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1 Architecture Overview
TriCore is the first single-core 32-bit microcontroller-DSP architecture optimized for real-time
embedded systems. TriCore unifies the best of 3 worlds - real-time capabilities of microcontrollers,
computational prowess of DSPs, and highest performance/price implementations of RISC load-
store architectures. 

Figure 1-1 shows a high-level view of the architecture.

Figure 1-1
TriCore: A Modular Instruction Set Architecture
The Instruction Set Architecture (ISA) supports a uniform, 32-bit address space, with optional virtual
addressing and memory-mapped I/O. It allows for a wide range of implementations, ranging from
simple scalar to superscalar. Furthermore, the ISA is capable of interacting with different system
architectures, including those with multiprocessing. This flexibility at the implementation and system
levels allows for different trade-offs between performance and cost at any point in time.

To support TriCore implementations with 32-bit instructions and simplified instruction fetching, the
entire architecture is represented in 32-bit instruction formats. In addition, the architecture includes
16-bit instruction formats for the most frequently occurring instructions. These instructions
significantly reduce code space, lowering memory requirements, system cost, and power
consumption.

Real-time responsiveness is largely determined by interrupt latency and context-switch time. The
high-performance architecture minimizes interrupt latency by avoiding long multicycle instructions
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and by providing a flexible hardware-supported interrupt scheme. Furthermore, the architecture
supports fast context switching.

1.1 Feature Overview
● 32-bit architecture
● 4-GByte virtual or physical data, program, and input/output address spaces
● Full-featured memory management system
● 16-/32-bit instructions for reduced code size
● Low interrupt latency
● Fast automatic context switching
● Multiply-accumulate unit
● Saturating integer arithmetic
● Bit handling
● Packed data operations
● Zero-overhead loop
● Byte and bit addressing
● Little-endian byte ordering
● Flexible interrupt prioritization scheme
● Memory protection
● Debug support
● Flexible power management

1.2 Program State Registers
The program state registers consist of 32 General-purpose Registers (GPRs), two 32-bit registers
with program status information (PCXI and PSW), and a Program Counter (PC). PCXI, PSW, and
PC are Core Special Function Registers (CSFRs).
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Figure 1-2
Program State Registers
The 32 General-purpose Registers (GPRs) are divided into sixteen 32-bit data registers (D0
through D15); and sixteen 32-bit address registers (A0 through A15). Four GPRs have special
functions: D15 is used as an implicit data register, A10 is the Stack Pointer (SP), A11 is the return
address register, and A15 is the implicit address register. 

Registers 0-7 are called the lower registers and 8-15 are called the upper registers.

Registers A0 and A1 in the lower address registers and A8 and A9 in the upper address registers
are defined as system global registers. These registers are not included in either context partition,
and are not saved and restored across calls or interrupts. The operating system normally uses them
to reduce system overhead.

The PCXI and PSW registers contain status flags, previous execution information, and protection
information.

1.3 Data Types
The TriCore instruction set supports operations on Booleans, bit strings, characters, signed
fractions, addresses, signed and unsigned integers, and single-precision floating-point numbers.
Most instructions work on a specific data type, while others are useful for manipulating several data
types.
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1.4 Addressing Modes
Addressing modes allow load and store instructions to efficiently access simple variables and data
elements within data structures such as records, randomly and sequentially accessed arrays,
stacks, and circular buffers. Simple variables and data elements are 1, 8, 16, 32, or 64 bits wide.

The addressing modes provide efficient compilation of C, easy access to peripheral registers, and
efficient implementation of typical DSP data structures (circular buffers for filters and bit-reversed
indexing for FFTs). The following 7 addressing modes are supported in the architecture.

● Absolute
● Base + Short Offset
● Base + Long Offset
● Pre-increment or decrement
● Post-increment or decrement 
● Circular
● Bit Reverse

1.5 Instruction Formats
The architecture supports both 16- and 32-bit instruction formats. All instructions have a 32-bit
format. The 16-bit instructions are a subset of the 32-bit instructions, chosen because of their
frequency of use; they are included to reduce code space.

1.6 Tasks and Contexts
Throughout this book, the term task refers to an independent thread of control. There are 2 types of
tasks: Software-managed Tasks (SMTs) and Interrupt Service Routines (ISRs). Software-managed
tasks are created through the services of a real-time kernel or OS, and dispatched under the control
of scheduling software. ISRs are dispatched by hardware in response to an interrupt. In this
architecture, ISR refers only to the code that is invoked by the hardware directly. Software-managed
tasks are sometimes referred to as user tasks, assuming that they will execute in user mode.

Each task is allocated its own permission level. The individual permissions are enabled/disabled
primarily by I/O mode bits in the Program Status Word (PSW).

Associated with any task is a set of state elements known collectively as the task’s context. The
context is everything the processor needs in order to define the state of the associated task and
enable its continued execution. It includes the CPU general-purpose registers that the task uses,
the task’s Program Counter (PC), and its Program Status Information (PCXI and PSW). The TriCore
architecture efficiently manages and maintains the tasks’ contexts through hardware.

1.6.1 Upper and Lower Contexts
The context is subdivided into the upper context and the lower context (Figure 1-3). The upper
context consists of the upper address registers, A10-A15, and the upper data registers, D8-D15.
These registers are designated as non-volatile, for purposes of function calling. The upper context
also includes the PCXI and PSW registers.

The lower context consists of the lower address registers, A2 through A7, the lower data registers,
D0 through D7, and the PC. 
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Both upper and lower contexts include the PCXI link word. Contexts are saved in fixed-size areas
(see next section); they are linked together via the link word.

The upper context is saved automatically on interrupts and is restored on returns. The lower context
is saved and restored explicitly by the ISR if the ISR needs to use more registers than are provided
by the upper context. 

Figure 1-3
Upper and Lower Contexts

1.6.2 Context Save Areas
The architecture uses linked lists of fixed-size Context Save Areas (CSAs) which accommodate
systems with multiple interacting threads of control. A CSA is 16 words of memory storage, aligned
on a 16-word boundary. A single CSA can hold exactly 1 upper or 1 lower context. Unused CSAs
are linked together on a free list. They are allocated from the free list as needed, and returned to it
when no longer needed. The processor hardware handles the allocation and freeing. They are
transparent to the applications code. Only the system start-up code and certain OS exception
handling routines need to access the CSA lists and memory storage explicitly.
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1.6.3 Fast Context Switching
To increase performance, the architecture implements a uniform context-switch mechanism for
function calls, interrupts, and traps. In all cases, the task’s upper context is automatically saved and
restored by hardware; saving (and restoring) the lower context is left as an option for the new task. 

Fast context switching is further enhanced by the TriCore’s unique memory subsystem design,
which allows a complete upper or lower context to be saved in as little as 2 clock cycles.

1.7 Interrupt System
In this manual, a service request is defined as an interrupt request from a peripheral, a DMA
request, or an external interrupt. For simplicity, a service request may also be referred to as an
interrupt.

The entry code for the ISR is a block within a vector of code blocks. Each code block provides an
entry for one interrupt source. Each source is assigned a priority number. All priority numbers are
programmable. The service routine uses the priority number to determine the location of the entry
code block.

The prioritization of service routines enables nested interrupts. A service request can interrupt the
servicing of a lower priority interrupt. Interrupt sources with the same priority cannot interrupt each
other.

1.8 Trap System
A trap occurs as a result of an exception within one of the following 8 classes:

● Internal protection
● Instruction errors
● Context management
● Memory management
● Internal bus and peripheral errors
● Assertion
● System call
● Non-maskable interrupt

The entry code for the trap handler is comprised of a vector of code blocks. Each code block
provides an entry for one trap. When a trap is taken, the trap’s Trap Identification Number (TIN) is
placed in data register D15. The trap handler uses the TIN to identify precisely the cause of the trap. 

1.9 Protection System
The protection system allows the programmer to assign access permissions to memory regions for
both data and code. This capability is useful for protecting core system functionality from bugs that
may have slipped through testing and from transient hardware errors.

The TriCore’s protection system also provides the essential features needed to isolate errors, and
thus facilitates debugging. 
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1.10 Memory Management System
The principal features of the TriCore memory management include:

● 4-GByte virtual address space divided into sixteen 256 MB segments
● 4-GByte physical address space divided into sixteen 256 MB segments
● Addressing by direct translation or via Page Table Entries (PTE)
● Two addressing modes: physical and virtual (physical page attributes override virtual page 

attributes)

The virtual address space is divided into 16 segments of 256 MB each. The physical address space
is also divided into 16 segments of 256 MB each. Virtual addresses are always translated into
phsical addresses before accessing memory.

The virtual address is translated into a physical address using either direct translation or Page Table
Entry (PTE) translation. 

● Direct translation: If the virtual address belongs to the upper half of the virtual address space then 
the virtual address is directly used as the physical address. If the virtual address belongs to the 
lower half of the address space, then the virtual address is used directly as the physical address 
if the processor is operating in Physical mode.

● PTE translation: If the virtual address belongs to the lower half of the address space, then the 
virtual address is translated using a Page Table Entry if the processor is operating in Virtual 
mode. 

PTE translation is performed by replacing the Virtual Page Number (VPN) of the virtual address by
a Physical Page Number (PPN) to obtain a physical address. Six memory-mapped MMU Core
Special Function Registers (CSFRs) control the memory management system. 

1.10.1 Permission Levels
TriCore’s embedded architecture allows each task to be allocated the specific permission level it
needs to perform its function. Individual permissions are enabled through the I/O mode bits in the
PSW. The 3 permission levels are User-0, User-1, and Supervisor:

● User-0 mode 
– Used for tasks that do not access peripheral devices.
– Tasks at this level do not have permission to enable or disable interrupts.

● User-1 mode 
– Used for tasks that access common, unprotected peripherals. 
– Accesses typically include read/write accesses to SIO ports and read accesses to timers and

most I/O status registers. 
– Tasks at this level may disable interrupts.

● Supervisor mode 
– Permits read/write access to system registers and all peripheral devices.
– Tasks at this level may disable interrupts.

1.10.2 Protection Model
The memory protection model for the TriCore architecture is based on address ranges, where each
address range has an associated permission setting. Address ranges and their associated
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permissions are specified in 2-4 identical sets of tables residing in the Core Registration Function
Register (CSFR) space. Each set is referred to as a Protection Register Set (PRS). 

When the protection system is enabled, the TriCore checks every load/store and instruction fetch
address for legality before performing the access. To be legal, the address must fall within 1 of the
ranges specified in the currently selected PRS, and permission for that type of access must be
present in the matching range.

1.11 Reset System
Most of the reset functions and options are located external to the core and are not described in this
architecture manual. Several events can force a reset of the TriCore device:

● Power-On Reset
– Activated through an external pin when the power to the device is turned on (cold reset).

● Hard Reset
– Activated through an external pin during run time (warm reset).

● Soft Reset
– Activated through a software write to a reset request register which has a special protection

mechanism to prevent accidental accesses.
– Implementation-specific controls in this register facilitate either partial or full reset of the

device.
● Watchdog Timer Reset

– Activated through an error condition detected by a watchdog timer.
● Wake-up Reset

– Activated through an external pin to wake the device from a power saving mode.

A reset status register allows the core to check which of the triggers caused the reset.

1.12 Debug System
The TriCore contains mechanisms and resources to support on-chip debugging. These are used by
the Debug Control Unit. Most functions and details of the Debug Control Unit are implementation-
specific. This document does not provide further descriptions of the debug control unit and its
associated registers. Please contact your local Infineon sales office for literature or further
information.
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2 Programming Model
This chapter discusses the following aspects of the TriCore architecture that are visible to software: 

● Supported data types
● Formats of data types in registers and memory
● Various addressing modes that the architecture provides
● The memory model

2.1 Data Types
The TriCore instruction set supports operations on Booleans, bit strings, characters, signed
fractions, addresses, signed and unsigned integers, and single-precision floating-point numbers.
Most instructions operate on a specific data type, while others are useful for manipulating several
data types.

2.1.1 Boolean
A Boolean is either TRUE or FALSE. TRUE is the value one (1) when generated and non-zero when
tested; FALSE is the value zero (0). Booleans are produced as the result in comparison and logic
instructions, and are used as source operands in logical and conditional jump instructions.

2.1.2 Bit String
A bit string is a packed field of bits. Bit strings are produced and used by logical, shift, and bit field
instructions.

2.1.3 Character
A character is an 8-bit value that is a very short unsigned integer. No specific coding is assumed.

2.1.4 Signed Fraction
The TriCore architecture supports 16-/32-bit signed fractional data for DSP arithmetic. Data values
in this format have a single high-order sign bit, where 0 represents positive (+) and 1 represents
negative (–), followed by an implied binary point and fraction. Thus their values are in the range [-
1,1).

2.1.5 Address
An address is a 32-bit unsigned value. 

2.1.6 Signed/Unsigned Integers
Signed and unsigned integers are normally 32 bits. Shorter signed or unsigned integers are sign-
extended or zero-extended to 32 bits when loaded from memory into a register. Multi-precision
integers are supported with addition and subtract using carry. Integers are considered to be bit
strings for shifting and masking operations. Multi-precision shifts can be done using a combination
of single-precision shifts and bit field extracts.
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2.1.7 IEEE-754 Single-precision Floating-point Number
Depending on the particular implementation of the core architecture, IEEE-754 floating-point
numbers are supported by co-processor hardware instructions or by software calls to a library.

2.2 Data Formats
All the General-purpose registers (GPRs) are 32 bits wide, and most instructions operate on word
(32-bit) values. When byte or halfword data elements are loaded from memory, they are
automatically sign-extended or zero-extended to fill the register. The type of filling is implicit in the
load instruction: e.g., LD.B to load a byte with sign extension, vs. LD.BU to load a byte with zero
extension.

Alignment requirements differ for addresses and data. Address variables, loaded into or stored from
address registers, must always be word-aligned. For transfers between data registers and memory,
there is some relaxation of the natural alignment restrictions.  In most cases, data may be aligned
on any halfword boundary, regardless of size. This facilitates the use of packed arithmetic
operations in DSP applications, by allowing two or four packed 16-bit data elements to be loaded or
stored together on any halfword boundary. However, there are some restrictions of which
programmers must be aware.  Specifically:

● The LDMST and SWAP instructions require their operands to be word-aligned; 
● Halfword alignment for LD.D and ST.D is only allowed when the source or destination address 

is targetted at local data or cached memory. For all other addresses doubleword accesses must 
be word-aligned.

Figure 2-1 illustrates the data types supported. 
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Figure 2-1
Supported Data Formats
The data memory and CPU registers store data in little-endian byte order (the least-significant bytes
are at lower addresses). Figure 2-2 illustrates the byte ordering. Little-endian memory referencing
is used consistently for data and instructions.
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Figure 2-2
Byte Ordering

2.3 Memory Model
The TriCore architecture has an address width of 32 bits and can access up to 4 GB of memory. The
address space (Table 2-1) is divided into 16 regions or segments (0 through 15). Each segment is
256 MB. The upper 4 bits of an address select the specific segment. The first 16 KB of each
segment can be accessed using either absolute addressing or absolute bit addressing.

