are designed such that they can
be derived from the values read from registers WDT_CON0 and WDT_CON1. However,
at least some bits have to be modified in order to get the correct write value. This makes
it very unlikely that a false operation derives values from reading these registers which
inadvertently affect the WDT operation when written back to WDT_CON0. Even if a false
write operation would have written the correct password to WDT_CON0, one further,
different correct value needs to be written to this register in order to have an effect. In
addition, the WDT switches to Time-Out Mode after the Valid Password Access,
providing only a time-limited window for the second access.

While computing the required values from the current contents of the Watchdog registers
is one option, the method of using predetermined values, set at compile-time of the
program, may be the better approach in many cases. Usually, handling the Watchdog
Timer is performed by one and only one task. Thus, the problem will not occur that
another task might have changed some of the parameters which must not be modified
(which would require reading the contents, modifying the value appropriately, and then
writing it back). The one task handling the Watchdog Timer function would always “know”
how it has programmed the WDT last time, and would therefore also “know” the next
password value for opening WDT_CON0. In fact, this method would actually detect the
case if another task had illegally modified the Watchdog registers, since the
predetermined password might not work anymore, and a Watchdog error condition is
generated.

In addition, accessing the WDT with predetermined values has the obvious benefit of
shorter code, as no computing steps need to be performed.
User’s Manual 20-25 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.6 Watchdog Timer Registers

Three registers are provided with the Watchdog Timer: WDT_CON0, WDT_CON1, and
WDT_SR, as shown in Figure 20-6. They are located in the System Control Unit (SCU)
Module.

Figure 20-6 Watchdog Registers

In the TC11IB, the registers of the Watchdog Timer are located in the address range of
the SCU:

– Module Base Address: F000 0000H
Module End Address; F000 00FFH

– Absolute Register Address = Module Base Address + Offset Address

Table 20-11 WDT Kernel Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

WDT_CON0 Watchdog Timer Control Register 0 0020H Page 20-27

WDT_CON1 Watchdog Timer Control Register 1 0024H Page 20-29

WDT_SR Watchdog Timer Status Register 0028H Page 20-30

M C A04803

W D T_C O N 0

W D T_C O N 1

W D T_S R

Control Registers Status Register
User’s Manual 20-26 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.6.1 Watchdog Timer Control Register 0

WDT_CON0 manages password access to the Watchdog Timer. It also stores the timer
reload value, a user-definable password field, a lock bit, and the end-of-initialization
(ENDINIT) control bit.

WDT_CON0
Watchdog Timer Control Register 0 Reset Value: FFFC 0002H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WDTREL

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDTPW WDTHPW
1

WDTHPW
0

WDT
LCK

END
INIT

rw w w rw rw

Field Bits Type Description

ENDINT 0 rw End-of-Initialization Control Bit
0 Access to Endinit-protected registers is

permitted (default after reset).
1 Access to Endinit-protected registers is not

permitted.
ENDINIT controls the access to critical system
registers. During a password access it must be
written with its current value. It can be changed during
a modify access to WDT_CON0.
User’s Manual 20-27 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
WDTLCK 1 rw Lock Bit to Control Access to WDT_CON0
0 Register WDT_CON0 is unlocked.
1 Register WDT_CON0 is locked

(default after reset).
The actual value of WDTLCK is controlled by
hardware. It is set to 0 after a successful password
access to WDT_CON0 and automatically set to 1
again after a successful modify access to
WDT_CON0. During a write to WDT_CON0 the value
written to this bit is only used for the password-
protection mechanism and is not stored.
This bit must be set to 0 during a password access to
WDT_CON0 and set to 1 during a modify access to
WDT_CON0. That is, the inverted value read from
WDTLCK always must be written to itself.

WDTHPW0 [3:2] w Hardware Password 0
This field must be written with the value of the bits
WDT_CON1.WDTDR and WDT_CON1.WDTIR
during a password access.
This field must be written with 0’s during a modify
access to WDT_CON0. When read, these bits always
return 0.

WDTHPW1 [7:4] w Hardware Password 1
This field must be written to 1111B during both, a
password access and a modify access to
WDT_CON0. When read, these bits always return 0.

WDTPW [15:8] rw User-Definable Password Field for Access to
WDT_CON0
This bit field must be written with its current contents
during a password access. It can be changed during
a modify access to WDT_CON0.

WDTREL [31:16] rw Reload Value for the Watchdog Timer
If the Watchdog Timer is enabled and in Normal
Timer Mode, it will start counting from this value after
a correct Watchdog service. This field must be written
with its current contents during a password access. It
can be changed during a modify access to
WDT_CON0 (FFFCH = default after reset).

Field Bits Type Description
User’s Manual 20-28 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.6.2 Watchdog Timer Control Register 1

WDT_CON1 manages operation of the WDT. It includes the disable request and
frequency selection bits. It is ENDINIT-protected.

WDT_CON1
Watchdog Timer Control Register 1 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WDT
DR

WDT
IR 0

r rw rw r

Field Bits Type Description

WDTIR 2 rw Watchdog Timer Input Frequency Req. Control Bit
0 Request to set input frequency

to fSYSCLK/16384
1 Request to set input frequency to fSYSCLK/256
This bit can only be modified if WDT_CON0.ENDINIT
is set to 0. WDT_SR.WDTIS is updated by this bit only
when ENDINIT is set to 1 again. As long as ENDINIT
is left at 0, WDT_SR.WDTIS controls the current input
frequency of the Watchdog Timer. When ENDINIT is
set to 1 again, WDT_SR.WDTIS is updated with the
state of WDTIR.

WDTDR 3 rw Watchdog Timer Disable Request Control Bit
0 Request to enable the Watchdog Timer.
1 Request to disable the Watchdog Timer.
This bit can only be modified if WDT_CON0.ENDINIT
is set to 0. WDT_SR.WDTDS is set to this bit’s value
when ENDINIT is set to 1 again. As long as ENDINIT
is left at 0, bit WDT_SR.WDTDS controls the current
enable/disable status of the Watchdog Timer. When
ENDINIT is set to 1 again with a valid modify access,
WDT_SR.WDTDS is updated with the state of
WDTDR.
User’s Manual 20-29 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
20.6.3 Watchdog Timer Status Register

WDT_SR shows the current state of the WDT. Status include bits indicating reset
prewarning, Time-out, enable/disable status, input clock status, and access error status.

The reset value for this register is depending on the cause of the reset. For any reset
other than a Watchdog reset, the reset value is FFFC 001UH. After a Watchdog reset,
bits WDTAE and WDTOE indicate the type of Watchdog error which occurred before the
Watchdog reset. Either one or both bits can be set. These bits are not reset on a
Watchdog reset. Bits WDTDS and WDTIS are always 0 after any reset.

0 [1:0],
[31:4]

r Reserved; read as 0; should be written with 0;

WDT_SR
Watchdog Timer Status Register Reset Value: FFFC 0010H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WDTTIM

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WDT
PR

WDT
TO

WDT
DS

WDT
IS

WDT
OE

WDT
AE

r r r r r r r

Field Bits Type Description

WDTAE 0 r Watchdog Access Error Status Flag
0 No Watchdog access error.
1 An Watchdog access error has occurred.
This bit is set by hardware when an illegal password
access or modify access to register WDT_CON0 was
attempted. This bit is only reset through:
– a power-on, hardware, or software reset occurs
– WDT_CON0.ENDINIT is set to 1 during a valid

modify access.
However it is not possible to reset this bit if the WDT
is in Prewarning Mode, indicated by
WDT_SR.WDTPR = 1.

Field Bits Type Description
User’s Manual 20-30 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
WDTOE 1 r Watchdog Overflow Error Status Flag
0 No Watchdog overflow error
1 A Watchdog overflow error has occurred.
This bit is set by hardware when the Watchdog Timer
overflows from FFFFH to 0000H. This bit is only reset
when:
– a power-on, hardware, or software reset occurs;
– WDT_CON0.ENDINIT is set to 1 during a valid

modify access.
However it is not possible to reset this bit if the
Watchdog Timer is in Prewarning Mode, indicated by
WDT_SR.WDTPR = 1.

WDTIS 2 r Watchdog Input Clock Status Flag
0 Watchdog Timer input clock is fSYSCLK/16384

(default after reset).
1 Watchdog Timer input clock is fSYSCLK/256.
This bit is updated with the state of bit
WDT_CON1.WDTIR after WDT_CON0.ENDINIT is
written with 1 during a valid modify access to register
WDT_CON0.

WDTDS 3 r Watchdog Enable/Disable Status Flag
0 Watchdog Timer is enabled

(default after reset).
1 Watchdog Timer is disabled.
This bit is updated with the state of bit
WDT_CON1.WDTDR after WDT_CON0.ENDINIT is
written with 1 during a valid modify access to register
WDT_CON0.

WDTTO 4 r Watchdog Time-Out Mode Flag
0 Normal mode
1 The Watchdog is operating in Time-Out Mode

(default after reset)
This bit is set to 1 when Time-Out Mode is entered,
automatically after a reset and after every password
access to register WDT_CON0. It is automatically
reset by hardware when Time-Out Mode is properly
terminated through a valid modify access to
WDT_CON0. It is left set when a Watchdog error
occurs during Time-Out Mode, and Prewarning Mode
is entered.

Field Bits Type Description
User’s Manual 20-31 V1.0, 2002-03

TC11IB
System Units

Watchdog Timer
WDTPR 5 r Watchdog Prewarning Mode Flag
0 Normal mode (default after reset)
1 The Watchdog is operating in Prewarning

Mode
This bit is set to 1 when a Watchdog error is detected.
The Watchdog Timer has issued an NMI trap and is in
Prewarning Mode. A reset of the chip occurs after the
prewarning period has expired.

WDTTIM [31:16] r Watchdog Timer Value
Reflects the current content of the Watchdog Timer.

0 [15:6] r Reserved; read as 0;

Field Bits Type Description
User’s Manual 20-32 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21 On-Chip Debug Support
The On-Chip Debug Support (OCDS) of the TC11IB consists of four building blocks:

• OCDS module in the TriCore CPU
• OCDS module in the PCP
• Trace module of the TriCore
• Debugger Interface (Cerberus)

Figure 21-1 shows a basic block diagram of the building blocks.
.

Figure 21-1 OCDS Basic Block Diagram

M C B 04947

Cerberus &
JTAG

T R S T

T C K

T M S

T D I

T D O

JT A G
I/O L in e s

TriCore
CPU

O C D S

PCP

O C D S
SCU

T race
C o n tro l

16

B R K IN

B R K O U T

O
C

D
S

2

O C D S 2 [1 5 :0]

O C D S E

F P I B u s
User’s Manual 21-1 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.1 TriCore CPU Debug Support

The TriCore CPU in the TC11IB provides On-Chip Debug Support (OCDS) with the
following features:

• On-chip breakpoint hardware
• Support of an external break signal

21.1.1 Basic Concepts

The TriCore breakpoint concept has two parts. The first part defines the generation of
debug events and the second part defines what actions are taken when a debug event
is generated.

Figure 21-2 Basic TriCore Debug Concept

21.1.2 Debug Event Generation

In order for any debug event to be generated, the debug enable bit DBGSR.DE in the
Debug Status Register must be set. If this bit is set, debug events can be generated by
the:

– An active (low) signal at the OCDS Break Input pin BRKIN
– Execution of a debug instruction
– Execution of a MTCR/MFCR instruction
– Debug event generation unit

M C A04811

D ebug
E ven t

G enera tion

D
eb

ug
 T

rig
ge

rs

D ebug
E vent

P rocess ing
Ext. B reak Inpu t
(B R K IN)

Execu tion of the
DE B U G Instruc tion

Execu tion of M TC R /
M FC R Ins truction
User’s Manual 21-2 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.1.2.1 External Debug Break Input

An external debug break pin is provided to allow the emulator to interrupt the processor
asynchronously. The action that is performed when the external debug break input is
activated is defined by the contents of the External Break Input Event Specifier Register
EXEVT.

Note: The CPU core detects the active edge of BRKIN and performs the action specified
in EXEVT at the first available opportunity.

21.1.2.2 Software Debug Event Generation

The TriCore architecture also supports a mechanism through which software can
explicitly generate a debug event. This can be used, for instance, by a debugger to patch
code held in RAM in order to implement breakpoints. A special DEBUG instruction is
defined which is a user mode instruction, and its operation depends on whether the
debug mode is enabled.

If debug mode is enabled (DBGSR.DE = 1), the DEBUG instruction causes a debug
event to be raised and the action defined in the Software Break Event Specifier Register
SWEVT is taken. If the debug mode is not enabled, then the DEBUG instruction is
treated as a NOP instruction.

Both 16-bit and 32-bit forms of the DEBUG instruction are provided.

21.1.2.3 Execution of a MTCR or MFCR Instruction

In order to protect the emulator resource, a debug event is raised whenever a MTCR or
MFCR instruction is used to read or modify an user core SFR. That means that an event
is not raised when the user reads or modifies one of the dedicated debug core SFRs:

– DBGSR or
– CREVT or
– SWEVT or
– EXEVT or
– TR0EVT or
– TR1EVT

The action that is performed when a MTCR or MFCR instruction is executed on user core
SFRs defined by the content of the Emulator Resource Protection Event Specifier
Register CREVT.
User’s Manual 21-3 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.1.2.4 Debug Event Generation from Debug Triggers

The debug event generation unit is responsible for generating debug events when a
programmable set of debug triggers are active. Debug triggers may come from the
following sources:

– Code protection logic
– Data protection logic

These debug triggers provide the inputs to a programmable block of combinational logic
that outputs debug events.

Figure 21-3 Debug Event Generation Logic

The aim is to be able to specify the breakpoints which use fairly simple criteria purely in
the on-chip debug event generation unit, and to rely on help from the external debug
system or debug monitor to implement more complex breakpoints.

21.1.3 Debug Triggers

21.1.3.1 Protection Mechanism

The TriCore debug system is also integrated into the protection mechanism which can
generate the following types of debug triggers:

– Trigger on execution of an instruction at a specific address
– Trigger on execution of an instruction within a range of addresses
– Trigger on the loading of a value from a specific address
– Trigger on the loading of a value from anywhere in a range of addresses
– Trigger on the storing of a value to a specific address
– Trigger on the storing of a value to anywhere in a range of addresses

Informations on the generation of debug triggers by the protection mechanism are given
in the TriCore Architecture Manual.

M C A04812

P rogram m able
D ebug E vent

G enera tion Log ic
D ebug E ven t

D
eb

ug
 T

rig
ge

rs
User’s Manual 21-4 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.1.3.2 Combination of Triggers

In the TC11IB the first two code and data ranges can be used to generate one debug
event. The TriCore CPU in the TC11IB allows one code range and one data range to be
combined for a debug event generation. The combination is controlled by the Trigger
Event n Specifier Registers TRnEVT (n = 0, 1).

Figure 21-4 Combination of Data and Code Triggers

For example, the inputs from range 0 of the code protection logic can be combined with
the inputs from range 0 of the data protection logic. This combination and the action
taken if a debug event is generated are controlled by the TR0EVT register.

The debug event generation logic places certain restrictions on which debug triggers can
be combined in order to produce a debug event whose action is marked as “break before
make”.

All debug events that are produced from a combination of triggers which include inputs
from the data protection logic are treated as “break after make”, irrespective of the event
specifier.

M C A 04813

C ode P rotec tion

D ebug E vent

D ebug E vent

D ata P rotec tion

R ange 1 R ange 1

TR 0E V T

R ange 0

Trigger C om bination Log ic

T rigger C om bination Log ic

R ange 0

TR 1E V T
User’s Manual 21-5 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.1.4 Actions Taken on a Debug Event

When a debug event is generated, one of the following actions is taken.

21.1.4.1 Assert an External Pin BRKOUT

A signal can be asserted on the external pin BRKOUT. This could be used in critical
routines where the system cannot be interrupted to signal to the external world that a
particular event has happened. This feature could also be useful to synchronize the
internal and external debug hardware.

For example, when the CPU writes to an off-chip location through the external bus
interface, this could be detected and the external pin asserted. This could then be used
as the input trigger to an analyzer to capture the bus cycles on the external interface pins.

21.1.4.2 Halt

The halt mode performs a selective cancellation of:

– All instruction after and including the instruction that caused the breakpoint if
EXEVT.BBM = 1.

– All instructions after the instruction that caused the breakpoint if EXEVT.BBM = 0.

Once the pipeline has been cancelled, it enters a halt mode where no more instructions
are executed. It then relies on the external debug system to interrogate the target purely
through the mapping of the architectural state into the FPI address space without any
help from the core.

While halted, the core will not respond to any interrupts, and will only resume execution
once the external debug hardware clears the halt bit by writing 10B to the DBGSR.HALT
bit field.

When the halt mode is entered, the following actions are also performed:

– The DBGSR.EVTSRC bit field is updated.
– The breakout pin BRKOUT is asserted for one cycle.

21.1.4.3 Breakpoint Trap

The breakpoint trap is designed to be used to enter a debug monitor without using any
user resource. It relies upon the following emulator resources:

– The debug monitor is held in the emulator region at address DE00 0000H.
– There is a 4-word area of RAM available at address DE80 0000H which can be

used to store critical state during the debug monitor entry sequence.

When a breakpoint trap is taken, the following actions are performed:

– Write PSW to DE80 0000H
– Write PCXI to DE80 0004H
– Write A10 to DE80 0008H
User’s Manual 21-6 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
– Write A11 to DE80 000CH
– A11 = breakpoint PC
– PC = DE00 0000H
– PSW.PRS = 0
– PSW.IO = 2
– PSW.GW = 0
– PSW.IS = 1
– ICR.IE = 0

The corresponding return sequence is provided through the RFM (return from monitor)
instruction. This effectively perform the reverse of the above:

– Branch to A11
– Restore PSW from DE80 0000H
– Restore PCXI from DE80 0004H
– Restore A10 from DE80 0008H
– Restore A11 from DE80 000CH

This provides an automated route into the debug monitor which does not use any user
resource. The RFM instruction is then used to return control the original task.

When the debug trap is taken, the following actions are also performed:

– The EVTSRC bit field in DBGSR is updated.
– The BRKOUT pin is asserted for one cycle.

21.1.4.4 Software Breakpoint

When a debug event is raised, the system can enter the software debug mode. The
software debug mode is basically an interrupt. The software breakpoint interrupt is
controlled in the Software Breakpoint Service Request Control Register SBSRC.
User’s Manual 21-7 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.1.5 OCDS Registers

Figure 21-5 OCDS Registers

Table 21-1 OCDS Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

DBGSR Debug Status Register 0000H Page 21-9

EXEVT External Break Input Event Specifier Register 0008H Page 21-11

CREVT Emulator Resource Protection Event Specifier
Register

000CH Page 21-12

SWEVT Software Break Event Specifier Register 0010H Page 21-13

TR0EVT Trigger Event 0 Specifier Register 0020H Page 21-14

TR1EVT Trigger Event 1 Specifier Register 0024H Page 21-14

SBSRC0 Software Breakpoint Service Request Control
Register 0

00BCH
1)

1) The SBSRC register is located in the address range of the CPU slave interface CPS (see Section 21.6).

Page 21-15

M C A04814

D B G S R

E X E VT

Control Registers

C R E VT

S W E V T

TR 0E V T

TR 1E V T

S B S RC 0
User’s Manual 21-8 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
DBGSR
Debug Status Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EVTSRC P
EVT

PRE
VSU
SP

0 SU
SP 0 HALT DE

r rh rwh rh r rwh r rwh rh

Field Bits Type Description

DE 0 rh Debug Enable
Indicates whether debug support was enabled at reset
0 Debug disabled
1 Debug enabled

HALT [2:1] rwh CPU Halt Request / Status Field
HALT can be set or cleared by software. HALT[0] is
the actual halt bit. HALT[1] is a mask bit to specify
whether HALT[0] is to be updated on a software write
or not. HALT[1] is always read as 0. HALT[1] must be
set to one in order to update HALT[0] by software (R:
read; W: write).
00 R: CPU running / W: HALT[0] unchanged
01 R: CPU halted / W: HALT[0] unchanged
10 R: n.a. / W: reset HALT[0]
11 R: n.a. / W: if debug support is enabled (DE = 1),

set HALT[0]; if debug support is not enabled
(DE = 0), HALT[0] is left unchanged

SUSP 4 rwh Current State of the Suspend Signal
0 Suspend inactive
1 Suspend active

PREVSUSP 6 rh Previous State of the Suspend Signal
0 Previous suspend inactive
1 Previous suspend active

PEVT 7 rwh Posted Event
0 No posted event
1 Posted event
User’s Manual 21-9 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support

EVTSRC [12:8] rh Event Source
0 EXTEVT
1 CREVT
2 SWEVT
16 + n TRnEVT (n = 0, 1)
other Reserved

0 3, 5,
[31:13]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 21-10 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support

EXEVT
External Break Input Event Specifier Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SU
SP 0 BBM EVTA

r rw r rw rw

Field Bits Type Description

EVTA [2:0] rw Event Associated
Specifies the action associated with the event:
000 None; disabled
001 Assert external pin BRKOUT
010 Halt
011 Breakpoint trap
100 Software breakpoint 0
101 Reserved, same behavior as 000
110 Reserved, same behavior as 000
111 Reserved, same behavior as 000

BBM 3 rw Break Before Make or Break After Make Selection
0 Break after make
1 Break before make

SUSP 5 rw OCDS Suspend Signal State
Value to be assigned to the OCDS suspend signal
when the event is raised.

0 4,
[31:6]

r Reserved; read as 0; should be written with 0.
User’s Manual 21-11 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support

CREVT
Emulator Resource Protection Event Specifier Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SU
SP 0 BBM EVTA

r rw r rw rw

Field Bits Type Description

EVTA [2:0] rw Event Associated
Specifies the action associated with the event:
000 None; disabled
001 Assert external pin BRKOUT
010 Halt
011 Breakpoint trap
100 Software breakpoint 0
101 Reserved, same behavior as 000
110 Reserved, same behavior as 000
111 Reserved, same behavior as 000

BBM 3 rw Break Before Make or Break After Make Selection
0 Break after make
1 Break before make

SUSP 5 rw OCDS Suspend Signal State
Value to be assigned to the OCDS suspend signal
when the event is raised.

0 4,
[31:6]

r Reserved; read as 0; should be written with 0.
User’s Manual 21-12 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support

SWEVT
Software Break Event Specifier Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SU
SP 0 BBM EVTA

r rw r rw rw

Field Bits Type Description

EVTA [2:0] rw Event Associated
Specifies the action associated with the event:
000 None; disabled
001 Assert external pin BRKOUT
010 Halt
011 Breakpoint trap
100 Software breakpoint 0
101 Reserved, same behavior as 000
110 Reserved, same behavior as 000
111 Reserved, same behavior as 000

BBM 3 rw Break Before Make or Break After Make Selection
0 Break after make
1 Break before make

SUSP 5 rw OCDS Suspend Signal State
Value to be assigned to the OCDS suspend signal
when the event is raised.

0 4,
[31:6]

r Reserved; read as 0; should be written with 0.
User’s Manual 21-13 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
TR0EVT
Trigger Event 0 Specifier Register Reset Value: 0000 0000H
TR1EVT
Trigger Event 1 Specifier Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DU
_U

DU
_LR

DLR
_U

DLR
_LR 0 SU

SP 0 BBM EVTA

r rw rw rw rw r rw r rw rw

Field Bits Type Description

EVTA [2:1] rw Event Associated
Specifies the action associated with the event:
000 None; disabled
001 Assert external pin BRKOUT
010 Halt
011 Breakpoint trap
100 Software breakpoint 0
101 Reserved, same behavior as 000
110 Reserved, same behavior as 000
111 Reserved, same behavior as 000

BBM 3 rw Break Before Make or Break After Make Selection
0 Break after make
1 Break before make

Note: This bit will be ignored for events which include
the data protection inputs because these events
only can be break after make.

SUSP 5 rw OCDS Suspend Signal State
Value to be assigned to the OCDS suspend signal
when the event is raised.

DLR_LR 8 rw Controls combination of DLR and CLR

DLR_U 9 rw Controls combination of DLR and CU

DU_LR 10 rw Controls combination of DU and CLR

DU_U 11 rw Controls combination of DU and CU
User’s Manual 21-14 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
The software breakpoint is controlled by the Software Breakpoint Service Request
Control Register.

0 4,[7:6],
[31:12]

r Reserved; read as 0; should be written with 0.

SBSRC0
Software Breakpoint Service Request Control Register 0

Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number
00H Software breakpoint service request is never

serviced
01H- Software breakpoint service request is on lowest

priority
FFH Software breakpoint service request is on

highest priority

TOS [11:10] rw Type of Service Control
00 CPU service is initiated
01 PCP request is initiated
1X Reserved

SRE 12 rw Service Request Enable
0 Software breakpoint service request is disabled
1 Software breakpoint service request is enabled

Field Bits Type Description
User’s Manual 21-15 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
Note: Further details on interrupt handling and processing are described in Chapter 15
of this User’s Manual.

21.2 PCP Debug Support

A special PCP instruction, DEBUG, is provided for debugging the PCP. It can be placed
at important locations inside the code to track and trace program execution. The
execution of the instruction depends on a condition code specified with the instruction.
The actions programmed for this instruction will only take place if the specified condition
is true.

Further details on the PCP debugging features are described in Chapter 17 of this
User’s Manual.

21.3 Multi-Core Debug Support

The TC11IB supports multi-core debug. It touches the following points:

• Break-input distribution to the various cores and break-output generation
• Suspend signal generation for the peripherals
• Instruction trace for the cores.

SRR 13 rh Service Request Flag
0 No software breakpoint service request is

pending
1 A software breakpoint service request is

pending

CLRR 14 w Request Clear Bit
CLRR is required to reset SRR.
0 No action
1 Clear SRR; bit value is not stored; read always

returns 0; no action if SETR is set too

SETR 15 w Request Set Bit
SETR is required to set SRR.
0 No action
1 Set SRR; bit value is not stored; read always

returns 0; no action if SETR is set too

0 [9:8],
[31:16]

r Reserved; returns 0 if read; should be written with 0.

Field Bits Type Description
User’s Manual 21-16 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.3.1 Break and Suspend Control

In a System On a Chip (SOC), there can be several processor cores (MPUs, MCUs,
DSPs, etc.) for which software is developed Figure 21-6. For debugging this software, it
is required, that the run control (OCDS) of one processor can break also the other
processor cores. This is configured in a central break and suspend signal switch, which
is located in Cerberus. But the processor cores must have break in and out signals,
which are low active. The suspend signal requests are high active. The structure
includes two independent break buses, break in/out sources and suspend generation.
These signals are controlled by Special Function Registers. The external debugger can
write these registers directly with Cerberus or indirectly with a monitor which
communicates across for instance a serial interface.

Figure 21-6 Example for a Multi-Core System On a Chip

TriCore

brk_in_nbrk_out_n

Carmel

brk_in_nbrk_out_n

brk_in_n

brk_out_n
brk_in_n

brk_out_n

Break
Signal
Switch

C166S
User’s Manual 21-17 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
Differences between Break and Suspend Signals

There are clear differences between break and suspend signals (Table 21-2). However
if a processor core’s OCDS does not provide both types, the MultiCore Debug Switch
allows with some restrictions also to use the one type for the other purpose.

Table 21-2 Differences between Break and Suspend Signals

Break Signals Suspend Signals

Time to be
active

A break output is active as long as
the break condition is true. For
instance as long as the program is
in a predefined address range.

A suspend output is activated on a
breakpoint hit or through writing
the suspend bit in the control
register of the OCDS. It is
deactivated “manually” by the
external debugger or by the
monitor.

Function An active break output signals to
an external debugger, that the
break condition is true. This is
without any impact on the system
behavior. The break output can be
used to break other cores.

Suspend signals request sensitive
parts of the system (e.g.
peripherals) to suspend. When
suspend is deactivated, these
parts resume.

Break inputs are provided to
asynchronously break a core. This
is done either by the external
debugger or by another core via
the break switch.
User’s Manual 21-18 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.3.1.1 Break Bus Switch

The Break Bus Switch is shown in Figure 21-7.

Figure 21-7 Break Bus Switch

B
re

ak
 B

us
 1

Br
ea

k
Bu

s
1

0

1

brk_src_n[0]BS 0

.

.