Many data accesses use addresses computed by adding a displacement to the value of a base
address register. Using a displacement to cross one of the segment boundaries is not allowed, and,
if attempted, will cause a trap. This restriction allows direct determination of the accessed segment
from the base address. 

Segments 0-7 are reserved for future use. Accesses to these segments will cause a trap. Accesses
to segment 14 and 15 are guaranteed to be non-speculative but they are not accessible in User 0
mode. These segments can thus be used for mapping peripheral registers. The Core Special
Function Registers (CSFRs) are mapped to a 64-KB space in the memory map. The base location
of this 64-KB space is implementation-dependent. Segments 8-13 will have futher limitations placed

Table 2-1 
Physical Address Space

Address Segments Description
0xFFFF FFFF
          :
0xE000 0000

14 - 15 non-speculative access
no User 0 access

0xDFFF FFFF
         :
0x8000 0000

8-13 normal access
Detailed limitations are implementation-specific. 
See device-specific System User Guide

0x7FFF FFFF
         :
0x0000 0000

0-7 reserved

Word 5 Byte 23 Byte 22 Byte 21 Byte 20

Word 4 Byte 19 Byte 18 Byte 17 Byte 16

Word 3 Byte 15 Byte 14 Byte 13 Byte 12

Word 2 Byte 11 Byte 10 Byte 9 Byte 8

Word 1 Byte 7 Byte 6 Byte 5 Byte 4

Word 0 Byte 3 Byte 2 Byte 1 Byte 0

Doubleword

Byte

Word

Halfword

31 0
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upon them in some  implementations. For example, specific segments for program and data may be
defined by device-specific implementations. Other details of the memory mapping are
implementation-specific. Please refer to the device-specific User’s Manual. 

2.4 Addressing Model

2.4.1 Addressing Modes
Addressing modes (Table 2-2) allow load and store instructions to access simple data elements
such as records, randomly and sequentially accessed arrays, stacks, and circular buffers effectively
within data structures. Simple data elements are 8, 16, 32, or 64 bits wide.

The addressing modes were selected to support efficient compilation of C, easy access to
peripheral registers, and efficient implementation of typical DSP data structures (circular buffers for
filters and bit-reversed indexing for FFTs). 

The instruction formats were chosen to provide as many bits of address as possible for absolute
addressing and as large of range of offsets as possible for base+offset addressing.

Note it is possible for an address register to be both the target of a load and an update associated
with a particular addressing mode. For example, in the following case, the contents of the address
register are not architecturally defined:
ld.a a0, [a0+]4

In a similar manner, consider the following case:
st.a [+a0]4, a0

It is not architecturally defined whether the original or updated value of a0 is stored into memory.
This is true for all addressing modes in which there is an update of the address register.

2.4.1.1 Absolute Addressing
Absolute addressing is useful for referencing I/O peripheral registers and global data. It uses an 18-
bit constant specified by the instruction as the memory address. The full 32-bit address results from

Table 2-2 
Supported Addressing Modes

Addressing Mode Address Register Use Offset Size (bits)
absolute none 18

base+offset address register 101)

1) A subset of memory operations support a base + long offset addressing mode
which provides a 16-bit offset.

pre-increment address register 10

post-increment address register 10
circular address register pair 10

bit-reverse address register pair —
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moving the most significant 4 bits of the 18-bit constant to the most significant bits of the 32-bit
address (Figure 2-3). The other bits are zero-filled.

Figure 2-3
Translation of Absolute Address to Full Effective Address

2.4.1.2 Base+Offset Addressing
Base+offset is useful for referencing record elements, local variables (using SP as the base), and
static data (using an address register pointing to the static data area).

The effective address is the sum of an address register and the sign-extended 10-bit offset.

A subset of the memory operations are provided with a base + long offset addressing mode. In this
mode the offset is a 16-bit sign-extended value. This allows any location in memory to be addressed
using a two instruction sequence.

2.4.1.3 Post-Increment Addressing
Post-increment and post-decrement addressing, where the latter is obtained by the use of a
negative offset, may be used for forward or backward sequential access of arrays, respectively.
Further, the two versions of the mode may be used to pop from a downward- or upward-growing
stack, respectively.

The post-increment addressing mode uses the value of the address register as the effective
address, and then updates this register by adding the sign-extended 10-bit offset to its previous
value.

2.4.1.4 Pre-Increment Addressing
Pre-increment and pre-decrement addressing, where the latter is obtained by the use of a negative
offset, may be used to push onto an upward- or downward-growing stack, respectively.

The pre-increment addressing mode uses the sum of the address register and the offset both as the
effective address and as the value written back into the address register.

2.4.1.5 Circular Addressing
The primary use of circular addressing (Figure 2-4) is for accessing data values in circular buffers
while performing filter calculations.

1 4

1 44 1 4

4

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 8 - b i t  o f f s e t
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Figure 2-4
Circular Addressing Mode
The circular addressing mode uses an address register pair to hold the state it requires. The even
register is always a base address (B). The most significant half of the odd register is the buffer size
(L). The least significant half holds the index into the buffer (I). The effective address is (B+I). The
buffer occupies memory from addresses B to B+L-1.

The index is post-incremented using the following algorithm:
tmp = I + sign_ext(offset10);

if (tmp < 0)

I = tmp + L;

else if (tmp >= L)

I = tmp - L;

else

I = tmp;

The 10-bit offset is specified in the instruction word and is a byte-offset that can be either positive
or negative. Note that correct “wrap around” behavior is guaranteed as long as the magnitude of the
offset is smaller than size of the buffer.

To illustrate the use of circular addressing, consider a circular buffer consisting of 25 16-bit values.
If the current index is 48, then the next item is obtained using an offset of 2 (2 bytes per value). The
new value of the index “wraps around” to 0. Instead if we are at an index of 48 and use an offset of
4, the new value of the index is 2. If the current index is 4 and we use an offset of -8, then the new
index is 46 (4-8+50).

In the end case, where a memory access runs off the end of the circular buffer (Figure 2-5), the data
access also wraps round to the start of the buffer. For example, consider a circular buffer containing
n+1 elements, where each element is a 16-bit value. If a load word is performed using the circular
addressing mode and the effective address of the operation points to element n, the 32-bit result will
contain element n in the bottom 16 bits and element 0 in the top 16 bits.

B

L I

Aeven

Aodd
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Figure 2-5
Circular Buffer End Case
The size and length of a circular buffer have the following restrictions:

● The start of the buffer must be aligned to a 64-bit boundary. 
– An implementation is free to advise the user of optimal alignment of circular buffers etc., but

must support the above.
● The length of the buffer must be a multiple of the data size, where the data size is determined 

from the instruction being used to access the buffer. 
– For example, a buffer accessed using a load word instruction must be a multiple of 4 bytes in

length, and a buffer accessed using a load double word instruction must be a multiple of 8
bytes in length.

If the above restrictions are not met, the implementation will take an alignment trap. An alignment
trap is also taken if the index (I) >= length (L).

2.4.1.6 Bit-reverse Addressing
Bit-reverse addressing is used to access arrays used in FFT algorithms. The most common
implementation of the FFT ends with results stored in bit-reversed order (Figure 2-6).
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Figure 2-6
Bit-Reverse Addressing
Bit-reverse addressing (Figure 2-7) uses an address register pair to hold the required state.

Figure 2-7
Register Pair for Bit-Reverse Addressing
The even register is the base address of the array (B), the least-significant half of the odd register
is the index into the array (I), and the most-significant half is the modifier (M) which is used to update
I after every access.

The effective address is B+I. The index, I, is post-incremented and its new value is reverse [reverse
(I) + reverse (M)]. The reverse(I) function exchanges bit n with bit (15–n) for n = 0, ..., 7.
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To illustrate, for a 1024-point real FFT using 16-bit values, the buffer size is 2048 bytes. Stepping
through this array using a bit-reverse index would give the sequence of byte indices: 0, 1024, 512,
1536, .... This sequence can be obtained by initializing I to 0 and M to 0x0400 (see Table 2-3).

The value of M required is given by buffer size/2 where the buffer size is given in bytes.

2.4.2 Synthesized Addressing Modes
This section describes how addressing not supported directly in the hardware addressing modes
can be synthesized through short instruction sequences. 

2.4.2.1 Indexed Addressing
Indexed addressing can be synthesized using the ADDSC.A instruction, which adds a scaled data
register to an address register. The scale factor can be 1, 2, 4, or 8 for addressing indexed arrays
of bytes, halfwords, words, or doublewords.

For support of addressing of indexed bit arrays, the ADDSC.AT instruction scales the index value
by 1/8 (shifts right 3 bits) and adds it to the address register. The 2 low-order bits of the resulting
byte address are cleared to give the address of the word containing the indexed bit. To extract the
bit, the word containing it is loaded, and the bit index is used in an EXTR.U instruction. A bit field,
beginning at the indexed bit position, can be extracted also. To store a bit or bit field at an indexed
bit position, ADDSC.AT is used in conjunction with the LDMST (Load/Modify/Store) instruction.

2.4.2.2 PC-relative Addressing
PC-relative addressing is the normal mode for branches and calls. However, the TriCore
architecture does not support direct PC-relative addressing of data. The main reason is that the
separate on-chip instruction and data memories make data access to the program memory
expensive. It typically adds 2 cycles of added access time.

When PC-relative addressing of data is required, the address of a nearby code label is placed into
an address register and used as a base register in base + offset mode to access the data. Once the
base register is loaded, it can be used to address other PC-relative data items nearby.

A code address can be loaded into an address register in various ways. If the code is statically
linked—as it almost always is for embedded systems—then the absolute address of the code label
is known, and can be loaded using the LEA instruction (Load Effective Address), or with a sequence
to load an extended absolute address. The absolute address of the PC relative data is also known,
and there is no need to synthesize PC-relative addressing.

Table 2-3 
1024-point FFT Using 16-bit Values

I (decimal) I (binary) Reverse(I) Rev(I) + Rev(M)
0 0000000000000000 0000000000000000 0000010000000000

1024 0000010000000000 0000000000100000 0000001000000000
512 0000001000000000 0000000001000000 0000011000000000

1536 0000011000000000 0000000001100000 0000010001100000
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For code that is dynamically loaded, or assembled into a binary image from position-independent
pieces without the benefit of a relocating linker, the appropriate way to load a code address for use
in PC-relative data addressing is to use the JL (Jump and Link) instruction. A jump and link to the
next instruction is executed, placing the address of that instruction into the return address register
(A11). Before doing so, it is necessary to copy the actual return address of the current function to
another register.
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3 Core Registers
The TriCore architecture defines a set of Core Special Function Registers (CSFRs). These CSFRs
control the operation of the core and provide status information about the core’s operation. The
CSFRs are split into the following groups:

● Program State Information
● Context Management
● Stack Management
● Interrupt and Trap Control
● System Control
● Memory Protection
● Memory Management
● Debug Control

The following sections describe these registers in detail. The CSFRs are complemented by a set of
General-purpose Registers (GPRs). Table 3-1 shows all CSFRs and GPRs.

Most of the memory protection system and debug control unit is implementation-specific; therefore,
this architecture manual only summarizes these topics. The reset functions and options are located
in a block outside of the core; their functionality is briefly described in this manual. Please contact
your local Infineon Sales office for more information on literature availability.

Table 3-1 
Core Register Map

Register Name/Acronym Description
D0 – D15 Data Registers

A0 – A15 Address Registers
PSW Program Status Word

PCXI Previous Context Information
PC Program Counter (read only)

FCX Free Context List Head Pointer
LCX Free Context List Limit Pointer

ISP Interrupt Stack Pointer
ICR Interrupt Control Register

BIV Base Address of Interrupt Vector Table
BTV Base Address of Trap Vector Table

SYSCON System Configuration Register

DPRx_0 – DPRx_3 Data Segment Protection Register Sets (x = 0 – 3)
CPRx_0 – CPRx_3 Code Segment Protection Register Sets (x = 0 – 3)

DPMx_0 – DPMx_3 Data Protection Mode Register Sets (x = 0 – 3)
CPMx_0 – CPMx_3 Code Protection Mode Register Sets (x = 0 – 3)
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3.1 Access to the Core Registers
The core accesses the CSFRs through two instructions: MFCR and MTCR. The MFCR instruction
(Move From Core Register) moves the contents of the addressed CSFR into a data register. MFCR
can be executed on any privilege level. The MTCR instruction (Move To Core Register) moves the
contents of a data register to the addressed CSFR. To prevent unauthorized writes to the CSFRs,
the MTCR instruction can only be executed on the supervisor privilege level.

There are no instructions allowing bit, bit field or load-modify-store accesses to the CSFRs. The
RSTV instruction (Reset Overflow Flags) resets only the overflow flags in the PSW, without
modifying any of the other PSW bits. This instruction can be executed at any privilege level.

3.2 General-Purpose Registers
Figure 3-1 shows the GPRs. The 32-bit wide GPRs are split evenly into 16 data registers, or
DGPRs, (D0 to D15) and 16 address registers, or AGPRs, (A0 to A15). Separation of data and
address registers facilitates efficient implementations in which arithmetic and memory operations
are performed in parallel. Several instructions allow the interchange of information between data
and address registers in order to create or derive table indexes, etc. Two consecutive even-odd
data registers can be concatenated to form 8 extended-size registers (E0, E2, E4, E6, E8, E10, E12,
and E14), in order to support 64-bit values. 

DBGSR Debug Status Register
EXEVT External Break Input Event Specifier

SWEVT Software Break Event Specifier
CREVT Core SFR Access Event Specifier

TRnEVT Trigger Event n Specifier (n = 0, 1)
MMUCON MMU Configuration register

ASI MMU Address Space Identifier
TVA MMU Translation Virtual Address

TPA MMU Translation Physical Address
TPX MMU Translation Page Index

TFA MMU Translation Fault Address

Table 3-1 
Core Register Map (cont’d)

Register Name/Acronym Description
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Figure 3-1
General-Purpose Registers
Registers A0, A1, A8, and A9 are defined as system global registers. Their contents are not saved
and restored across calls, traps, or interrupts. Register A10 is used as the Stack Pointer (SP);
register A11 is used to store the Return Address (RA) for calls and linked jumps and to store the
return Program Counter (PC) value for interrupts and traps. 

While the 32-bit instructions have unlimited use of the GPRs, many 16-bit instructions implicitly use
A15 as their address register and D15 as their data register. This implicit use eases the encoding
of these instructions into 16 bits. 

In order to support 64-bit data values, an even/odd register pair holds these values. In the
assembler syntax, these register pairs are either referred to as a pair of 32-bit registers (for
example, D9/D8) or as an extended 64-bit register. For example, E8 is the concatenation of D9 and
D8, where D8 is the least significant word of E8. 
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Note that there are no separate floating-point registers—the data registers are used to perform
floating-point operations. The floating-point data is saved/restored automatically using the fast
context switch support. 

The GPRs are an essential part of a task’s context. When saving or restoring a task’s context to and
from memory, the context is split into the upper and lower contexts. Registers A2 through A7 and D0
through D7 are part of the lower context. Registers A10 through A15 and D8 through D15 are part
of the upper context. 