.
0

1

brk_src_n[3]BS 3

0

1

brk_src_n[4]

BS 4 0

1
brk_srcsa_n[4]

B S4E N

0

1

brk_src_n[5]

BS 5 0

1
brk_srcsa_n[5]

B S5E N

Break Sources

0

1

BS P0 brk_src_p in_n[0]

0

1

B SP 1 brk_src_p in_n[1]

.

.

.

0

1

B T0 brk_ trg t_n [0]

0

1

B T3 brk_ trg t_n [3]

0

1

brk_ trg t_n [4]

B T4 1

0

brk_ trg tsa_n[4]

BT4EN

1

0

1

brk_ trg t_n [5]

B T5 1

0

brk_ trg tsa_n[5]

BT5EN

1
0

1

BTP0 brk_ trg t_pin_n[0]1

0

1

BTP1 brk_ trg t_pin_n[1]1

Break Input Pins

Break Targets

Break Output Pins
User’s Manual 21-19 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.3.1.2 Suspend Signal Generation

The Suspend Signal Generation is shown in Figure 21-8.

Figure 21-8 Suspend Signal Generation

Suspending Rules

If several bus transaction sources (processor cores) use the same target (peripheral),
the sources need to be suspended (broke) prior to or simultaneously with the target.
Otherwise transactions may be lost and a restart is not possible anymore. This can be
accomplished simply, when the last broken processor core (transaction source)
generates the suspend request.

Restart Rules

On a restart, the transaction targets need to restarted prior to or simultaneously with the
associated transaction sources. This requirement can be fulfilled only, when there is only
one single active suspend request source. In this case this transaction source is started
first and with it simultaneously the suspended targets and then the other transaction
sources.

The simultaneous restart of source and target can be done through writing with one
access the suspend and the restart bit in the OCDS control register.

Delayed Suspend

This feature provides a second delayed conditional suspend signal. It is used in cases,
where the rest of the system can be suspended only after certain parts have reached a

set

suspend_delayed

suspend_ack

&

Suspend Sources

Suspend Output

suspend_src[0]

suspend

Suspend Acknowledge
for Delayed Suspend

Delayed Suspend Output

SD
FF

clear

1

User’s Manual 21-20 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
certain state after the first level suspend request. A system part with such a requirement
can be for instance a bus bridge holding transactions in its FIFO. The transactions need
to be finished before the slaves at the lower part of the bus can be suspended.

In general the first level suspend signal suspend_o will stop all primary masters from
issuing transaction requests. The condition for the second level suspend request is, that
all bus bridges have finished their transactions. In this case the system asserts
suspend_ack_i and the second level suspend signal suspend_delayed_o will request all
remaining slaves to suspend.

Figure 21-9 Delayed Suspend Request Example

Figure 21-9 shows an example for the delayed suspend request. The goal to halt the
system (including peripherals) in a restart capable state, when Processor Core 0 hits a
breakpoint. The central break signal switch is programmed that the brk_out of Processor
Core 0 breaks Processor Core 1. This ensures that both primary masters stop to start
bus transactions, thus their busy signal will get inactive after their write back buffer is
emptied. In the second phase, the Bus Bridge will serve all pending transactions and
inactivate its busy signal. When all busy signals are inactive the delayed suspend flip-
flop SDFF will be set and the suspend request signal for the peripherals gets active.

To restart the system, Processor Core 0 releases the suspend request, then SDFF is
cleared and then the Processor Cores are restarted in user mode.

In TC11IB, only Tricore be the primary suspend source, while PCP should do indirectly
through break_out signals. The target for the first level suspend signal is the FPI masters

Master I/F

OCDS

Slave I/F

Processor
Core 0

Master I/F

OCDS

Processor
Core 1

Periphe-
ral 1

Slave I/F

Periphe-
ral 0

set
clear

SFR Bit

an
d

or

Bus Branch 1Bus Branch 0

Central break signal switch
and suspend generation

brk
in

brk
out

busy busy

busy

suspend

suspend suspend

busy

SD
FF

Bus
Bridge
User’s Manual 21-21 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
on the Fast FPI bus (PCI, Ethernet, XMU-EBU) preventing any new transactions to take
place. FFI (FPI bridge) has to complete all transactions from Fast to Slow FPI and issue
suspend_ack signal. PCI bridge will deassert pcim_fpi_busy to indicate the master data
path is suspended, and similarly with the slave data path through pcis_fpi_busy signal.
These three signals form the suspend_ack_i to Cerberus. Second level suspend signal
is issued to the rest of the system, but pure-passive slave modules that totally depends
on the bus for activities may not need this signal (e.g. LMU). The two masters on the slow
FPI bus are indirectly prevented from initiating FPI transactions. PCP has to get the
break signal when Tricore breaks (software must ensure), while the other master is
Cerberus. During suspend mode any reads to BPI registers are possible, while write
accesses may be acknowledged with a bus error.
User’s Manual 21-22 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.3.2 Registers

Table 21-3 Multi-Core Debug Support Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

MCDBBS Multi-Core Debug Break Bus Switch Status
and Control Register

0070H Page 21-23

MCDSSG multi-Core Debug Suspend Signal Generation
Register

0074H Page 21-24

MCDBBS
Break Bus Switch Status and Control (Reset value: FF00’0000H)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BBS1 BBS0 1 1 1 1 BSS
PCP

BSS
CPU 0 BTP 0 BSP

rh rh rh rh rh rh rh rh r rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BT
PCP

BT
CPU 0 BS

PCP
BS

CPU

r rw rw r rw rw

Field Bits Typ Description

BSi [1:0] rw Break source switch
0 Break source i connected to break bus 0.
1 Connected to break bus 1.

BTi [9:8] rw Break target switch :
0 Break target i connected to break bus 0.
1 Connected to break bus 1.

BSP [16] rw Break source input pins enable:
0 Break source pin i disabled.
1 Enabled.

BTP [18] rw Break target output pins enable:
0 Break target pin i disabled.
1 Enabled.

BSSi [25:24] rh Status of break source i (brk_src_n_i[i]).

BBSi (i = 0,1) [31:30] rh Status of break bus i.

1 [29:26] r Reserved.
User’s Manual 21-23 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
.

Note: The CONi (i = 0-3) bits control the associated mcdssg_con_o[i] signals. They are
provided for systems which require for instance additional control of the suspend
source. One example is a processor core which does not have a dedicated
suspend request output. In this case the break out signal could be used and it is
enabled as a suspend source with one of the CONi (i = 0-3) bits.

0 [23:19]
17
[15:10
[7:2]

r Reserved.

MCDSSG
Suspend Signal Generation Status and Control (Reset value: 0000’0000H)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 SDS SOS 0 SSS
1

SSS
0

r rh rh r rh rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CON
3

CON
2

CON
1

CON
0 0

rw rw rw rw r

Field Bits Typ Description

CONi (i = 0-3) [15:12] rw Controls the associated mcdssg_con_o[i] signal.

SSSi (i = 0-1) [21:16] rh Status of suspend source i (suspend_src_i[i]).

SOS 24 rh Status of the suspend output.

SDS 25 rh Status of the delayed suspend output.

0 [11:0]
[23:18]
[31:26]

r Reserved.

Field Bits Typ Description
User’s Manual 21-24 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.4 Trace Module

This chapter describes the PC trace support implemented in the TC11IB.

21.4.1 Overview

Every cycle, 16 bits of information are sent out about the current state of the CPU core.
These bits include the following 3 groups:

– 5 bits of pipeline status information
– An 8-bit indirect PC bus
– 3 bits of breakpoint qualification information

From this information, an emulator can reconstruct a cycle-by-cycle break down of the
execution of the CPU. It should be possible to follow in real-time the current PC
facilitating advanced tools such as profilers, coverage analysis tools etc. The information
may also be captured and used to reconstruct, off-line, a cycle-accurate disassembly of
the code being executed within the CPU.

The following sections describe the 3 groups of signals listed above and how they may
be used to reconstruct the real time trace.

21.4.2 Pipeline Status Signals

Each cycle, a 5-bit code is sent out over the status signals. The meaning of this code is
shown in Table 21-4 for every cycle except for the first cycle after an indirect branch,
when an indirect address sync code is sent (see Section 21.4.3.1).

Table 21-4 Pipeline Status Codes

Status PC increment Jump Indirect Description Unique1)

00000B 0 no no nop yes

00001B 2 no no – yes

00010B 2 yes no – yes

00011B 2 yes yes – yes

00100B 0 yes yes trap yes

00101B 4 no no – yes

00110B 4 yes no – yes

00111B 4 yes yes – yes

01000B 0 yes yes interrupt yes

01001B 6 no no – yes

01010B 6 yes no – yes

01011B 6 yes yes – yes
User’s Manual 21-25 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
01100B – – – Reserved: overrun
sync pattern

no

01101B 8 no no – yes

01110B 8 yes no – yes

01111B 8 yes yes – yes

10000B – – – Reserved no

10001B 10 no no – no

10010B 10 yes no – no

10011B – – – Reserved: invalid for
core 1

no

10100B – – – Reserved no

10101B 12 no no – no

10110B 12 yes no – no

10111B – – – Reserved: invalid for
core 1

no

11000B – – – Reserved no

11001B – – – Reserved no

11010B – – – Reserved no

11011B – – – Reserved no

11100B – – – Reserved no

11101B – – – Reserved no

11110B – – – Reserved no

11111B – – – Reserved no
1) See Section 21.4.2.1.

Table 21-4 Pipeline Status Codes (cont’d)

Status PC increment Jump Indirect Description Unique1)
User’s Manual 21-26 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
Quick Decoding of the Pipeline Status Codes

The pipeline status code is split up into two fields:

– Bits [4:2] indicate PC increment
– Bits [1:0] indicate code type

The code type field can have the values shown in Table 21-5.

For sequential code, the new value of the PC determined from:

new_PC = PC + ((PC increment + 1) * 2)

21.4.2.1 Synchronizing with the Status and Indirect Streams

Unless the emulator follows the execution of the core from reset, there needs to be a way
for the emulator to synchronize with the information coming out of the chip. This process
can be performed in two stages.

1. The emulator would synchronize with the pipeline status stream.
2. The emulator would synchronize with the indirect PC stream so that the first PC could

be obtained at the next indirect branch.

Pipeline Status Stream

Many of the most common pipeline status codes are unique and no equivalent indirect
sync code exists. The unique codes are identified in the last column of Table 21-4. By
waiting until it sees one of these unique codes, the emulator can synchronize with the
pipeline status stream.

Indirect PC Stream

Once the emulator has synchronized with pipeline status stream, it can wait for the first
indirect branch. Provided there has not been an overrun, the emulator will then be able
to determine the PC, and using that as a starting point it will be able to reconstruct the
trace.

Table 21-5 Code Type

Code Type Increment PC Jump Indirect Description

00 no no – Special code, trap, interrupt etc.

01 yes no – Sequential code

10 yes yes no Relative branch

11 yes yes yes Indirect branch
User’s Manual 21-27 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.4.3 Indirect Addresses

The target address of an indirect branch, interrupt, or trap entry are sent out one byte at
a time over a dedicated 8-bit bus.

A FIFO is implemented to de-couple the generation of the indirect addresses by the core
from the trickling of the addresses out of the chip. The pipeline status and indirect sync
encoding has been designed to support a FIFO of up to 4 entries. However, the
implementation may have fewer entries. If the FIFO fills up, an indirect address overrun
is signalled through a special status code (01100B).

21.4.3.1 Indirect Sync

The indirect sync is a 5-bit code sent over the status bus after every indirect branch. This
code is used to synchronize the status stream to the indirect addresses being sent over
the indirect PC bus.

The sync code is interpreted in the following manner:

Overrun

The overrun case occurs when the FIFO fills up that decouples the generation of indirect
addresses within the CPU from the ability to transmit those addresses over the 8 bit
indirect PC bus. When this scenario arises, the PC of the indirect jump which causes the
overrun is lost. This is communicated to the emulator through the indirect PC overrun
code 01100B.

The emulator will then not be able to reconstruct the trace between the time of the
indirect jump which caused the overrun, and the next indirect jump that does not also
encounter an overrun condition.

The overrun condition should only occur very rarely in normal code. The most common
source of indirect branches is when the jump is associated with a return from a function
or trap/interrupt handler (RET or RFE). The context model in the first implementation
restrict the execution of back-to-back context restores, such that the worst case would
be 3 context restores separated by 3 cycles followed by a number of context restores
separated by a minimum of 5 cycles. Each context restore generates an indirect PC.

Table 21-6 Indirect Sync Format

Bits Name Description

4 Overrun Used to determine whether an overrun occurred.
0 Overrun
1 No overrun

[3:0] Offset 1100B means overrun occurred
Other combinations: number of cycle before first byte of
indirect target address will be seen on indirect PC bus.
User’s Manual 21-28 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
Figure 21-10 Worst Case Back to Back Returns

The FIFO, which is designed to decouple the generation of addresses by the CPU core
and the sending out of the indirect PC’s over four cycles, can easily handle this scenario.
Hence even if the core performs a large number of back to back returns, an overrun
would never be generated.

The only scenario that can result in an overrun is several back-to-back jump indirect
instructions. This scenario should very seldom be encountered in normal code.

21.4.3.2 Example
;a2 contains the address of dest1
;a3 contains the address of dest2

ji a2
dest1: ji a3

dest2: add d9, d8, d7
ld.w d5, [a0]24
ld.w d6, [a0]28

Table 21-7 Trace Example

Cycle Status Indirect_pc

Code Sync PC
increment

Jump
taken

Indirect

0 – no 4 yes yes X

1 00000B yes – – – t1[7:0]

2 – no 4 yes yes t1[15:8]

3 00010B yes – – – t1[23:16]

4 – no 8 no no t1[31:24]

5 – no 4 no no t2[7:0]

M C T 04815

ret1 re t2 re t3 ret4 ret5

C yc le n n+ 3 n+6 n+11 n+16
User’s Manual 21-29 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
Figure 21-11 Example Output

21.4.3.3 Breakpoint Qualification

The breakpoint qualification lines provide the emulator with a qualification as to which
debug events have been raised. The output codes are listed below:

The breakpoint qualification information is kept in synchronous with the pipeline status
information so that a debug event generated on cycle n will be visible at the external pins
at the same time as the pipeline status information associated with cycle n.

Table 21-8 Breakpoint Qualification Codes

Code Description

000 reserved

001 EXEVT

010 CREVT

011 SWEVT

100 TR0EVT

101 TR1EVT

110 reserved

111 reserved

M C T 04816

4 B ytes
taken ind irect 0 4 B y tes4 B ytes

taken ind irect 2 8 B y tes

X t1 [7:0] t1 [15 :8] t1 [23 :16] t1 [31:24] t2 [7 :0]Ind irect_pc

S ta tus

0 1 2 3 4 5
User’s Manual 21-30 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.4.4 Trace Output Control

This part of the SCU controls the interconnections of OCDS2 Port to the trace interfaces
of the CPU and PCP (see also Chapter 4 in this User’s Manual).

Figure 21-12 Port OCDS2 Trace Control within the SCU

CPU

PCP

 Port
M
U
X

16

16

SCU

ETSEL
[1:0] ETEN

MCDTRC
User’s Manual 21-31 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.5 Debugger Interface (Cerberus)

The Cerberus debug port is provided to debug and emulation tool vendors. The external
debug hardware can access the OCDS registers and arbitrary memory locations across
the FPI Bus (Figure 21-1). The interface is based on the JTAG standard, and uses only
the dedicated JTAG port pins.

The description in this section gives a rough overview for the system programmer of the
TC11IB on the operations the debugger interface can perform in the system (and thus
affect system behavior). It also describes how the Cerberus is disabled to ensure
security in the final product. The Cerberus should not be used by an application software
since this will disturb the tool behavior. The information of this section is not sufficient to
design tools for the TC11IB. For tool developers detailed specifications of Cerberus and
the JTAG IO client are necessary.

Features

• External debugger uses the JTAG pins only
• Allows to address the complete FPI Bus address space
• Performance optimized (protocol)
• Does not use any user resources
• Minimum run time impact
• Generic memory read/write functionality
• Writes words, half words and bytes
• Block read and write support
• Full support for communication between monitor and external debugger
• Supports OCDS for several CPUs on the same FPI Bus
• Multi-Core debug switch supports several CPUs with OCDS
• Minimized run tine impact through optional lowest FPI master priority in RW mode
• Full control through optional highest FPI master priority in RW mode
• Pending reads (writes) can be optional triggered from the OCDS module (tracing)

Applications

• Download of programs and data
• Control of the OCDS blocks
• Data acquisition

Performance

The maximum JTAG port clock frequency is 20 MHz. The following performance figures
can be achieved:

Table 21-9 Cerberus Performance (Net Data Rates)

Operation JTAG clock 200 kHz JTAG clock 10 MHz JTAG clock 20 MHz

Random read 48 kbps 2.4 Mbps 4.6 Mbps
User’s Manual 21-32 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.5.1 RW Mode

The RW mode is used to read or write memory locations by a JTAG host via the JTAG
interface. The RW mode needs the FPI Bus master interface of the Cerberus to actively
request data reads or writes.

21.5.1.1 Entering RW Mode

RW mode is entered when the RWDIS bit in the IOSR register is 0 and the JTAG host
writes a 1 to the MODE bit of the IOCONF register.

21.5.1.2 Data Type Support

The default data type is a 32-bit word. It is used for single word transfers and block
transfers. For reading 16-bit registers without getting an FPI Bus error, the
IO_READ_HWORD JTAG instruction is provided. If the JTAG host wants to read a byte,
it has to read the associated word or half-word. In all cases, the read value is 32-bit value
and the JTAG host has to extract the needed part by itself.

Writes to bytes or half-words are supported with the IO_WRITE_BYTE and
IO_WRITE_HWORD JTAG instructions. With this instructions the JTAG host must also
shift in the full 32-bit word, but only the selected byte or half-word is actually written. Its
position is defined by the lowest 2 (bytes) or the second (half-word) address bit in
IOADDR.

21.5.1.3 FPI Bus Master Interface

The FPI Bus master interface executes the actual read or write of memory locations. It
is configured by the IOCONF register and the transactions are requested by the JTAG
shift core.

FPI Bus Master Priority Control

There are two different requirements for the RW mode access priority:

– The Cerberus is used to configure the OCDS registers in a CPU. Under this
conditions, the Cerberus must be able to set these registers immediately.

– The RW mode is used to read registers while a user program is running.

Random write 50 kbps 2.5 Mbps 4.9 Mbps

Block read 104 kbps 5.2 Mbps 10.0 Mbps

Block write 114 kbps 5.7 Mbps 11.2 Mbps

Table 21-9 Cerberus Performance (Net Data Rates)

Operation JTAG clock 200 kHz JTAG clock 10 MHz JTAG clock 20 MHz
User’s Manual 21-33 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
Under these conditions it is important to influence the real time behavior as little as
possible. To allow both options, the FPI Bus master priority can be configured with the
FPIPRIO bit in the IOCONF register.

FPI Bus Supervisor Mode

For full debugging support, the external debugger needs the option to access memory
locations which are only accessible in supervisor mode. This can be configured with the
SVMODE bit in the IOCONF register.

21.5.2 Communication Mode

In the communication mode the Cerberus has no access to the FPI Bus, but a
communication between an JTAG host and a software monitor, which is embedded in
the application program, can be established via the Cerberus registers.

The communication mode is the default mode after reset. If the Cerberus is in RW mode,
the communication mode is entered when the JTAG host writes a 0 into the mode bit of
the IOCONF register.

21.5.3 System Security

After power-on reset, the Cerberus is in communication mode and needs at least 126 tCK
clock cycles to bring the system to its control. If the user program running on the CPU
sets bit RWDIS immediately after reset, there is no way anymore from outside to set the
Cerberus into RW mode via the JTAG interface.

21.5.4 Triggered Transfers

Triggered transfers are an OCDS specific feature of the Cerberus. They can be used to
read from or write to a certain memory location, when an OCDS trigger becomes active.
Triggered transfers are executed when:

– the Cerberus is in RW mode
– the TRGEN bit in register IOCONF is 1
– the JTAG shift core has requested a transaction
– and a positive edge occurs on the transfer_trigger signal

(BRKOUT becomes active)

Triggered transfers behave like normal transfers, except that there must be additionally
a positive edge on the transfer_trigger signal after the JTAG shift core requests the
transfer. In the TC11IB, a trigger_transfer signal can be generated by the CPU or by the
PCP. Another exception is that in case of IO_READ_WORD, IO_READ_HWORD, and
IO_READ_BLOCK JTAG instructions the read data is followed by a dirty bit.
User’s Manual 21-34 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.5.4.1 Tracing of Memory Locations

The main application for triggered transfers is to trace a certain memory location. If a
certain memory location is written by a user program, the OCDS module activates a
trigger signal. Which trigger signal is selected is defined by the content of the channel bit
field in register IOCONF. The Cerberus is configured to read the memory location on the
occurrence of this trigger signal. The maximum transfer rate that can be reached is
defined by:

NINSTR is the number of instruction cycles that need to be between two CPU accesses
to the memory location. tINSTR is the instruction cycle time of the CPU and fJTAG is the
clock rate of the JTAG interface (tCK). For example, if tINSTR = 25 ns and
fJTAG = 10 MHz, accesses in every 184th instruction cycle can be fully traced. In many
cases this will be sufficient to trace for instance the task ID register. The factor 46 is the
sum of 32 for the data, 10 for the JTAG state machine, I/O instruction and start bit and 4
for the synchronization between transfer_trigger events and the shift out.

It is recommended that triggered transfers are done with the highest FPI Bus master
priority and SVMODE = 1, because otherwise another higher priority master could
change the desired data value before it is actually read.

21.5.5 Trace with External Bus Address

This is a special operating mode of the master interface for faster tracing. In this mode
the data is not shifted out via the JTAG port, but immediately forwarded to an external
bus address. The data is then captured from the external bus by the debugger (“trace
box”). This kind of tracing can be enabled in communication mode only and can be used
in parallel to it.

The condition for transfers is, that MODE = 0, TRGEN = 1, EXBUSTRA = 1 (all are bits
in IOCONF) and a positive edge on the transfer_trigger signal. With EXBUSHW the FPI
Bus access for the source read can be switched between word and half word.

The external bus address is defined by:

The TRADDR register sets the most significant bits, the rest is hardwired to 10F068H. It
is recommended that also this kind of triggered transfers are done with the highest FPI
Bus master priority and SVMODE = 1.

tINSTR=× fJTAG
NINSTR = =

46

68HF0H10HTRADDR
031
User’s Manual 21-35 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.5.6 Reset Behavior

Reset from the JTAG side

The behavior of the registers is specified in Table 21-10.

Reset from the bus/CPU side

In this case all instructions except IO_CONFIG are responded with an indefinite number
of busy bits (Error state). The external host has to acknowledge this state with the
IO_SUPERVISOR instruction. The reason is to notify the external host, that something
possibly unexpected has happened and that it has to check for instance the
communication channel to the monitor.

21.5.7 Power Saving

The Cerberus is in power saving mode when it is not selected from the JTAG side. The
only register that is always accessible and working is IOSR.

21.5.8 Registers

Table 21-10 Register reset behavior

Register JTAG Reset Bus/CPU Reset Description

IOADDR undefined undefined Address for next RW mode accesses

IODATA undefined undefined Data register for RW mode

COMDAT
A

unchanged 0 Data register for communication mode

IOCONF client specific client specific IO client configuration register

IOSR client specific client specific IO client status register

Table 21-11 Register Summary

Register Size Address Description

IOCONF 12 Bits Accessible via JTAG only Configuration register

IOADDR 32 Bits Accessible via JTAG only Address for next RW mode
accesses

IODATA 32 Bits Accessible via JTAG only RW mode data register

COMDATA 32 Bits F000 0468H Communication mode data
register
User’s Manual 21-36 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
Note: The Cerberus has fixed absolute register addresses. This makes a debug monitor
independent of a TriCore product.

IOSR 32 Bits F000 046CH Status register

TRADDR 8 Bits Accessible via JTAG only External bus trace mode
address

Table 21-11 Register Summary

Register Size Address Description
User’s Manual 21-37 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.5.8.1 IOCONF Register

The IOCONF register is used to configure the Cerberus.The IOCONF register is a write-
only register for the JTAG host and not accessible from the FPI Bus side.

IOCONF
Cerberus I/O Configuration Register Reset Value: 0000H

11 10 9 8 7 6 5 4 3 2 1 0

0 CHANNEL
SV
MO
DE

FPI
PRIO

EX
BUS
HW

EX
BUS
TRA

TRG
EN

CM
SYN

C
CM
RST

MO
DE

r w w w w w w w w w

Field Bits Type Description

MODE 0 w Mode Selection
This bit defines whether the Cerberus is in RW mode or
in communication mode.
0 Communication mode selected
1 RW mode selected

CMRST 1 w Communication Mode Bit Reset
This bit is provided to reset the CWSYNC and HWSYNC
bits in register IOSR to abort requests in communication
mode. This reset is not static, it is only done once when
the IOCONF register is updated.
0 Bits CWSYNC and HWSYNC are not affected
1 Bits CWSYNC and HWSYNC in register IOSR are

reset

CMSYNC 2 w Communication Mode Bit Set
This bit sets the bit COMSYNC in register IOSR.
0 Bit COMSYNC in register IOSR is not affected
1 Bit COMSYNC in register IOSR is set

TRGEN 3 w Triggered Transfer Enable
This bit enables triggered transfers in RW mode.
0 Triggered transfers in RW mode are disabled
1 The next RW mode transfers must be triggered by

a transfer_trigger signal

EXBUSTRA 4 w Enable Triggered Transfers to External Bus Address
This bit enables triggered transfers to an external bus
address.
0 Trace with external bus address disabled
1 Trace with external bus address enabled
User’s Manual 21-38 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
EXBUSHW 5 w FPI Bus Read Size Selection
This bit distinguishes between FPI Bus word and half
word reads of the trace source for the external bus trace.
0 The trace source is read with an FPI Bus word

access
1 The trace source is read with an FPI Bus half word

access

FPIPRIO 6 w FPI Bus Master Priority of the Cerberus
This bit sets the priority of the Cerberus FPI Bus master
interface in RW mode.
0 Next FPI Bus master request is done with lowest

priority
1 Next FPI Bus master request is done with highest

priority

SVMODE 7 w Supervisor Mode Selection
This bit sets the supervisor mode for the FPI Bus master
interface in RW mode.
0 The next RW transfers are not done in supervisor

mode
1 The next RW transfers are done in FPI Bus

supervisor mode

CHANNEL [10:8] w Transfer Trigger Selection
This bit field sets the associated bit field in register IOSR
and selects whether CPU or PCP can activate the
transfer_trigger signal.
001B CPU is selected to activate the transfer_trigger

signal
010B PCP is selected to activate the transfer_trigger

signal
All other combinations are reserved and must not be
used.

0 11 r Reserved; should be written with 0.

Field Bits Type Description
User’s Manual 21-39 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.5.8.2 IOSR Register

The IOSR register is used in communication mode. It allows to disable the Cerberus from
the CPU side. The IOSR register is only accessible from the FPI Bus.

IOSR
Status and Control Register (Reset value: 0000’0000H)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CHNL 0 CLT
ON

DBG
ON

COM
SY
NC

CW
ACK

CW
SY
NC

CR
SY
NC

RW
EN
P

RW
EN

RW
DIS
P

RW
DIS

r rh r rh rh rh w rh rh w rw(h) w r(w)

Field Bits Typ Description

RWDIS 0 rw
1)2)

RW mode protection:
0 RW mode is enabled.
1 RW mode is disabled.

RWDISP 1 w 0 Bit protection: RWDIS unchanged.
1 RWDIS will be changed.

RWEN 2 rw(h)
3)

Used by user program for security. Reset by a JTAG
reset (h) or a power on reset (optional) only and not by
a CPU reset.

RWENP 3 w 0 Bit protection: RWEN unchanged.
1 RWEN will be changed.

CRSYNC 4 rh Read sync bit for Communication Mode.
0 No receive request pending.
1 External debugger requests value (COMDATA).

CWSYNC 5 rh Write sync bit for Communication Mode.
0 No send request pending.
1 External debugger offers value (COMDATA).

CWACK 6 w Write request acknowledge in Communication
Mode.
0 No action.
1 Acknowledge that send value was read from
 COMDATA by the monitor.
User’s Manual 21-40 V1.0, 2002-03

TC11IB
System Units

On-Chip Debug Support
21.5.8.3 TRADDR Register

The TRADDR register is used for tracing with external bus address. It defines the
uppermost 8 bits of the external bus address. It is set with the IO_SET_TRADDR
instruction by the external JTAG host.

21.5.8.4 IOADDR, COMDATA and RWDATA Registers

These registers are used as address, data, and control registers in communication and
RW mode.

21.6 OCDS Register Address Ranges

In the TC11IB, the registers for on-chip OCDS control are located at the following
address ranges:

– Core Debug Registers (except SBSRC0)
Module Base Address: F7E1 FD00H
Module End Address: F7E1 FDFFH

– CPU Slave Registers (SBSRC only)
Module Base Address: F7E0 FF00H
Module End Address: F7E0 FFFFH

– On-Chip Debug Support (Cerberus) Registers
Module Base Address: F000 0400H
Module End Address: F000 04FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 21-1)

COMSYNC 7 rh High level sync bit for Communication Mode.

DBGON 8 rh 0 No external debugger present.
1 External debugger present.

CLNTON 9 rh 0 Client not selected.
1 Client selected.

CHNL [14:12] rh Selects the addressed CPU (monitor) in
Communication Mode.

0 [11:10]
[31:15

r Reserved.

1) Write only in communication mode.

2) Write only in FPI supervisor mode.

3) Reset by a JTAG reset only and not by a FPI Bus reset.

Field Bits Typ Description
User’s Manual 21-41 V1.0, 2002-03

TC11IB
System Units

Register Overview
22 Register Overview
This chapter defines all registers of the TC11IB and provides the complete address
range as well. It also defines the read/write access rights of the specific address ranges/
registers.

Throughout the tables in this chapter, the “Access Mode” “Read” and “Write”, and “Reset
Values” columns indicate access rights and values using symbols listed in Section 22-1.

Table 22-1 Address Map Symbols

Symbol Description

U Access permitted in User Mode 0 or 1.

SV Access permitted in Supervisor Mode.

R Read-only register.

32 Only 32-bit word accesses are permitted to that register/address range.

E Endinit protected register/address.

PW Password protected register/address.

NC No change, indicated register is not changed.

BE Indicates that an access to this address range generates a Bus Error.

nBE Indicates that no Bus Error is generated when accessing this address
range, even though it is either an access to an undefined address or the
access does not follow the given rules.

nE Indicates that no Error is generated when accessing this address or
address range, even though the access is to an undefined address or
address range. True for CPU accesses (MTCR/MFCR) to undefined
addresses in the CSFR range.

X Undefined value or bit.
User’s Manual 22-1 V1.0, 2002-03

TC11IB
System Units

Register Overview
22.1 Segments 0 - 14

22.1.1 Address Map

Table 22-2 shows the block address map of Segment 0 to 14.

Note: Bold entries in column “Access Mode” are links to register definitions of the
corresponding functional unit.

Table 22-2 Block Address Map of Segments 0 to 14

Segment Description Address
Range

Access Mode Size

Read Write

0-7 MMU(Virtual Address)/ PCI
(Physical Address) Space

0000 0000H -
7FFF FFFFH

nE
(via
F_FPI)

nE
(via
F_FPI)

2 GBytes

8 EBU Space (external),
mapped from segment 10

8000 0000H -
8FFF FFFFH

nE
(via
LMB)

nE
(via
LMB)

256 MBytes

9

PCI Space, mapped from
Segment 11

9000 0000H -
9FDF FFFFH

nE
(via
F_FPI)

nE
(via
F_FPI)

254 MBytes

Com-DRAM, mapped from
Segment 11

9FE0 0000H -
9FEF FFFFH

nE
(via
F_FPI)

nE
(via
F_FPI)

1 MBytes

Reserved 9FF0 0000H -
9FFF FFFFH

BE BE 1 MBytes

10
EBU Space A000 0000H -

AFBF FFFFH

nE
(via
LMB)

nE
(via
LMB)

252 MBytes

LMU non-cached
executable space

AFC0 0000H -
AFC7 FFFFH

nE
(via
LMB)

nE
(via
LMB)

512 KBytes

Reserved AFC8 0000H -
AFFF FFFFH

nE
(via
LMB)

nE
(via
LMB)

3.5 MBytes
User’s Manual 22-2 V1.0, 2002-03

TC11IB
System Units

Register Overview
11

PCI Space B000 0000H -
BFDF FFFFH

nE
(via
F_FPI)

nE
(via
F_FPI)

254 MBytes

Com-DRAM Space BFE0 0000H -
BFEF FFFFH

nE
(via
F_FPI)

nE
(via
F_FPI)

1 MBytes

Reserved BF00 0000H -
BFFF EFFFH

BE BE 1 MBytes

12
Local Memory, eDRAM C000 0000H -

C007 FFFFH

nE
(via
LMB)

nE
(via
LMB)

512 KByte

Reserved C008 0000H -
CFFF FFFFH

BE BE 255.5
MBytes

13

Data Scratchpad Memory
(SRAM)

D000 0000H -
D000 5FFFH

nE
(via
LMB)

nE
(via
LMB)

24 KBytes

Reserved D000 6000H -
D3FF FFFFH

BE BE ~64 MBytes

Code Scratchpad Memory
(SRAM)

D400 0000H -
D400 5FFFH

nE
(via
LMB)

nE
(via
LMB)

24 KBytes

Reserved D400 6000H -
D7FF FFFFH

BE BE ~64 MBytes

External Peripheral Space D800 0000H -
DDFF FFFFH

nE
(via
LMB)

nE
(via
LMB)

96 MBytes

External Emulator Space DE00 0000H -
DEFF FFFFH

nE
(via
LMB)

nE
(via
LMB)

16 MBytes

Reserved DF00 0000H -
DFFF BFFFH

BE BE ~16 MBytes

Boot ROM Space DFFF C000H -
DFFF FFFFH

nE
(via
S_FPI)

nE
(via
S_FPI)

16 KBytes

Table 22-2 Block Address Map of Segments 0 to 14 (cont’d)

Segment Description Address
Range

Access Mode Size

Read Write
User’s Manual 22-3 V1.0, 2002-03

TC11IB
System Units

Register Overview
14

External Peripheral Space E000 0000H -
E7FF FFFFH

nE
(via
LMB)

nE
(via
LMB)

128 MBytes

Local Memory E800 0000H -
E807 FFFFH

nE
(via
F_FPI)

nE
(via
F_FPI)

512 KBytes

Reserved E808 0000H -
E83F FFFFH

nBE
(via
F_FPI)

nBE
(via
F_FPI)

3.5 MBytes

Data Scratchpad SRAM E840 0000H -
E840 7FFFH

nE
(via
F_FPI)

nE
(via
F_FPI)

32 KBytes

Reserved E840 8000H -
E84F FFFFH

nBE
(via
F_FPI)

nBE
(via
F_FPI)

~1 MBytes

Code Scratchpad SRAM E850 0000H -
E850 7FFFH

nE
(via
F_FPI)

nE
(via
F_FPI)

32 KBytes

Reserved E850 8000H -
E85F FFFFH

nBE
(via
F_FPI)

nBE
(via
F_FPI)

~1 MBytes

Reserved E860 0000H -
EFFF FFFFH

BE BE 122 MBytes

Table 22-2 Block Address Map of Segments 0 to 14 (cont’d)

Segment Description Address
Range

Access Mode Size

Read Write
User’s Manual 22-4 V1.0, 2002-03

TC11IB
System Units

Register Overview
22.2 Segment 15 (Peripheral Units)

22.2.1 Address Map

Table 22-3 and Table 22-4 show the memory map and registers of Segment 15.

Note: Bold entries in column "Access Mode" are links to the register definitions of the
corresponding functional unit.

Table 22-3 Block Address Map of Segment 15

Unit Address
Range

Access Mode Size

Read Write

System Control Unit (SCU) and
Watchdog Timer (WDT)

F000 0000H -
F000 00FFH

see
Page 22-9

256 Bytes

PCI Software Interrupt Request Register
Space

F000 0100H -
F000 01FFH

see
Page 22-10

256 Bytes

Bus Control Unit 1 (BCU1) F000 0200H -
F000 02FFH

see
Page 22-13

256 Bytes

System Timer (STM) F000 0300H -
F000 03FFH

see
Page 22-13

256 Bytes

On-Chip Debug Support (Cerberus) F000 0400H -
F000 04FFH

see
Page 22-14

256 Bytes

Reserved F000 0500H -
F000 05FFH

BE BE –

General Purpose Timer Unit 0 (GPTU0) F000 0600H -
F000 06FFH

see
Page 22-14

256 Bytes

General Purpose Timer Unit 1(GPTU1) F000 0700H -
F000 07FFH

see
Page 22-17

256 Bytes

Asynchronous/Synchronous Serial
Interface (ASC)

F000 0800H -
F000 08FFH

see
Page 22-19

256 Bytes

Asynchronous Serial Interface (16X50) F000 0900H -
F000-09FFH

see
Page 22-20

256 Bytes

High-Speed Synchronous Serial
Interface (SSC)

F000 0A00H -
F000-0AFFH

see
Page 22-22

256 Bytes

MultiMediaCard Interface (MMCI) F000 0B00H -
F000-0BFFH

see
Page 22-22

256 Bytes

Service Request Control (SRC) F000 0C00H -
F000-0DFFH

see
Page 22-22

2 × 256
Bytes
User’s Manual 22-5 V1.0, 2002-03

TC11IB
System Units

Register Overview
Reserved F000 0E00H -
F000 27FFH

BE BE –

Port 0 F000 2800H -
F000 28FFH

see
Page 22-28

256 Bytes

Port 1 F000 2900H -
F000 29FFH

see
Page 22-29

256 Bytes

Port 2 F000 2A00H -
F000 2AFFH

see
Page 22-29

256 Bytes

Port 3 F000 2B00H -
F000 2BFFH

see
Page 22-30

256 Bytes

Port 4 F000 2C00H -
F000 2CFFH

see
Page 22-30

256 Bytes

Port 5 F000 2D00H -
F000 2DFFH

see
Page 22-31

256 Bytes

Port 6 & 7 (no registers available) F000 2E00H -
F000 3EFFH

BE BE 2 × 256
Byte

PCP Peripheral Control Processor
(PCP)

F000 3F00H -
F000 3FFFH

see
Page 22-31

256 Bytes

Reserved F000 4000H -
F000 FFFFH

BE BE –

PCP Data Memory (PRAM) F001 0000H -
F001 0FFFH

nE nE 4 KBytes

Reserved F001 1000H -
F001 FFFFH

BE BE –

PCP Code Memory F002 0000H
F002 3FFFH

nE nE 16 KBytes

Reserved F002 4000H -
F017 FFFFH

BE BE –

ComDRAM F018 0000H -
F018 FFFFH

see
Page 22-33

64 KBytes

Reserved F019 0000H -
F03F FFFFH

BE BE –

Table 22-3 Block Address Map of Segment 15 (cont’d)

Unit Address
Range

Access Mode Size

Read Write
User’s Manual 22-6 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI Interface (PCI) F040 0000H -
F040 00FFH

see
Page 22-33

256 Bytes

Reserved F040 0100H -
F0FF FFFFH

BE BE –

PCI Configuration Space 1(PCI_CS1) F100 0000H -
F100 00FFH

see
Page 22-37

256 Bytes

PCI Configuration Space 2(PCI_CS2) F100 0100H -
F100 01FFH

see
Page 22-38

256 Bytes

Reserved F100 0200H -
F1FF FFFFH

BE BE –

Bus Control Unit 0 (BCU0) F200 0000H -
F200 00FFH

see
Page 22-39

256 Bytes

Ethernet Controller Module (Ethernet) F200 0100H -
F200 05FFH

see
Page 22-40

5 × 256
Bytes

Reserved F200 0600H -
F7E0 FEFFH

BE BE –

Table 22-3 Block Address Map of Segment 15 (cont’d)

Unit Address
Range

Access Mode Size

Read Write
User’s Manual 22-7 V1.0, 2002-03

TC11IB
System Units

Register Overview
CPU CPU Slave Interface Registers
(CPS)

F7E0 FF00H -
F7E0 FFFFH

see
Page 22-48

256 Bytes

Reserved F7E1 0000H -
F7E1 7FFFH

nE nE –

Memory Management Unit
(MMU)

F7E1 8000H -
F7E1 80FFH

see
Page 22-49

48 × 256
Bytes

Reserved F7E1 8100H -
F7E1 BFFFH

nE nE –

Memory Protection Register F7E1 C000H -
F7E1 EFFFH

see
Page 22-49

48 × 256
Bytes

Reserved F7E1 F000H -
F7E1 FCFFH

nE nE –

Core Debug Register (OCDS) F7E1 FD00H -
F7E1 FDFFH

see
Page 22-52

256 Bytes

Core Special Function
Registers (CSFR)

F7E1 FE00H -
F7E1 FEFFH

see
Page 22-52

256 Bytes

General Purpose Register
(GPR)

F7E1 FF00H -
F7E1 FFFFH

see
Page 22-53

256 Bytes

Reserved F7E2 0000H -
F7FF FFFFH

BE BE –

External Bus Unit (EBU) F800 0000H -
F800 02FFH

see
Page 22-44

3 × 256
Bytes

Reserved F800 0300H -
F800 03FFH

BE BE –

Local Memory Unit (LMU) F800 0400H -
F800 04FFH

see
Page 22-48

256 Bytes

Reserved F800 0500H -
F87F FBFFH

BE BE –

Data Memory Unit (DMU) F87F FC00H -
F87F FCFFH

see
Page 22-55

256 Bytes

Program Memory Unit (LMU) F87F FD00H -
F87F FDFFH

see
Page 22-55

256 Bytes

Table 22-3 Block Address Map of Segment 15 (cont’d)

Unit Address
Range

Access Mode Size

Read Write
User’s Manual 22-8 V1.0, 2002-03

TC11IB
System Units

Register Overview
22.2.2 Registers

Table 22-4 shows the address map with all register of Segment 15.

Note: Addresses listed in column “Address” of Table 22-4 are word (32-bit) addresses.

LMB Bus Control Unit (LCU) F87F FE00H -
F87F FEFFH

see
Page 22-56

256 Bytes

LMB to FPI Bus Bridge (LFI) F87F FF00H -
F87F FFFFH

see
Page 22-56

256 Bytes

Reserved F880 0000H -
FFFF FFFFH

BE BE –

Table 22-4 Detailed Address Map of Segment 15

Short Name Description Address Access Mode Reset Value

Read Write

System Control Unit (SCU) with Watchdog Timer (WDT)

– Reserved F000 0000H-
F000 0004H

BE BE –

SCU_ID SCU Module Identification
Register

F000 0008H U, SV BE XXXXXXXXH

– Reserved F000 000CH BE BE –

RST_REQ Reset Request Register F000 0010H U, SV U, SV,
E

0000 0000H

RST_SR Reset Status Register F000 0014H U, SV – according
boot cfg.

– Reserved F000 0018H-
F000 001CH

BE BE –

WDT_CON0 Watchdog Timer Control
Register 0

F000 0020H U, SV U, SV,
PW

FFFC 0002H

WDT_CON1 Watchdog Timer Control
Register 1

F000 0024H U, SV U, SV,
E

0000 0000H

WDT_SR Watchdog Timer Status
Register

F000 0028H U, SV U, SV,
NC

FFFC XX0XH

NMISR NMI Status Register F000 002CH U, SV U, SV 0000 0000H

Table 22-3 Block Address Map of Segment 15 (cont’d)

Unit Address
Range

Access Mode Size

Read Write
User’s Manual 22-9 V1.0, 2002-03

TC11IB
System Units

Register Overview
PMG_CON Power Management
Control Register

F000 0030H U, SV U, SV,
E

0000 0001H

PMG_CSR Power Management
Control and Status Reg.

F000 0034H U, SV U, SV 0000 0100H

– Reserved F000 0038H-
F000 003CH

BE BE –

PLL_CLC PLL Clock Control Reg. F000 0040H U, SV U, SV,
E

000F 01XXH

– Reserved F000 0044H nBE nBE –

GS_CON General System Control
Register

F000 0048H U, SV SV, E 0000 0000H

– Reserved F000 004CH BE BE –

MCDTRC Trace Control Register F000 0050H U, SV SV 0000 0000H

– Reserved F000 0054H BE BE –

FFI_CON FFI Bridge Control Reg. F000 0058H U, SV SV, E 0000 0000H

– Reserved F000 005CH-
F000 006CH

BE BE –

MANID Manufacturer Identification
Register

F000 0070H U, SV BE XXXX XXXXH

CHIPID Chip Identification Reg. F000 0074H U, SV BE XXXX XXXXH

RTID Redesign Tracing
Identification Register

F000 0078H U, SV BE XXXX XXXXH

– Reserved F000 007CH-
F000 00FCH

BE BE –

PCI Software Interrupt Request Register

– Reserved F000 0100H-
F000 017CH

BE BE –

PCI_SW_
IRQ0

PCI Software Interrupt
Request 0 Register

F000 0180H – SV –

PCI_SW_
IRQ1

PCI Software Interrupt
Request 1Register

F000 0184H – SV –

PCI_SW_
IRQ2

PCI Software Interrupt
Request 2 Register

F000 0188H – SV –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-10 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI_SW_
IRQ3

PCI Software Interrupt
Request 3 Register

F000 018CH – SV –

PCI_SW_
IRQ4

PCI Software Interrupt
Request 4 Register

F000 0190H – SV –

PCI_SW_
IRQ5

PCI Software Interrupt
Request 5 Register

F000 0194H – SV –

PCI_SW_
IRQ6

PCI Software Interrupt
Request 6 Register

F000 0198H – SV –

PCI_SW_
IRQ7

PCI Software Interrupt
Request 7 Register

F000 019CH – SV –

PCI_SW_
IRQ8

PCI Software Interrupt
Request 8 Register

F000 01A0H – SV –

PCI_SW_
IRQ9

PCI Software Interrupt
Request 9 Register

F000 01A4H – SV –

PCI_SW_
IRQ10

PCI Software Interrupt
Request 10 Register

F000 01A8H – SV –

PCI_SW_
IRQ11

PCI Software Interrupt
Request 11 Register

F000 01ACH – SV –

PCI_SW_
IRQ12

PCI Software Interrupt
Request 12 Register

F000 01B0H – SV –

PCI_SW_
IRQ13

PCI Software Interrupt
Request 13 Register

F000 01B4H – SV –

PCI_SW_
IRQ14

PCI Software Interrupt
Request 14 Register

F000 01B8H – SV –

PCI_SW_
IRQ15

PCI Software Interrupt
Request 15 Register

F000 01BCH – SV –

PCI_SW_
IRQ16

PCI Software Interrupt
Request 16 Register

F000 01C0H – SV –

PCI_SW_
IRQ17

PCI Software Interrupt
Request 17 Register

F000 01C4H – SV –

PCI_SW_
IRQ18

PCI Software Interrupt
Request 18 Register

F000 01C8H – SV –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-11 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI_SW_
IRQ19

PCI Software Interrupt
Request 19 Register

F000 01CCH – SV –

PCI_SW_
IRQ20

PCI Software Interrupt
Request 20 Register

F000 01D0H – SV –

PCI_SW_
IRQ21

PCI Software Interrupt
Request 21 Register

F000 01D4H – SV –

PCI_SW_
IRQ22

PCI Software Interrupt
Request 22 Register

F000 01D8H – SV –

PCI_SW_
IRQ23

PCI Software Interrupt
Request 23 Register

F000 01DCH – SV –

PCI_SW_
IRQ24

PCI Software Interrupt
Request 24 Register

F000 01E0H – SV –

PCI_SW_
IRQ25

PCI Software Interrupt
Request 25 Register

F000 01E4H – SV –

PCI_SW_
IRQ26

PCI Software Interrupt
Request 26 Register

F000 01E8H – SV –

PCI_SW_
IRQ27

PCI Software Interrupt
Request 27 Register

F000 01ECH – SV –

PCI_SW_
IRQ28

PCI Software Interrupt
Request 28 Register

F000 01F0H – SV –

PCI_SW_
IRQ29

PCI Software Interrupt
Request 29 Register

F000 01F4H – SV –

PCI_SW_
IRQ30

PCI Software Interrupt
Request 30 Register

F000 01F8H – SV –

PCI_SW_
IRQ31

PCI Software Interrupt
Request 31 Register

F000 01FCH – SV –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-12 V1.0, 2002-03

TC11IB
System Units

Register Overview
Bus Control Unit 1(BCU1)

– Reserved F000 0200H -
F000 0204H

BE BE –

BCU1_ID BCU1 Module
Identification Register

F000 0208H U, SV BE XXXXXXXXH

– Reserved F000 020CH BE BE –

BCU1_CON BCU1 Control Register F000 0210H U, SV,
32

U, SV,
32

4009 FFFFH

– Reserved F000 0214H-
F000 021CH

BE BE –

BCU1_
ECON

BCU1 Error Control
Capture Register

F000 0220H U, SV,
32

U, SV,
32

0000 0000H

BCU1_
EADD

BCU1 Error Address
Capture Register

F000 0224H U, SV,
32

U, SV,
32

0000 0000H

BCU1_
EDAT

BCU1 Error Data Capture
Register

F000 0228H U, SV,
32

U, SV,
32

0000 0000H

– Reserved F000 022CH-
F000 02F8H

BE BE –

BCU1_SRC BCU1 Service Request
Control Register

F000 02FCH U, SV,
32

U, SV,
32

0000 0000H

System Timer (STM)

STM_CLC STM Clock Control Reg. F000 0300H U, SV U, SV,
E

0000 0000H

– Reserved F000 0304H BE BE –

STM_ID STM Module Identification
Register

F000 0308H U, SV BE XXXXXXXXH

– Reserved F000 030CH BE BE –

STM_TIM0 STM Timer Register 0 F000 0310H U, SV U, SV 0000 0000H

STM_TIM1 STM Timer Register 1 F000 0314H U, SV U, SV 0000 0000H

STM_TIM2 STM Timer Register 2 F000 0318H U, SV U, SV 0000 0000H

STM_TIM3 STM Timer Register 3 F000 031CH U, SV U, SV 0000 0000H

STM_TIM4 STM Timer Register 4 F000 0320H U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-13 V1.0, 2002-03

TC11IB
System Units

Register Overview
STM_TIM5 STM Timer Register 5 F000 0324H U, SV U, SV 0000 0000H

STM_TIM6 STM Timer Register 6 F000 0328H U, SV U, SV 0000 0000H

STM_CAP STM Timer Capture Reg. F000 032CH U, SV U, SV 0000 0000H

– Reserved F000 0330H-
F000 03FCH

BE BE –

On-Chip Debug Support (Cerberus)

– Reserved F000 0400H-
F000 0404H

BE BE –

JPD_ID JTAG/OCDS Module
Identification Register

F000 0408H U, SV BE XXXX XXXXH

– Reserved F000 040CH-
F000 0464H

BE BE –

COMDATA Cerberus Communication
Mode Data Register

F000 0468H SV SV 0000 0000H

IOSR Cerberus Status Register F000 046CH SV SV 0000 0000H

MCDBBS Multi-Core Debug Break
Bus Switch Status and
Control Register

F000 0470H U,SV U,SV FF00 0000H

MCDSSG Multi-Core Debug
Suspend Signal
Generation Register

F000 0474H U,SV U,SV 0000 0000H

– Reserved F000 0478H-
F000 04FCH

BE BE –

General Purpose Timer Unit 0 (GPTU0)

GPTU0_
CLC

GPTU0 Clock Control Reg. F000 0600H U, SV U, SV,
E

0000 0002H

– Reserved F000 0604H nBE nBE –

GPTU0_ID GPTU0 Module
Identification Register

F000 0608H U, SV BE XXXXXXXXH

– Reserved F000 060CH nBE nBE –

GPTU0_
T01IRS

GPTU0 Timers T0 and T1
Input and Reload Source
Selection Register

F000 0610H U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-14 V1.0, 2002-03

TC11IB
System Units

Register Overview
GPTU0_
T01OTS

GPTU0 Timers T0 and T1
Output, Trigger and
Service Req. Register

F000 0614H U, SV U, SV 0000 0000H

GPTU0_
T2CON

GPTU0 Timer T2 Control
Register

F000 0618H U, SV U, SV 0000 0000H

GPTU0_
T2RCCON

GPTU0 Timer T2 Reload/
Capture Control Register

F000 061CH U, SV U, SV 0000 0000H

GPTU0_
T2AIS

GPTU0 Timer T2/T2A Ext.
Input Selection Register

F000 0620H U, SV U, SV 0000 0000H

GPTU0_
T2BIS

GPTU0 Timer T2B
External Input Selection
Register

F000 0624H U, SV U, SV 0000 0000H

GPTU0_
T2ES

GPTU0 Timer T2 External
Input Edge Selection Reg.

F000 0628H U, SV U, SV 0000 0000H

GPTU0_
OSEL

GPTU0 Output Source
Selection Register

F000 062CH U, SV U, SV 0000 0000H

GPTU0
_OUT

GPTU0 Output Register F000 0630H U, SV U, SV 0000 0000H

GPTU0_
T0DCBA

GPTU0 Timer T0 Count
Register (T0D, T0C, T0B,
T0A)

F000 0634H U, SV U, SV 0000 0000H

GPTU0_
T0CBA

GPTU0 Timer T0 Count
Register (T0C, T0B, T0A)

F000 0638H U, SV U, SV 0000 0000H

GPTU0_
T0RDCBA

GPTU0 Timer T0 Reload
Register (T0RD, T0RC,
T0RB, T0RA)

F000 063CH U, SV U, SV 0000 0000H

GPTU0_
T0RCBA

GPTU0 Timer T0 Reload
Register (T0RC, T0RB,
T0RA)

F000 0640H U, SV U, SV 0000 0000H

GPTU0_
T1DCBA

GPTU0 Timer T1 Count
Register (T1D, T1C, T1B,
T1A)

F000 0644H U, SV U, SV 0000 0000H

GPTU0_
T1CBA

GPTU0 Timer T1 Count
Register (T1C, T1B, T1A)

F000 0648H U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-15 V1.0, 2002-03

TC11IB
System Units

Register Overview
GPTU0_
T1RDCBA

GPTU0 Timer T1 Reload
Register (T1RD, T1RC,
T1RB, T1RA)

F000 064CH U, SV U, SV 0000 0000H

GPTU0_
T1RCBA

GPTU0 Timer T1 Reload
Register (T1RC, T1RB,
T1RA)

F000 0650H U, SV U, SV 0000 0000H

GPTU0_T2 GPTU0 Timer T2 Count
Register

F000 0654H U, SV U, SV 0000 0000H

GPTU0_
T2RC0

GPTU0 Timer T2 Reload/
Capture Register 0

F000 0658H U, SV U, SV 0000 0000H

GPTU0_
T2RC1

GPTU0 Timer T2 Reload/
Capture Register 1

F000 065CH U, SV U, SV 0000 0000H

GPTU0_
T012RUN

GPTU0 Timers T0, T1, T2
Run Control Register

F000 0660H U, SV U, SV 0000 0000H

– Reserved F000 0664H-
F000 06D8H

BE BE –

GPTU0_
SRSEL

GPTU0 Service Request
Source Select Register

F000 06DCH U, SV U, SV 0000 0000H

GPTU0_
SRC7

GPTU0 Service Request
Control Register 7

F000 06E0H U, SV U, SV 0000 0000H

GPTU0_
SRC6

GPTU0 Service Request
Control Register 6

F000 06E4H U, SV U, SV 0000 0000H

GPTU0_
SRC5

GPTU0 Service Request
Control Register 5

F000 06E8H U, SV U, SV 0000 0000H

GPTU0_
SRC4

GPTU0 Service Request
Control Register 4

F000 06ECH U, SV U, SV 0000 0000H

GPTU0_
SRC3

GPTU0 Service Request
Control Register 3

F000 06F0H U, SV U, SV 0000 0000H

GPTU0_
SRC2

GPTU0 Service Request
Control Register 2

F000 06F4H U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-16 V1.0, 2002-03

TC11IB
System Units

Register Overview
GPTU0_
SRC1

GPTU0 Service Request
Control Register 1

F000 06F8H U, SV U, SV 0000 0000H

GPTU_
SRC0

GPTU0 Service Request
Control Register 0

F000 06FCH U, SV U, SV 0000 0000H

General Purpose Timer Unit 1 (GPTU1)

GPTU1_
CLC

GPTU1 Clock Control Reg. F000 0700H U, SV U, SV,
E

0000 0002H

– Reserved F000 0704H nBE nBE –

GPTU1_ID GPTU1 Module
Identification Register

F000 0708H U, SV BE XXXXXXXXH

– Reserved F000 070CH nBE nBE –

GPTU1_
T01IRS

GPTU1 Timers T0 and T1
Input and Reload Source
Selection Register

F000 0710H U, SV U, SV 0000 0000H

GPTU1_
T01OTS

GPTU1 Timers T0 and T1
Output, Trigger and
Service Req. Register

F000 0714H U, SV U, SV 0000 0000H

GPTU1_
T2CON

GPTU1 Timer T2 Control
Register

F000 0718H U, SV U, SV 0000 0000H

GPTU1_
T2RCCON

GPTU1 Timer T2 Reload/
Capture Control Register

F000 071CH U, SV U, SV 0000 0000H

GPTU1_
T2AIS

GPTU1 Timer T2/T2A Ext.
Input Selection Register

F000 0720H U, SV U, SV 0000 0000H

GPTU1_
T2BIS

GPTU1 Timer T2B
External Input Selection
Register

F000 0724H U, SV U, SV 0000 0000H

GPTU1_
T2ES

GPTU1 Timer T2 External
Input Edge Selection Reg.