3.3 Program State Information
The PC, PSW, and PCXI registers hold and reflect program state information. When storing and
restoring a task’s context, the contents of these registers are an important part of this procedure and
are stored/restored or modified during this process.

3.3.1 Program Counter
The 32-bit Program Counter (PC) is shown below. The PC contains the address of the instruction
that is currently executing. The PC is part of a task’s state information.

3.3.2 Program Status Word
The Program Status Word (PSW) is a 32-bit register that contains task-specific architectural state
not captured in the general purpose register values. The lower half holds control values and
parameters related to the protection system. Included are the Protection Register Set (PRS), the I/
O privilege level (IO), the Interrupt Stack flag (IS), the Global register Write permission flag (GW)
and the Call Depth Counter and Call Depth count Enable field (CDC and CDE).  These are
described in more detail below.     

31 1 0

Program Counter 0

31 24 16

User Status Bits Res

15 14 13 12 11 10 9 8 7 6 0

Res PRS IO IS GW CDE CDC

Field Bits Type Value Description
USB 31:24 rw User Status Bits

PRS 13:12 rw Protection Register Set. This two-bit field selects one of up to four sets of 
memory protection registers.

00 Protection Register Set 0
01 Protection Register Set 1

10 Protection Register Set 2
11 Protection Register Set 3
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The eight most significant bits of the PSW are designated as User Status Bits.  These bits may be
set or cleared as execution side effects of user instructions, typically recording result status.
Individual bits can also be used to condition the operation of particular instructions.  For example,
the ADDX and ADDC instructions use bit 31 to record the carry out from the ADD operation, and the
pre-execution value of the bit is reflected in the result of the ADDC instruction.

There are two classes of instructions that employ the user status bits.  The first class are the
arithmetic instructions that may produce carry and overflow results.  The second class are the
implementation-specific coprocessor instructions.  Instructions in the first class use five of the bits,

IO 11:10 rw I/O Privilege. This field selects the I/O privilege mode.
00 User-0

01 User-1
10 Supervisor

11 Reserved
IS 9 rw Interrupt Stack. This bit reflects the status of the current task. 

0 Current task uses a user stack
1 Current task uses the global interrupt stack

GW 8 rw Global Register Write Permission. This bit enables write permission to the 
global registers

0 Write permission to global registers A0, A1, A8, A9 is disabled
1 Write permission to global registers A0, A1, A8, A9 is enabled

CDE 7 rw Call Depth Count Enable. This bit is the enable for call depth counting.
0 Call depth counting is temporarily disabled. It is automatically 

re-enabled following execution of the next Call instruction.

1 Call depth counting is enabled. If CDC = 11111112, call depth 
counting is disabled regardless of the setting on this bit.

CDC 6:0 rw The Call Depth Overflow field consists of two variable-width subfields. 
The first subfield is a mask field, consisting of a string of zero or more 
initial “1” bits, terminated by the first “0” bit. The remaining bits comprise 
the subfield, which constitutes the Call Depth Counter. 
0cccccc 6-bit counter; trap on overflow

10ccccc 5-bit counter; trap on overflow
110cccc 4-bit counter; trap on overflow

1110ccc 3-bit counter; trap on overflow
11110cc 2-bit counter; trap on overflow

111110c 1-bit counter; trap on overflow
1111110 trap every call (call trace mode)

1111111 disable call depth counting

Field Bits Type Value Description
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with the labels and meanings described in the figure and table below.  Instructions in the second
class may use any or all of the eight bits, in a manner that is entirely implementation-specific.  The
RSTV instruction resets the four bits, 30:27, used by the arithmetic instructions to record overflow
status.  It does not modify any other bits.    

Bits 23:16 of the PSW are reserved bits, with no defined use in current revisions of the architecture.
They read as zero, when the PSW is read via the MFCR instruction after a system reset.  Their
value, after writing to the PSW via the MTCR instruction, is architecturally undefined. 

3.3.3 Previous Context Information Register
Previous Context Information Register (PCXI) contains linkage information to the previous
execution context, supporting fast interrupts and automatic context switching. The PCXI is part of a
task’s state information.    

31 30 29 28 27 26 25 24

C V SV AV SAV Res

Field Bits Type Value Description
C 31 rw Carry
V 30 rw Overflow

SV 29 rw Sticky Overflow
AV 28 rw Advance Overflow

SAV 27 rw Sticky Advance Overflow
Res 26:24 Reserved

31 24 23 22 21 20 19 16

PCPN PIE UL - PCXS

15 0

PCXO
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3.4 Context Management Registers
This section describes the context management registers, which are comprised of 3 pointers that
handle context management and are used during context save/restore operations (Table 3-2).

Each pointer consists of 2 fields: a 16-bit offset and a 4-bit segment specifier. Figure 3-2 shows how
the effective address of a CSA is generated using the 2 fields. A Context Save Area (CSA) is an
address range containing 16 word locations (64 bytes), which is the space required to save 1 upper
or 1 lower context. Incrementing the pointer offset value by 1 always increments the effective
address to the address that is 16 word locations above the previous one. The total usable range in
each address segment for CSAs is 4 MBytes, resulting in storage space for 64 K CSAs.

Field Bits Type Value Description
PCPN 31:24 rw Previous CPU Priority Number. This field contains the priority 

level number of the interrupted task.

PIE 23 rw Previous Interrupt Enable. This bit indicates the state of the
interrupt enable bit (ICR.IE) for the interrupted task.

UL 22 rw Upper/Lower Context Tag. The U/L context tag bit identifies 
the type of context saved. A one indicates upper context; a 
zero indicates lower context. If the type does not match the 
type expected when a context restore operation is performed, 
a trap is generated.  

PCXS 19:16 rw PCX Segment Address. This field contains the segment 
address portion of the PCX.

PCXO 15:0 rw Previous Context Pointer Offset Field. The PCXO and PCXS 
fields form the pointer PCX, which points to the CSA of the 
previous context. 

Table 3-2 
Context Management Registers

Register Category
FCX Free CSA List Head Pointer

PCX Previous Context Pointer (contained in register PCXI)
LCX Free CSA List Limit Pointer
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Figure 3-2
Generation of the Effective Address for the Context Save Areas
Note that the effective address is a physical memory address which must map to local data or
cached memory. Address ranges not covered by physical memories could lead to unexpected
results. Segments 14 and 15, which are reserved for external and internal peripherals, should also
not be used for CSAs.

3.4.1 Free CSA List Head Pointer
The Free CSA List Head Pointer (FCX) register holds the free CSA list head pointer, which always
points to an available CSA. 

      

31 20 19 16

- FCXS

15 0

FCXO

Field Bits Type Value Description
FCXS 19:16 rw FCX Segment Address Field. This field is used in conjunction 

with the FCXO field.

FCXO 15:0 rw FCX Offset Address Field. The FCXO and FCXS fields 
together form the FCX pointer, which points to the next 
available CSA.

31 016 15

Pointer OffsetPTR Segm.

31 022 21

0

left shift by six

2728 6 5

Segment Offset00000 000000

zero-fillzero fill

1920
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3.4.2 Previous Context Pointer
The Previous Context Pointer (PCX) holds the address of the CSA of the previous task. PCX is part
of PCXI. It is shown below for easy reference. The bits not relevant to the pointer function are
shaded.      

31 24 23 22 21 20 19 16

PCPN PIE UL - PCXS

15 0

PCXO

Field Bits Type Value Description
PCXS 19:16 rw PCX Segment Address Field. This field is used in 

conjunction with the PCXO field.

PCXO 15:0 rw Previous Context Pointer Offset Field. The PCXO and PCXS 
fields form the pointer PCX, which points to the CSA of the 
previous context.
32      v. 1.3.1



Core Registers
Stack ManagementArchitecture Manual

2001-04-30 @ 15:16
3.4.3 Free CSA List Limit Pointer
The Free CSA List Limit Pointer (LCX)  register is used to recognize impending CSA list underflows.
If the new value of FCX resulting after a CALL or interrupt matches the limit value, the "free context
depletion" condition is recognized, which triggers an FCD trap immediately after completion of the
call or interrupt entry sequence. It is important to see the FCD trap description for datails on the use
and setting of LCX. 

3.5 Stack Management
The stack management in the TriCore architecture supports a user stack and an interrupt stack.
Address register A10, the Interrupt Stack Pointer (ISP), and a PSW bit are involved in the
management of the stack.  

LCX
Free CSA List Limit Pointer

31 20 19 16

- LCXS

15 0

LCXO

Field Bits Type Value Description
LCXS 19:16 rw LCX Segment Address. This field is used in 

conjunction with the LCXO field.
LCXO 15:0 rw LCX Offset Field. The LCXO and LCXS fields

form the pointer LCX, which points to the last
available CSA.

A10/SP
Address Register A10/Stack Pointer 

31

A10/SP

0

A10/SP
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GPR A10 is used as the stack pointer. The initial contents of this register are usually set by an RTOS
when a task is created, which allows a private stack area to be assigned to individual tasks.

The ISP helps to prevent Interrupt Service Routines (ISRs) from accessing the private stack areas
and possibly interfering with the software managed task’s context. An automatic switch to the use
of the ISP instead of the private stack pointer is implemented in the TriCore architecture. The
PSW.IS bit indicates which stack pointer is in effect. When an interrupt is taken and the interrupted
task was using its private stack (IS = 0), then after saving its contents with the upper context of the
interrupted task, SP/A10 is loaded with the current contents of the ISP.

When an interrupt is taken and the interrupted task was already using the interrupt stack (IS = 1),
then no preloading of SP/A10 is performed. The interrupt service routine continues to use the
interrupt stack at the point where the interrupted routine had left it.

Usually it is only necessary to initialize ISP once during the initialization routine. However,
depending on application needs, ISP can be modified during execution.

Nothing prevents an ISR or system service routine from executing on a private stack. Usage of the
SP/A10 in an ISR is at the discretion of the application programmer.

3.6 Interrupt and Trap Control
Three CSFRs support interrupt and trap handling: the Interrupt Control Register (ICR), the interrupt
vector table pointer (BIV), and the trap vector table pointer (BTV).

3.6.1 Interrupt Control Register
The ICR holds the Current CPU Priority Number (CCPN), the enable/disable bit for the interrupt
system (IE), the Pending Interrupt Priority Number (PIPN) and an implementation specific control
for the interrupt arbitration scheme. The other two registers hold the base addresses for the interrupt

ISP
Interrupt Stack Pointer

31

ISP

0

ISP
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and trap vector tables. The ICR register is below. Special instructions control the enabling and
disabling of the interrupt system. 

  

Note: Type: "h" means this bit(s) may be updated by hardware. 

3.6.2 Interrupt Vector Table Pointer
The BIV contains the base address of the interrupt vector table. When an interrupt is accepted, the
entry address into the interrupt vector table is generated from the priority number (taken from the
PIPN) of that interrupt, left shifted by five bits, and then ORed with the contents of the BIV register.

ICR
Interrupt Control Register Reset Value : 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- impl.
spec.

implemen-
tation 

specific
PIPN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- IE CCPN

Field Bits Type Value Function
implementation 
specific

ICR[26] Implementation specific control of the 
arbitration. See documentation for specific 
TriCore product.

implementation
specific

ICR[25:24] Implementation specific control of the 
arbitration. See documentation for specific 
TriCore product.

PIPN ICR[23:16] rh
0x00
0xYY

Pending Interrupt Priority Number:
No valid pending request.
A request with priority YY is pending.

IE ICR[8] rwh
0
1

Global Interrupt Enable Bit:
Interrupt system is globally disabled.
Interrupt system is globally enabled.

CCPN ICR[7:0] rwh Current CPU Priority Number:
- r Reserved.
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The left-shift of the interrupt priority number results in a spacing of 8 words (32 bytes) between the
individual entries in the vector table.   

Care must be taken regarding the alignment of the address contained in the BIV register. First, the
address in the BIV register must be aligned to an even byte address (halfword address). Second,
due to the simple ORing of the left-shifted priority number and the contents of the BIV register, the
alignment of the base address of the vector table must be to a power of two boundary. It depends
on the number of interrupt entries used. For the full range of 256 interrupt entries, an alignment to
an 8-KByte boundary is required. If fewer sources are used, the alignment requirements are
correspondingly relaxed.

3.6.3 Trap Vector Table Pointer
The BTV contains the base address of the trap vector table. When a trap occurs, the entry address
into the trap vector table is generated from the Trap Class of that trap, left-shifted by 5 bits and then
ORed with the contents of the BTV register. The left-shift of the Trap Class results in a spacing of
8 words (32 bytes) between the individual entries in the vector table.   

Care must be taken regarding the alignment of the address contained in the BTV register. First, the
address in the BTV register must be aligned to an even byte address (halfword address). Second,
due to the simple ORing of the left-shifted trap identification number and the contents of the BTV
register, the alignment of the base address of the vector table must be to a power of two boundary.
There are 8 different trap classes, resulting in Trap Classes from 0 to 7. Thus, the contents of BTV
should be set at least to a 256-byte boundary (8 Trap Classes * 8 word spacing).

BIV
Interrupt Vector Table Pointer

31
BIV

1 0
BIV 0

BTV
Trap Vector Table Pointer

31

BTV

1 0

BTV 0
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3.7 System Control Registers
Three registers provide system control: 

● System Configuration Control  (SYSCON)
● Local Program Memory Unit Control  (PMUCON) (system-dependent, see User’sGuide)
● Local Data Memory Unit Control (DMUCON) (system-dependent, see User’s Guide)

3.7.1 SYSCON Register     

3.8 MMU Registers
The six CSFRs which control the memory management system are listed in Table 3-3. They are
documented in Chapter 7, “Memory Management,” on page 86.

SYSCON
System Configuration Control Register

31 16

-

15 2 1 0

- PRO 
TEN

FCD
SF

Field Bits Type Value Description
PROTEN 1 rw Memory Protection Enable. This bit enables the memory protection 

system. Memory protection is controlled through the memory 
protection register sets. Note that it is required to initialize the 
protection register sets prior to setting PROTEN to one.
0 Memory Protection is disabled.

1 Memory Protection is enabled.
FCDSF 0 rw Free Context list Depleted Sticky Flag. This sticky bit indicates that 

a FCD trap occured since the bit was last cleared by software.
0 No FCD trap occured since the last clear.

1 An FCD trap occured since the last clear.
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3.9 Memory Protection Registers
The TriCore architecture incorporates hardware mechanisms that protect user-specified memory
ranges from unauthorized read, write, or instruction fetch accesses. In addition, the protection
hardware can be used to generate signals to the debug unit. The TriCore contains register sets that
specify the address range and the access permissions for a number of memory ranges. There are
separate register sets for code and data memory (Figure 3-3).

Figure 3-3
Memory Protection Register Sets
The 2-bit PRS field in the PSW selects which register set is active at a given time. Two register sets
are selected simultaneously: One data memory protection and one code memory protection.

The PSW.PRS field allows selection of up to 4 such register sets (4 for data and 4 for code). The
number of register sets provided for memory protection is specific to each implementation of the
TriCore architecture. Thus this document only describes the generic format of these register sets.
For detailed information on the number of register sets and their organization, please refer to the
appropriate product specifications. Contact your local Infineon Sales Office for additional
information.