F000 0728H U, SV U, SV 0000 0000H

GPTU1_
OSEL

GPTU1 Output Source
Selection Register

F000 072CH U, SV U, SV 0000 0000H

GPTU1_
OUT

GPTU1 Output Register F000 0730H U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-17 V1.0, 2002-03

TC11IB
System Units

Register Overview
GPTU1_
T0DCBA

GPTU1 Timer T0 Count
Register (T0D, T0C, T0B,
T0A)

F000 0734H U, SV U, SV 0000 0000H

GPTU1_
T0CBA

GPTU1 Timer T0 Count
Register (T0C, T0B, T0A)

F000 0738H U, SV U, SV 0000 0000H

GPTU1_
T0RDCBA

GPTU1 Timer T0 Reload
Register (T0RD, T0RC,
T0RB, T0RA)

F000 073CH U, SV U, SV 0000 0000H

GPTU1_
T0RCBA

GPTU1 Timer T0 Reload
Register (T0RC, T0RB,
T0RA)

F000 0740H U, SV U, SV 0000 0000H

GPTU1_
T1DCBA

GPTU1 Timer T1 Count
Register (T1D, T1C, T1B,
T1A)

F000 0744H U, SV U, SV 0000 0000H

GPTU1_
T1CBA

GPTU1 Timer T1 Count
Register (T1C, T1B, T1A)

F000 0748H U, SV U, SV 0000 0000H

GPTU1_
T1RDCBA

GPTU1 Timer T1 Reload
Register (T1RD, T1RC,
T1RB, T1RA)

F000 074CH U, SV U, SV 0000 0000H

GPTU1_
T1RCBA

GPTU1 Timer T1 Reload
Register (T1RC, T1RB,
T1RA)

F000 0750H U, SV U, SV 0000 0000H

GPTU1_T2 GPTU1 Timer T2 Count
Register

F000 0754H U, SV U, SV 0000 0000H

GPTU1_
T2RC0

GPTU1 Timer T2 Reload/
Capture Register 0

F000 0758H U, SV U, SV 0000 0000H

GPTU1_
T2RC1

GPTU1 Timer T2 Reload/
Capture Register 1

F000 075CH U, SV U, SV 0000 0000H

GPTU1_
T012RUN

GPTU1 Timers T0, T1, T2
Run Control Register

F000 0760H U, SV U, SV 0000 0000H

– Reserved F000 0764H-
F000 07D8H

BE BE –

GPTU1_
SRSEL

GPTU1 Service Request
Source Select Register

F000 07DCH U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-18 V1.0, 2002-03

TC11IB
System Units

Register Overview
GPTU1_
SRC7

GPTU1 Service Request
Control Register 7

F000 07E0H U, SV U, SV 0000 0000H

GPTU1_
SRC6

GPTU1 Service Request
Control Register 6

F000 07E4H U, SV U, SV 0000 0000H

GPTU1_
SRC5

GPTU1 Service Request
Control Register 5

F000 07E8H U, SV U, SV 0000 0000H

GPTU1_
SRC4

GPTU1 Service Request
Control Register 4

F000 07ECH U, SV U, SV 0000 0000H

GPTU1_
SRC3

GPTU1 Service Request
Control Register 3

F000 07F0H U, SV U, SV 0000 0000H

GPTU1_
SRC2

GPTU1 Service Request
Control Register 2

F000 07F4H U, SV U, SV 0000 0000H

GPTU1_
SRC1

GPTU1 Service Request
Control Register 1

F000 07F8H U, SV U, SV 0000 0000H

GPTU1_
SRC0

GPTU1 Service Request
Control Register 0

F000 07FCH U, SV U, SV 0000 0000H

Asynchronous/Synchronous Serial Interface (ASC)

ASC_
CLC

ASC Clock Control Reg. F000 0800H U, SV U, SV,
E

0000 0002H

– Reserved F000 0804H nBE nBE –

ASC_ID ASC Module Identification
Register

F000 0808H U, SV BE XXXXXXXXH

– Reserved F000 080CH BE BE –

ASC_CON ASC Control Register F000 0810H U, SV U, SV 0000 0000H

ASC_BG ASC Baud Rate/Timer
Reload Register

F000 0814H U, SV U, SV 0000 0000H

ASC_FDV ASC Fractional Divider
Register

F000 0818H U, SV U, SV 0000 0000H

ASC_PMW ASC IrDA Pulse Mode and
Width Register

F000 081CH U, SV U, SV 0000 0000H

ASC_
TBUF

ASC Transmit Buffer
Register

F000 0820H U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-19 V1.0, 2002-03

TC11IB
System Units

Register Overview
ASC_
RBUF

ASC Receive Buffer
Register

F000 0824H U, SV U, SV 0000 0000H

– Reserved F000 0828H-
F000 083CH

BE BE –

ASC_RXFC
ON

ASC Receive FIFO Control
Register

F000 0840H U, SV U, SV 0000 0100H

ASC_TXFC
ON

ASC Transmit FIFO
Control Register

F000 0844H U, SV U, SV 0000 0100H

ASC_FTAT ASC FIFO Status Register F000 0848H U, SV U, SV 0000 0000H

– Reserved F000 084CH-
F000 08D4H

BE BE –

– Reserved F000 08D8H-
F000 08DCH

nBE nBE –

– Reserved F000 08E0H-
F000 08ECH

BE BE –

ASC_
TSRC

ASC Transmit Interrupt
Service Req. Control Reg.

F000 08F0H U, SV U, SV 0000 0000H

ASC_
RSRC

ASC Receive Interrupt
Service Req. Control Reg.

F000 08F4H U, SV U, SV 0000 0000H

ASC_
ESRC

ASC Error Interrupt
Service Req. Control Reg.

F000 08F8H U, SV U, SV 0000 0000H

ASC_
TBSRC

ASC Transmit Buffer
Interrupt Service Req.
Control Reg.

F000 08FCH U, SV U, SV 0000 0000H

Asynchronous Serial Interface (16X50)

16X50_CLC 16X50 Clock Control Reg. F000 0900H U, SV U, SV,
E

0000 0002H

– Reserved F000 0904H nBE nBE –

16X50_ID 16X50 Module
Identification Register

F000 0908H U, SV BE XXXXXXXXH

– Reserved F000 090CH-
F000 091CH

BE BE –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-20 V1.0, 2002-03

TC11IB
System Units

Register Overview
16X50_THR

16X50_RHR

16X50_DLL

16X50 Transmit Holding
Register
16X50 Receive Holding
Register
16X50 Divisor Latch LSB
Register

F000 0920H U, SV U, SV 0000 00XXH

0000 00XXH

0000 0000H

16X50_IER

16X50_DLM

16X50 Interrupt Enable
Register
16X50 Divisor Latch MSB
Register

F000 0924H U, SV U, SV 0000 0000H

0000 0000H

16X50_ISR

16X50_FCR
16X50_EFR

16X50 Interrupt Status
Register
16X50 FIFO Control Reg.
16X50 Enhanced Feature
Register

F000 0928H U, SV U, SV 0000 0001H

0000 0000H
0000 0000H

16X50_LCR 16X50 Line Control Reg. F000 092CH U,SV U,SV 0000 0000H

16X50_MCR

16X50_
XON1

16X50 Modem Control
Register
16X50 XON Character 1
Register

F000 0930H U, SV U, SV 0000 0000H

0000 0011H

16X50_LSR
16X50_
XON2

16X50 Line Status Reg.
16X50 XON Character 2
Register

F000 0934H U, SV U, SV 0000 0060H
0000 0000H

16X50_MSR

16X50_
XOFF1

16X50 Modem Status
Register
16X50 XOFF Character 1
Register

F000 0938H U, SV U, SV 0000 00X0H

0000 0013H

16X50_SR
16X50_
XOFF2

16X50 Scratchpad Reg.
16X50 XON Character 2
Register

F000 093CH U, SV U, SV 0000 00XXH
0000 0000H

– Reserved F000 0940H-
F000 09D4H

BE BE –

– Reserved F000 09D8H-
F000 09DCH

nBE nBE –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-21 V1.0, 2002-03

TC11IB
System Units

Register Overview
– Reserved F000 09E0H-
F000 09F8H

BE BE –

16X50_SRC 16X50 Interrupt Service
Req. Control Reg.

F000 09FCH U, SV U, SV 0000 0000H

High-Speed Synchronous Serial Interface (SSC)

SSC_CLC SSC Clock Control Reg. F000 0A00H U, SV U, SV,
E

0000 0002H

– Reserved F000 0A04H nBE nBE –

SSC_ID SSC Module Identification
Register

F000 0A08H U, SV BE XXXXXXXXH

– Reserved F000 0A0CH BE BE –

SSC_CON SSC Control Register F000 0A10H U, SV U, SV 0000 0000H

SSC_BR SSC Baud Rate Timer
Reload Register

F000 0A14H U, SV U, SV 0000 0000H

– Reserved F000 0A18H-
F000 0A1CH

BE BE –

SSC_TB SSC Transmit Buffer
Register

F000 0A20H U, SV U, SV 0000 0000H

SSC_RB SSC Receive Buffer
Register

F000 0A24H U, SV U, SV 0000 0000H

– Reserved F000 0A28H-
F000 0AF0H

BE BE –

SSC_
TSRC

SSC Transmit Interrupt
Service Req. Control Reg.

F000 0AF4H U, SV U, SV 0000 0000H

SSC_
RSRC

SSC Receive Interrupt
Service Req. Control Reg.

F000 0AF8H U, SV U, SV 0000 0000H

SSC_
ESRC

SSC Error Interrupt
Service Req. Control Reg.

F000 0AFCH U, SV U, SV 0000 0000H

MultiMediaCard Interface (MMCI)

MMCI_CLC MMCI Clock Control Reg. F000 0B00H U, SV U, SV,
E

0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-22 V1.0, 2002-03

TC11IB
System Units

Register Overview
– Reserved F000 0B04H nBE nBE –

MMCI_ID MMCI Module
Identification Register

F000 0B08H U, SV BE XXXXXXXXH

– Reserved F000 0B0CH BE BE –

MMCI_DAT MMCI Data Register F000 0B10H U, SV U, SV 0000 0000H

MMCI_CMD MMCI Command Register F000 0B14H U, SV U, SV 0000 0008H

– Reserved F000 0B18H-
F000 0BF8H

BE BE –

MMCI_
SRC

MMCI Interrupt Service
Request Control Register

F000 0BFCH U, SV U, SV 0000 0000H

Service Request Unit (SRC)

– Reserved F000 0C00H nBE nBE –

BCU0_SRC Service Request Control
Reg. for BCU0 Interrupt

F000 0C04H U. SV U,SV 0000 0000H

– Reserved F000 0C08H nBE nBE –

PCI_SRC Service Request Control
Register for PCI Interrupt

F000 0C0CH U, SV U,SV 0000 0000H

TES0 Trigger Edge Select
Register 0

F000 0C10H U, SV U, SV 0000 0000H

TES1 Trigger Edge Select
Register 1

F000 0C14H U, SV U, SV 0000 0000H

FEN0 Filter Enable Register 0 F000 0C18H U, SV U, SV 0000 0000H

FEN1 Filter Enable Register 1 F000 0C1CH U, SV U, SV 0000 0000H

EINT_SRC0 Service Request Control
Reg. for Ext. Interrupt 0

F000 0C20H U, SV U, SV 0000 0000H

EINT_SRC1 Service Request Control
Reg. for Ext. Interrupt 1

F000 0C24H U, SV U, SV 0000 0000H

EINT_SRC2 Service Request Control
Reg. for Ext. Interrupt 2

F000 0C28H U, SV U, SV 0000 0000H

EINT_SRC3 Service Request Control
Reg. for Ext. Interrupt 3

F000 0C2CH U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-23 V1.0, 2002-03

TC11IB
System Units

Register Overview
EINT_SRC4 Service Request Control
Reg. for Ext. Interrupt 4

F000 0C30H U, SV U, SV 0000 0000H

EINT_SRC5 Service Request Control
Reg. for Ext. Interrupt 5

F000 0C34H U, SV U, SV 0000 0000H

EINT_SRC6 Service Request Control
Reg. for Ext. Interrupt 6

F000 0C38H U, SV U, SV 0000 0000H

EINT_SRC7 Service Request Control
Reg. for Ext. Interrupt 7

F000 0C3CH U, SV U, SV 0000 0000H

EINT_SRC8 Service Request Control
Reg. for Ext. Interrupt 8

F000 0C40H U, SV U, SV 0000 0000H

EINT_SRC9 Service Request Control
Reg. for Ext. Interrupt 9

F000 0C44H U, SV U, SV 0000 0000H

EINT_
SRC10

Service Request Control
Reg. for Ext. Interrupt 10

F000 0C48H U, SV U, SV 0000 0000H

EINT_
SRC11

Service Request Control
Reg. for Ext. Interrupt 11

F000 0C4CH U, SV U, SV 0000 0000H

EINT_
SRC12

Service Request Control
Reg. for Ext. Interrupt 12

F000 0C50H U, SV U, SV 0000 0000H

EINT_
SRC13

Service Request Control
Reg. for Ext. Interrupt 13

F000 0C54H U, SV U, SV 0000 0000H

EINT_
SRC14

Service Request Control
Reg. for Ext. Interrupt 14

F000 0C58H U, SV U, SV 0000 0000H

EINT_
SRC15

Service Request Control
Reg. for Ext. Interrupt 15

F000 0C5CH U, SV U, SV 0000 0000H

EINT_
SRC16

Service Request Control
Reg. for Ext. Interrupt 16

F000 0C60H U, SV U, SV 0000 0000H

EINT_
SRC17

Service Request Control
Reg. for Ext. Interrupt 17

F000 0C64H U, SV U, SV 0000 0000H

EINT_
SRC18

Service Request Control
Reg. for Ext. Interrupt 18

F000 0C68H U, SV U, SV 0000 0000H

EINT_
SRC19

Service Request Control
Reg. for Ext. Interrupt 19

F000 0C6CH U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-24 V1.0, 2002-03

TC11IB
System Units

Register Overview
EINT_
SRC20

Service Request Control
Reg. for Ext. Interrupt 20

F000 0C70H U, SV U, SV 0000 0000H

EINT_
SRC21

Service Request Control
Reg. for Ext. Interrupt 21

F000 0C74H U, SV U, SV 0000 0000H

EINT_
SRC22

Service Request Control
Reg. for Ext. Interrupt 22

F000 0C78H U, SV U, SV 0000 0000H

EINT_
SRC23

Service Request Control
Reg. for Ext. Interrupt 23

F000 0C7CH U, SV U, SV 0000 0000H

PCI_SW_
SRC0

Service Request Control
Register for PCI Software
Interrupt 0

F000 0C80H U, SV U, SV 0000 0000H

PCI_SW_
SRC1

Service Request Control
Register for PCI Software
Interrupt 1

F000 0C84H U, SV U, SV 0000 0000H

PCI_SW_
SRC2

Service Request Control
Register for Software
Interrupt 2

F000 0C88H U, SV U, SV 0000 0000H

PCI_SW_
SRC3

Service Request Control
Register for Software
Interrupt 3

F000 0C8CH U, SV U, SV 0000 0000H

PCI_SW_
SRC4

Service Request Control
Register for Software
Interrupt 4

F000 0C90H U, SV U, SV 0000 0000H

PCI_SW_
SRC5

Service Request Control
Register for Software
Interrupt 5

F000 0C94H U, SV U, SV 0000 0000H

PCI_SW_
SRC6

Service Request Control
Register for Software
Interrupt 6

F000 0C98H U, SV U, SV 0000 0000H

PCI_SW_
SRC7

Service Request Control
Register for Software
Interrupt 7

F000 0C9CH U, SV U, SV 0000 0000H

PCI_SW_
SRC8

Service Request Control
Register for Software
Interrupt 8

F000 0CA0H U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-25 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI_SW_
SRC9

Service Request Control
Register for Software
Interrupt 9

F000 0CA4H U, SV U, SV 0000 0000H

PCI_SW_
SRC10

Service Request Control
Register for Software
Interrupt 10

F000 0CA8H U, SV U, SV 0000 0000H

PCI_SW_
SRC11

Service Request Control
Register for Software
Interrupt 11

F000 0CACH U, SV U, SV 0000 0000H

PCI_SW_
SRC12

Service Request Control
Register for Software
Interrupt 12

F000 0CB0H U, SV U, SV 0000 0000H

PCI_SW_
SRC13

Service Request Control
Register for Software
Interrupt 13

F000 0CB4H U, SV U, SV 0000 0000H

PCI_SW_
SRC14

Service Request Control
Register for Software
Interrupt 14

F000 0CB8H U, SV U, SV 0000 0000H

PCI_SW_
SRC15

Service Request Control
Register for Software
Interrupt 15

F000 0CBCH U, SV U, SV 0000 0000H

PCI_SW_
SRC16

Service Request Control
Register for Software
Interrupt 16

F000 0CC0H U, SV U, SV 0000 0000H

PCI_SW_
SRC17

Service Request Control
Register for Software
Interrupt 17

F000 0CC4H U, SV U, SV 0000 0000H

PCI_SW_
SRC18

Service Request Control
Register for Software
Interrupt 18

F000 0CC8H U, SV U, SV 0000 0000H

PCI_SW_
SRC19

Service Request Control
Register for Software
Interrupt 19

F000 0CCCH U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-26 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI_SW_
SRC20

Service Request Control
Register for Software
Interrupt 20

F000 0CD0H U, SV U, SV 0000 0000H

PCI_SW_
SRC21

Service Request Control
Register for Software
Interrupt 21

F000 0CD4H U, SV U, SV 0000 0000H

PCI_SW_
SRC22

Service Request Control
Register for Software
Interrupt 22

F000 0CD8H U, SV U, SV 0000 0000H

PCI_SW_
SRC23

Service Request Control
Register for Software
Interrupt 23

F000 0CDCH U, SV U, SV 0000 0000H

PCI_SW_
SRC24

Service Request Control
Register for Software
Interrupt 24

F000 0CE0H U, SV U, SV 0000 0000H

PCI_SW_
SRC25

Service Request Control
Register for Software
Interrupt 25

F000 0CE4H U, SV U, SV 0000 0000H

PCI_SW_
SRC26

Service Request Control
Register for Software
Interrupt 26

F000 0CE8H U, SV U, SV 0000 0000H

PCI_SW_
SRC27

Service Request Control
Register for Software
Interrupt 27

F000 0CECH U, SV U, SV 0000 0000H

PCI_SW_
SRC28

Service Request Control
Register for Software
Interrupt 28

F000 0CF0H U, SV U, SV 0000 0000H

PCI_SW_
SRC29

Service Request Control
Register for Software
Interrupt 29

F000 0CF4H U, SV U, SV 0000 0000H

PCI_SW_
SRC30

Service Request Control
Register for Software
Interrupt 30

F000 0CF8H U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-27 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI_SW_
SRC31

Service Request Control
Register for Software
Interrupt 31

F000 0CFCH U, SV U, SV 0000 0000H

– Reserved F000 0D00H-
F000 0D0CH

BE BE –

Ethernet_
MACTX0SR
C

Service Request Control
Register for Ethernet MAC
Tx 0 Interrupt

F000 0D10H U, SV U, SV 0000 0000H

Ethernet_
MACRX0SR
C

Service Request Control
Register for Ethernet MAC
Rx 0 Interrupt

F000 0D14H U, SV U, SV 0000 0000H

Ethernet_
MACTX1SR
C

Service Request Control
Register for Ethernet MAC
Tx 1 Interrupt

F000 0D18H U, SV U, SV 0000 0000H

Ethernet_
MACRX1SR
C

Service Request Control
Register for Ethernet MAC
Rx 1 Interrupt

F000 0D1CH U, SV U, SV 0000 0000H

Ethernet_
RBSRC0

Service Request Control
Register for Ethernet RB
Interrupt 0

F000 0D20H U, SV U, SV 0000 0000H

Ethernet_
RBSRC1

Service Request Control
Register for Ethernet RB
Interrupt 1

F000 0D24H U, SV U, SV 0000 0000H

Ethernet_
TBSRC

Service Request Control
Register for Ethernet TB
Interrupt

F000 0D28H U, SV U, SV 0000 0000H

Ethernet_
DRSRC

Service Request Control
Register for Ethernet DR
Interrupt

F000 0D2CH U, SV U, SV 0000 0000H

Ethernet_
DTSRC

Service Request Control
Register for Ethernet DT
Interrupt

F000 0D30H U, SV U, SV 0000 0000H

– Reserved F000 0D34H-
F000 0DFCH

BE BE –

Port 0

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-28 V1.0, 2002-03

TC11IB
System Units

Register Overview
– Reserved F000 2800H-
F000 280CH

BE BE –

P0 Port 0 Data Output Reg. F000 2810H U, SV U, SV XXXX 0000H

P0_IN Port 0 Data Input Register F000 2814H U, SV U, SV XXXX XXXXH

P0_DIR Port 0 Direction Register F000 2818H U, SV U, SV XXXX 0000H

– Reserved F000 281CH-
F000 2840H

BE BE –

P0_
ALTSEL0

Port 0 Alternate Function
Select Register 0

F000 2844H U, SV U, SV 0000 0000H

P0_
ALTSEL1

Port 0 Alternate Function
Register 1

F000 2848H U, SV U, SV 0000 0000H

– Reserved F000 284CH-
F000 28FCH

BE BE –

Port 1

– Reserved F000 2900H-
F000 290CH

BE BE –

P1 Port 1 Data Output Reg. F000 2910H U, SV U, SV XXXX 0000H

P1_IN Port 1 Data Input Register F000 2914H U, SV U, SV XXXX XXXXH

P1_DIR Port 1 Direction Register F000 2918H U, SV U, SV XXXX 0000H

P1_OD Port 1 Open Drain Control
Register

F000 291CH U, SV U, SV XXXX 0000H

– Reserved F000 2920H-
F000 2940H

BE BE –

P1_
ALTSEL0

Port 1 Alternate Function
Select Register 0

F000 2944H U, SV U, SV 0000 0000H

– Reserved F000 2948H-
F000 29FCH

BE BE –

Port 2

– Reserved F000 2A00H-
F000 2A0CH

BE BE –

P2 Port 2 Data Output Reg. F000 2A10H U, SV U, SV XXXX 0000H

P2_IN Port 2 Data Input Register F000 2A14H U, SV U, SV XXXX XXXXH

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-29 V1.0, 2002-03

TC11IB
System Units

Register Overview
P2_DIR Port 2 Direction Register F000 2A18H U, SV U, SV XXXX 0000H

– Reserved F000 2A1CH-
F000 2A40H

BE BE –

P2_
ALTSEL0

Port 2 Alternate Function
Select Register 0

F000 2A44H U, SV U, SV XXXX 0000H

– Reserved F000 2A48H-
F000 2AFCH

BE BE –

Port 3

– Reserved F000 2B00H-
F000 2B0CH

BE BE –

P3 Port 3 Data Output Reg. F000 2B10H U, SV U, SV XXXX 0000H

P3_IN Port 3 Data Input Register F000 2B14H U, SV U, SV XXXX XXXXH

P3_DIR Port 3 Direction Register F000 2B18H U, SV U, SV XXXX 0000H

P3_OD Port 3 Open Drain Control
Register

F000 2B1CH U, SV U, SV XXXX 0000H

– Reserved F000 2B20H-
F000 2B40H

BE BE –

P3_
ALTSEL0

Port 3 Alternate Function
Select Register 0

F000 2B44H U, SV U, SV XXXX 0000H

– Reserved F000 2B48H-
F000 2BFCH

BE BE –

Port 4

– Reserved F000 2C00H-
F000 2C0CH

BE BE –

P4 Port 4 Data Output Reg. F000 2C10H U, SV U, SV XXXX 0000H

P4_IN Port 4 Data Input Register F000 2C14H U, SV U, SV XXXX XXXXH

P4_DIR Port 4 Direction Register F000 2C18H U, SV U, SV XXXX 0000H

– Reserved F000 2C1CH-
F000 2C40H

BE BE –

P4_
ALTSEL0

Port 4 Alternate Function
Select Register

F000 2C44H U, SV U, SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-30 V1.0, 2002-03

TC11IB
System Units

Register Overview
– Reserved F000 2C48H-
F000 2CFCH

BE BE –

Port 5

– Reserved F000 2D00H-
F000 2D0CH

BE BE –

P5 Port 5 Data Output Reg. F000 2D10H U, SV U, SV XXXX 0000H

P5_IN Port 5 Data Input Register F000 2D14H U, SV U, SV XXXX XXXXH

P5_DIR Port 5 Direction Register F000 2D18H U, SV U, SV XXXX 0000H

– Reserved F000 2D1CH-
F000 2D40H

BE BE –

P5_
ALTSEL0

Port 5 Alternate Function
Select Register 0

F000 2D44H U, SV U, SV 0000 0000H

P5_
ALTSEL1

Port 5 Alternate Function
Select Register 1

F000 2D48H U, SV U, SV 0000 0000H

– Reserved F000 2D4CH
-
F000 2DFCH

BE BE –

Peripheral Control Processor (PCP)

PCP_CLC PCP Clock Control Reg. F000 3F00H U,SV, U,SV,
E

0000 0000H

– Reserved F000 3F04H BE BE –

PCP_ID PCP Module Identification
Register

F000 3F08H U, SV BE XXXXXXXXH

– Reserved F000 3F0CH BE BE –

PCP_CS PCP Control/Status
Register

F000 3F10H U, SV,
32

SV, E,
32

0000 0000H

PCP_ES PCP Error/Debug Status
Register

F000 3F14H U, SV,
32

SV,32
NC

0000 0000H

– Reserved F000 3F18H-
F000 3F1CH

BE BE –

PCP_ICR PCP Interrupt Control
Register

F000 3F20H U, SV,
32

U,SV,
32

0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-31 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCP_ITR PCP Interrupt Threshold
Control Register

F000 3F24H U, SV,
32

U,SV,
32

0000 0000H

PCP_ICON PCP Interrupt
Configuration Register

F000 3F28H U, SV,
32

SV,32
NC

0000 0000H

PCP_SSR PCP Stall Status Register F000 3F2CH U, SV,
32

SV,32
NC

0000 0000H

PCP_FTD PCP Feature Disable/Test
Register

F000 3F30H U, SV,
32

U,SV,
32

0000 0000H

– Reserved F000 3F34H-
F000 3FCCH

BE BE –

PCP_
SRC11

PCP Service Request
Control Register 11

F000 3FD0H U, SV,
32

U,SV,
32

0000 1400H

PCP_
SRC10

PCP Service Request
Control Register 10

F000 3FD4H U, SV,
32

U,SV,
32

0000 1400H

PCP_SRC9 PCP Service Request
Control Register 9

F000 3FD8H U, SV,
32

U,SV,
32

0000 1400H

PCP_SRC8 PCP Service Request
Control Register 8

F000 3FDCH U, SV,
32

U,SV,
32

0000 1000H

PCP_SRC7 PCP Service Request
Control Register 7

F000 3FE0H U, SV,
32

U,SV,
32

0000 1000H

PCP_SRC6 PCP Service Request
Control Register 6

F000 3FE4H U, SV,
32

U,SV,
32

0000 1000H

PCP_SRC5 PCP Service Request
Control Register 5

F000 3FE8H U, SV,
32

U,SV,
32

0000 1000H

PCP_SRC4 PCP Service Request
Control Register 4

F000 3FECH U, SV,
32

U,SV,
32

0000 1000H

PCP_SRC3 PCP Service Request
Control Register 3

F000 3FF0H U, SV,
32

U,SV,
32

0000 1400H

PCP_SRC2 PCP Service Request
Control Register 2

F000 3FF4H U, SV,
32

U,SV,
32

0000 1400H

PCP_SRC1 PCP Service Request
Control Register 1

F000 3FF8H U, SV,
32

U,SV,
32

0000 1000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-32 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCP_SRC0 PCP Service Request
Control Register 0

F000 3FFCH U, SV,
32

U,SV,
32

0000 1000H

ComDRAM

ComDRAM_
CLC

ComDRAM Clock Register F018 0000H U,SV SV,E 0000 0000H

ComDRAM_
OCDSS

ComDRAM OCDS
Suspend Register

F018 0004H U,SV SV 0000 0000H

– Reserved F018 0008H -
F018 003CH

BE BE –

ComDRAM_
RST

ComDRAM Reset
Register

F018 0040H U,SV SV 0000 0000H

– Reserved F018 0044H -
F018 019CH

BE BE –

ComDRAM_
REFCON

ComDRAM Refresh
Control Register

F018 01A0H U,SV SV 0000 0025H

ComDRAM_
MODE

ComDRAM Mode Register F018 01A4H U,SV SV 0000 0000H

– Reserved F018 01A8H-
F018 FFFFH

BE BE –

PCI Interface (PCI)

PCI_CLC PCI Clock COntrol Reg. F040 0000H U, SV SV,E 0000 0001H

PCI_FPIID PCI FPI Identification Reg. F040 0004H U, SV BE XXXXXXXXH

– Reserved F040 0008H BE BE –

PCI_SRST PCI Soft Reset Register F040 0010H U, SV SV 0000 0000H

PCI_PTFER
RADDR

PCI PCI_FPI Access Error
Address Register

F040 0014H U, SV SV FFFF FFFFH

PCI_FTPER
RADDR

PCI FPI_PCI Access Error
Address Register

F040 0018H U, SV SV FFFF FFFFH

PCI_FTPER
RTAG

PCI FPI_FCI Access Error
Tag Register

F040 001CH U, SV SV 0000 000FH

PCI_IRR PCI Interrupt Request Reg F040 0020H U, SV U,SV 0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-33 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI_IRA/
PCI_IR

PCI Interrupt Request
Acknowledge Register/
PCI Interrupt Register

F040 0024H U, SV U,SV 0000 0000H

PCI_IRM PCI Interrupt Mask Reg. F040 0028H U, SV U,SV FFFF FFFFH

PCI_EOI PCI End-of-Interrupt Reg F040 002CH U, SV U,SV 0000 0000H

PCI_MODE PCI Mode Register F040 0030H U, SV SV 0000 010BH

PCI_ID PCI Module Identification
Register

F040 0034H U, SV BE XXXXXXXXH

PCI_SUBID PCI Subsystem Vendor
Identification Reg.

F040 0038H U, SV BE XXXXXXXXH

PCI_PM PCI Power Management
Register

F040 003CH U, SV SV 0001 1011H

PCI_CC1 PCI Class Code 1 Register F040 0040H U, SV SV 0002 8000H

PCI_
BAR11M

PCI BAR 11 Mask Register F040 0044H U, SV SV 0000 0008H

PCI_
BAR12M

PCI BAR 12 Mask Register F040 0048H U, SV SV 0000 0008H

PCI_
BAR13M

PCI BAR 13 Mask Register F040 004CH U, SV SV 8000 0008H

PCI_
BAR14M

PCI BAR 14 Mask Register F040 0050H U, SV SV 0FC0 0000H

PCI_
BAR15M

PCI BAR 15 Mask Register F040 0054H U, SV SV 8000 0000H

PCI_
BAR16M

PCI BAR 16 Mask Register F040 0058H U, SV SV 8000 0001H

PCI_
CBCP1

PCI CardBus CIS Pointer 1
Register

F040 005CH U, SV SV 0000 0000H

– Reserved F040 0060H BE BE –

PCI_PTFAD
DRM11

PCI Address Map 11
Register

F040 0064H U, SV SV BFE0 0000H

PCI_PTFAD
DRM12

PCI Address Map 12
Register

F040 0068H U, SV SV E800 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-34 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI_PTFAD
DRM13

PCI Address Map 13
Register

F040 006CH U, SV SV A000 0000H

PCI_PTFAD
DRM14

PCI Address Map 14
Register

F040 0070H U, SV SV F000 0001H

PCI_PTFAD
DRM15

PCI Address Map 15
Register

F040 0074H U, SV SV F000 0001H

PCI_PTFAD
DRM16

PCI Address Map 16
Register

F040 0078H U, SV SV E000 0000H

PCI_SEGEN FPI Segment Enable Reg. F040 007CH U, SV SV 0000 003FH

PCI_CC2 PCI Class Code 2 Register F040 0080H U, SV SV FF00 0000H

PCI_
BAR21M

PCI BAR 21 Mask Register F040 0084H U, SV SV 8000 0008H

PCI_
BAR22M

PCI BAR 22 Mask Register F040 0088H U, SV SV 0078 0008H

PCI_
BAR23M

PCI BAR 23 Mask Register F040 008CH U, SV SV 8000 0008H

PCI_
BAR24M

PCI BAR 24 Mask Register F040 0090H U, SV SV 0FE0 0000H

PCI_
BAR25M

PCI BAR 25 Mask Register F040 0094H U, SV SV 0FFF F000H

PCI_
BAR26M

PCI BAR 26 Mask Register F040 0098H U, SV SV 0FFF FFE1H

PCI_
CBCP2

PCI CardBus CIS Pointer 2
Register

F040 009CH U, SV SV 0000 0000H

PCI_
SUBID2

PCI Subsystem Vendor
Identification 2 Register

F040 00A0H U, SV BE XXXXXXXXH

PCI_PTFAD
DRM21

PCI Address Map 21
Register

F040 00A4H U, SV SV BFE0 0000H

PCI_PTFAD
DRM22

PCI Address Map 22
Register

F040 00A8H U, SV SV E800 0000H

PCI_PTFAD
DRM23

PCI Address Map 23
Register

F040 00ACH U, SV SV A000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-35 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI_PTFAD
DRM24

PCI Address Map 24
Register

F040 00B0H U, SV SV F000 0001H

PCI_PTFAD
DRM25

PCI Address Map 25
Register

F040 00B4H U, SV SV F800 0001H

PCI_PTFAD
DRM26

PCI Address Map 26
Register

F040 00B8H U, SV SV A000 0000H

PCI_
ADMSK11L

FPI Address Mask 11 Low
Register

F040 00BCH U, SV SV 0000 0000H

PCI_FTPAD
DRM0

FPI Address Map 0
Register

F040 00C0H U, SV SV 0000 0000H

PCI_FTPAD
DRM1

FPI Address Map 1
Register

F040 00C4H U, SV SV 1000 0000H

PCI_FTPAD
DRM2

FPI Address Map 2
Register

F040 00C8H U, SV SV 2000 0000H

PCI_FTPAD
DRM3

FPI Address Map 3
Register

F040 00CCH U, SV SV 3000 0000H

PCI_FTPAD
DRM4

FPI Address Map 4
Register

F040 00D0H U, SV SV 4000 0000H

PCI_FTPAD
DRM5

FPI Address Map 5
Register

F040 00D4H U, SV SV 5000 0000H

PCI_FTPAD
DRM6

FPI Address Map 6
Register

F040 00D8H U, SV SV 6000 0000H

PCI_FTPAD
DRM7

FPI Address Map 7
Register

F040 00DCH U, SV SV 7000 0000H

PCI_FTPAD
DRM11L

FPI Address Map 11 Low
Register

F040 00E0H U, SV SV B000 0000H

PCI_FTPAD
DRM11H

FPI Address Map 11 High
Register

F040 00E4H U, SV SV B800 0000H

PCI_BURST
LEN

FPI Burst Length Register F040 00E8H U, SV SV 0000 0203H

PCI_SSERR PCI Set PCI SERR Reg. F040 00ECH U, SV SV 0000 0000H

PCI_
DFSTADDR

DMA FPI Start Address
Register

F040 00F0H U, SV SV 8000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-36 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI_
DPSTADDR

DMA PCI Start Address
Register

F040 00F4H U, SV SV 0000 0000H

PCI_
TRANLEN

DMA Transfer Length
Register

F040 00F8H U, SV SV 0000 0000H

PCI_
DMACON

DMA Control/Status
Register

F040 00FCH U, SV SV 0000 0000H

PCI Configuration Space 1 (PCI_CS1)

PCI_CS1_ID PCI_CS1 Module
Identification Register

F100 0000H U, SV BE XXXXXXXXH

PCI_CS1_
COMMAND

PCI_CS1 Command/
Status Register

F100 0004H U, SV U, SV 0290 0000H

PCI_CS1_
REVID

PCI_CS1 Module Revision
Identification Register

F100 0008H U, SV BE XXXXXXXXH

PCI_CS1_
CONTROL

PCI_CS1 Control Register F100 000CH U, SV U, SV 2000 0000H

PCI_CS1_
BAR1

PCI_CS1 Base Address
Register 1

F100 0010H U, SV U, SV 0000 0008H

PCI_CS1_
BAR2

PCI_CS1 Base Address
Register 2

F100 0014H U, SV U, SV 0000 0008H

PCI_CS1_
BAR3

PCI_CS1 Base Address
Register 3

F100 0018H U, SV U, SV 0000 0000H

PCI_CS1_
BAR4

PCI_CS1 Base Address
Register 4

F100 001CH U, SV U, SV 0000 0000H

PCI_CS1_
BAR5

PCI_CS1 Base Address
Register 5

F100 0020H U, SV U, SV 0000 0000H

PCI_CS1_
BAR6

PCI_CS1 Base Address
Register 6

F100 0024H U, SV U, SV 0000 0000H

PCI_CS1_
CCP

PCI_CS1 CardBus CIS
Pointer Register

F100 0028H U, SV U, SV 0000 0000H

PCI_CS1_
SUBID

PCI_CS1 Module
Subsystem Identification
Register

F100 002CH U, SV BE XXXXXXXXH

– Reserved F100 0030H BE BE –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-37 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI_CS1_
POINTER

PCI_CS1 Capabilities
Pointer Register

F100 0034H U, SV BE 0000 0040H

– Reserved F100 0038H BE BE –

PCI_CS1_
INTCTRL

PCI_CS1 Interrupt Control
Register

F100 003CH U, SV U, SV 6608 0100H

PCI_CS1_
PMC

PCI_CS1 Power
Management Capabilities
Register

F100 0040H U, SV BE 406B 0001H

PCI_CS1_
PMCSTAT

PCI_CS1 Power
Management Control
Status Register

F100 0044H U, SV U, SV 0000 0000H

– Reserved F100 0048H-
F100 004CH

BE BE –

PCI_CS1_P
TFERRADD

PCI_CS1 Error Address
PCI_PCI Access Register

F100 0050H U, SV U, SV FFFF FFFFH

PCI_CS1_F
TPERRADD

PCI_CS1 Error Address
FPI_PCI Access Register

F100 0054H U, SV U, SV FFFF FFFFH

PCI_CS1_F
TPERRTAG

PCI_CS1 Error Tag
FPI_PCI Access Register

F100 0058H U, SV U, SV 0000 000FH

– Reserved F100 005CH-
F100 00FCH

BE BE –

PCI Configuration Space 2(PCI_CS2)

– Reserved F100 0100H BE BE –

PCI_CS2_
COMMAND

PCI_CS2 Command/
Status Register

F100 0104H U, SV U, SV 0290 0000H

PCI_CS2_
REVID

PCI_CS2 Module Revision
Identification Register

F100 0108H U, SV BE XXXXXXXXH

– Reserved F100 010CH BE BE –

PCI_CS2_
BAR1

PCI_CS2 Base Address
Register 1

F100 0110H U, SV U, SV 0000 0000H

PCI_CS2_
BAR2

PCI_CS2 Base Address
Register 2

F100 0114H U, SV U, SV 0000 0008H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-38 V1.0, 2002-03

TC11IB
System Units

Register Overview
PCI_CS2_
BAR3

PCI_CS2 Base Address
Register 3

F100 0118H U, SV U, SV 0000 0000H

PCI_CS2_
BAR4

PCI_CS2 Base Address
Register 4

F100 011CH U, SV U, SV 0000 0000H

PCI_CS2_
BAR5

PCI_CS2 Base Address
Register 5

F100 0120H U, SV U, SV 0000 0000H

PCI_CS2_
BAR6

PCI_CS2 Base Address
Register 6

F100 0124H U, SV U, SV 0000 0001H

PCI_CS2_
CCP

PCI_CS2 CardBus CIS
Pointer Register

F100 0128H U, SV U, SV 0000 0000H

PCI_CS2_
SUBID

PCI_CS2 Module
Subsystem Identification
Register

F100 012CH U, SV BE XXXXXXXXH

– Reserved F100 0130H-
F100 0138H

BE BE –

PCI_CS2_
INTCTRL

PCI_CS2 Interrupt Control
Register

F100 013CH U, SV U, SV 0000 0200H

– Reserved F100 0140H BE BE –

PCI_CS2_
PMCSTAT

PCI_CS2 Power
Management Control
Status Register

F100 0144H U, SV U, SV 0000 0000H

– Reserved F100 0148H-
F100 01FCH

BE BE –

Bus Control Unit 0 (BCU0)

– Reserved F200 0000H -
F200 0004H

BE BE –

BCU0_ID BCU0 Module
Identification Register

F200 0008H U, SV,
32

BE XXXXXXXXH

– Reserved F200 000CH BE BE –

BCU0_CON BCU0 Control Register F200 0010H U, SV,
32

U, SV,
32

4009 FFFFH

– Reserved F200 0014H-
F200 001CH

BE BE –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-39 V1.0, 2002-03

TC11IB
System Units

Register Overview
BCU0_
ECON

BCU0 Error Control
Capture Register

F200 0020H U, SV,
32

U, SV,
32

0000 0000H

BCU0_
EADD

BCU0 Error Address
Capture Register

F200 0024H U, SV,
32

U, SV,
32

0000 0000H

BCU0_
EDAT

BCU0 Error Data Capture
Register

F200 0028H U, SV,
32

U, SV,
32

0000 0000H

– Reserved F200 002CH-
F200 00FCH

BE BE –

Ethernet Controller Module (Ethernet)

– Reserved F200 0100H-
F200 0114H

BE BE –

Ethernet_
DRISFIFO

DR Interrupt Status FIFO
Register

F200 0118H U, SV,
32

SV,32
NC

0000 0000H

Ethernet_
DRFFCR

DR FIFO Full Counter
Register

F200 011CH U, SV,
32

SV,32
NC

0000 0000H

Ethernet_
DRCMD

DR Command Register F200 0120H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
DRMOD

DR Mode Register F200 0124H U, SV,
32

U,SV,
32

0000 0000H

– Reserved F200 0128H BE BE –

Ethernet_
DRFRDA

DR First Rx Descriptor
Address Register

F200 012CH U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
DRIMR

DR Interrupt Mask
Register

F200 0130H U, SV,
32

U,SV,
32

0000 7F05H

Ethernet_
DRCONF

DR Configuration Register F200 0134H U, SV,
32

U,SV,
32

8300 0060H

– Reserved F200 0138H-
F200 0214H

BE BE –

Ethernet_
DTCMD

DT Command Register F200 0218H U, SV,
32

U,SV,
32

0000 0000H

– Reserved F200 021CH BE BE –

Ethernet_
DTFTDA

DT First Tx Descriptor
Address Register

F200 0220H U, SV,
32

U,SV,
32

0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-40 V1.0, 2002-03

TC11IB
System Units

Register Overview
Ethernet_
DTIMR

DT Interrupt Mask Register F200 0224H U, SV,
32

U,SV,
32

0000 0007H

Ethernet_
DTCONF

DT Configuration Register F200 0228H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
DTCONF3

DT Configuration 3 Reg. F200 022CH U, SV,
32

U,SV,
32

0009 0000H

Ethernet_
DTISFIFO

DT Interrupt Status FIFO
Register

F200 0230H U, SV,
32

SV,32
NC

0000 0000H

Ethernet_
DTFFCR

DT FIFO Full Counter
Register

F200 023CH U, SV,
32

SV,32
NC

0000 0000H

– Reserved F200 0240H-
F200 030CH

BE BE –

Ethernet_
MACCTRL

MAC Control Register F200 0310H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACCAMCT
RL0

MAC CAM Control
Register 0

F200 0314H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACTXCTR
L

MAC Transmit Control
Register

F200 0318H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACTXSTA
T

MAC Transmit Status
Register

F200 031CH U, SV,
32

SV,32
NC

0000 0000H

Ethernet_
MACRXCTR
L

MAC Receive Control
Register

F200 0320H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACRXSTA
T

MAC Receive Status
Register

F200 0324H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACSMDAT
A

MAC Station Management
Data Register

F200 0328H U, SV,
32

U,SV,
32

0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-41 V1.0, 2002-03

TC11IB
System Units

Register Overview
Ethernet_
MACSMCTR
L

MAC Station management
Control Register

F200 032CH U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACCAMA
DDR

MAC CAM Address
Register

F200 0330H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACCAMD
ATA

MAC CAM Data Register F200 0334H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACCAMCT
RL1

MAC CAM Control
Register 1

F200 0338H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACMERR
CNT

MAC Missed Error Count
Register

F200 033CH U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACPSECN
T

MAC Pause Count
Register

F200 0340H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACRPSEC
NT

MAC Remote Pause
Count Register

F200 0344H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACTX0IM
R

MAC Transmit 0 Interrupt
Mask Register

F200 0348H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACTX0ISR

MAC Transmit 0 Interrupt
Status Register

F200 034CH U, SV,
32

SV,32
NC

0000 0000H

Ethernet_
MACTX1IM
R

MAC Transmit 1 Interrupt
Mask Register

F200 0350H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACTX1ISR

MAC Transmit 1 Interrupt
Status Register

F200 0354H U, SV,
32

SV,32
NC

0000 0000H

– Reserved F200 0358H-
F200 0364H

BE BE –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-42 V1.0, 2002-03

TC11IB
System Units

Register Overview
Ethernet_
MACRX0IM
R

MAC Receive 0 Interrupt
Mask Register

F200 0368H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACRX0IS
R

MAC Receive 0 Interrupt
Status Register

F200 036CH U, SV,
32

SV,32
NC

0000 0000H

Ethernet_
MACRX1IM
R

MAC Receive 1 Interrupt
Mask Register

F200 0370H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
MACRX1IS
R

MAC Receive 1 Interrupt
Status Register

F200 0374H U, SV,
32

SV,32
NC

0000 0000H

– Reserved F200 0378H-
F200 0414H

BE BE –

Ethernet_
RBCC

RB Channel Command
Register

F200 0418H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
RBCBL

RB Channel Burst Length
Register

F200 041CH U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
RBFPM

RB Free Pool Monitor Reg. F200 0420H U, SV,
32

U,SV,
32

0000 0020H

Ethernet_
RBFPTH

RB Free Pool Threshold
Register

F200 0424H U, SV,
32

U,SV,
32

2000 0001H

– Reserved F200 0428H BE BE –

Ethernet_
RBFPCNT

RB Free Pool Count
Register

F200 0430H U, SV,
32

SV,32
NC

0020 00FFH

– Reserved F200 0434H-
F200 0510H

BE BE –

Ethernet_
TBISR

TB Interrupt Status
Register

F200 0514H U, SV,
32

SV,32
NC

0000 0000H

Ethernet_
TBCC

TB Channel Command
Register

F010 0354H U, SV,
32

U,SV,
32

0000 0000H

Ethernet_
TBCPR

TB Channel Parameter
Register

F010 0358H U, SV,
32

U,SV,
32

0020 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-43 V1.0, 2002-03

TC11IB
System Units

Register Overview
– Reserved F200 035CH-
F200 05FCH

BE BE –

External Bus Unit (EBU)

EBU_CLC EBU Clock Control Reg. F800 0000H U, SV U, SV,
E

0000 0000H

– Reserved F800 0004H BE BE –

EBU_ID EBU Module Identification
Register

F800 0008H U, SV BE XXXXXXXXH

– Reserved F800 000CH BE BE –

EBU_CON EBU External Bus
Configuration Register

F800 0010H U, SV SV 0000 0028H
0001 0068H

– Reserved; this location
must not be written

F800 0014H-
F800 001CH

nBE nBE –

EBU_
BFCON

EBU Burst Flash Access
Control Register

F800 0020H U, SV SV 0100 01D0H

EBU_
SDRMREF0

EBU SDRAM Type 0
Refresh Control Register

F800 0040H U, SV SV 0000 0000H

– Reserved F800 0044H BE BE –

EBU_
SDRMREF1

EBU SDRAM Type 1
Refresh Control Register

F800 0048H U, SV SV 0000 00D0H

– Reserved F800 004CH BE BE –

EBU_
SDRMCON0

EBU SDRAM Type 0
Configuration Register

F800 0050H U, SV SV 0000 0000H

– Reserved F800 0054H BE BE –

EBU_
SDRMCON1

EBU SDRAM Type 1
Configuration Register

F800 0058H U, SV SV 0000 00D0H

– Reserved F800 005CH BE BE –

EBU_
SDRMOD0

EBU SDRAM Type 0 Mode
Register

F800 0060H U, SV SV 0000 0000H

– Reserved F800 0064H BE BE –

EBU_
SDRMOD1

EBU SDRAM Type 1 Mode
Register

F800 0068H U, SV SV 0000 00D0H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-44 V1.0, 2002-03

TC11IB
System Units

Register Overview
– Reserved F800 006CH BE BE –

EBU_
SDRSTAT0

EBU SDRAM Type 0
Status Register

F800 0070H U, SV SV,
NC

0000 0000H

– Reserved F800 0074H BE BE –

EBU_
SDRSTAT1

EBU SDRAM Type 1
Status Register

F800 0078H U, SV SV,
NC

0000 00D0H

– Reserved F800 007CH BE BE –

EBU_
ADDSEL0

EBU Address Select
Register 0

F800 0080H U, SV U, SV 0000 0000H
A000 0001H

– Reserved F800 0084H BE BE –

EBU_
ADDSEL1

EBU Address Select
Register 1

F800 0088H U, SV U, SV 0000 0000H
A000 0001H

– Reserved F800 008CH BE BE –

EBU_
ADDSEL2

EBU Address Select
Register 2

F800 0090H U, SV U, SV 0000 0000H
A000 0001H

– Reserved F800 0094H BE BE –

EBU_
ADDSEL3

EBU Address Select
Register 3

F800 0098H U, SV U, SV 0000 0000H
A000 0001H

– Reserved F800 009CH BE BE –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-45 V1.0, 2002-03

TC11IB
System Units

Register Overview
EBU_
ADDSEL4

EBU Address Select
Register 4

F800 00A0H U, SV U, SV 0000 0000H
A000 0001H

– Reserved F800 00A4H BE BE –

EBU_
ADDSEL5

EBU Address Select
Register 5

F800 00A8H U, SV U, SV 0000 0000H
A000 0001H

– Reserved F800 00ACH BE BE –

EBU_
ADDSEL6

EBU Address Select
Register 6

F800 00B0H U, SV U, SV 0000 0000H
A000 0001H

– Reserved F800 00B4H-
F800 00BCH

BE BE –

EBU_
BUSCON0

EBU Bus Configuration
Register 0

F800 00C0H U, SV U, SV 8092 8000H
8092 807FH

– Reserved F800 00C4H BE BE –

EBU_
BUSCON1

EBU Bus Configuration
Register 1

F800 00C8H U, SV U, SV 8092 8000H
8092 807FH

– Reserved F800 00CCH BE BE –

EBU_
BUSCON2

EBU Bus Configuration
Register 2

F800 00D0H U, SV U, SV 8092 8000H
8092 807FH

– Reserved F800 00D4H BE BE –

EBU_
BUSCON3

EBU Bus Configuration
Register 3

F800 00D8H U, SV U, SV 8092 8000H
8092 807FH

– Reserved F800 00DCH BE BE –

EBU_
BUSCON4

EBU Bus Configuration
Register 4

F800 00E0H U, SV U, SV 8092 8000H
8092 807FH

– Reserved F800 00E4H BE BE –

EBU_
BUSCON5

EBU Bus Configuration
Register 5

F800 00E8H U, SV U, SV 8092 8000H
8092 807FH

– Reserved F800 00ECH BE BE –

EBU_
BUSCON6

EBU Bus Configuration
Register 6

F800 00F0H U, SV U, SV 8092 8000H
8092 807FH

– Reserved F800 00F4H-
F800 00FCH

BE BE –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-46 V1.0, 2002-03

TC11IB
System Units

Register Overview
EBU_
BUSAP0

EBU Bus Access
Parameter Register 0

F800 0100H U, SV U, SV FFFF FFFFH

– Reserved F800 0104H BE BE –

EBU_
BUSAP1

EBU Bus Access
Parameter Register 1

F800 0108H U, SV U, SV FFFF FFFFH

– Reserved F800 010CH BE BE –

EBU_
BUSAP2

EBU Bus Access
Parameter Register 2

F800 0110H U, SV U, SV FFFF FFFFH

– Reserved F800 0114H BE BE –

EBU_
BUSAP3

EBU Bus Access
Parameter Register 3

F800 0118H U, SV U, SV FFFF FFFFH

– Reserved F800 011CH BE BE –

EBU_
BUSAP4

EBU Bus Access
Parameter Register 4

F800 0120H U, SV U, SV FFFF FFFFH

– Reserved F800 0124H BE BE –

EBU_
BUSAP5

EBU Bus Access
Parameter Register 5

F800 0128H U, SV U, SV FFFF FFFFH

– Reserved F800 012CH BE BE –

EBU_
BUSAP6

EBU Bus Access
Parameter Register 6

F800 0130H U, SV U, SV FFFF FFFFH

– Reserved F800 0134H-
F800 015CH

BE BE –

EBU_
EMUAS

EBU Emulator Address
Select Register

F800 0160H U, SV U, SV DE00 0031H

– Reserved F800 0164H BE BE –

EBU_
EMUBC

EBU Emulator Bus
Configuration Register

F800 0168H U, SV U, SV 0190 2077H

– Reserved F800 016CH BE BE –

EBU_
EMUBAP

EBU Bus Emulator Region
Access Parameter
Register

F800 0170H U, SV U, SV 5248 4911H

– Reserved F800 0174H BE BE –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-47 V1.0, 2002-03

TC11IB
System Units

Register Overview
EBU_
EMUOVL

EBU Emulator Overlay
Memory Chip Select
Generation Register

F800 0178H U, SV U, SV 0000 0000H

EBU_
EXTCON

EBU External Access
Configuration Register 8

Only from
external
(400000H)

– – 3C0B FFA0H

– Reserved F800 017CH-
F800 02FCH

BE BE –

Local Memory Unit (LMU)

LMU_MODE LMU Mode Register F800 0400H U, SV,
32

SV,32 0000 0000H

– Reserved F800 0404H BE BE –

LMU_
REFRATE

LMU Refresh Rate
Register

F800 0408H U, SV,
32

SV,32 0140 5014H

– Reserved F800 040CH BE BE –

LMU_ID LMU Module Identification
Register

F800 0410H U, SV,
32

BE XXXXXXXXH

– Reserved F800 0414H-
F800 04FCH

BE BE –

CPU Slave Interface Registers (CPS)

– Reserved F7E0 FF00H-
F7E0 FF14H

BE BE –

CPU_ID CPU Module Identification
Register

FFFE FF18H U, SV BE XXXXXXXXH

– Reserved F7E0 FF1CH
-
F7E0 FFB8H

BE BE –

CPU_
SBSRC0

Software Break Service
Request Control Reg. 0

F7E0 FFBCH U, SV SV 0000 0000H

– Reserved F7E0 FFC0H
-
F7E0 FFECH

BE BE –

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-48 V1.0, 2002-03

TC11IB
System Units

Register Overview
CPU_SRC3 CPU Service Request
Control Register 3

F7E0 FFF0H U, SV SV 0000 0000H

CPU_SRC2 CPU Service Request
Control Register 2

F7E0 FFF4H U, SV SV 0000 0000H

CPU_SRC1 CPU Service Request
Control Register 1

F7E0 FFF8H U, SV SV 0000 0000H

CPU_SRC0 CPU Service Request
Control Register 0

F7E0 FFFCH U, SV SV 0000 0000H

Memory Management Unit (MMU)