Table 3-3 
MMU Registers

Register Name/Acronym Description
MMUCON MMU Configuration register

ASI MMU Address Space Identifier
TVA MMU Translation Virtual Address

TPA MMU Translation Physical Address
TPX MMU Translation Page Index

TFA MMU Translation Fault Address

Data Memory Protec-
tion Register Set 3

Data Memory Protec-
tion Register Set 2

Data Memory Protec-
tion Register Set 1

Data Memory Protec-
tion Register Set 0

Code Memory Protec-
tion Register Set 0

Code Memory Protec-
tion Register Set 1

Code Memory Protec-
tion Register Set 2

Code Memory Protec-
tion Register Set 3

PSW.PRS = 002

PSW.PRS = 012

PSW.PRS = 102

PSW.PRS = 112
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The number of range table entries is specific to each implementation of the TriCore architecture.
Each range table entry (Figure 3-4) consists of a Segment Protection register pair and a Mode
register. The register pair specifies the lower and the upper boundary addresses of the memory
range, while the Mode register contains the access permission and debug control bits. The control
options are different for the data and the code memory protection.

Figure 3-4
Range Table Entries in a Protection Register Set
Table 3-4 lists the Memory Protection Registers. Index x indicates the protection register set
number, while index n indicates the range table entry number.

3.9.1 Data and Code Segment Protection Registers
Below are the segment protection registers of a range table entry. The registers DPRx_n and
CPRx_n are 2-word registers specifying the lower and the upper boundary address of the
associated memory range. The range defined by a range table entry is:

lower bound ≤ address < upper bound

Range checking is not performed if the lower bound is greater than the upper bound. If the lower
bound is equal to the upper bound, the range is regarded as empty.

Table 3-4 
Memory Protection Registers

Register Description
DPRx_n Data Segment Protection Registers
DPMx_n Data Protection Mode Registers 

CPRx_n Code Segment Protection Registers 
CPMx_n Code Protection Mode Registers 

31
7
DPMx_0/CPMx_0

0
0

31
7
DPMx_1/CPMx_1

0
0

31
7
DPMx_2/CPMx_2

0
0

31
7
DPMx_3/CPMx_3

0
0

Range Table 
Entry 0

Range Table 
Entry 1

Range Table 
Entry 2

Range Table 
Entry 3

Mode Registers

Segment Protection Register 
DPRx_3/CPRx_3

Segment Protection Register 
DPRx_2/CPRx_2

Segment Protection Register 
DPRx_1/CPRx_1

Segment Protection Register 
DPRx_0/CPRx_0
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For the generation of debug signals, instead of defining a range, the values in DPRx_n/CPRx_n are
regarded as individual addresses. Signals to the debug unit are generated if the address of a
memory access equals 1 or more of the DPRx_n/CPRx_n contents. For this purpose, an equality
compare with the contents of the upper bound register is performed.

 

 

3.9.2 Data Protection Mode Registers
The 8-bit Data Protection Mode Registers determine the access permissions and debug signal
conditions for the ranges specified in their corresponding Data Segment Protection Registers. The
assignment and definition of bits within a mode table entry for the data range is shown below. The
WE and RE bits relate directly to memory protection. The remaining bits generate signals to the
Debug Control Unit.    

DPRx_n
Data Segment Protection Registers

31 0

Upper Bound

31 0

Lower Bound

CPRx_n
Code Segment Protection Registers

31 0

Upper Bound

31 0

Lower Bound

DPMx_n
Data Protection Mode Register

7 6 5 4 3 2 1 0

WE RE WS RS WBL RBL WBU RBU
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Field Bits Type Value Description
WE 7 rw Address Range Write Enable

0 Data write accesses to associated address range not permitted

1 Data write accesses to associated address range permitted
RE 6 rw Address Range Read Enable

0 Data read accesses to associated address range not permitted
1 Data read accesses to associated address range permitted

WS 5 rw Address Range Data Write Signal
0 Data write signal disabled

1 Signal asserted to debug unit on data write accesses to 
associated address range

RS 4 rw Address Range Data Read Signal
0 Data read signal disabled

1 Signal asserted to debug unit on data read accesses to 
associated address range

WBL 3 rw Data Write Signal on Lower Bound Access

0 Data write signal disabled
1 Signal asserted to debug unit on data write  access to an 

address that matches lower bound address of associated 
address range

RBL 2 rw Data Read Signal on Lower Bound Access
0 Data read signal disabled

1 Signal asserted to debug unit on data read  access to an 
address that matches lower bound address of  associated 
address range

WBU 1 rw Data Write Signal on Upper  Bound Access
0 Write signal disabled

1 Signal asserted to debug unit on data write  access to an 
address that matches upper bound address of associated 
address range

RBU 0 rw Data Read Signal on Upper  Bound Access
0 Data read signal disabled

1 Signal asserted to debug unit on data read  access to an 
address that matches upper bound address of associated 
address range
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3.9.3  Code Protection Mode Registers
The 8-bit Code Protection Mode Registers determine the access permissions and debug signal
conditions for their corresponding range as specified in the associated Code Segment Protection
Registers. Below are the assignment and definition of bits within a mode table entry for the code
range. The XE bit is related directly to memory protection. All remaining bits generate signals to the
Debug Control Unit.      

CPMx_n
Code Protection Mode Register

7 6 5 4 3 2 1 0

XE - XS - BL - - BU

Field Bits Type Value Description
XE 7 rw Address Range Execute Enable

0 Instruction fetch accesses to associated address range not 
permitted

1 Instruction fetch accesses to associated address range  permitted

- 6 r - -
XS 5 rw Address Range Execute Signal

0 Execute signal disabled
1 Signal asserted to debug unit on instruction fetch accesses to 

associated address range
- 4 r -

BL 3 rw Execute Signal on Lower Bound Access
0 Lower bound execute signal disabled

1 Signal asserted to debug unit on instruction fetch  access to an 
address that matches lower bound address of associated address 
range

- 2:1 r -
BU 0 rw Execute Signal on Upper Bound Access

0 Upper bound execute signal disabled
1 Signal asserted to debug unit on instruction fetch access to an 

address that matches upper bound address of associated address 
range
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3.10 Debug Registers
Seven registers are implemented in the core to support debugging (Table 3-5). These registers
define the conditions under which a debug event is generated and the actions taken on the
assertion of a debug event, and provide status information on the debug control unit. 

The functions and details of the Debug Control Unit are implementation-specific. This document
does not provide further descriptions of the Debug Control Unit and its associated registers. Contact
your local Infineon Sales Office for the appropriate literature.

Table 3-5 
Debug Registers

Register Description
DBGSR Debug Status Register
EXEVT External Break Input Event Specifier

SWEVT Debug Instruction Break Event Specifier
CREVT Core SFR Access Break Event Specifier

TRnEVT Trigger Event n Specifier
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4 Managing Tasks & Functions
Most embedded and real-time control systems are designed according to a model in which interrupt
handlers and software-managed tasks are each considered to be executing on their own “virtual”
microcontroller. That model is generally supported by the services of a Real-time Executive or Real-
time Operating System (RTOS), layered on top of the features and capabilities of the underlying
machine architecture. 

In the TriCore architecture, however, the RTOS layer can be very “thin.” The hardware can
efficiently handle much of the switching between one task and another. At the same time, the
architecture allows for considerable flexibility in the tasking model used. System designers can
choose the real-time executive and software design approach that best suits the needs of their
application, with relatively few constraints imposed by the architecture. 

The mechanisms for low-overhead task switching and for function calling within the TriCore
architecture are closely related. They are discussed together in this chapter. 

4.1 Upper and Lower Contexts
A task is an independent thread of control. The task’s context defines the state of the task. Should
the task be interrupted, the processor uses the context to re-enable the continued execution of the
task.

The context is subdivided into the upper context and the lower context. The upper context consists
of the upper address registers, A10 - A15, and the upper data registers, D8 - D15. These registers
are designated as non-volatile, for purposes of function-calling. The upper context also includes
PCXI and PSW.

The lower context consists of the lower address registers, A2 through A7, and the lower data
registers, D0 through D7, plus the Program Counter (PC). 

Both upper and lower contexts, when saved to memory, occupy 16-word blocks of storage referred
to as Context Save Areas (CSAs). The first word in a CSA is the link word; the link word includes two
fields that link the given CSA to the next one in a chain. The fields are a four-bit link segment and a
16-bit link offset. The link segment and link offset are used to generate the effective address of the
linked CSA (Figure 4-1).
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Figure 4-1
Generation of the Effective Address of a Context Save Area (CSA)
If the CSA is in use (for example, it holds an upper or lower context image for a suspended task),
then the link word also contains other information about the linked context. The entire link word, in
fact, is simply a copy of the PCXI register for the associated task. Refer to CSAs and Context Lists
for further information on how linked CSAs support context switching.

4.2 Task Switching Operation
The TriCore architecture switches tasks when one of the events or instructions listed in Table 4-1
occurs. Upon occurrence of one of these events or instructions, the upper or lower context of the
task is saved or restored. Note that the upper context is saved automatically as a result of an
external interrupt, trap, or function call. The lower context is saved explicitly through instructions. In
the table, Save is a store through the FCX after the next value for the FCX is read from the link word.
Store is a store through the effective address of the instruction with no change to the CSA list or the
FCX register. Restore is the converse of Save. Load is the converse of Store

There is an essential difference in the treatment of registers in the upper and lower contexts, in
terms of how their contents are maintained. The lower context registers are similar to global
registers, in the sense that their contents are unchanged across a call or interrupt. The called
function or interrupt handler sees the values that were present in the registers before the call or
interrupt. That means the lower context registers can be used to pass arguments to a called
function. Likewise, since they are not automatically restored as part of the RET or RFE semantics,
they can be used to pass return values from called functions.

The upper context registers, however, are different. They are not guaranteed to be static hardware
registers. Conceptually, a called function or interrupt handler always begins execution with its own
private set of upper context registers. The upper context registers of the interrupted or calling
function are not inherited. Only A10 and A11, the SP and Return Address (RA) registers, start out
with architecturally defined values in the called function or interrupt handler. A function or interrupt
handler that reads any of the other upper context registers before writing a value into it is performing
a suspect operation and the result is architecturally undefined.

31 016 15

Link Word Offset

31 022 21

0

left shift by six

2728 6 5

Segment Offset00000 000000

zero fillzero fill

19

Link Word
Segment

20
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4.3 CSAs and Context Lists
The upper and lower contexts are saved in CSAs. Unused CSAs are linked together in the free
context list. CSAs that contain saved upper or lower contexts are linked together in the previous
context list. Figure 4-2 shows a simple configuration of CSAs within both context lists.

Table 4-1 
Context-Related Events and Instructions 

Event/
Instruction

Description Context 
Operation

Complement
Instruction

Description Context 
Operation

Interrupt Interrupt Save Upper RFE Return From 
Exception

Restore 
Upper

Trap Trap Save Upper RFE Return From 
Exception

Restore 
Upper

CALL Function Call Save Upper RET Return from Call Restore 
Upper

BISR Begin ISR Save Lower RSLCX Restore Lower 
Context

Restore 
Lower

SVLCX Save Lower 
Context

Save Lower RSLCX Restore Lower 
Context

Restore 
Lower

STLCX Store Lower 
Context

Store Lower LDLCX Load Lower Context Load Lower

STUCX Store Upper 
Context

Store Upper LDUCX Load Upper Context Load Upper
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Figure 4-2
CSAs in Context Lists
The contents of the FCX register always points to an available CSA in the free context list. That
CSA’s link word points to the next available CSA in the free context list. Before an upper or lower
context is saved in the first available CSA, its link word is read, supplying a new value for the FCX.
To the memory subsystem, context saving is therefore a read/modify/write operation. The new
value of FCX, which points to the next available CSA, is available immediately for subsequent upper
or lower context saves. 

The LCX register points to one of the last CSAs in the free list and is used to recognize impending
CSA list underflow. If the new value of FCX after a context save matches the limit value, the context
save operation completes but the target address is forced to the CSA list depletion trap entry (FCD
trap). The action taken by the trap handler depends on the implementation; it might issue a system
reset if it is determined that the CSA list depletion resulted from an unrecoverable software error.
Normally, however, it will extend the free list, either by allocating additional memory, or by
terminating one or more tasks and reclaiming their CSA call chains. In those cases, the trap handler
will exit with a RFE instruction.

The PCXI.PCX field points to CSA where the previous context was saved. The PCXI.UL bit
identifies whether the saved context is upper or lower (1 = upper; 0 = lower). If the type does not
match the type expected when a context restore operation is performed, an exception occurs and
a context management trap is taken. 

After the context save operation has been performed the RA is updated. For a call the RA is updated
with the function return address. For a synchronous trap the RA is updated with the PC of the
instruction which raised the trap. For an asynchronous trap or an interrupt the RA is updated with
the PC of the next instruction to be executed.

When a lower context save operation is performed the value of the RA is included in the saved
context and is placed in the second word of the CSA. This RA is correspondingly restored by a lower
context restore. 
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The Call Depth Control field (PSW.CDC) consists of two subfields: A call depth counter, and a mask
that determines the width of the counter and when it overflows. The call depth counter is
incremented on calls, and is restored to its previous value on returns. An exception occurs when the
counter overflows. Its purpose is to prevent software errors from causing “runaway recursion” and
depleting the CSA free list.

4.4 Context Switching with Interrupts
When an interrupt occurs, the processor saves the context of the current task in memory and
suspends execution of the current task. The processor then starts execution of the interrupt handler.
An interrupt is asynchronous. All registers must be saved in order to ensure that the register(s) that
the interrupted task is using are saved.

When an interrupt is taken and the processor was not previously using the interrupt stack (PSW.IS
bit = 0), then after being saved with the upper context of the interrupted task, the SP is loaded with
the current contents of the ISP. The PSW.IS bit is then set to one to indicate execution from the
interrupt stack.

The Interrupt Control Register (ICR) holds the Current CPU Priority Number (ICR.CCPN) and the
Interrupt Enable bit (ICR.IE). These fields, along with the Previous CPU Priority Number
(PCXI.PCPN), and Pending Interrupt Priority Number (ICR.PIPN) are all part of the interrupt
management system. ICR.PIPN is output from the Interrupt Control Unit, and is the priority number
of the highest priority pending interrupt. A non-zero value in this register indicates the presence of
a pending interrupt. For the interrupt to be serviced, ICR.PIPN must be greater than ICR.CCPN, and
the interrupt enable bit (ICR.IE) must be set. 

PCXI.PCPN and ICR.CCPN are logically part of the current processor state. However, they are not
part of the state that an RTOS needs to deal with for software-managed tasks, because they are
zero for all software-managed tasks (SMTs). ICR.CCPN is non-zero only within ISRs, where it is
used to order interrupt servicing. Accordingly, it is held in a register that is separate from the PSW,
and is not part of the context that the RTOS handles for switching among SMTs. On an interrupt, the
PCXI.PCPN value becomes the ICR.CCPN value, after saving the old PCPN value along with the
old PCXI.PCXI value in the CSA for the upper context.

Once the interrupt is handled, the saved context is reloaded and execution of the interrupted task
is resumed.

On an interrupt, half of the current task context is saved by hardware as an implicit part of the
interrupt sequence. For small interrupt handlers that can execute entirely within the set of registers
saved on the interrupt, no further context saving is needed. The interrupt handler can execute
immediately and return, leaving the unsaved portions of the interrupted task’s context untouched.
For interrupt handlers that make calls, only one additional instruction is needed to save the registers
that were not saved as part of the interrupt sequence. That instruction must be issued before any of
the associated registers are modified, but it need not be the first instruction in the handler. Interrupt
handlers with critical response time requirements can perform their initial, time-critical processing
immediately, using registers that were already saved when the interrupt was taken. After that, they
can save the remaining registers of the interrupted task’s context, and continue with less time-
critical processing.
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4.5 Context Switching with Function Calls
When a function call is made (the CALL instruction is executed), the context of the calling routine
must be saved and then restored, in order to resume the caller’s execution after return from the
function. 

On a function call, the entire set of non-volatile registers (those registers whose contents are
preserved across context switches) is saved by hardware. Furthermore, the saving of the non-
volatile registers is integrated with the CALL instruction, so it happens in parallel with the call jump.
Likewise, the restoring of the registers is integrated with the RET instruction, and happens in parallel
with the return jump. The called function need not concern itself with saving and restoring the
caller’s context, and it is freed of any need to minimize the number of non-volatile registers that it
uses.

The calling function and called functions can cooperate to minimize the amount of context that must
be saved and restored. The General-purpose Registers (GPRs) are partitioned into two subsets:
those whose contents are preserved across the call (non-volatile registers), and those whose
contents are not preserved (scratch registers). The caller is responsible for preserving any of its
context that resides in scratch registers before the call, while the called function is responsible for
preserving the caller’s values in any non-volatile registers that the called function uses. To preserve
its scratch register context, when necessary, the calling function either saves the registers in
memory or copies them to non-volatile registers. The compiler’s register allocator tries to minimize
the need for either action, by tracking what data items are live across a call—defined before the call
and used after it—and allocating those items to non-volatile registers. 

4.6 Context Save/Restore Examples
This section provides an example of a context save operation and another example of a context
restore operation. 

4.6.1 Context Save
Figure 4-3 shows the free and previous context lists for this example. The free context list contains
three free CSAs (3, 4, and 5), and the previous context list contains two CSAs (2 and 1). The FCX
points to CSA3, the first available CSA. The link word of CSA3 points to CSA4; the link word of
CSA4 points to CSA5. The PCX points to the most recently saved CSA in the previous context list.
The link word of CSA2 points to CSA1. CSA1 contains the saved context prior to CSA2. 
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Figure 4-3
CSAs and Processor State Prior to Context Save
When the context save operation is performed, the first CSA in the free context list (CSA3) is pulled
off and is placed on the front of the previous context list. Figure 4-4 shows the steps taken during
the context save operation. The numbers in the figure correspond to the steps below:

1. The contents of the link word in CSA3 are loaded into the new FCX. The new FCX will now
point to CSA4. Note that the new FCX is an internal buffer and is not accessible by the user.

2. The contents of the PCX are written into the link word of CSA3. The link word of CSA3 now
points to CSA2.

3. The contents of the old FCX are written into the PCX. The PCX now points to CSA3, which is
at the front of the Previous Context List.

4. The new FCX is loaded into the FCX.

Figure 4-4
CSA and Processor SFR Updates on a Context Save Process
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The processor SFRs and CSAs now look as shown in Figure 4-5. The processor context to be
saved is now written into the rest of CSA3.

Figure 4-5
CSAs and Processor State After Context Save

4.6.2 Context Restore
Figure 4-6 shows an example where the previous context list contains three CSAs (3, 2, and 1) and
the free context list contains two CSAs (4 and 5). The FCX points to CSA4, the first available CSA
in the free context list. PCX points to CSA3, the most recently saved CSA in the previous context list.
The link word of CSA3 points to CSA2; the link word of CSA2 points to CSA1; the link word of CSA4
points to CSA5. 
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Figure 4-6
CSAs and Processor State Prior to Context Restore
When the context restore operation is performed, the first CSA in the previous context list (CSA3)
is pulled off and is placed on the front of the free context list. Figure 4-7 shows the steps taken
during the context restore operation. The numbers in the figure correspond to the steps below:

1. The contents of the link word in CSA3 are loaded into the new PCX. The new PCX will now
point to CSA2. Note that the new PCX is an internal buffer and is not accessible by the user.

2. The contents of the FCX are written into the link word of CSA3. The link word of CSA3 now
points to CSA4.

3. The contents of the old PCX are written into the FCX. The FCX now points to CSA3, which is
at the front of the free context list.

4. The new PCX is loaded into the PCX.
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Figure 4-7
CSA and Processor SFR Updates on a Context Restore Process
The processor SFRs and CSAs now look as shown in Figure 4-8. The restored context now is
written into the upper or lower context registers.

Figure 4-8
CSAs and Processor State After Context Restore

PCX

FCX

12

3

new PCX

4

Link

CSA
3

TAM

Link to 4

CSA
3

FCX

PCX

Previous Context List

Free Context List

Link to 5

CSA
4

Link

CSA
1

Link to 6

CSA
5

Link to 1

CSA
2

CSAs in Local Data MemoryProcessor 
SFRs
 55      v. 1.3.1
 



Managing Tasks & Functions
Context Save/Restore Examples Architecture Manual
2001-04-30 @ 15:16
56      v. 1.3.1



Architecture Manual
2001-04-30 @ 15:16
Interrupt System
 57      v. 1.3.1
 



Interrupt System
Architecture Manual

2001-04-30 @ 15:16
5 Interrupt System
This chapter describes the interrupt system, including arbitration, the priority level scheme, and
access to the vector table. 

In a TriCore system, multiple sources such as peripherals or external inputs can generate an
interrupt signal to the CPU to request for service. In addition, the TriCore interrupt system supports
the implementation of additional units which are capable of handling interrupt requests, such as a
second CPU, a standard DMA unit or a peripheral control processor. In the context of this chapter,
therefore, such units are also called Service Providers, and interrupt requests are often referred to
as Service Requests.

Besides the main CPU, up to three additional service providers can be handled with a TriCore
interrupt SRN. The actual number of additional service providers implemented in a given device is
implementation dependent.

Each interrupt or service request from a module connects to a service request node (SRN),
containing a Service Request Control Register, xxSRC (xx refers to the requesting source).
Interrupt arbitration busses connect the SRNs with the interrupt control units of the service
providers. These control units handle the interrupt arbitration and the proper communication with
the service provider.

Figure 5-1 shows an overview of the TriCore interrupt system.
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Figure 5-1
Block Diagram of the TC10 Interrupt System

5.1 Service Request Node
Each service request node (SRN) contains a Service Request Control Register (xxSRC) and the
necessary logic for the communication with the requesting source and the interrupt arbitration
busses. A peripheral or other module can have several service request lines; each one of them
connects to its own, individual SRN.
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Service Request Control Register
A typical service request control register in the TriCore architecture holds the individual control bits
to enable/disable the request, to assign a priority number and to direct the request to one of the
service providers. A request status bit shows whether or not the request is active. Besides being
activated by the associated module through hardware, each request can also be set or reset
through software.

The generic format and description of a service request control register, xxSRC (’xx’ refers to the
requesting source), is given below with a detailed description of each bit and bit field after the table
(the ’xx’ qualifier is omitted in these descriptions). 

.

xxSRC
Source xx Service Request Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xx
SETR

xx
CLRR

xx
SRR

xx
SRE xxTOS - - xxSRPN

Field Bit Type Value Function
xxSETR xxSRC[15] w

0
1

Source xx Request Set Bit.
No action.
Set xxSRR (no action if xxCLRR = 1).
Written value is not stored. Read returns 0.

xxCLRR xxSRC[14] w
0
1

Source xx Request Clear Bit:
No action.
Clear xxSRR (no action if xxSETR = 1).
Written value is not stored. Read returns 0.

xxSRR xxSRC[13] rh
0
1

Source xx Service Request Flag:
No service request pending.
A service request is pending.

xxSRE xxSRC[12] rw
0
1

Source xx Service Request Enable Control.
Service request is disabled.
Service request is enabled.

xxTOS xxSRC[11:10] rw
00
01
10
11

Source xx Type-of-Service Control.
Service Provider 0 (typically CPU).
Request Service Provider 1 (impl. spec.).
Request Service Provider 2 (impl. spec.).
Request Service Provider 3 (impl. spec.).
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Request Flag SRR
This bit can be directly set or reset by the associated hardware (e.g. an associated trigger event in
a peripheral sets this bit to 1; the acknowledgment of the service request by the Service Provider
causes this bit to be cleared). Bit SRR can be set or reset by software via bits SETR or CLRR,
respectively. Writing directly to SRR via software has no effect.

SRR can be set or cleared (either by hardware or by software) regardless of the state of the enable
bit SRE. If SRE = 1, a pending service request takes part in the interrupt arbitration of the service
provider selected via the bit field TOS. Bit SRR is automatically reset by hardware when the service
request is acknowledged and serviced. If SRE = 0, a pending service request is excluded from
interrupt arbitrations. Software can poll SRR to check for a pending service request. SRR must be
reset by software in this case (write a ’1’ to CLRR).

Request Set and Clear Bits (SETR, CLRR)
These bits are intended for a software set or clear of the actual service request bit SRR. Writing a
’1’ to SETR causes bit SRR to be set to ’1’. Writing a ’1’ to CLRR causes bit SRR to be cleared to
’0’. Possible hardware modifications of SRR that occurred during read-modify-write instructions (for
example, bit set, bit clear instructions) are lost; the software modification has priority. The value
written to SETR or CLRR is not stored. Writing a 0 to these bits has no effect. These bits always
return 0 when read. If both, SETR and CLRR are written to ’1’ at the same time, SRR is not affected.

Enable Bit (SRE)
The SRE bit controls whether an active interrupt request takes part (SRE = 1) in the hardware
arbitration or not (SRE = 0). It does not affect the setting of bit SRR by hardware or software. This
has the advantage that the interrupt request flag can be polled by software, even if it is not taking
part in the hardware arbitration.

Type-of-Service Control (TOS)
The interrupt system of the TriCore architecture is designed to manage up to four Service Providers
for service requests from peripherals or other sources. The TOS bit field is used to select the service
provider for a request, meaning whether the service request takes part in the interrupt arbitration of
the selected service provider. The number of service providers for a given TriCore device is
implementation-specific.

xxSRPN xxSRC[7:0] rw
0x00

0x01
0xFF

Source xx Service Request Priority Number.
A service request on this priority is never 
serviced.
Lowest priority number.
Highest priority number.

- r Reserved.

Field Bit Type Value Function
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Service Request Priority Number (SRPN)
The 8-bit Service Request Priority Number of a service request indicates its priority with respect to
other sources requesting an interrupt to the same service provider, and to the priority of the service
provider itself. Each SRPN used by active sources requesting the same service provider must be
unique at a given time; no active sources can use the same SRPN at the same time (except for the
default SRPN of 0x00, which excludes an SRN from taking part in the arbitration). That means, no
two or more active sources, e.g. requesting CPU service, are allowed to use the same SRPN; they
can, however, use the same SRPNs as sources which are requesting another service provider. The
term ’active source’ in this context means a source which has its request enable bit, SRE, set to one
to allow the request to participate in interrupt arbitrations. If a source is not active, meaning its
service request enable bit is cleared, no restrictions are applied to the service request priority
number.

The SRPN also identifies the entry into the interrupt vector table (or similar structures depending on
the nature of the service provider). Unlike other interrupt systems, the TriCore vector table provides
an entry for each priority number, not for a specific interrupt source. In this way, the vector table is
decoupled from the peripherals, and a single peripheral can have multiple entry points for different
purposes depending on its priority at a given time.

The range for the service request numbers used in a system depends on the number of active
service requests and the user-defineable organization of the vector table. With the 8-bit SRPN, the
TriCore interrupt arbitration scheme permits up to 255 sources to be active at one time. More
information on the range of SRPNs can be found in the section on Interrupt Priority Groups.

5.2 Interrupt Control Unit
The Interrupt Control Unit manages the interrupt system and performs all the actions necessary to
arbitrate incoming interrupt requests, to find the one with the highest priority, and to determine
whether to interrupt the service provider or not. The number of interrupt control units depends on the
number of service providers implemented in a TriCore device. Each one of them controls its
associated interrupt arbitration bus and manages the communication with its service provider.

In this document, only the interrupt control unit of the CPU is detailed. Please refer to the respective
documentation of a specific TriCore device for information on possible further service providers and
associated control units.

5.2.1 CPU Interrupt Control Unit, ICU
The ICU is closely coupled with the CPU and its Interrupt Control Register (ICR). This register, as
well as the operation of the ICU, is described below. 

5.2.1.1 ICU Interrupt Control Register (ICR)
The ICR holds the current CPU priority number (CCPN), the global interrupt enable/disable bit (IE),
the pending interrupt priority number PIPN, as well as implementation-specific bits to control the
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interrupt arbitration cycles. A detailed description of the bits and bit fields in register ICR is given
after the table and in Operation of the Interrupt Control Unit.

 

Current CPU Priority Number (CCPN)
This field indicates the current priority level of the CPU and is automatically updated by hardware on
entry and exit of an interrupt service routine, and through the execution of a BISR instruction. It can
also be updated through an MTCR instruction.

Global Interrupt Enable Bit (IE)
Setting bit IE globally enables the interrupt system. The acceptance of interrupts, however, depends 
on the individual Service Request Enable Bits in the SRNs and the current situation in the CPU 
operation.

ICR
Interrupt Control Register Reset Value : 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - impl.
spec.

implemen-
tation 

specific
PIPN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - IE CCPN

Field Bits Type Value Function
implementation 
specific

ICR[26] Implementation specific control of the 
arbitration. See documenation for specific 
TriCore product.

implementation
specific

ICR[25:24] Implementation specific control of the 
arbitration. See documenation for specific 
TriCore product.

PIPN ICR[23:16] rh
0x00
0xYY

Pending Interrupt Priority Number:
No valid pending request.
A request with priority YY is pending.

IE ICR[8] rwh
0
1

Global Interrupt Enable Bit:
Interrupt system is globally disabled.
Interrupt system is globally enabled.

CCPN ICR[7:0] rwh Current CPU Priority Number:
- r Reserved.
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This bit is automatically updated by hardware on entry and exit of an interrupt service routine, and
through the execution of the instructions ENABLE, DISABLE and BISR. It can also be updated
through an MTCR instruction.

Pending Interrupt Priority Number (PIPN)
This read-only field is updated by the ICU at the end of an arbitration and indicates the priority
number of a pending request. PIPN is set to 0x00 when no request is pending, and at the beginning
of a new arbitration.

Arbitration Control
Three bits in register ICR are intended for implementation specific control of the arbitration. Please 
see the respective documentation of a specific TriCore product for information on these bits.