MMU_CON MMU Configuration Reg. F7E1 8000H U, SV,
32

SV,32 0000 07E0H

MMU_ASI MMU Address Space
Identifier Register

F7E1 8004H U, SV,
32

SV,32 0000 001FH

MMU_ID MMU Module Identification
Register

F7E1 8008H U, SV,
32

BE XXXXXXXXH

MMU_TVA MMU Translation Virtual
Address Register

F7E1 800CH U, SV,
32

SV,32 0000 0000H

MMU_TPA MMU Translation Physical
Address Register

F7E1 8010H U, SV,
32

SV,32 0000 0000H

MMU_TPX MMU Translation Page
Index Register

F7E1 8014H U, SV,
32

SV,32 0000 0000H

MMU_TFA MMU Translation Fault
Address Register

F7E1 8018H U, SV,
32

SV,32 0000 0000H

– Reserved F7E1 801CH-
F7E1 80FCH

BE BE –

Memory Protection Registers

DPR0_0L Data Seg. Protect. Reg.
Set 0, Range 0, Lower

F7E1 C000H U, SV,
32

SV,
32

0000 0000H

DPR0_0U Data Seg. Protect. Reg.
Set 0, Range 0, Upper

F7E1 C004H U, SV,
32

SV,
32

0000 0000H

DPR0_1L Data Seg. Protect. Reg.
Set 0, Range 1, Lower

F7E1 C008H U, SV,
32

SV,
32

0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-49 V1.0, 2002-03

TC11IB
System Units

Register Overview
DPR0_1U Data Seg. Protect. Reg.
Set 0, Range 1, Upper

F7E1 C00CH U, SV,
32

SV,
32

0000 0000H

DPR0_2L Data Seg. Protect. Reg.
Set 0, Range 2, Lower

F7E1 C010H U, SV,
32

SV,
32

0000 0000H

DPR0_2U Data Seg. Protect. Reg.
Set 0, Range 2, Upper

F7E1 C014H U, SV,
32

SV,
32

0000 0000H

DPR0_3L Data Seg. Protect. Reg.
Set 0, Range 3, Lower

F7E1 C018H U, SV,
32

SV,
32

0000 0000H

DPR0_3U Data Seg. Protect. Reg.
Set 0, Range 3, Upper

F7E1 C01CH U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1 C020H-
F7E1 C3FCH

nE nE –

DPR1_0L Data Seg. Protect. Reg.
Set 1, Range 0, Lower

FFFF C400H U, SV,
32

SV,
32

0000 0000H

DPR1_0U Data Seg. Protect. Reg.
Set 1, Range 0, Upper

F7E1 C404H U, SV,
32

SV,
32

0000 0000H

DPR1_1L Data Seg. Protect. Reg.
Set 1, Range 1, Lower

F7E1 C408H U, SV,
32

SV,
32

0000 0000H

DPR1_1U Data Seg. Protect. Reg.
Set 1, Range 1, Upper

F7E1 C40CH U, SV,
32

SV,
32

0000 0000H

DPR1_2L Data Seg. Protect. Reg.
Set 1, Range 2, Lower

F7E1 C410H U, SV,
32

SV,
32

0000 0000H

DPR1_2U Data Seg. Protect. Reg.
Set 1, Range 2, Upper

F7E1 C414H U, SV,
32

SV,
32

0000 0000H

DPR1_3L Data Seg. Protect. Reg.
Set 1, Range 3, Lower

F7E1 C418H U, SV,
32

SV,
32

0000 0000H

DPR1_3U Data Seg. Protect. Reg.
Set 1, Range 3, Upper

F7E1 C41CH U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1 C420H-
F7E1 CFFCH

nE nE –

CPR0_0L Code Seg. Prot. Register
Set 0, Range 0, Lower

F7E1 D000H U, SV,
32

SV,
32

0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-50 V1.0, 2002-03

TC11IB
System Units

Register Overview
CPR0_0U Code Seg. Prot. Register
Set 0, Range 0, Upper

F7E1 D004H U, SV,
32

SV,
32

0000 0000H

CPR0_1L Code Seg. Prot. Register
Set 0, Range 1, Lower

F7E1 D008H U, SV,
32

SV,
32

0000 0000H

CPR0_1U Code Seg. Prot. Register
Set 0, Range 1, Upper

F7E1 D00CH U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1 D010H-
F7E1 D3FCH

nE nE –

CPR1_0L Code Seg. Prot. Register
Set 1, Range 0, Lower

F7E1 D400H U, SV,
32

SV,
32

0000 0000H

CPR1_0U Code Seg. Prot. Register
Set 1, Range 0, Upper

F7E1 D404H U, SV,
32

SV,
32

0000 0000H

CPR1_1L Code Seg. Prot. Register
Set 1, Range 1, Lower

F7E1 D408H U, SV,
32

SV,
32

0000 0000H

CPR1_1U Code Seg. Prot. Register
Set 1, Range 1, Upper

F7E1 D40CH U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1 D410H-
F7E1 DFFCH

nE nE –

DPM0 Data Memory Protection
Mode Register 0

F7E1 E000H U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1 E004H-
F7E1 E07CH

nE nE –

DPM1 Data Memory Protection
Mode Register 1

F7E1 E080H U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1 E084H-
F7E1 E1FCH

nE nE –

CPM0 Code Memory Protection
Mode Register 0

F7E1 E200H U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1 E204H-
F7E1 E27CH

nE nE –

CPM1 Code Memory Protection
Mode Register 1

F7E1 E280H U, SV,
32

SV,
32

0000 0000H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-51 V1.0, 2002-03

TC11IB
System Units

Register Overview
– Reserved F7E1 E284H-
F7E1 FCFCH

nE nE –

Core Debug Register (OCDS)

DBGSR Debug Status Register F7E1 FD00H U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1 FD04H nE nE –

EXEVT External Break Input Event
Specifier Register

F7E1 FD08H U, SV,
32

SV,
32

0000 0000H

CREVT Emulator Resource
Protection Event Specifier
Register

F7E1 FD0CH U, SV,
32

SV,
32

0000 0000H

SWEVT Software Break Event
Specifier Register

F7E1 FD10H U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1 FD14H
-
F7E1 FD1CH

nBE nBE –

TR0EVT Trigger Event 0 Specifier
Register

F7E1 FD20H U, SV,
32

SV,
32

0000 0000H

TR1EVT Trigger Event 1 Specifier
Register

F7E1 FD24H U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1FD28H-
F7E1FD3CH

nBE nBE –

DMS Debug Monitor Start
Address Register

F7E1 FD40H U, SV,
32

BE DE00 0000H

DCX Debug Context Save Area
Pointer Register

F7E1 FD44H U, SV,
32

SV,
32

DE80 0000H

– Reserved F7E1FD48H-
F7E1FDFCH

nBE nBE –

Core Special Function Registers (CSFR)

PCXI Previous Context
Information Register

F7E1 FE00H U, SV,
32

SV,
32

0000 0000H

PSW Program Status Word F7E1 FE04H U, SV,
32

SV,
32

0000 0B80H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-52 V1.0, 2002-03

TC11IB
System Units

Register Overview
PC Program Counter F7E1 FE08H U, SV,
32

SV,
32

acc. boot cfg.

– Reserved F7E1FE0CH-
F7E1FE10H

nBE nBE –

SYSCON System Configuration
Register

F7E1 FE14H U, SV,
32

SV,32 0000 0000H

– Reserved F7E1 FE18H-
FFFF FE1CH

nBE nBE –

BIV Interrupt Vector Table
Pointer

F7E1 FE20H U, SV,
32

SV, E;
32

0000 0000H

BTV Trap Vector Table Pointer F7E1 FE24H U, SV,
32

SV, E;
32

A000 0100H

ISP Interrupt Stack Pointer F7E1 FE28H U, SV,
32

SV, E;
32

0000 0100H

ICR ICU Interrupt Control
Register

F7E1 FE2CH U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1 FE30H-
F7E1 FE34H

nBE nBE –

FCX Free Context List Head
Pointer

F7E1 FE38H U, SV,
32

SV,
32

0000 0000H

LCX Free Context List Limit
Pointer

F7E1 FE3CH U, SV,
32

SV,
32

0000 0000H

– Reserved F7E1 FE40H-
F7E1 FEFCH

nBE nBE –

General Purpose Register (GPR)

D0 Data Register D0 (DGPR) F7E1 FF00H – – XXXX XXXXH

D1 Data Register D1 (DGPR) F7E1 FF04H – – XXXX XXXXH

D2 Data Register D2 (DGPR) F7E1 FF08H – – XXXX XXXXH

D3 Data Register D3 (DGPR) F7E1 FF0CH – – XXXX XXXXH

D4 Data Register D4 (DGPR) F7E1 FF10H – – XXXX XXXXH

D5 Data Register D5 (DGPR) F7E1 FF14H – – XXXX XXXXH

D6 Data Register D6 (DGPR) F7E1 FF18H – – XXXX XXXXH

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-53 V1.0, 2002-03

TC11IB
System Units

Register Overview
D7 Data Register D7 (DGPR) F7E1 FF1CH – – XXXX XXXXH

D8 Data Register D8 (DGPR) F7E1 FF20H – – XXXX XXXXH

D9 Data Register D9 (DGPR) F7E1 FF24H – – XXXX XXXXH

D10 Data Register 10 (DGPR) F7E1 FF28H – – XXXX XXXXH

D11 Data Register 11 (DGPR) F7E1 FF2CH – – XXXX XXXXH

D12 Data Register 12 (DGPR) F7E1 FF30H – – XXXX XXXXH

D13 Data Register 13 (DGPR) F7E1 FF34H – – XXXX XXXXH

D14 Data Register 14 (DGPR) F7E1 FF38H – – XXXX XXXXH

D15 Data Register 15 (DGPR) F7E1 FF3CH – – XXXX XXXXH

– Reserved F7E1 FF40H-
F7E1 FF7CH

nE nE –

A0 Address Reg. 0 (AGPR)
Global Address Register

F7E1 FF80H – – XXXX XXXXH

A1 Address Reg. 1 (AGPR)
Global Address Register

F7E1 FF84H – – XXXX XXXXH

A2 Address Register 2
(AGPR)

F7E1 FF88H – – XXXX XXXXH

A3 Address Register 3
(AGPR)

F7E1 FF8CH – – XXXX XXXXH

A4 Address Register 4
(AGPR)

F7E1 FF90H – – XXXX XXXXH

A5 Address Register 5
(AGPR)

F7E1 FF94H – – XXXX XXXXH

A6 Address Register 6
(AGPR)

F7E1 FF98H – – XXXX XXXXH

A7 Address Register 7
(AGPR)

F7E1 FF9CH – – XXXX XXXXH

A8 Address Reg. 8 (AGPR)
Global Address Register

F7E1 FFA0H – – XXXX XXXXH

A9 Address Reg. 9 (AGPR)
Global Address Register

F7E1 FFA4H – – XXXX XXXXH

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-54 V1.0, 2002-03

TC11IB
System Units

Register Overview
A10 (SP) Address Reg. 10 (AGPR)
Stack Pointer

F7E1 FFA8H – – XXXX XXXXH

A11 (RA) Address Reg. 11 (AGPR)
Return Address

F7E1 FFACH – – XXXX XXXXH

A12 Address Reg. 12 (AGPR) F7E1 FFB0H – – XXXX XXXXH

A13 Address Reg. 13 (AGPR) F7E1 FFB4H – – XXXX XXXXH

A14 Address Reg. 14 (AGPR) F7E1 FFB8H – – XXXX XXXXH

A15 Address Reg. 15 (AGPR) F7E1 FFBCH – – XXXX XXXXH

– Reserved F7E1FFC0H-
F7E1FFFCH

nE nE –

Data Memory Unit (DMU)

– Reserved F87F FC00H nBE nBE –

– Reserved F87F FC04H BE BE 3)

DMU_ID DMU Module Identification
Register

F87F FC08H U, SV BE XXXX XXXXH

– Reserved F87F FC0CH BE BE 3)

DMU_CON DMU Control Register F87F FC10H U, SV SV 0000 0022H

– Reserved F87F FC14H BE BE 3)

DMU_STR DMU Synchronous Trap
Flag Register

F87F FC18H U, SV

2)

1) 0000 0000H

– Reserved F87F FC1CH BE BE 3)

DMU_ATR DMU Asynchronous Trap
Flag Register

F87F FC20H U, SV
2)

1) 0000 0000H

– Reserved F87F FC24H-
F87F FCFCH

BE BE 3)

Program Memory Unit (PMU)

– Reserved F87F FD00H-
F87F FD04H

BE BE –

PMU_ID PMU Module Identification
Register

F87F FD08H U, SV BE XXXX XXXXH

– Reserved F87F FD0CH BE BE –

PMU_CON0 PMU Control Register 0 F87F FD10H U, SV SV,32 0000 0002H

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-55 V1.0, 2002-03

TC11IB
System Units

Register Overview
1) Access to the DMU registers must only be made with double-word-aligned word accesses. An access not
conforming to this rule, or an access which does not follow the specified privilege mode (supervisor mode), or

PMU_CON1 PMU Control Register 1 F87F FD14H U,SV SV,32 0000 0000H

PMU_CON2 PMU Control Register 2 F87F FD18H U, SV SV,32 0000 0022H

– Reserved F87FFD1CH-
F87F FDFCH

BE BE –

LMB Bus Control Unit (LCU)

– Reserved F87F FE00H nBE nBE –

– Reserved F87F FE04H BE BE

LCU_ID LCU Module Identification
Register

F87F FE08H U, SV,
32

BE XXXX XXXXH

– Reserved F87FFE0CH-
F87FFE1CH

BE BE

LCU_EATT LCU Error Attribute
Capture Register

F87F FE20H U, SV,
32

SV,32 0000 0000H

LCU_EADD LCU Error Address
Capture Register

F87F FE24H U, SV,
32

SV,32 0000 0000H

LCU_EDAT LCU Error Data Capture
Register

F87F FE28H U, SV,
2*32,

SV,
2*32

0000 0000H

– Reserved F87FFE30H-
F87FFEF8H

BE BE

LCU_SRC LCU Service Request
Control Register

F87F FEFCH U, SV U,SV 0000 0000H

LMB to FPI Bus Bridge(LFI)

– Reserved F87F FF00H nBE nBE –

– Reserved F87F FF04H BE BE

LFI_ID LCU Module Identification
Register

F87F FF08H U, SV BE XXXX XXXXH

– Reserved F87F FF0CH BE BE

LFI_CON LFI Configuration Register F87F FF10H U, SV U,SV 0000 0306H

– Reserved F87F FF14H-
F87F FFFCH

BE BE

Table 22-4 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 22-56 V1.0, 2002-03

TC11IB
System Units

Register Overview
a write access to a read-only register, will cause a bus error if the access was from the FPI Bus, or to a trap,
flagged with a DMU Control Register Error Flag (see DMUSTR/DMUATR registers) in case of a CPU load/
store access.

2) Reading this register in supervisor mode returns the contents and then clears the register. Reading it in user
mode only returns the contents of the register and does not clear its bits. No error will be reported in this case.

3) A read access to this range will lead to a bus error on data load operation trap. A write access to this range will
lead to a bus error on data store operation trap.
User’s Manual 22-57 V1.0, 2002-03

TC11IB
System Units

Index

23 Index

23.1 Keyword Index

This section lists a number of keywords which refer to specific details of the TC11IB in
terms of its architecture, its functional units. or functions. Bold page number entries
identify the main definition material for a topic.
A
Abbreviations 1-4
Address map 7-2, 7-6

B
BCU 18-8

Power saving mode 18-16
Registers 18-19

Address range 18-20
BCU0_CON 18-20
BCU0_EADD 18-25
BCU0_ECON 18-24
BCU0_EDAT 18-25
BCU0_SRC 18-28
BCU1_CON 18-22
BCU1_EADD 18-25
BCU1_ECON 18-24
BCU1_EDAT 18-25
BCU1_SRC 18-28
Offset addresses 18-19
Overview 18-19

Block diagram 1-10
Boot operation 5-13–5-16

Boot configuration handling 5-15
Boot selection table 5-14
Debug boot options 5-16
Hardware boot 5-13
Normal boot options 5-15
Software boot 5-13

BROM 11-18
Burst mode timings 14-57
Bus System 18-1

Block diagram 18-3

C
Clock gating and power management 3-8

CLC register implementations 3-16
Module clock control register 3-11
Module clock control registers 3-11
Module clock generation 3-10

Clock generation unit 3-3–3-8
Clock control and status register 3-6
Oscillator circuit 3-3
PLL loss and lock 3-8
PLL operation 3-4
Setup of system clock frequency 3-5
Startup operation 3-7

Clock system block diagram 3-2
ComDRAM 11-13

Registers 11-13–11-18
Address range 11-14
ComDRAM_CLC 11-14
ComDRAM_MODE 11-17
ComDRAM_OCDSS 11-15
ComDRAM_REFCON 11-16
ComDRAM_RST 11-16
Offset addresses 11-14
Overview 11-13

CPS 2-31
CPU 2-1

Block diagram 2-2
Core SFRs

Address table 2-32–2-33
BIV 2-27
User’s Manual 23-1 V1.0, 2002-03

TC11IB
System Units

Index
BTV 2-28
FCX 2-23
ISP 2-26
LCX 2-25
PC 2-16
PCX 2-24
PCXI 2-21
PSW 2-17

Execution unit 2-4
Instruction fetch unit 2-3
Service request nodes 15-24

CPU architecture overview 2-1
Addressing modes 2-7
Data types 2-7
Instruction formats 2-7
Interrupt system 2-10
Processor registers 2-13–2-30

Context management registers 2-
23
Debug registers 2-30
Interrupt/trap control registers 2-27
Memory protection registers 2-30
Program state registers 2-16
Stack registers 2-26
System control register 2-29

Program state registers 2-6
Protection system 2-11–2-12
Reset system 2-12
Tasks and contexts 2-7
Trap system 2-10

CPU General purpose register file 2-5

D
Data memory unit 9-1–9-10

Address map 9-2
Block diagram 9-1
Bus error 9-3
DMU register access error 9-4
DMU trap generation 9-3
Range error 9-3
Registers 9-5

Address range 9-5
DMU_ATR 9-9

DMU_CON 9-6
DMU_STR 9-7
Offset addresses 9-5
Overview 9-5

DMU, see "Data memory unit"
Document

Abbreviations 1-4
Structure 1-1
Terminology 1-3
Textual conventions 1-1

E
EBU, see “External bus interface unit”
Endinit function 20-3
Ethernet controller 1-22
External bus interface unit 14-1–14-108

Address region parameters 14-18
Address region selection 14-15, 14-16
Basic access timing 14-26

Demultiplexed mode 14-28
Multiplexed mode 14-30
Standard access phases 14-26

Basic operation 14-4
Block diagram 14-1
Boot process 14-50

External boot memory configura-
tion word 14-51
Timing 14-52

Data width 14-26
EBU address region 14-14
EBU register address range 14-108
Emulation support 14-52

Emulation boot 14-53
Overlay memory 14-53

Example configuration 14-5
External bus arbitration 14-44

Arbitration sequence 14-46
Modes 14-44
Signals 14-44, 14-45
Signals arbiter mode 14-45
Signals participant mode 14-46

External to internal operation 14-6, 14-
39
User’s Manual 23-2 V1.0, 2002-03

TC11IB
System Units

Index
Access control 14-41
Address extension diagram 14-41
Address translation 14-40
Basic timing 14-43
Signal direction 14-39

Features 14-3
Instruction fetches 14-55

Basic functions 14-55
Internal to external operation 14-6, 14-
13
Overview 14-2
Registers 14-81

Address range 14-108
ADDRSELx 14-85
BFCON 14-100
BUSAPx 14-86
BUSCONx 14-86
CLC 14-84
CON 14-98
EMUAS 14-91
EMUBAP 14-91
EMUBC 14-91
EMUOVL 14-91
EXTCON 14-106
Offset addresses 14-82
Overview 14-81
SDRMCONx 14-101
SDRMODx 14-101
SDRMREFx 14-101
SDRSTATx 14-101

SDRAM interface 14-62
Bank precharge 14-74
external interface 14-64
Initialization sequence 14-67
Multibanking operation 14-70
Power down 14-76
Power up sequence 14-67
Refresh cycles 14-75
SDRAM access timing 14-69
SDRAM addressing scheme 14-76
SDRAM commands 14-66
Signals 14-64

Signal description 14-7

External overlay memory 14-53

F
Features 1-6

CPU 1-7
Development support 1-9
External bus interface 1-7
I/O lines 1-8
Instruction set 1-7
Interrupt system 1-8
On-chip memory 1-7
Peripheral control processor 1-8

FFI 18-4
Register

FFI_CON 18-6
Offset addresses 18-6

FPI Bus
Arbitration 18-10
Error handling 18-12
Overview 18-1
Starvation protection 18-12

I
ICACHE 8-4
Instruction set overview 2-34

Arithmetic comparison 2-51
Arithmetic instructions 2-34–2-45
Branch instructions 2-51–2-54
Compare instructions 2-45–2-51
Context related instructions 2-58
DSP arithmetic 2-42
Load/store instructions 2-54–2-58
System instructions 2-59

Interrupt system 15-1–15-40
Arbitration cycles 15-13
Arbitration process 15-13
BCU0 interrupt 15-36
Block diagram 15-3
Ethernet interrupt 15-38
External interrupts 15-25
Hints for applications 15-18–15-23
Interrupt control unit 15-8
Interrupt vector table 15-16
User’s Manual 23-3 V1.0, 2002-03

TC11IB
System Units

Index
Overview 15-1
PCI interrupts 15-32
Service request control register 15-4
Service request nodes 15-4
Service routine entering 15-14
Service routine exiting 15-15

L
LCU

Registers
LCU_EADD 18-26
LCU_EATT 18-27
LCU_EDAT 18-26
LCU_SRC 18-28

LFI 18-7
Register 18-8

LFI_CON 18-8
Offset addresses 18-8

LMB 18-3
LMU 11-1–11-13

Error 11-9
LMB bus slot condition 11-6
Operation Overview 11-2
Prefectch mechanism 11-7
Read scratch registers 11-6
Refresh modes 11-7
Registers 11-10–11-13

Address range 11-11
LMU_MODE 11-11
LMU_REFRATE 11-12
Offset addresses 11-10
Overview 11-10

Reset 11-9
Local memories 11-1–11-18

Boot ROM 11-18
ComDRAM 11-13
LMU 11-1

M
Memories, see On-chip memories
Memory management unit 10-1–10-11

Address spaces 10-2
Address translation 10-4

Cacheability 10-5
MMU instructions 10-10
MMU traps 10-7
Multiple address spaces 10-7
Protection 10-6
Registers 10-11

Address range 10-12
MMU_ASI 10-13
MMU_CON 10-12
MMU_TFA 10-17
MMU_TPA 10-15
MMU_TPX 10-16
MMU_TVA 10-14
Offset addresses 10-12
Overview 10-12

Memory managemnet unit
Translation lookaside buffers 10-4

Memory protection system 12-1–12-19
Configuration example 12-17
Memory access checking 12-18
Overview 12-1
Registers

Address Range 12-6
Control by PSW bits/bit fields 12-7
for code memory protection 12-14
for data memory protection 12-11
Offset addresses 12-4
Overview 12-2

MMU, see "Memory management unit"
MultiMediaCard interface 1-21

N
NMI 16-12

NMI input 16-13
PLL NMI 16-13
Status register NMISR 16-12
Watchdog timer NMI 16-14

O
OCDS 21-1
On-chip debug support 21-1–21-41

Block diagram 21-1
Cerberus 21-32
User’s Manual 23-4 V1.0, 2002-03

TC11IB
System Units

Index
Communication mode 21-34
Registers 21-23, 21-36
Reset behavior 21-36
RW mode 21-33
System security 21-34
Trace with external bus address
21-35
Triggered transfers 21-34

Multi-Core debugging 21-16
Break and suspend control 21-17
Break bus switch 21-19
Suspend signal 21-20

PCP debugging 21-16
Registers 21-8

Address ranges 21-41
COMDATA 21-41
CREVT 21-12
DBGSR 21-9
EXEVT 21-11
IOADDR 21-41
IOCONF 21-38
IOSR 21-40
MCDBBS 21-23
MCDSSG 21-24
Offset addresses 21-8, 21-23
Overview 21-8
RWDATA 21-41
SBSRC0 21-15
SWEVT 21-13
TR0EVT 21-14
TR1EVT 21-14
TRADDR 21-41

Trace module 21-25
TriCore CPU debugging 21-2

BRKOUT pin 21-6
External debug event 21-3
Instruction debug event 21-3
Protection violation triggers 21-4
Software debug event 21-3

On-chip memories 7-1–7-8
Address map of segment 15 7-6
General address map 7-2

On-chip peripherals overview 1-11

P
P3_OD 13-8
P4_OD 13-8
P5_OD 13-8
Parallel ports 13-1–13-27

Block diagram 13-1
General operation 13-2
General port structure 13-3
Kernel registers 13-4

Data input register 13-5
Data output register 13-5
Direction control register 13-7
Offset addresses 13-4
Open drain control register 13-8
Pull-up/-down control registers 13-
8
Px 13-5
Px_ALTSELn 13-9
Px_DIR 13-7
Px_IN 13-6
Px_OD 13-8

Port 0 13-9
Configuration diagram 13-10

Port 1 13-11
Configuration diagram 13-13

Port 2 13-16
Configuration diagram 13-17

Port 3 13-21
Configuration diagram 13-22

Port 4 13-23
Configuration diagram 13-24

Port 5 13-25
Configuration diagram 13-26

PCI interface 1-24
PCP 17-1

Access from the FPI Bus 17-45
Architecture 17-1
Channel programs 17-22
Context models 17-8
Control and interrupt registers 17-49
Debug 17-47
Error handling 17-35
User’s Manual 23-5 V1.0, 2002-03

TC11IB
System Units

Index
General purpose registers 17-5
Implementation in TC11IB 17-124
Instruction set details 17-78
Instruction set overview 17-38
Interrupt operation 17-29
Operation 17-25
Overview 17-1
Programming 17-112
Programming model 17-5
Programming tips 17-118
Registers

Address range 17-124
Offset addresses 17-49
Overview 17-49
PCP_CLC 17-51
PCP_CS 17-51
PCP_ES 17-54
PCP_FTD 17-62
PCP_ICON 17-59
PCP_ICR 17-56
PCP_ITR 17-57
PCP_SRC0 17-63
PCP_SRC1 17-64
PCP_SRC10 17-74
PCP_SRC11 17-76
PCP_SRC2 17-65
PCP_SRC3 17-66
PCP_SRC4 17-67
PCP_SRC5 17-68
PCP_SRC6 17-69
PCP_SRC7 17-70
PCP_SRC8 17-71
PCP_SRC9 17-72
PCP_SSR 17-60

Reset 17-37
Peripheral control processor, see PCP
Pin configuration 1-26
Pin definitions and functions 1-27
Pin diagram 1-27
PMU, see Program memory unit
Ports, see "Parallel ports"
Power Management 6-1–6-11

Mode description 6-6

Deep sleep mode 6-7
Idle mode 6-6
Sleep mode 6-6

Mode summary 6-1, 6-10
Overview 6-1
Registers 6-2

Address range 6-3
Offset addresses 6-3
Overview 6-3
PMG_CON 6-3
PMG_CSR 6-5

Program memory unit 8-1
Block diagram 8-1
Functions 8-2
Instruction cache 8-4
Registers 8-6–8-9

Offset addresses 8-6
Overview 8-6
PMU_CON0 8-7
PMU_CON1 8-8
PMU_CON2 8-9

Related memories 8-2
Scratch-pad code RAM 8-3

R
Reset operation 5-1–5-13

Deep sleep wake-up reset 5-9
eDRAM reset 5-10
External hardware reset 5-6
Overview 5-1
Power-on reset 5-6
Registers

Address range 5-2
Offset addresses 5-2
Overview 5-2
RST_REQ 5-4
RST_SR 5-2

Reset register table 5-8
Software reset 5-7
States after reset 5-11
Watchdog timer reset 5-8

Revision history 4
User’s Manual 23-6 V1.0, 2002-03

TC11IB
System Units

Index
S
SCU, see "System control unit"
SDRAM interface 14-62
Serial interfaces 1-12

Async. serial interface 1-16
Async./sync. serial interface 1-12
High-speed sync. serial interface 1-14

SPRAM 8-3
STM, see "System timer"
System control unit 4-1–4-7

Address range 4-2
Overview 4-1
Registers

CHIPID 4-6
MANID 4-5
Offset addresses 4-2
Overview 4-2
RTID 4-7
SCU_MCDTRC 4-4

Trace control 4-3
System timer

Block diagram 19-2
Overview 19-1
Registers

Address range 19-8
CAP 19-6
Offset addresses 19-4
Overview 19-4
TIM0 19-5
TIM1 19-5
TIM2 19-5
TIM3 19-5
TIM4 19-6
TIM5 19-6
TIM6 19-6

Resolutions and ranges 19-3

T
Timer units 1-18

General purpose timer unit 1-18
Trap system 16-1–16-14

Asynchronous traps 16-5

Hardware traps 16-5
Overview 16-1
Service routine 16-11
Software traps 16-5
Synchronous traps 16-5
Trap classes 16-3
Trap descriptions 16-6
Trap vector table 16-10

W
Watchdog timer 20-1–20-32

Double watchdog error 20-16
During power-saving modes 20-15
Endinit function 20-3
Features 20-2
Functional description 20-4
in OCDS suspend mode 20-15
Modes of operation 20-6

Disable mode 20-8, 20-13
Normal mode 20-7, 20-12
Prewarning mode 20-8, 20-14
Time-out mode 20-7, 20-11

Modify access to WDT_CON0 20-10
Monitoring diagram 20-24
Operation sequence example 20-5
Overview 20-1
Period calculation 20-16
Period in power-saving modes 20-19
Registers 20-26

Offset addresses 20-26
WDT_CON0 20-27
WDT_CON1 20-29
WDT_SR 20-30

Service sequence diagram 20-23
Servicing 20-21
System initialization 20-19
Time-out period 20-17
Watchdog timer reset lock 5-8

WDT, see "Watchdog timer"
User’s Manual 23-7 V1.0, 2002-03

TC11IB
System Units

Index

23.2 Register Index

This section lists the references to the Special Function Registers of the TC11IB.