5.2.1.2 Operation of the Interrupt Control Unit
When an interrupt service is requested by one or more sources, these requests are serviced
depending on their priority ranking. Thus, the interrupt system must determine which request has
the highest priority each time. The TriCore interrupt system uses a scheme that performs the
arbitration in parallel with the normal CPU operation. The interrupt control unit, ICU, controls this
scheme, which takes place in one or more cycles over the interrupt arbitration bus. The detailed
arbitration scheme is implementation specific.

The ICU automatically starts an arbitration when a new interrupt request is detected. At the end of
the arbitration, the ICU has determined the service request with the highest priority number. It stores
this number in the PIPN field of register ICR and generates an interrupt request to the CPU.

The CPU checks the state of the global interrupt enable bit, ICR.IE, and compares the current CPU
priority number, CCPN, in register ICR against the PIPN. The CPU can be interrupted only if
ICR.IE = 1 and PIPN is greater than CCPN. If this is true and the CPU can enter the service routine,
it reads the PIPN to determine the vector entry and acknowledges the ICU, which in turn sends the
acknowledge back to the pending interrupt request, the ’winner’ of this arbitration round, to inform
it that it will be serviced. This node then resets its service request flag, SRR.

After sending the acknowledge, the ICU sets PIPN to 0x00 and automatically starts a new
arbitration to check whether there is another pending interrupt request. If this is the case, the priority
number of this request is written to PIPN at the end of this arbitration. Otherwise, PIPN remains at
0x00 and the ICU enters an idle state, waiting for the next interrupt request.

The further interrupt service actions in the CPU are described in Entering an Interrupt Service
Routine.

Several conditions could block the CPU from immediately responding to the interrupt request
generated by the ICU:

● The current CPU priority, CCPN, is equal to or higher than the pending interrupt priority, PIPN
● The interrupt system is globally disabled (ICR.IE = 0)
● The CPU is in the process of entering an interrupt or trap service routine
● The CPU is operating on non-interruptible trap services
● The CPU executes a multi-cycle instruction
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● The CPU is executing an instruction which modifies the conditions of the global interrupt system, 
such as modifying the ICR

The CPU will respond to the interrupt request when these conditions are no longer true.

Note that an arbitration is performed when a new service request is detected, regardless of whether
the interrupt system is globally enabled or not, or whether there are other conditions preventing the
CPU from servicing interrupts. In this way, the PIPN field always reflects the pending service
request with the highest priority. This can, for example, be used for software polling techniques to
determine high priority requests while having the interrupt system globally disabled.

If a new service request is generated by an SRN while an arbitration is in progress, this request has
to wait at least until the end of this arbitration.

5.2.1.3 Arbitration Scheme
The arbitration scheme is implementation specific and is detailed in the respective documentation
of a specific TriCore product.

5.3 Entering an Interrupt Service Routine
When all conditions are clear for the CPU to service an interrupt request, the following actions are
performed to enter an Interrupt Service Routine (ISR):

1. The upper context of the current task is saved.
2. The interrupt system is globally disabled (ICR.IE = 0).
3. The current CPU priority number (CCPN) is set to PIPN.
4. The PSW is set to a default value:

- All permissions are enabled: PSW.IO = 0b10
- Memory protection is switched to PRS 0: PSW.PRS = 0b00.
- The stack pointer bit is set for using the interrupt stack: PSW.IS = 1.
- The call depth counter is cleared, the call depth limit is set for 64: PSW.CDC = 0b1000000.

5. The interrupt vector table is accessed to fetch the first instruction of the interrupt service
routine (ISR). The effective address is the contents of the BIV register, ORed with the PIPN
number left-shifted by 5

As listed above, an interrupt service routine is entered with the interrupt system globally disabled
and the current CPU priority CCPN set to the priority PIPN of the interrupt being serviced. It is up to
the user to enable the interrupt system again and optionally modify the priority number CCPN to
implement interrupt priority levels or handle special cases (see next sections).

To simply enable the interrupt system again, the ENABLE instruction can be used, which sets
ICR.IE to one. The BISR instruction offers a convenient way to enable the interrupt system, to set
the CCPN to a new value, and to save the lower context of the interrupted task. It is also possible
to use an MTCR instruction to modify ICR.IE and ICR.CCPN.

The instructions ENABLE, BISR, MTCR and DISABLE (disable interrupts) are all executed such
that the CPU is blocked from taking interrupt requests until the instruction is completely finished.
This avoids pipeline side effects and eliminates the need for an ISYNC instruction (synchronize
instruction stream) following these instructions.
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5.4 The Interrupt Vector Table
The interrupt vector table is organized according to the priority number of the interrupts. The priority
number PIPN of the interrupt now being serviced by the CPU identifies the entry into the vector
table. This has some important advantages over traditional interrupt systems, where the vector
entry is usually determined directly through the interrupt source.

The interrupt handler vectors are stored in code memory. The BIV register specifies the base
address of the interrupt vector table. When the CPU takes an interrupt, the interrupt priority number
SRPN associated with the interrupt is used to index into the interrupt vector code. This number,
detected by the ICU as PIPN and then taken as the new CCPN, is left-shifted by five bits and ORed
with the address in the BIV register to generate the entry address of the interrupt handler.

The BIV address must be aligned on a power of two boundary, sufficient to generate correct
interrupt vector addresses without using addition (due to the simple ORing). Alignment to an 8-
KByte boundary is sufficient for the full range of priority numbers. If fewer numbers are used, the
alignment requirements can be relaxed accordingly.

Left-shifting the CCPN by 5 bits creates entries into the vector table which are evenly spaced by 8
words. If an interrupt handler is very short, it may fit entirely within the eight words available in the
vector code segment. Otherwise, the code stored at the entry location can either span several
vector entries (see next section) or should contain some initial instructions, followed by a jump to the
rest of the handler.

Figure 5-2 gives an overview of the interrupt vector table.

The size of the vector table depends only on the range of priority numbers actually used in a system.
Up to 256 vector entries for 255 (vector entry 0 is never used) distinct interrupt handlers are
supported, but systems requiring fewer entries need not dedicate the full memory area required by
the largest configurations.
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Figure 5-2
Interrupt Vector Table
The BIV register allows the interrupt vector table to be located anywhere in the available code
memory. Its default on power-up is fixed to 0x0000.0000, however, the BIV register can be written
to using the MTCR instruction during the initialization phase of the system, before interrupts are
enabled. It is also possible to have multiple interrupt vector tables and switch between them simply
by modifying the contents of the BIV register. 

5.5 Usage of the TriCore Interrupt System
The following sections describe some examples how the flexible interrupt system of the TriCore
architecture can be used to solve typical as well as special application requirements.

Spanning ISRs across Vector Entries
Since the vector entries are not tied to the interrupt source, it is easy to span interrupt service
routines across vector entry locations, as shown in Figure 5-2. This eliminates the need of a jump
to the rest of the interrupt handler if it would not fit into the available 8 words between entry locations.
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Note that priority numbers, which relate to entries which are occupied by such a spanned service
routine must not be used for any of the active service request nodes which request service from the
same service provider. In the example shown in Figure 5-2, vector locations 3 and 4 are covered
through the service routine for entry 2. Thus, these numbers must not be assigned to SRNs
requesting CPU service. They can, however, be used to request PCP service.

The next available vector entry is now entry 5. It must be noted that this technique increases the
range of priority numbers required in a given system. The size of the vector table has to be adjusted
accordingly.

Interrupt Priority Groups
Interrupt priority groups, meaning a set of interrupts which can not interrupt each other’s service
routine, can easily be achieved with the TriCore interrupt system architecture.

When the CPU starts the service of an interrupt, the interrupt system is globally disabled and the
CPU priority CCPN is set to the priority of the interrupt now serviced. This blocks all further
interrupts from being serviced until the interrupt system is either enabled again through software or
this service routine is terminated with the RFE instruction (which automatically reinstalls the
previous state of the ICR.IE bit, which was a one; otherwise this interrupt would not have been
serviced).

When the software of the interrupt service routine (ISR) enables the interrupt system again by
setting ICR.IE without changing the CCPN, the effect is that all interrupt requests with the same or
lower priority than the CCPN are still blocked from being serviced. This includes a reoccurrence of
the current interrupt; it can not interrupt this service.

This ISR will, however, be interrupted by each request which has a higher priority number than the
CCPN. This is not wanted in many cases; application requirements are often such that interrupt
requests of similar significance being grouped together in a way that no request in that group can
interrupt the ISR of another member of the same group.

This can easily be accomplished with the TriCore interrupt system. For a defined group of interrupt
requests, the software of their respective service routines sets the CCPN to the number of the
highest SRPN used in that group before enabling the interrupt system again. Figure 5-3 shows an
example for this. The interrupt requests with the priority numbers 11 and 12 form one group, while
the requests with priority numbers 14 through 17 form another group. Every time one of the
interrupts from group 1 is serviced, the service routine sets the CCPN to 12, the highest number in
that group, before reenabling the interrupt system. Every time one of the interrupts from group 2 is
serviced, the service routine sets the CCPN to 17 before reenabling the interrupt system. If interrupt
14 is serviced, for example, it can only be interrupted by requests with a priority number higher than
17, but not through a request from its own priority group or requests with lower priority.

One can easily see the flexibility of this system, which is also superior to systems with fixed priority
levels. In the example shown, the interrupt request with priority number 13 forms its own single
member ’group’. Setting the CCPN to the maximum number, 255, in each service routine has the
same effect as not enabling the interrupt system again; all interrupt requests can be considered to
be in one group. The flexibility for interrupt priority levels spans from all interrupts in one group to
each interrupt request building its own group, and all possible combinations in between.
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Figure 5-3
Interrupt Priority Groups

Splitting ISRs onto different priorities
Interrupt service routines are easily divided into parts with different priorities. For example, an
interrupt is placed on a very high priority because response time and reaction to an event is very
critical, but further operations in that service routine can run on a lower priority. For this, the service
routine is divided into two parts, one containing the critical actions, the other part the less critical
ones.First, the priority of the interrupt node is set to the high priority. When the interrupt occurs, the
necessary actions are carried out immediately on that high-priority level. Then the priority level of
this interrupt is lowered, and the interrupt request bit is set again via software (indicating a pending
interrupt) while still in the service routine. Returning to the interrupted program terminates the high
priority service routine. The pending interrupt will now be serviced when the CPU priority is lower
than its own one. After entering the service routine, which now is at a different address in the
program memory, the outstanding but low-priority actions of the interrupt can be performed.

In other cases, the priority of a service request might be low because the response time to an event
is not critical. But once it has been granted service, this service should not be interrupted. To
prevent any interruption, the TriCore architecture lets the priority level of this service request to be
raised within the ISR, and also lets interrupts be completely disabled.
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Using different Priorities for the same Interrupt Source
For some applications, the priority of an interrupt request in relation to other requests is not fixed,
but depends on the current situation in the system. This can be done simply by assigning different
priority numbers, SRPNs, at different times to an interrupt source depending on the application
needs. Usually, the ISR for that interrupt will execute different code depending on its priority. In
traditional interrupt systems, the ISR has to check the current priority of that interrupt request and
perform a branch to the appropriate code section, causing a delay in the response to the request.
In the TriCore system, however, the interrupt will automatically have different vector entries for the
different priorities; an extra check and branch in the ISR is not necessary, therefore the interrupt
latency is reduced.

In case the ISR is independent of the interrupt’s priority, one has to place branches to the common
ISR code on each of the vector entries for that interrupt.

Note that these different priority numbers for one interrupt have to be regarded when creating the
vector table.

Software-Posted Interrupts
A software-posted interrupt is a true hardware interrupt, carrying an interrupt priority that is
processed through the regular interrupt subsystem when the interrupt is taken. The only difference
is that the interrupt request is generated by setting the service request bit in a service request node
explicitly, through a software update of the node’s control register.

Once the interrupt request bit in a service request control register is set, there is no way to
distinguish between a software-posted interrupt request and a hardware interrupt request. For that
reason, it is generally advisable to use service request nodes and interrupt priority numbers for
software-posted interrupts that are not used for hardware interrupts, that is, for example, interrupts
which are triggered by a peripheral module.

However, how many of the hardware SRNs are available in a given system for such purposes is
depending on the application needs. Thus, an RTOS can not rely on a certain number of ’free’ SRNs
for software-posting of interrupts.

To support the usage of software-posted interrupts, mainly for RTOS code, the TriCore architecture
provides a number of service request nodes which are intended solely for the purpose of software-
posting. They are not connected to any peripheral or other module on the chip; the service request
flag can only be set by software. In this way, it is guaranteed for the RTOS and user code, that there
are SRNs available which are not used by hardware modules.

An implementation may contain four CPU Service Request Nodes. See CPU Service Request
Nodes.

Interrupt 1
Interrupt 1 is the first and lowest-priority entry in the interrupt vector. It is best used for ISRs
performing task management. ISRs whose actions affect the launching of software-managed tasks
will post a software interrupt request at priority level one to signal the change (normally, the posting
is done from the ISR directly, but from RTOS code in a service function called from the ISR). The
ISR can then execute a normal return from interrupt, rather than jumping to an ISR exit function in
the kernel. There is no need for an exit function to check whether the ISR is returning to the
70      v. 1.3.1



Interrupt System
CPU Service Request NodesArchitecture Manual

2001-04-30 @ 15:16
background task level or to a lower priority ISR that it interrupted, in order to determine when to
invoke the task dispatch function.

When there is a pending interrupt at a priority higher than the return context for the current interrupt,
this interrupt will then be serviced. When a return to the background task level is performed, the
software-posted interrupt at priority level one will automatically be recognized and serviced.

5.6 CPU Service Request Nodes
To support software-posting of interrupts for RTOS code, the TriCore architecture defines four
service request nodes which are not attached to a peripheral or other module on the chip. The
interrupt request bit can only be set by software. These SRNs are called the CPU service request
nodes, however, setting of the interrupt request can also be done through, for example, an external
bus master.

The service request control registers of the four CPU SRNs are described below.

CPUSRC0
CPU Service Request Control Register 0 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CPU

SETR
0

CPU
CLRR

0
CPU

SRR0
CPU

SRE0 CPUTOS0 - - CPUSRPN0

CPUSRC1
CPU Service Request Control Register 1 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CPU
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1

CPU
CLRR

1
CPU

SRR1
CPU
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CPUSRC2
CPU Service Request Control Register 2 Reset Value: 0000 0000H
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CPUSRC3
CPU Service Request Control Register 3 Reset Value: 0000 0000H
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6 Traps
A trap occurs as a result of an event such as a non-maskable interrupt, an instruction exception,
memory-management exception, or illegal access. Traps are always active; they cannot be
disabled by software action. This chapter describes the different traps that can occur and the
TriCore architecture’s trap handling mechanism.

6.1 Trap Types
The TriCore architecture specifies eight general classes for traps.  Each class has its own trap
handler, accessed through a trap vector of 32 bytes per entry, indexed by the hardware-defined trap
class number.  