Numerics
16X50_CLC 22-20
16X50_DLL 22-21
16X50_DLM 22-21
16X50_EFR 22-21
16X50_FCR 22-21
16X50_ID 22-20
16X50_IER 22-21
16X50_ISR 22-21
16X50_LCR 22-21
16X50_LSR 22-21
16X50_MCR 22-21
16X50_MSR 22-21
16X50_RHR 22-21
16X50_SR 22-21
16X50_SRC 22-22
16X50_THR 22-21
16X50_XOFF1 22-21
16X50_XOFF2 22-21
16X50_XON1 22-21
16X50_XON2 22-21

A
A0 2-32, 22-54
A1 2-33, 22-54
A10 2-33, 22-55
A11 2-33, 22-55
A12 2-33, 22-55
A13 2-33, 22-55
A14 2-33, 22-55
A15 2-33, 22-55
A2 2-33, 22-54
A3 2-33, 22-54
A4 2-33, 22-54
A5 2-33, 22-54
A6 2-33, 22-54

A7 2-33, 22-54
A8 2-33, 22-54
A9 2-33, 22-54
ASC_BG 22-19
ASC_CLC 22-19
ASC_CON 22-19
ASC_ESRC 22-20
ASC_FDV 22-19
ASC_FTAT 22-20
ASC_ID 22-19
ASC_RBUF 22-20
ASC_RSRC 22-20
ASC_RXFCON 22-20
ASC_TBSRC 22-20
ASC_TBUF 22-19
ASC_TSRC 22-20
ASC_TXFCON 22-20

B
BCU module registers 18-19
BCU0_CON 18-20, 22-39
BCU0_EADD 18-25, 22-40
BCU0_ECON 18-24, 22-40
BCU0_EDAT 18-25, 22-40
BCU0_ID 22-39
BCU0_SRC 15-37, 18-28, 22-23
BCU1_CON 18-22, 22-13
BCU1_EADD 18-25, 22-13
BCU1_ECON 18-24, 22-13
BCU1_EDAT 18-25, 22-13
BCU1_ID 22-13
BCU1_SRC 18-28, 22-13
BIV 2-27, 2-32, 22-53
BTV 2-28, 2-32, 22-53

C
CHIPID 4-6, 22-10
User’s Manual 23-8 V1.0, 2002-03

TC11IB
System Units

Index
COMDATA 21-41, 22-14
ComDRAM registers 11-14
ComDRAM_CLC 11-14, 22-33
ComDRAM_MODE 11-17, 22-33
ComDRAM_OCDSS 11-15, 22-33
ComDRAM_REFCON 11-17, 22-33
ComDRAM_RST 11-16, 22-33
CPM0 12-15, 22-51
CPM1 12-15, 22-51
CPR0_0L 12-14, 22-50
CPR0_0U 12-14, 22-51
CPR0_1L 12-14, 22-51
CPR0_1U 12-14, 22-51
CPR1_0L 12-14, 22-51
CPR1_0U 12-14, 22-51
CPR1_1L 12-14, 22-51
CPR1_1U 12-14, 22-51
CPU_ID 22-48
CPU_SBSRC0 22-48
CPU_SRC0 15-24, 22-49
CPU_SRC1 15-24, 22-49
CPU_SRC2 15-24, 22-49
CPU_SRC3 15-24, 22-49
CREVT 21-12, 22-52

D
D0 2-32, 22-53
D1 2-32, 22-53
D10 2-32, 22-54
D11 2-32, 22-54
D12 2-32, 22-54
D13 2-32, 22-54
D14 2-32, 22-54
D15 2-32, 22-54
D2 2-32, 22-53
D3 2-32, 22-53
D4 2-32, 22-53
D5 2-32, 22-53
D6 2-32, 22-53
D7 2-32, 22-54
D8 2-32, 22-54
D9 2-32, 22-54
DBGSR 21-9, 22-52

DCX 22-52
DMS 22-52
DMU module registers 9-5
DMU_ATR 9-9, 22-55
DMU_CON 9-6, 22-55
DMU_ID 22-55
DMU_STR 9-7, 22-55
DPM0 12-12, 22-51
DPM1 12-12, 22-51
DPR0_0L 12-11, 22-49
DPR0_0U 12-11, 22-49
DPR0_1L 12-11, 22-49
DPR0_1U 12-11, 22-50
DPR0_2L 12-11, 22-50
DPR0_2U 12-11, 22-50
DPR0_3L 12-11, 22-50
DPR0_3U 12-11, 22-50
DPR1_0L 12-11, 22-50
DPR1_0U 12-11, 22-50
DPR1_1L 12-11, 22-50
DPR1_1U 12-11, 22-50
DPR1_2L 12-11, 22-50
DPR1_2U 12-11, 22-50
DPR1_3L 12-11, 22-50
DPR1_3U 12-11, 22-50

E
EBU 14-92
EBU module registers 14-82
EBU_ADDRSELx 14-85
EBU_ADDSEL0 22-45
EBU_ADDSEL1 22-45
EBU_ADDSEL2 22-45
EBU_ADDSEL3 22-45
EBU_ADDSEL4 22-46
EBU_ADDSEL5 22-46
EBU_ADDSEL6 22-46
EBU_BFCON 14-100, 22-44
EBU_BUSAP0 22-47
EBU_BUSAP1 22-47
EBU_BUSAP2 22-47
EBU_BUSAP3 22-47
EBU_BUSAP4 22-47
User’s Manual 23-9 V1.0, 2002-03

TC11IB
System Units

Index
EBU_BUSAP5 22-47
EBU_BUSAP6 22-47
EBU_BUSAPx 14-89
EBU_BUSCON0 22-46
EBU_BUSCON1 22-46
EBU_BUSCON2 22-46
EBU_BUSCON3 22-46
EBU_BUSCON4 22-46
EBU_BUSCON5 22-46
EBU_BUSCON6 22-46
EBU_BUSCONx 14-86
EBU_CLC 14-84, 22-44
EBU_CON 14-98, 22-44
EBU_EMUAS 22-47
EBU_EMUBAP 14-95, 22-47
EBU_EMUBC 14-93, 22-47
EBU_EMUOVL 14-97, 22-48
EBU_EXTCON 14-107, 22-48
EBU_ID 22-44
EBU_SDRMCON0 22-44
EBU_SDRMCON1 22-44
EBU_SDRMCONx 14-102
EBU_SDRMOD0 22-44
EBU_SDRMOD1 22-44
EBU_SDRMODx 14-104
EBU_SDRMREF0 22-44
EBU_SDRMREF1 22-44
EBU_SDRMREFx 14-101
EBU_SDRSTAT0 22-45
EBU_SDRSTAT1 22-45
EBU_SDRSTATx 14-106
EINT_SRC0 22-23
EINT_SRC0-23 15-29
EINT_SRC1 22-23
EINT_SRC10 22-24
EINT_SRC11 22-24
EINT_SRC12 22-24
EINT_SRC13 22-24
EINT_SRC14 22-24
EINT_SRC15 22-24
EINT_SRC16 22-24
EINT_SRC17 22-24
EINT_SRC18 22-24

EINT_SRC19 22-24
EINT_SRC2 22-23
EINT_SRC20 22-25
EINT_SRC21 22-25
EINT_SRC22 22-25
EINT_SRC23 22-25
EINT_SRC3 22-23
EINT_SRC4 22-24
EINT_SRC5 22-24
EINT_SRC6 22-24
EINT_SRC7 22-24
EINT_SRC8 22-24
EINT_SRC9 22-24
Ethernet_DRCMD 22-40
Ethernet_DRCONF 22-40
Ethernet_DRFFCR 22-40
Ethernet_DRFRDA 22-40
Ethernet_DRIMR 22-40
Ethernet_DRISFIFO 22-40
Ethernet_DRMOD 22-40
Ethernet_DRSRC 15-39, 22-28
Ethernet_DTCMD 22-40
Ethernet_DTCONF 22-41
Ethernet_DTCONF3 22-41
Ethernet_DTFFCR 22-41
Ethernet_DTFTDA 22-40
Ethernet_DTIMR 22-41
Ethernet_DTISFIFO 22-41
Ethernet_DTSRC 15-39, 22-28
Ethernet_MACAMCTRL0 22-41
Ethernet_MACCAMADDR 22-42
Ethernet_MACCAMCTRL1 22-42
Ethernet_MACCAMDATA 22-42
Ethernet_MACCTRL 22-41
Ethernet_MACMERRCNT 22-42
Ethernet_MACPSECNT 22-42
Ethernet_MACRPSECNT 22-42
Ethernet_MACRX0IMR 22-43
Ethernet_MACRX0ISR 22-43
Ethernet_MACRX0SRC 15-39, 22-28
Ethernet_MACRX1IMR 22-43
Ethernet_MACRX1ISR 22-43
Ethernet_MACRX1SRC 15-39, 22-28
User’s Manual 23-10 V1.0, 2002-03

TC11IB
System Units

Index
Ethernet_MACRXCTRL 22-41
Ethernet_MACRXSTAT 22-41
Ethernet_MACSMCTRL 22-42
Ethernet_MACSMDATA 22-41
Ethernet_MACTX0IMR 22-42
Ethernet_MACTX0ISR 22-42
Ethernet_MACTX0SRC 15-39, 22-28
Ethernet_MACTX1IMR 22-42
Ethernet_MACTX1ISR 22-42
Ethernet_MACTX1SRC 15-39, 22-28
Ethernet_MACTXCTRL 22-41
Ethernet_MACTXSTAT 22-41
Ethernet_RBCBL 22-43
Ethernet_RBCC 22-43
Ethernet_RBFPCNT 22-43
Ethernet_RBFPM 22-43
Ethernet_RBFPTH 22-43
Ethernet_RBSRC0 15-39, 22-28
Ethernet_RBSRC1 15-39, 22-28
Ethernet_TBCC 22-43
Ethernet_TBCPP 22-43
Ethernet_TBISR 22-43
Ethernet_TBSRC 15-39, 22-28
EXEVT 21-11, 22-52

F
FCX 2-23, 2-32, 22-53
FEN0 15-31, 22-23
FEN1 15-32, 22-23
FFI module registers 18-6
FFI_CON 18-6, 22-10

G
GPTU0_CLC 22-14
GPTU0_ID 22-14
GPTU0_OSEL 22-15
GPTU0_OUT 22-15
GPTU0_SRC0 22-17
GPTU0_SRC1 22-17
GPTU0_SRC2 22-16
GPTU0_SRC3 22-16
GPTU0_SRC4 22-16
GPTU0_SRC5 22-16

GPTU0_SRC6 22-16
GPTU0_SRC7 22-16
GPTU0_SRSEL 22-16
GPTU0_T012RUN 22-16
GPTU0_T01IRS 22-14
GPTU0_T01OTS 22-15
GPTU0_T0CBA 22-15
GPTU0_T0DCBA 22-15
GPTU0_T0RCBA 22-15
GPTU0_T0RDCBA 22-15
GPTU0_T1CBA 22-15
GPTU0_T1DCBA 22-15
GPTU0_T1RCBA 22-16
GPTU0_T1RDCBA 22-16
GPTU0_T2 22-16
GPTU0_T2AIS 22-15
GPTU0_T2BIS 22-15
GPTU0_T2CON 22-15
GPTU0_T2ES 22-15
GPTU0_T2RC0 22-16
GPTU0_T2RC1 22-16
GPTU0_T2RCCON 22-15
GPTU1_CLC 22-17
GPTU1_ID 22-17
GPTU1_OSEL 22-17
GPTU1_OUT 22-17
GPTU1_SRC0 22-19
GPTU1_SRC2 22-19
GPTU1_SRC3 22-19
GPTU1_SRC4 22-19
GPTU1_SRC5 22-19
GPTU1_SRC6 22-19
GPTU1_SRC7 22-19
GPTU1_SRSEL 22-18
GPTU1_T012RUN 22-18
GPTU1_T01IRS 22-17
GPTU1_T01OTS 22-17
GPTU1_T0CBA 22-18
GPTU1_T0DCBA 22-18
GPTU1_T0RCBA 22-18
GPTU1_T0RDCBA 22-18
GPTU1_T1CBA 22-18
GPTU1_T1DCBA 22-18
User’s Manual 23-11 V1.0, 2002-03

TC11IB
System Units

Index
GPTU1_T1RCBA 22-18
GPTU1_T1RDCBA 22-18
GPTU1_T2 22-18
GPTU1_T2AIS 22-17
GPTU1_T2BIS 22-17
GPTU1_T2CON 22-17
GPTU1_T2ES 22-17
GPTU1_T2RC0 22-18
GPTU1_T2RC1 22-18
GPTU1_T2RCCON 22-17
GS_CON 22-10

I
ICR 2-32, 15-8, 22-53
IOADDR 21-41
IOCONF 21-38
IOSR 21-40, 22-14
ISP 2-26, 2-32, 22-53

J
JPD_ID 22-14

L
LCU_EADD 18-26, 22-56
LCU_EATT 18-27, 22-56
LCU_EDAT 18-26, 22-56
LCU_ID 22-56
LCU_SRC 18-28, 22-56
LCX 2-25, 2-32, 22-53
LFI module registers 18-8
LFI_CON 18-8, 22-56
LFI_ID 22-56
LMU module registers 11-10
LMU_ID 22-48
LMU_MODE 11-11, 22-48
LMU_REFRATE 11-12, 22-48

M
MANID 4-5, 22-10
MCDBBS 22-14
MCDSSG 22-14
MCDTRC 22-10
Memory protection system registers 12-4

MMCI_CLC 22-22
MMCI_CMD 22-23
MMCI_DAT 22-23
MMCI_ID 22-23
MMCI_SRC 22-23
MMU module registers 10-12
MMU_ASI 10-13, 22-49
MMU_CON 10-12, 22-49
MMU_ID 22-49
MMU_TFA 10-17, 22-49
MMU_TPA 10-15, 22-49
MMU_TPX 10-16, 22-49
MMU_TVA 10-14, 22-49

N
NMISR 16-13, 22-9

O
OCDS module registers 21-8, 21-23

MCDBBS 21-23
MCDSSG 21-24

P
P0 13-5, 22-29
P0_ALTSEL0 13-9, 22-29
P0_ALTSEL1 13-9, 22-29
P0_DIR 13-7, 22-29
P0_IN 13-5, 22-29
P0_OD 13-8
P1 13-5, 22-29
P1_ALTSEL0 13-9, 22-29
P1_ALTSEL1 13-9
P1_DIR 13-7, 22-29
P1_IN 13-5, 22-29
P1_OD 13-8, 22-29
P2 13-5, 22-29
P2_ALTSEL0 13-9, 22-30
P2_ALTSEL1 13-9
P2_DIR 13-7, 22-30
P2_IN 13-5, 22-29
P2_OD 13-8
P3 13-5, 22-30
P3_ALTSEL0 13-9, 22-30
User’s Manual 23-12 V1.0, 2002-03

TC11IB
System Units

Index
P3_ALTSEL1 13-9
P3_DIR 13-7, 22-30
P3_IN 13-5, 22-30
P3_OD 22-30
P4 13-5, 22-30
P4_ALTSEL0 13-9, 22-30
P4_ALTSEL1 13-9
P4_DIR 13-7, 22-30
P4_IN 13-5, 22-30
P5 13-5, 22-31
P5_ALTSEL0 13-9, 22-31
P5_ALTSEL1 13-9, 22-31
P5_DIR 13-7, 22-31
P5_IN 13-5, 22-31
PC 2-17, 2-32, 22-53
PCI_ADMSK11L 22-36
PCI_BAR11M 22-34
PCI_BAR12M 22-34
PCI_BAR13M 22-34
PCI_BAR14M 22-34
PCI_BAR15M 22-34
PCI_BAR16M 22-34
PCI_BAR21M 22-35
PCI_BAR22M 22-35
PCI_BAR23M 22-35
PCI_BAR24M 22-35
PCI_BAR25M 22-35
PCI_BAR26M 22-35
PCI_BURSTLEN 22-36
PCI_CBCP1 22-34
PCI_CBCP2 22-35
PCI_CC1 22-34
PCI_CC2 22-35
PCI_CLC 22-33
PCI_CS1_BAR1 22-37
PCI_CS1_BAR2 22-37
PCI_CS1_BAR3 22-37
PCI_CS1_BAR4 22-37
PCI_CS1_BAR5 22-37
PCI_CS1_BAR6 22-37
PCI_CS1_CCP 22-37
PCI_CS1_COMMAND 22-37
PCI_CS1_CONTROL 22-37

PCI_CS1_FTPERRADD 22-38
PCI_CS1_FTPERRTAG 22-38
PCI_CS1_ID 22-37
PCI_CS1_INTCTRL 22-38
PCI_CS1_PMC 22-38
PCI_CS1_PMCSTAT 22-38
PCI_CS1_POINTER 22-38
PCI_CS1_PTFERRADD 22-38
PCI_CS1_REVID 22-37
PCI_CS1_SUBID 22-37
PCI_CS2_BAR1 22-38
PCI_CS2_BAR2 22-38
PCI_CS2_BAR3 22-39
PCI_CS2_BAR4 22-39
PCI_CS2_BAR5 22-39
PCI_CS2_CCP 22-39
PCI_CS2_COMMAND 22-38
PCI_CS2_INTCTRL 22-39
PCI_CS2_PMCSTAT 22-39
PCI_CS2_REVID 22-38
PCI_CS2_SUBID 22-39
PCI_DFSTADDR 22-36
PCI_DMACON 22-37
PCI_DPSTADDR 22-37
PCI_EOI 22-34
PCI_FPIID 22-33
PCI_FTPADDRM0 22-36
PCI_FTPADDRM1 22-36
PCI_FTPADDRM11H 22-36
PCI_FTPADDRM11L 22-36
PCI_FTPADDRM2 22-36
PCI_FTPADDRM3 22-36
PCI_FTPADDRM4 22-36
PCI_FTPADDRM5 22-36
PCI_FTPADDRM6 22-36
PCI_FTPADDRM7 22-36
PCI_FTPERRADDR 22-33
PCI_FTPERRTAG 22-33
PCI_ID 22-34
PCI_IRA/PCI_IR 22-34
PCI_IRM 22-34
PCI_IRR 22-33
PCI_MODE 22-34
User’s Manual 23-13 V1.0, 2002-03

TC11IB
System Units

Index
PCI_PM 22-34
PCI_PTFADDRM11 22-34
PCI_PTFADDRM12 22-34
PCI_PTFADDRM13 22-35
PCI_PTFADDRM14 22-35
PCI_PTFADDRM15 22-35
PCI_PTFADDRM16 22-35
PCI_PTFADDRM21 22-35
PCI_PTFADDRM22 22-35
PCI_PTFADDRM23 22-35
PCI_PTFADDRM24 22-36
PCI_PTFADDRM25 22-36
PCI_PTFADDRM26 22-36
PCI_PTFERRADDR 22-33
PCI_SEGEN 22-35
PCI_SRC 15-35, 22-23
PCI_SRST 22-33
PCI_SSERR 22-36
PCI_SUBID 22-34
PCI_SUBID2 22-35
PCI_SW_IRQ0 22-10
PCI_SW_IRQ1 22-10
PCI_SW_IRQ10 22-11
PCI_SW_IRQ11 22-11
PCI_SW_IRQ12 22-11
PCI_SW_IRQ13 22-11
PCI_SW_IRQ14 22-11
PCI_SW_IRQ15 22-11
PCI_SW_IRQ16 22-11
PCI_SW_IRQ17 22-11
PCI_SW_IRQ18 22-11
PCI_SW_IRQ19 22-12
PCI_SW_IRQ2 22-10
PCI_SW_IRQ20 22-12
PCI_SW_IRQ21 22-12
PCI_SW_IRQ22 22-12
PCI_SW_IRQ23 22-12
PCI_SW_IRQ24 22-12
PCI_SW_IRQ25 22-12
PCI_SW_IRQ26 22-12
PCI_SW_IRQ27 22-12
PCI_SW_IRQ28 22-12
PCI_SW_IRQ29 22-12

PCI_SW_IRQ3 22-11
PCI_SW_IRQ30 22-12
PCI_SW_IRQ31 22-12
PCI_SW_IRQ4 22-11
PCI_SW_IRQ5 22-11
PCI_SW_IRQ6 22-11
PCI_SW_IRQ7 22-11
PCI_SW_IRQ8 22-11
PCI_SW_IRQ9 22-11
PCI_SW_SRC0 22-25
PCI_SW_SRC0-31 15-35
PCI_SW_SRC1 22-25
PCI_SW_SRC10 22-26
PCI_SW_SRC11 22-26
PCI_SW_SRC12 22-26
PCI_SW_SRC13 22-26
PCI_SW_SRC14 22-26
PCI_SW_SRC15 22-26
PCI_SW_SRC16 22-26
PCI_SW_SRC17 22-26
PCI_SW_SRC18 22-26
PCI_SW_SRC19 22-26
PCI_SW_SRC2 22-25
PCI_SW_SRC20 22-27
PCI_SW_SRC21 22-27
PCI_SW_SRC22 22-27
PCI_SW_SRC23 22-27
PCI_SW_SRC24 22-27
PCI_SW_SRC25 22-27
PCI_SW_SRC26 22-27
PCI_SW_SRC27 22-27
PCI_SW_SRC28 22-27
PCI_SW_SRC29 22-27
PCI_SW_SRC3 22-25
PCI_SW_SRC30 22-27
PCI_SW_SRC31 22-28
PCI_SW_SRC4 22-25
PCI_SW_SRC5 22-25
PCI_SW_SRC6 22-25
PCI_SW_SRC7 22-25
PCI_SW_SRC8 22-25
PCI_SW_SRC9 22-26
PCI_TRANLEN 22-37
User’s Manual 23-14 V1.0, 2002-03

TC11IB
System Units

Index
PCP module registers 17-49
PCP_CLC 17-51, 22-31
PCP_CS 17-51, 22-31
PCP_ES 17-54, 22-31
PCP_FTD 17-62, 22-32
PCP_ICON 17-59, 22-32
PCP_ICR 15-12, 17-56, 22-31
PCP_ID 22-31
PCP_ITR 17-57, 22-32
PCP_SRC0 17-63, 22-33
PCP_SRC1 17-64, 22-32
PCP_SRC10 17-74, 22-32
PCP_SRC11 17-76, 22-32
PCP_SRC2 17-65, 22-32
PCP_SRC3 17-66, 22-32
PCP_SRC4 17-67, 22-32
PCP_SRC5 17-68, 22-32
PCP_SRC6 17-69, 22-32
PCP_SRC7 17-70, 22-32
PCP_SRC8 17-71, 22-32
PCP_SRC9 17-72, 22-32
PCP_SSR 17-60, 22-32
PCX 2-24
PCXI 2-22, 2-32, 22-52
PLL_CLC 3-6, 22-10
PMG_CON 6-4, 22-10
PMG_CSR 6-5, 22-10
PMU module registers 8-6
PMU_CON0 8-7, 22-55
PMU_CON1 8-8, 22-56
PMU_CON2 8-9, 22-56
PMU_ID 22-55
Power management registers 6-3
PSI_CS2_BAR6 22-39
PSW 2-18, 2-32, 12-7, 22-52
Px_...- Port kernel registers 13-4

R
Reset registers 5-2
RST_REQ 5-5, 22-9
RST_SR 5-3, 22-9
RTID 4-7, 22-10
RWDATA 21-41

S
SBSRC0 21-15
SCU_ID 22-9
SCU_MCDTRC 4-4
SSC_BR 22-22
SSC_CLC 22-22
SSC_CON 22-22
SSC_ESRC 22-22
SSC_ID 22-22
SSC_RB 22-22
SSC_RSRC 22-22
SSC_TB 22-22
SSC_TSRC 22-22
STM module registers 19-4
STM_CAP 19-6, 22-14
STM_CLC 19-7, 22-13
STM_ID 22-13
STM_TIM0 19-5, 22-13
STM_TIM1 19-5, 22-13
STM_TIM2 19-5, 22-13
STM_TIM3 19-5, 22-13
STM_TIM4 19-6, 22-13
STM_TIM5 19-6, 22-14
STM_TIM6 19-6, 22-14
SWEVT 21-13, 22-52
SYSCON 2-29, 2-32, 22-53

T
TES0 15-30, 22-23
TES1 15-30, 22-23
TR0EVT 21-14
TR1EVT 21-14, 22-52
TRADDR 21-41
TROEVT 22-52

W
WDT module registers 20-26
WDT_CON0 20-27, 22-9
WDT_CON1 20-29, 22-9
WDT_SR 20-30, 22-9
User’s Manual 23-15 V1.0, 2002-03

h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

Infineon goes for Business Excellence

“Business excellence means intelligent approaches and clearly
defined processes, which are both constantly under review and
ultimately lead to good operating results.
Better operating results and business excellence mean less
idleness and wastefulness for all of us, more professional
success, more accurate information, a better overview and,
thereby, less frustration and more satisfaction.”