Within each class, specific traps are distinguished by a Trap Identification Number (TIN) that is
loaded by hardware into register D15 before the first instruction of the trap handler is executed.  The
trap handler must test and branch on the value in D15 to reach the subhandler for a specific TIN.

Traps can be further classified as synchronous or asynchronous, and as hardware or software
generated.  These are explained further below.

Table 6-1 lists the trap classes specified by the TriCore architecture, and summarizes and classifies
the pre-defined set of specific traps within each class.

 

Table 6-1 summarizes and classifies all TriCore-supported traps. 

Table 6-1 
Supported Traps

Trap ID #
 (TIN)

Trap
 Name

Sync/
Async

Hardware/
Software

Description

Class 0 — MMU
0 VAF Synchronous Hardware  Virtual Address Fill

See Section 7.7, “MMU traps.”
1 VAP Synchronous Hardware Virtual Address Protection

See Section 7.7, “MMU traps.”

Class 1 — Internal Protection Traps
1 PRIV Synchronous Hardware Privileged Instruction

2 MPR Synchronous Hardware Memory Protection: Read Access
3 MPW Synchronous Hardware Memory Protection: Write Access

4 MPX Synchronous Hardware Memory Protection: Execution Access
5 MPP Synchronous Hardware Memory Protection: Peripheral Access

6 MPN Synchronous Hardware Memory Protection: Null Address

7 GRWP Synchronous Hardware Global Register Write Protection
Class 2 — Instruction Errors
1 IOPC Synchronous Hardware Illegal Opcode
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2 UOPC Synchronous Hardware Unimplemented Opcode

3 OPD Synchronous Hardware Invalid operand specification
4 ALN Synchronous Hardware Data address alignment error

5 MEM Synchronous Hardware Invalid local memory address 
Class 3 — Context Management
1 FCD Synchronous Hardware Free context list depleted (FCX == LCX)
2 CDO Synchronous Hardware Call depth overflow

3 CDU Synchronous Hardware Call depth underflow
4 FCU Synchronous Hardware Free context list underflow (FCX == 0)

5 CSU Synchronous Hardware Call stack underflow (PCX == 0)
6 CTYP Synchronous Hardware Context type error (PCXI.UL wrong)

7 NEST Synchronous Hardware Nesting error: RFE with non-zero call depth
Class 4 — System Bus and Peripheral Errors
1 PSE Synchronous Hardware Program fetch bus error
2 DSE Synchronous Hardware Data access bus error

3 DAE Asynchronous Hardware Data access bus error
Class 5— Assertion Traps
1 OVF Synchronous Software Arithmetic overflow
2 SOVF Synchronous Software Sticky arithmetic overflow

Class 6 — System Call1)

SYS Synchronous Software System call

Class 7 — Non-Maskable Interrupt
0 NMI Asynchronous Hardware Non-maskable interrupt

Table 6-1 
Supported Traps (cont’d)

Trap ID #
 (TIN)

Trap
 Name

Sync/
Async

Hardware/
Software

Description
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6.1.1 Synchronous Traps
Synchronous traps are associated with the execution or attempted execution of specific
instructions, or with an attempt to access a virtual address that requires the intervention of the
memory-management system. The instruction causing the trap is known precisely. The trap is taken
immediately and serviced before execution can proceed beyond that instruction.

6.1.2 Asynchronous Traps
Asynchronous traps are similar to interrupts, in that they are associated with hardware conditions
detected externally and signaled back to the core.  Some result indirectly from instructions that have
been previously executed, but the direct association with those instructions has been lost.  Others,
such as the non-maskable interrupt, are external events.  

The difference between an asynchronous trap and an interrupt is that asynchronous traps are
routed via the trap vector instead of the interrupt vector, cannot be masked, and do not change the
current CPU interrupt priority number.  The return PC for an asynchronous trap, like the return PC
for an interrupt handler, is the address of the next instruction that would have been executed when
the trap was taken.

6.1.3 Hardware Traps
Hardware traps are generated in response to exception conditions detected by the hardware.  In
most, but not all cases, the exception conditions are associated with the attempted execution of a
particular instruction.  Examples are the illegal instruction trap, memory protection traps, and data
memory misalignment traps.  

In the case of the MMU traps (trap class 0), the exception condition is either the failure to find a TLB
entry for the virtual page referenced by an instruction (VAF trap), or an access violation for that page
(VAP trap). See Section 7.7, ”MMU traps,” for more information.

1) For the system call trap, the TIN is taken from the immediate constant specified in the SYSCALL instruction.
The range of values that may be specified is 0 to 255, inclusive.

There is a some degree of implementation dependency in the actual traps that an implementation
may generate.  For example, trap class 0 is reserved for MMU traps; in implementations that do not
include an MMU, no traps in this class will be generated.  Such an implementation might also
generate UOPC traps for the MMU instructions.  In addition, an implementation could conceivably
add new TINs to one of the trap classes, if it made sense to do so for the particular hardware and
system configuration it supported.  

Consult the User's Guide for a specific implementation for any changes in the traps supported,
relative to those shown in Table 6-1, “Supported Traps,”.
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6.1.4 Software Traps
Software traps are generated as an intentional result of executing a system call or an assertion
instruction.  The assertion instructions supported by the architecture are TRAPV and TRAPSV (trap
on overflow, and trap on sticky overflow).  System calls are generated by the SYSCALL instruction.

System call traps are described further in section 6.3.7 below.

6.2 Trap Handling
This section describes the trap handling mechanisms supported by the TriCore architecture. The
actions taken on traps are slightly different than those taken on external or software interrupts. The
return PC saved in the return address register for a synchronous trap is the PC of the instruction that
caused the trap. For an asynchronous trap, the return PC is that of the instruction that would have
been executed next, if the asynchronous trap had not been taken. A trap does not change the
CPU’s interrupt priority, so the ICR.CCPN field is not updated.

6.2.1 Trap Vector Format
The trap handler vectors are stored in code memory in the trap vector table. The BTV register
specifies the base address of the trap vector table. The vectors are made up of a number of short
code segments, evenly spaced by eight words.

If a trap handler is very short, it may fit entirely within the 8 words available in the vector code
segment. Otherwise, it should contain some initial instructions, followed by a jump to the rest of the
handler. 

6.2.2 Accessing the Trap Vector Table
When a trap occurs, a trap identifier is generated by hardware. The trap identifier has two
components: the trap class number used to index into the trap vector table, and the TIN which is
loaded into D15. The trap class number is left shifted by 5 bits and ORed with the address in the
BTV register to generate the entry address of the trap handler. 
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6.2.3 Initial State upon a Trap 
The initial state when a trap occurs is defined as follows:

● All permissions are enabled.
● Memory protection using the interrupt memory protection map (PSW.PRS = 002) is enabled.
● The stack pointer bit is set for using the interrupt stack.
● The call depth counter is cleared, and the call depth limit selector is set for 64.
● Interrupts are disabled; they remain disabled until explicitly enabled.
● The ICR.CCPN remains unchanged.

Although traps leave the ICR.CCPN unchanged, their handlers still begin execution with interrupts
disabled. They can therefore perform critical initial operations without interruptions, until they
specifically re-enable interrupts.

6.3 Trap Descriptions
What follows are descriptions for all of the trap classes and specific traps listed in Table 6-1,
“Supported Traps,”.

6.3.1 MMU Traps
Trap class 0 (zero) is reserved for MMU traps, for those implementations that include an MMU.
There are two traps within this class:

6.3.1.1 VAF Virtual Address Fill trap (TIN 0)
This trap is generated when the MMU is enabled, and the virtual address referenced by an
instruction does not have a page entry in the MMU's Translation Lookaside Buffer (TLB). See
"MMU Traps" in the Memory Management section for more detail.

6.3.1.2 VAP Virtual Address Protection trap (TIN 1)
This trap is generated when the access permissions associated with a referenced page do not
permit the type of access attempted.  See  "MMU Traps" in the Memory Management section for
more detail.

6.3.2 Internal Protection Traps
Trap class 1 is for traps related to TriCore's internal protection system.  The memory protection
traps in this class are for the range-based protection system, and are independent of the page-
based VAP protection trap of trap class zero.  See section the "Protection System" section for more
detail.

The following internal protection traps are defined:

6.3.2.1 PRIV Privilege Violation (TIN 1)
A program executing in one of the user modes (User-0 or User-1) attempted to execute an
instruction not allowed by its privilege level. 
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There are only two instructions that, in all implementations, are allowed only in supervisor mode:
MTCR and BISR.  In  addition, ENABLE and DISABLE are prohibited in User-0 mode.  For
implementations that support the MMU, the MMU instructions TLBMAP, TLBDEMAP, TLBFLUSH, and
TLBPROBE, are also privileged instructions, executable only in supervisor mode.

6.3.2.2 MPR Memory Protection, Read (TIN 2)
The MPR trap is generated when the memory protection system is enabled, and the effective
address of a load, LDMST, or SWAP instruction does not lie within any range with read permissions
enabled.

6.3.2.3 MPW Memory Protection, Write (TIN 3)
The MPW trap is generated when the memory protection system is enabled, and the effective
address of a store, LDMST, or SWAP instruction does not lie within any range with write
permissions enabled.

6.3.2.4 MPX Memory Protection, Execute (TIN 4)
The MPX trap is generated when the memory protection system is enabled, and the PC does not lie
within any range with execute permissions enabled.

6.3.2.5 MPP Memory Protection, Peripheral access (TIN 5)
A program executing in User-0 mode attempted a load or store access to memory address segment
14 or 15.

6.3.2.6 MPN Memory Protection, Null address (TIN 6)
The MPN trap is generated whenever any program attempts a load / store operation to effective
address zero.

6.3.2.7 GRWP Global Register Write Protection (TIN 7)
A program attempted to modify one of the global address registers (A0, A1, A8, or A9) when it did
not have permission to do so.

6.3.3 Instruction Errors
Trap class 2 is for signalling instruction errors of various types.  Instruction errors include errors in
the instruction opcode, in the instruction operand encodings, or, for memory accesses, in the
operand address.  Specifically:

6.3.3.1 IOPC Illegal Opcode (TIN 1)
An invalid instruction opcode was encountered.  An invalid opcode is one that does not correspond
to any instruction known to the architecture.
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6.3.3.2 UOPC Unimplemented Opcode (TIN 2)
An unimplemented opcode was encountered.  An unimplemented opcode corresponds to a known
instruction that is not supported in a given hardware implementation.  The instruction may be
implemented via software emulation in the trap handler.

6.3.3.3 OPD Invalid Operand specification (TIN 3)
The OPD trap may be raised for instructions that take an even-odd register pair as an operand, if the
operand specifier is odd.  

Implementations are not architecturally required to raise this trap; they are allowed the option of
ignoring the low order bit of the operand specification when an even-odd register pair is expected.

6.3.3.4 ALN Alignment error (TIN 4)
Raised when the address for a data memory operation does not conform to the expected alignment
constraints.

6.3.3.5 MEM Invalid Local Memory Address (TIN 5)
A program accessed an address in a range that the implementation recognizes as invalid-i.e., there
is no memory at the referenced address.  

This trap can only be raised if the memory protection system is disabled, or if protection ranges have
been created that span invalid memory locations.  Otherwise, the access will generate an internal
protection trap, which preempts the MEM trap.

The MEM trap is synchronous, and is only generated when the memory system is able to recognize
an address as invalid in time to generate a synchronous trap.  An implementation is not
architecturally required to recognize all invalid memory references in time to generate a
synchronous trap.  References that do not generate protection violations and are not recognized as
invalid local memory references may still be invalid; if so, they will eventually raise an asynchronous
DAE trap. 

6.3.4 Context Management
Trap class 3 is for exception conditions detected by the context management subsystem, in the
course of performing-or attempting to perform-context save and restore operations connected to
function calls, interrupts, traps, and returns.  

6.3.4.1 FCD Free Context list Depletion (TIN 1)
The FCD trap is generated after a context save operation, when the operation causes the free
context list to become "almost empty".  The "almost empty" condition is signaled when the CSA
used for the save operation is the one pointed to by the context list limit register, LCX.  The operation
responsible for the context save completes normally, and then the FCD trap is taken.  

If the operation responsible for the context save was the hardware interrupt or trap entry sequence,
then the FCD trap handler will be entered before the first instruction of the original interrupt or trap
handler is executed.  The return PC for the FCD trap will point to the first instruction of the interrupt
or trap handler.
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The FCD trap handler is normally expected to take some form of action to rectify the context list
depletion.  The nature of that action is OS dependent, but the general choices are to allocate
additional memory for CSA storage, or to terminate one or more tasks, and return the CSAs on their
call chains to the free list.  A third, more elaborate possibility, is not to terminate any tasks outright,
but to copy the call chains for one or more inactive tasks to uncached external or secondary memory
that would not be directly usable for CSA storage, and release the copied CSAs to the free list.  The
OS task scheduler, in that case, would need to recognize that the inactive task's call chain was not
resident in CSA storage, and restore it, before dispatching the task.

Taking the FCD trap, in itself, uses one additional CSA beyond the one designated by the LCX
register, so LCX must not point to the actual last entry on the free context list.  In addition, it is
possible that an asynchronous trap condition, such as an external bus error, will be reported after
the FCD trap has been taken, interrupting the FCD trap handler, and using one more CSA.  Hence,
to avoid the possibility of a context list underflow, the free context list must include a minimum of two
CSAs, beyond the one pointed to by the LCX register.  If the FCD trap handler makes any calls, then
additional CSA reserves are needed.

In order to allow the trap handlers for asynchronous traps to recognize when they have interrupted
the FCD trap handler, there is a flag that is set in the system configuration register whenever an
FCD trap is generated.  (See the "SYSCON Register" description.)  That flag, the FCDSF bit, should
be tested by the handler for any asynchronous trap that could be taken while an FCD trap is being
handled.  If the bit is found to be set, the asynchronous trap handler must avoid making any calls,
but should queue itself in some manner that allows the OS to recognize that the trap occurred.  It
should then do an immediate return, back to the interrupted FCD trap handler.

6.3.4.2 CDO Call Depth Overflow (TIN 2)
A program attempted to make a call, while executing with call depth counting enabled, and the call
depth counter was already at its maximum value.  (See the section "Program Status Word").  Call
depth counting guards against context list depletion, by enabling the OS to detect "runaway
recursion" in executing tasks.

6.3.4.3 CDU Call Depth Underflow (TIN 3)
A program attempted to execute a RET instruction, while call depth counting was enabled, and the
call depth counter was zero.

A call depth underflow does not necessarily reflect a software error in the currently executing task.
An OS can achieve finer granularity in call depth counting by using a deliberately narrow call depth
counter, and incrementing or decrementing a separate software counter for the current task on each
call depth overflow or underflow trap. A program error would be indicated only if the software
counter were already zero when the CDU trap occurred.

6.3.4.4 FCU Free Context list Underflow (TIN 4)
The FCU trap is taken when a context save operation is attempted, but the free context list is found
to be empty (FCX register contents null).  It is also taken if any error is encountered during a context
save operation, which presumably indicates a corrupted free list. The context save cannot be
completed.  Instead, a forced jump is made to the FCU trap handler. 
 81      v. 1.3.1
 



Traps
Trap Descriptions Architecture Manual
2001-04-30 @ 15:16
In failing to complete the context save, architectural state is lost, so the occurrence of an FCU trap
is a non-recoverable system error.  The FCU trap handler should ultimately initiate a system reset.