Dr. Ulrich Schumacher

	1 Introduction
	1.1 About this Document
	1.1.1 Related Documentations
	1.1.2 Textual Conventions
	1.1.3 Reserved, Undefined, and Unimplemented Terminology
	1.1.4 Register Access Modes
	1.1.5 Abbreviations

	1.2 System Architecture Features of the TC11IB
	1.3 Block Diagram
	1.4 On-Chip Peripheral Units of the TC11IB
	1.4.1 Serial Interfaces
	1.4.1.1 Asynchronous/Synchronous Serial Interface
	1.4.1.2 High-Speed Synchronous Serial Interface
	1.4.1.3 Asynchronous Serial Interface (16X50)

	1.4.2 Timer Units
	1.4.2.1 General Purpose Timer Unit

	1.4.3 MultiMediaCard Interface (MMCI)
	1.4.4 Ethernet Controller
	1.4.5 PCI

	1.5 Pin Definitions and Functions

	2 TC11IB Processor Architecture
	2.1 Central Processing Unit
	2.1.1 Instruction Fetch Unit
	2.1.2 Execution Unit
	2.1.3 General Purpose Register File
	2.1.4 Program State Registers
	2.1.5 Data Types
	2.1.6 Addressing Modes
	2.1.7 Instruction Formats
	2.1.8 Tasks and Contexts
	2.1.8.1 Upper and Lower Contexts
	2.1.8.2 Context Save Areas
	2.1.8.3 Fast Context Switching

	2.1.9 Interrupt System
	2.1.10 Trap System
	2.1.11 Protection System
	2.1.11.1 Permission Levels
	2.1.11.2 Memory Protection Model
	2.1.11.3 Watchdog Timer and ENDINIT Protection

	2.1.12 Reset System

	2.2 Processor Registers
	2.2.1 Program State Information Registers
	2.2.1.1 Program Counter (PC)
	2.2.1.2 Program Status Word (PSW)
	2.2.1.3 Previous Context Information Register (PCXI)

	2.2.2 Context Management Registers
	2.2.2.1 Free Context List Head Pointer (FCX)
	2.2.2.2 Previous Context Pointer (PCX)

	2.2.3 Free Context List Limit Pointer (LCX)
	2.2.4 Stack Management
	2.2.4.1 Interrupt Stack Pointer (ISP)

	2.2.5 Interrupt and Trap Control
	2.2.5.1 Interrupt Vector Table Pointer (BIV)
	2.2.5.2 Trap Vector Table Pointer (BTV)

	2.2.6 System Control Register
	2.2.7 Memory Protection Registers
	2.2.8 Debug Registers
	2.2.9 CSFR Address Table

	2.3 Instruction Set Overview
	2.3.1 Arithmetic Instructions
	2.3.1.1 Integer Arithmetic
	2.3.1.2 DSP Arithmetic

	2.3.2 Compare Instructions
	2.3.3 Bit Operations
	2.3.4 Address Arithmetic
	2.3.5 Address Comparison
	2.3.6 Branch Instructions
	2.3.6.1 Unconditional Branch
	2.3.6.2 Conditional Branch
	2.3.6.3 Loop Instructions

	2.3.7 Load and Store Instructions
	2.3.7.1 Load/Store Basic Data Types
	2.3.7.2 Load Bit
	2.3.7.3 Store Bit and Bit Field

	2.3.8 Context Related Instructions
	2.3.8.1 Context Saving and Restoring
	2.3.8.2 Context Loading and Storing

	2.3.9 System Instructions
	2.3.9.1 System Call
	2.3.9.2 Synchronization Primitives
	2.3.9.3 Access to the Core Special Function Registers
	2.3.9.4 Enabling/Disabling the Interrupt System
	2.3.9.5 RET and RFE
	2.3.9.6 Trap Instructions
	2.3.9.7 No Operation

	2.3.10 16-Bit Instructions

	2.4 CPU Pipelines
	2.4.1 CPU Pipeline Overview
	2.4.2 Integer and Load/Store Pipelines
	2.4.3 Loop Pipeline
	2.4.4 Context Operations

	3 Clock System
	3.1 Clock Generation Unit
	3.1.1 Oscillator Circuit
	3.1.2 Phase-Locked Loop (PLL)
	3.1.2.1 N-Divider
	3.1.2.2 VCO Frequency Ranges
	3.1.2.3 Lock Detection
	3.1.2.4 K-Divider
	3.1.2.5 Enable/Disable Control

	3.1.3 Determining the System Clock Frequency
	3.1.4 PLL Clock Control and Status Register
	3.1.5 Startup Operation
	3.1.6 PLL Loss of Lock Operation

	3.2 Power Management and Clock Gating
	3.2.1 Clock Control
	3.2.2 Module Clock Generation
	3.2.3 Clock Control Registers
	3.2.4 CLC Register Implementations

	4 System Control Unit
	4.1 Overview
	4.2 Registers Overview
	4.3 Trace Control
	4.4 Identification Registers

	5 Reset and Boot Operation
	5.1 Overview
	5.2 Reset Registers
	5.2.1 Reset Status Register (RST_SR)
	5.2.2 Reset Request Register (RST_REQ)

	5.3 Reset Operations
	5.3.1 Power-On Reset
	5.3.2 External Hardware Reset
	5.3.3 Software Reset
	5.3.4 Watchdog Timer Reset
	5.3.4.1 Watchdog Timer Reset Lock
	5.3.4.2 Deep-Sleep Wake-Up Reset

	5.3.5 LMU eDRAM Reset
	5.3.6 State of the TC11IB After Reset

	5.4 Booting Scheme
	5.4.1 Hardware Booting Scheme
	5.4.2 Software Booting Scheme
	5.4.3 Boot Options
	5.4.4 Boot Configuration Handling
	5.4.5 Normal Boot Options
	5.4.6 Debug Boot Options

	6 Power Management
	6.1 Power Management Overview
	6.2 Power Management Control Registers
	6.2.1 Power Management Control Register PMG_CON
	6.2.2 Power Management Control and Status Register PMG_CSR

	6.3 Power Management Modes
	6.3.1 Idle Mode
	6.3.2 Sleep Mode
	6.3.2.1 Entering Sleep Mode
	6.3.2.2 TC11IB State During Sleep Mode
	6.3.2.3 Exiting Sleep Mode

	6.3.3 Deep Sleep Mode
	6.3.3.1 Entering Deep Sleep Mode
	6.3.3.2 TC11IB State During Deep Sleep Mode
	6.3.3.3 Exiting Deep Sleep Mode
	6.3.3.4 Exiting Deep Sleep Mode With A Power-On Reset Signal
	6.3.3.5 Exiting Deep Sleep Mode With an NMI Signal

	6.3.4 Summary of TC11IB Power Management States

	7 Memory Map of On-Chip Local Memories
	7.1 TC11IB Address Map
	7.2 Memory Segment 15 - Peripheral Units

	8 Program Memory Unit
	8.1 Memories Controlled by PMU
	8.2 Functions
	8.3 Scratch-Pad RAM, SPRAM
	8.4 Instruction Cache, ICACHE
	8.4.1 Cache Organization
	8.4.2 Cache Bypass Control
	8.4.3 Refill Sequence for Cache
	8.4.4 Instruction Streaming
	8.4.5 Cache Coherency, Cache Invalidation

	8.5 PMU Registers
	8.5.1 PMU Control Registers

	9 Data Memory Unit
	9.1 DMU Trap Generation
	9.1.1 LMB Bus Error
	9.1.2 Range Error
	9.1.3 DMU Register Access Error
	9.1.4 Cache Management Error

	9.2 DMU Registers
	9.2.1 Control Register
	9.2.2 Synchronous Trap Flag Register
	9.2.3 Asynchronous Trap Flag Register

	10 Memory Management Unit
	10.1 Address Spaces
	10.1.1 Address Translation
	10.1.2 Translation Lookaside Buffers
	10.1.3 Cacheability
	10.1.3.1 Cacheability for Direct Translation
	10.1.3.2 Cacheability for PTE-Based Translation

	10.1.4 Memory Protection
	10.1.4.1 Protection for Direct Translation
	10.1.4.2 Protection for PTE-Based Translation

	10.1.5 Multiple Address Spaces
	10.1.6 MMU Traps
	10.1.7 MMU Instructions
	10.1.7.1 MAP Command (TLB Map)
	10.1.7.2 DEMAP Command (TLB Demap)
	10.1.7.3 FLUSH Command (TLB Flush)
	10.1.7.4 PROBE Command (TLB Probe)

	10.2 MMU Registers
	10.2.1 Configuration Register
	10.2.2 Address Space Identifier Register
	10.2.3 Translation Virtual Address Register
	10.2.4 Translation Physical Address Register
	10.2.5 Translation Page Index Register
	10.2.6 Translation Fault Address Register

	11 On-Chip Local Memories
	11.1 Local Memory Unit
	11.1.1 eDRAM Overview
	11.1.2 eDRAM Address Map
	11.1.3 LMU Operation Overview
	11.1.3.1 LMB Slot Condition
	11.1.3.2 Read Data Scratch Registers
	11.1.3.3 Prefetch Mechanism
	11.1.3.4 Refresh Modes of Operation
	11.1.3.5 Error
	11.1.3.6 LMU Reset

	11.1.4 LMU Registers
	11.1.4.1 LMU MODE Register
	11.1.4.2 REFRATE Register

	11.2 ComDRAM
	11.2.1 ComDRAM Registers
	11.2.1.1 ComDRAM Clock Register
	11.2.1.2 ComDRAM OCDS Suspend Register
	11.2.1.3 ComDRAM Reset Register
	11.2.1.4 ComDRAM Refresh Register
	11.2.1.5 ComDRAM MODE Register

	11.3 Boot ROM
	11.3.1 Bootstrap Loader Support

	12 Memory Protection System
	12.1 Memory Protection Overview
	12.2 Memory Protection Registers
	12.2.1 PSW Protection Fields
	12.2.2 Data Memory Protection Register
	12.2.3 Code Memory Protection Register

	12.3 Sample Protection Register Set
	12.4 Memory Access Checking
	12.4.1 Permitted versus Valid Accesses
	12.4.2 Crossing Protection Boundaries

	13 Parallel Ports
	13.1 General Port Operation
	13.2 Port Kernel Registers
	13.2.1 Data Output Register
	13.2.2 Data Input Register
	13.2.3 Direction Register
	13.2.4 Open Drain Control Register
	13.2.5 Pull-Up/Pull-Down Device Control
	13.2.6 Alternate Input Functions
	13.2.6.1 Alternate Output Functions

	13.3 Port 0
	13.3.1 Features
	13.3.2 Registers
	13.3.3 Port Configuration and Function

	13.4 Port 1
	13.4.1 Features
	13.4.2 Registers
	13.4.3 Port Configuration and Function

	13.5 Port 2
	13.5.1 Features
	13.5.2 Registers
	13.5.3 Port Configuration and Function

	13.6 Port 3
	13.6.1 Features
	13.6.2 Registers
	13.6.3 Port Configuration and Function

	13.7 Port 4
	13.7.1 Features
	13.7.2 Registers
	13.7.3 Port Configuration and Function

	13.8 Port 5
	13.8.1 Features
	13.8.2 Registers
	13.8.3 Port Configuration and Function

	14 External Bus Unit
	14.1 Overview
	14.2 EBU Features
	14.3 Basic EBU Operation
	14.3.1 Internal to External Operation
	14.3.2 External to Internal Operation

	14.4 EBU Signal Description
	14.4.1 Address Bus, A[23:0]
	14.4.2 Address/Data Bus, AD[31:0]
	14.4.3 Read/Write Strobes, RD and RD/WR
	14.4.4 Address Latch Enable, ALE
	14.4.5 Byte Control Signals, BCx
	14.4.6 External Extension of the Command Delay,CMDELAY
	14.4.7 Variable Wait State Control, WAIT
	14.4.8 Chip Select Lines, CSx, CSGLB
	14.4.9 EBU Arbitration Signals, HOLD, HLDA and BREQ
	14.4.10 EBU Chip Select, CSFPI
	14.4.11 Emulation Support Signals, CSEMU and CSOVL

	14.5 Detailed Internal to External EBU Operation (Master Mode)
	14.5.1 EBU Address Regions
	14.5.1.1 Address Region Selection
	14.5.1.2 Address Region Parameters

	14.5.2 Driver Turn-Around Wait States
	14.5.3 Data Buffering
	14.5.4 Data Width of External Devices
	14.5.5 Basic Access Timing
	14.5.5.1 Standard Access Phases
	14.5.5.2 Access to Demultiplexed Devices
	14.5.5.3 Access to Multiplexed Devices

	14.5.6 Interfacing to Asynchronous Devices
	14.5.6.1 Interfacing to INTEL-style Devices
	14.5.6.2 Interfacing to Motorola-Style Devices

	14.6 Detailed External to Internal EBU Operation (Slave Mode)
	14.6.1 EBU Signal Direction
	14.6.2 Address Translation
	14.6.3 External to Internal Access Control
	14.6.4 Basic Access Timing

	14.7 Arbitration
	14.7.1 Arbitration Modes
	14.7.1.1 Arbitration Signals
	14.7.1.2 Arbitration Sequence

	14.7.2 Locking the External Bus
	14.7.3 EBU Reaction to an LMB Access to the External Bus

	14.8 EBU Boot Process
	14.9 Emulation Support
	14.9.1 Emulation Boot
	14.9.2 Overlay Memory

	14.10 External Instruction Fetches
	14.10.1 Signal List
	14.10.2 Basic Functions
	14.10.3 Cycle Definitions of Burst Mode Timing
	14.10.4 External Cycle Control via the WAIT Input
	14.10.4.1 Asynchronous Wait for Page Load Mode (Intel)
	14.10.4.2 Synchronous Terminate and Start New Burst Mode (AMD)

	14.10.5 Termination of a Burst Access

	14.11 SDRAM Interface
	14.11.1 Signal List
	14.11.2 External Interface
	14.11.3 Supported SDRAM commands
	14.11.4 Power Up sequence
	14.11.5 Initialization sequence
	14.11.6 SDRAM Accesses
	14.11.7 Multibanking Operation
	14.11.7.1 Bank-Page Tag Structure
	14.11.7.2 Bank Mask and Page Mask
	14.11.7.3 Decisions over Page_hit and Bank_hit

	14.11.8 Banks Precharge
	14.11.9 Refresh Cycles
	14.11.10 Power Down Support
	14.11.11 SDRAM Addressing Scheme

	14.12 EBU Registers
	14.12.1 Clock Control Register
	14.12.2 Address Select Registers
	14.12.3 Bus Configuration Registers
	14.12.4 Emulator Configuration Registers
	14.12.5 EBU Configuration Register
	14.12.6 Burst Flash Control Register
	14.12.7 SDRAM Configuration Registers
	14.12.8 External Access Configuration Register
	14.12.9 EBU Register Address Range

	15 Interrupt System
	15.1 Overview
	15.2 Service Request Nodes
	15.2.1 Service Request Control Registers
	15.2.2 Service Request Flag (SRR)
	15.2.2.1 Request Set and Clear Bits (SETR, CLRR)
	15.2.2.2 Enable Bit (SRE)

	15.2.3 Type-of-Service Control (TOS)
	15.2.4 Service Request Priority Number (SRPN)

	15.3 Interrupt Control Units
	15.3.1 Interrupt Control Unit (ICU)
	15.3.1.1 ICU Interrupt Control Register (ICR)
	15.3.1.2 Operation of the Interrupt Control Unit (ICU)

	15.3.2 PCP Interrupt Control Unit (PICU)
	15.3.2.1 PICU Interrupt control Register

	15.4 Arbitration Process
	15.4.1 Controlling the Number of Arbitration Cycles
	15.4.2 Controlling the Duration of Arbitration Cycles

	15.5 Entering an Interrupt Service Routine
	15.6 Exiting an Interrupt Service Routine
	15.7 Interrupt Vector Table
	15.8 Usage of the TC11IB Interrupt System
	15.8.1 Spanning Interrupt Service Routines Across Vector Entries
	15.8.2 Configuring Ordinary Interrupt Service Routines
	15.8.3 Interrupt Priority Groups
	15.8.4 Splitting Interrupt Service Across Different Priority Levels
	15.8.5 Using different Priorities for the same Interrupt Source
	15.8.6 Software Initiated Interrupts
	15.8.7 Interrupt Priority 1

	15.9 CPU Service Request Nodes
	15.10 External Interrupts
	15.10.1 Register Description

	15.11 PCI Interrupts
	15.11.1 PCI Interrupt
	15.11.2 PCI Software Interrupt
	15.11.3 PCI SRC Registers

	15.12 Fast FPI Bus Control Unit Interrupt (BCU0)
	15.12.1 BCU0 SRC Register

	15.13 Ethernet Controller Interrupts
	15.13.1 Ethernet Controller SRC Registers

	15.14 Service Request Register Table

	16 Trap System
	16.1 Trap System Overview
	16.2 Trap Classes
	16.2.1 Synchronous Traps
	16.2.2 Asynchronous Traps
	16.2.3 Hardware Traps
	16.2.4 Software Traps
	16.2.5 Trap Descriptions

	16.3 Trap Vector Table
	16.3.1 Entering a Trap Service Routine

	16.4 Non-Maskable Interrupt
	16.4.1 NMI Status Register
	16.4.2 External NMI Input
	16.4.3 Phase-Locked Loop NMI
	16.4.4 Watchdog Timer NMI

	17 Peripheral Control Processor
	17.1 Peripheral Control Processor Overview
	17.2 PCP Architecture
	17.2.1 PCP Processor
	17.2.2 PCP Code Memory
	17.2.3 PCP Parameter RAM
	17.2.4 Slow FPI Bus Interface
	17.2.5 PCP Interrupt Control Unit and Service Request Nodes

	17.3 PCP Programming Model
	17.3.1 General Purpose Register Set of the PCP
	17.3.1.1 Register R0
	17.3.1.2 Registers R1, R2, and R3
	17.3.1.3 Registers R4 and R5
	17.3.1.4 Register R6
	17.3.1.5 Register R7

	17.3.2 Contexts and Context Models
	17.3.2.1 Context Models
	17.3.2.2 Context Save Area
	17.3.2.3 Context Restore Operation for CR6 and CR7
	17.3.2.4 Context Save Operation for CR6 and CR7
	17.3.2.5 Initialization of the Contexts
	17.3.2.6 Context Save Optimization

	17.3.3 Channel Programs
	17.3.3.1 Channel Restart Mode
	17.3.3.2 Channel Resume Mode

	17.4 PCP Operation
	17.4.1 PCP Initialization
	17.4.2 Channel Invocation and Context Restore Operation
	17.4.3 Channel Exit and Context Save Operation
	17.4.3.1 Normal Exit
	17.4.3.2 Exit as a Result of an Interrupt
	17.4.3.3 Error Condition Channel Exit

	17.4.4 Debug Exit

	17.5 PCP Interrupt Operation
	17.5.1 Issuing Service Requests to CPU or PCP
	17.5.2 PCP Interrupt Control Unit
	17.5.3 PCP Service Request Nodes (PSRN)
	17.5.4 Issuing PCP Service Requests
	17.5.4.1 Service Request on EXIT Instruction
	17.5.4.2 Service Request on Suspension of Interrupt
	17.5.4.3 Service Request on Error

	17.5.5 Queue Management Control and Status Logic
	17.5.5.1 Queue Full Operation

	17.6 PCP Error Handling
	17.6.1 Enforced PRAM Partitioning
	17.6.2 Channel Watchdog
	17.6.3 Invalid Opcode
	17.6.4 Instruction Address Error

	17.7 PCP Reset
	17.7.1 Hard Reset
	17.7.2 Soft Reset

	17.8 Instruction Set Overview
	17.8.1 DMA Primitives
	17.8.2 Load and Store
	17.8.3 Exchange Instructions
	17.8.4 Arithmetic and Logical Instructions
	17.8.5 Bit Manipulation
	17.8.6 Flow Control
	17.8.7 Addressing Modes
	17.8.7.1 FPI Bus Addressing
	17.8.7.2 PRAM Addressing
	17.8.7.3 Bit Addressing
	17.8.7.4 Flow Control Destination Addressing

	17.9 Accessing PCP Resources from the FPI Bus
	17.9.1 Access to the PCP Control Registers
	17.9.2 Access to the PRAM
	17.9.3 Access to the PCODE

	17.10 Debugging the PCP
	17.11 PCP Registers
	17.11.1 PCP Clock Control Register, PCP_CLC
	17.11.2 PCP Control and Status Register, PCP_CS
	17.11.3 PCP Error/Debug Status Register, PCP_ES
	17.11.4 PCP Interrupt Control Register, PCP_ICR
	17.11.5 PCP Interrupt Threshold Register, PCP_ITR
	17.11.6 PCP Interrupt Configuration Register, PCP_ICON
	17.11.7 PCP Stall Status Register, PCP_SSR
	17.11.8 PCP Feature Test/Disable Register, PCP_FTD
	17.11.9 PCP Service Request Control Register 0
	17.11.10 PCP Service Request Control Register 1
	17.11.11 PCP Service Request Control Register 2
	17.11.12 PCP Service Request Control Register 3
	17.11.13 PCP Service Request Control Register 4
	17.11.14 PCP Service Request Control Register 5
	17.11.15 PCP Service Request Control Register 6
	17.11.16 PCP Service Request Control Register 7
	17.11.17 PCP Service Request Control Register 8
	17.11.18 PCP Service Request Control Register 9
	17.11.19 PCP Service Request Control Register 10
	17.11.20 PCP Service Request Control Register 11

	17.12 PCP Instruction Set Details
	17.12.1 Instruction Codes and Fields
	17.12.1.1 Conditional Codes
	17.12.1.2 Instruction Encoding

	17.12.2 Counter Operation for COPY Instruction
	17.12.3 Counter Operation for BCOPY Instruction
	17.12.4 Divide and Multiply Instructions
	17.12.4.1 Divide Instructions.
	17.12.4.2 Multiply Instructions.

	17.12.5 ADD, 32-Bit Addition
	17.12.6 AND, 32-Bit Logical AND
	17.12.7 BCOPY, DMA Instruction
	17.12.8 CHKB, Check Bit
	17.12.9 CLR, Clear Bit
	17.12.10 COMP, 32-Bit Compare
	17.12.11 COPY, DMA Instruction
	17.12.12 DEBUG, Debug Instruction
	17.12.13 DINIT, Divide Initialization Instruction
	17.12.14 DSTEP, Divide Instruction
	17.12.15 EXIT, Exit Instruction
	17.12.16 INB, Insert Bit
	17.12.17 JC, Jump Conditionally
	17.12.18 JL, Jump Long Unconditional
	17.12.19 LD, Load
	17.12.20 LDL, Load 16-bit Value
	17.12.21 PRAM Bit Instructions
	17.12.22 Multiply Initialization Instruction
	17.12.23 MOV, Move Register to Register
	17.12.24 Multiply Instructions
	17.12.25 NEG, Negate
	17.12.26 NOP, No Operation
	17.12.27 NOT, Logical NOT
	17.12.28 OR, Logical OR
	17.12.29 PRI, Prioritize
	17.12.30 RL, Rotate Left
	17.12.31 RR, Rotate Right
	17.12.32 SET, Set Bit
	17.12.33 SHL, Shift Left
	17.12.34 SHR, Shift Right
	17.12.35 ST, Store
	17.12.36 SUB, 32-Bit Subtract
	17.12.37 XCH, Exchange Instructions
	17.12.38 XOR, 32-Bit Logical Exclusive OR
	17.12.39 Flag Updates of Instructions

	17.13 Programming of the PCP
	17.13.1 Initial PC of a Channel Program
	17.13.1.1 Channel Entry Table
	17.13.1.2 Channel Resume

	17.13.2 Channel Management for Small and Minimum Contexts
	17.13.3 Unused Registers as Globals or Constants
	17.13.4 Dispatch of Low Priority Tasks
	17.13.5 Code Reuse Across Channels (Call and Return)
	17.13.6 Case-like Code Switches (Computed Go-To)
	17.13.7 Simple DMA Operation
	17.13.7.1 COPY Instruction
	17.13.7.2 BCOPY Instruction (Burst Copy)

	17.14 PCP Programming Notes and Tips
	17.14.1 Notes on PCP Configuration
	17.14.2 General Purpose Register Use
	17.14.3 Use of Channel Interruption
	17.14.3.1 Dynamic Interrupt Masking
	17.14.3.2 Control of Channel Priority (CPPN)

	17.14.4 Implementing Divide Algorithms
	17.14.5 Implementing Multiply Algorithms

	17.15 PCP Implementation in TC11IB
	17.15.1 PCP Memories
	17.15.2 PCP Register Address Range

	18 LMB Bus, FPI Buses, and Bus Control
	18.1 Fast FPI Bus and Slow FPI Bus Overview
	18.2 Local Memory Bus Overview (LMB)
	18.3 FPI-FPI Bridge
	18.3.1 FFI Bridge Control Register

	18.4 LMB-FPI Bridge
	18.4.1 LFI Configuration Register

	18.5 Bus Control Units
	18.5.1 FPI Bus Arbitration
	18.5.1.1 Arbitration Priority
	18.5.1.2 Bus Starvation Protection (not LMB Bus)

	18.5.2 Error Handling
	18.5.3 BCU Power Saving Mode
	18.5.4 F_FPI Bus Address Map
	18.5.5 S_FPI Bus Address Map
	18.5.6 BCU Registers
	18.5.6.1 BCU Control Register
	18.5.6.2 BCU Debug Registers
	18.5.6.3 LCU Debug Registers
	18.5.6.4 BCU Service Request Control Register

	19 System Timer
	19.1 Overview
	19.2 Kernel Functions
	19.3 Kernel Registers
	19.4 External Register
	19.5 STM Register Address Ranges

	20 Watchdog Timer
	20.1 Watchdog Timer Overview
	20.2 Features of the Watchdog Timer
	20.3 The EndInit Function
	20.4 Watchdog Timer Operation
	20.4.1 WDT Register Overview
	20.4.2 Modes of the Watchdog Timer
	20.4.2.1 Time-Out Mode
	20.4.2.2 Normal Mode
	20.4.2.3 Disable Mode
	20.4.2.4 Prewarning Mode

	20.4.3 Password Access to WDT_CON0
	20.4.4 Modify Access to WDT_CON0
	20.4.5 Term Definitions for WDT_CON0 Accesses
	20.4.6 Detailed Descriptions of the WDT Modes
	20.4.6.1 Time-Out Mode Details
	20.4.6.2 Normal Mode Details
	20.4.6.3 Disable Mode Details
	20.4.6.4 Prewarning Mode Details
	20.4.6.5 WDT Operation During Power-Saving Modes
	20.4.6.6 WDT Operation in OCDS Suspend Mode
	20.4.6.7 Double Watchdog Error.

	20.4.7 Determining WDT Periods
	20.4.7.1 Time-out Period
	20.4.7.2 Normal Period
	20.4.7.3 WDT Period During Power-Saving Modes

	20.5 Handling the Watchdog Timer
	20.5.1 System Initialization
	20.5.2 Re-opening Access to Critical System Registers
	20.5.3 Servicing the Watchdog Timer
	20.5.4 Handling the User-Definable Password Field
	20.5.5 Determining the Required Values for a WDT Access

	20.6 Watchdog Timer Registers
	20.6.1 Watchdog Timer Control Register 0
	20.6.2 Watchdog Timer Control Register 1
	20.6.3 Watchdog Timer Status Register

	21 On-Chip Debug Support
	21.1 TriCore CPU Debug Support
	21.1.1 Basic Concepts
	21.1.2 Debug Event Generation
	21.1.2.1 External Debug Break Input
	21.1.2.2 Software Debug Event Generation
	21.1.2.3 Execution of a MTCR or MFCR Instruction
	21.1.2.4 Debug Event Generation from Debug Triggers

	21.1.3 Debug Triggers
	21.1.3.1 Protection Mechanism
	21.1.3.2 Combination of Triggers

	21.1.4 Actions Taken on a Debug Event
	21.1.4.1 Assert an External Pin BRKOUT
	21.1.4.2 Halt
	21.1.4.3 Breakpoint Trap
	21.1.4.4 Software Breakpoint

	21.1.5 OCDS Registers

	21.2 PCP Debug Support
	21.3 Multi-Core Debug Support
	21.3.1 Break and Suspend Control
	21.3.1.1 Break Bus Switch
	21.3.1.2 Suspend Signal Generation

	21.3.2 Registers

	21.4 Trace Module
	21.4.1 Overview
	21.4.2 Pipeline Status Signals
	21.4.2.1 Synchronizing with the Status and Indirect Streams

	21.4.3 Indirect Addresses
	21.4.3.1 Indirect Sync
	21.4.3.2 Example
	21.4.3.3 Breakpoint Qualification

	21.4.4 Trace Output Control

	21.5 Debugger Interface (Cerberus)
	21.5.1 RW Mode
	21.5.1.1 Entering RW Mode
	21.5.1.2 Data Type Support
	21.5.1.3 FPI Bus Master Interface

	21.5.2 Communication Mode
	21.5.3 System Security
	21.5.4 Triggered Transfers
	21.5.4.1 Tracing of Memory Locations

	21.5.5 Trace with External Bus Address
	21.5.6 Reset Behavior
	21.5.7 Power Saving
	21.5.8 Registers
	21.5.8.1 IOCONF Register
	21.5.8.2 IOSR Register
	21.5.8.3 TRADDR Register
	21.5.8.4 IOADDR, COMDATA and RWDATA Registers

	21.6 OCDS Register Address Ranges

	22 Register Overview
	22.1 Segments 0 - 14
	22.1.1 Address Map

	22.2 Segment 15 (Peripheral Units)
	22.2.1 Address Map
	22.2.2 Registers

	23 Index
	23.1 Keyword Index
	23.2 Register Index