6.3.4.5 CSU Call Stack Underflow (TIN 5)
A program attempted to execute a RET instruction, or an interrupt or trap handler attempted to
execute a RFE, when the contents of the PCX register were null, or otherwise invalid.  

This trap indicates a system software error (kernel or OS) in task setup or context switching among
software managed tasks.  No software error or combination of errors in a user task can generate this
condition, unless the task has been allowed write permission to the context save areas-which, in
itself, can be regarded as a system software error.  

6.3.4.6 CTYP Context Type error (TIN 6)
This trap is raised when a context restore operation is attempted, but the context type, as indicated
by the PCXI_UL bit, is incorrect for the type of restore attempted.  I.e., a restore lower context is
attempted when PCXI_UL == 1, or a restore upper context is attempted when PCXI_UL == 0.  As
with the CSU trap, indicates a system software error in context list management.

6.3.4.7 NEST Nesting error (TIN 7)
An RFE instruction was attempted when the call depth counter was non-zero.  The return from an
interrupt or trap handler should normally occur within the body of the interrupt or trap handler itself,
or in code to which the handler has branched, rather than code called from the handler.  Otherwise,
there will be one or more saved contexts on the residual call chain that must be popped and
returned to the free list, before the RFE can be legitimately issued.

6.3.5 System Bus and Peripheral Errors

6.3.5.1 PSE Program fetch, Synchronous Error (TIN 1)
The PSE trap is raised when a code fetch request results in an error other than those causing VAP
or MPX trap.

6.3.5.2 DSE Data access, Synchronous Error (TIN 2)
The DSE trap is raised when a data access (load or store) results in a synchronous error other than
those causing a VAP, MPR, or MPW trap.  

6.3.5.3 DAE Data access, Asynchronous Error (TIN 3)
The DAE trap is raised when a the memory system reports back an error of some sort, and the error
cannot immediately be linked to a currently executing instruction.  Generally, this means an error
returned on the system bus from a peripheral or external memory.  

There is normally an implementation-dependent register that can be interrogated, to determine
more precisely the source of the error.  Refer to the User's Manual for the implementation in
question for details.
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6.3.6 Assertion Traps

6.3.6.1 OVF Arithmetic Overflow (TIN 1)
Raised by the TRAPV instruction, if the overflow bit in the PSW (PSW.V) is set.  

6.3.6.2 SOVF Sticky Arithmetic Overflow (TIN 2)
Raised by the TRAPSV instruction, if the sticky overflow bit in the PSW (PSW.SV) is set.

6.3.7 6.3.7 System Call

6.3.7.1 SYS System Call
The SYS trap is raised immediately after the execution of the SYSCALL instruction, to initiate a
system call.  The TIN that will be loaded into D15 when the trap is taken is not fixed, but is specified
as an 8-bit unsigned immediate constant in the SYSCALL instruction.  The  return PC will point to the
instruction immediately following the SYSCALL.

6.3.8 6.3.8 Non-Maskable Interrupt

6.3.8.1 NMI Non-Maskable Interrupt (TIN 0)
The causes for raising a non-maskable interrupt are implementation dependent.  Typically, there
will be an external pin that can be used to signal the NMI, but it may also be raised in response to
such things as a watchdog timer interrupt,  or an impending power failure.  Refer to the User's
Manual for the implementation in question for details.
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7 Memory Management
This chapter provides the description of the memory management architecture of TriCore.

The principal features of the TriCore memory management include:

● 4-GByte virtual address space divided into sixteen 256 MB segments
● 4-GByte physical address space divided into sixteen 256 MB segments
● Addressing by direct translation or via Page Table Entries (PTE)
● Two addressing modes: physical and virtual (physical page attributes override virtual page 

attributes)

The virtual address space is divided into 16 segments of 256 MB each. The physical address space
is also divided into 16 segments of 256 MB each. Virtual addresses are always translated into
phsical addresses before accessing memory.

The virtual address is translated into a physical address using either direct translation or Page Table
Entry (PTE) translation. 

● Direct translation: If the virtual address belongs to the upper half of the virtual address space then 
the virtual address is directly used as the physical address. If the virtual address belongs to the 
lower half of the address space, then the virtual address is used directly as the physical address 
if the processor is operating in Physical mode.

● PTE translation: If the virtual address belongs to the lower half of the address space, then the 
virtual address is translated using a Page Table Entry if the processor is operating in Virtual 
mode. 

PTE translation is performed by replacing the Virtual Page Number (VPN) of the virtual address by
a Physical Page Number (PPN) to obtain a physical address. Six memory-mapped MMU Core
Special Function Registers (CSFRs) control the memory management system. 

Figure 7-1 shows the MMU registers and retained state (data structures). These elements are
discussed at length below.
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Figure 7-1 MMU Registers and Data Structures

7.1 Address Spaces
The TriCore virtual address space is 4 GB in size. The virtual address space is divided into 16
segments with each segment being 256 MB. The upper 4 bits of the 32-bit virtual address are used
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to identify the segment. Virtual segments are numbered 0–15. A virtual address is always translated
into a phsical address before accessing memory.

The physical address space is 4 GB in size. The physical address space is also divided into 16
segments with each segment being 256 MB. The upper 4 bits of the 32-bit physical address are
used to identify the segment. Physical segments are numbered 0–15.

The physical and virtual address space maps are shown in Figure 7-2.

Figure 7-2 Physical and virtual address spaces
A 32-bit virtual address is comprised of a Virtual Page Number (VPN) concatenated with a Page
Offset. A 32-bit physical address is comprised of a Physical Page Number (PPN) concatenated with
a Page Offset.

7.2 Address translation
The virtual address is translated into a physical address using either direct translation or Page Table
Entry (PTE) translation as shown in Figure 7-3. If the virtual address belongs to the upper half of the
virtual address space then the virtual address is used directly as the physical address (direct
translation). If the virtual address belongs to the lower half of the address space, then the virtual
address is used directly as the physical address if the processor is operating in Physical mode
(direct translation, or no MMU is present in the core) or translated using a Page Table Entry if the
processor is operating in Virtual mode (PTE translation). The MMUCON.V bit controls the Physical/
Virtual operating mode of the processor as outlined in the section on the MMUCON register.
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Translation using the PTE is done by replacing the Virtual Page Number (VPN) of the virtual
address by a Physical Page Number (PPN) to obtain a physical address. 

Figure 7-3 Virtual address translation

7.2.1 Address translation for context pointers
The context pointers (PCX, FCX, LCX) are constrained to use direct translation. See Context
Management Registers.

7.3 Translation Lookaside Buffers
The MMU provides PTE-based virtual address translation through two Translation Lookaside
Buffers (TLBs) which are referred to as TLB-A and TLB-B. The MMU supports up to four page sizes
which include 1 KB, 4 KB, 16 KB, and 64 KB page sizes. However, at any given time, each TLB
provides translations for only one particular page size. The page size setting of each TLB is
determined through the MMUCON.SZA and MMUCON.SZB fields as outlined in MMU
Configuration register (MMUCON). 

Each TLB contains a number N of TLB Table Entries (TTEs) where N is a minimum of 4 and a
maximum of 128. The MMUCON.TSZ field determines the size of each TLB as outlined in the
section on the MMUCON register. Each TTE has an 8-bit index associated with it. Index numbers
0, ..., MMUCON.TSZ are used for the entries in TLB-A while index numbers 128, ...,

smk lÑÑëÉí

smk mmk

lÑÑëÉímmk

qi_ aáêÉÅí

qê~åëä~íÉÇ
 89      v. 1.3.1
 



Memory Management
Cacheability Architecture Manual
2001-04-30 @ 15:16
128+MMUCON.TSZ are used for the entries in TLB-B. Each TTE contains a Page Table Entry
(PTE). The organization of each TLB is implementation-dependent.

7.3.1 TLB Table Entry Contents
TLB Table Entries (TTE) contain the following fields:

● Address Space Identifier (ASI) — specifies the address space corresponding to the virtual 
address. ASIs allow mappings of up to 32 virtual address spaces to coexist in the TLB. An ASI 
is similar to a Process ID.

● Virtual Page Number (VPN) — stores 32 – log2 PageSize bits where PageSize is the size of the 
page in bytes.

● Physical Page Number (PPN) — stores 32 – log2 Pagesize bits where Pagesize is the size of the 
page in bytes.

● Execute Enable (XE) — enables instruction fetches to the page.
● Write Enable (WE) — enables data writes to the page.
● Read Enable (RE) — enables data reads from the page.
● Cacheability bit (C) — indicates that the page is cacheable.
● Global bit (G) — indicates that the page is globally mapped thus making it visible in all address 

spaces.
● Valid bit (V) — indicates that the TTE contains a valid mapping.

7.4 Cacheability 
The cacheability of a virtual address is determined using separate mechanisms for the two
translation paths.

7.4.1 Cacheability for direct translation
The cacheability status of a virtual address that undergoes direct translation is controlled by an
implementation-specific cacheability attribute associated with the segment. The segment
cacheability attributes are not a part of the MMU specification. These cacheability attributes are
provided by the system memory map for the specific CPU core. Figure 7-4 shows the criteria for
cachability of a virtual address. A virtual address is cachable according to the following pseudocode
description.
if (MMUCON.V == 0) {/* Physical mode */
if (Cacheability_attribute == 1)
Cacheable = True
else
Cacheable = False
} else {
if (VA(31) = = 1) {/* Reference to upper half of virtual memory */
if (Cacheability_attribute == 1) /* Direct map */
Cacheable = True
else
Cacheable = False
} else if (PTE.C == 1) /* Page Table Entry cachability property set */
{ if (cacheability_attribute == 1) /* Physical Page Attribute override */
Cacheable = True
} else
Cacheable = False
}
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Figure 7-4 Cacheability of a virtual address

7.4.2 Cacheability for PTE based translation
The cacheability status of a virtual address that undergoes PTE-based translation is determined
using the cacheability attribute of the PTE used for the address translation. Each PTE has a C bit
that controls the cacheability status of the page. 

7.5 Protection
Memory protection is enforced using separate mechanisms for the two translation paths as
described in this section. 

7.5.1 Protection for Direct Translation
Memory protection for addresses that undergo direct translation is enforced using standard TriCore
range-based protection. See the chapter titled Protection System. The range-based protection
mechanism provides support for protecting memory ranges from unauthorized read, write, or
instruction fetch accesses.
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Furthermore, User-0 accesses to virtual addresses in the upper half of the virtual address space are
disallowed when operating in Virtual mode. In Physical mode, User-0 accesses are disallowed only
to segments 14 and 15. Any User-0 access to a virtual address that is restricted to User-1 or
Supervisor mode will cause a Virtual Address Protection (VAP) Trap in both the Physical and Virtual
modes.

7.5.2 Protection for PTE-Based Translation
Memory protection for addresses that undergo PTE-based translation is enforced by examining
properties of the PTE used for the address translation. The PTE provides support for protecting a
process from unauthorized read, write, or instruction fetches by other processes. The PTE has the
following bits that are provided for this purpose:

● Execute Enable (XE) — enables instruction fetch to the page.
● Write Enable (WE) — enables data writes to the page.
● Read Enable (RE) — enables data reads from the page.

7.6 Multiple Address Spaces
The MMU provides efficient support for multiple virtual address spaces. Each TTE contains an
Address Space Identifier (ASI) which identifies the address space corresponding to the particular
virtual address. Ambiguities in virtual address mappings are avoided by the use of the Address
Space Identifier. The Address Space Identifier Register (ASI) is also provided to support multiple
address spaces.

Virtual address translation is performed by a TTE if:

● It is a valid non-global TTE that matches the incoming VPN of the virtual address and the 
Address Space Identifier contained in the ASI register, or 

● It is a valid global TTE that matches the incoming VPN.

Note that global TTEs are indicated by the G bit and such mappings are visible to all virtual address
spaces.

7.7 MMU traps
MMU traps belong to Trap Class Number (TCN) 0 in the TriCore architecture. The MMU can
generate the following traps:

● VAF (Virtual Address Fill)
● VAP (Virtual Address Protection)
See Trap Types in the chapter titled Memory Management.

The Virtual Address Fill trap is generated if PTE-based translation is required for a virtual address
and the PTE corresponding to the translation is missing in the MMU. The Virtual Address Protection
trap is generated if the access is disallowed. The VAF trap is assigned a TIN (Trap Identification
Number) of 0 while the VAP trap is assigned a TIN of 1. Both the VAF and VAP traps are
synchronous traps. 

The events that happen on an MMU trap are identical to the events that happen on any other trap.
The virtual address is right shifted by 10 + 2*min(SZA, SZB) and loaded into the Translation Fault
Address (TFA) register. 
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Figure 7-5 shows how MMU traps in Physical mode are handled. In Physical mode, User-0
accesses are disallowed to segments 14 and 15. Any User-0 access to a virtual address that is
restricted to User-1 or Supervisor mode will cause a Virtual Address Protection (VAP) Trap.

Figure 7-5 MMU traps in Physical mode
Figure 7-6 shows how MMU traps in Virtual mode are handled. User-0 accesses to virtual
addresses in the upper half of the virtual address space are disallowed when operating in Virtual
mode. Any User-0 access to a virtual address that is restricted to User-1 or Supervisor mode will
cause a Virtual Address Protection (VAP) Trap.
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Figure 7-6 MMU traps in Virtual mode

7.8 MMU instructions
All MMU instructions are privileged instructions that require PSW.IO = 2 (Supervisor mode) for
execution. If the MMU is physically present (MMUCON.MXT = 0) the instructions are non-faulting
and execute normally whether the MMU is enabled or not (MMUCON.V = 0 or 1). If there is no MMU
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7.8.1 TLBMAP (TLB Map)
The TLBMAP instruction is used to install a mapping in the MMU. The TLBMAP instruction takes an
extended data register (Ea) as a parameter. The even Ea register contains the VPN for the
translation while the odd Ea register contains the page attributes and PPN. The ASI for the
translation is obtained from the ASI register. The page attributes are contained in the most
significant byte of the odd register with the format as shown below. 

Installing a mapping for a virtual address for which a mapping already exists in the MMU is a NOP.
Installing a mapping for a page size which is not one of the two valid page sizes for either of the two
TLBs results in a NOP. Installing a mapping when the two TLBs have identical page size settings
results in the mapping being installed in one of the two TLBs with the choice being implementation
dependent.

7.8.2 TLBDEMAP (TLB Demap)
The TLBDEMAP instruction is used to uninstall a mapping in the MMU. The TLBDEMAP instruction
takes a data register (Da) as a parameter. The address space identifier (ASI) for the demap
operation is obtained from the ASI register. Demapping a translation that does not exist in the MMU
results in a NOP.

7.8.3 TLBFLUSH (TLB Flush)
The TLBFLUSH instructions are used to flush mappings from the MMU. There are two variants of
the TLBFLUSH instruction: TLBFLUSH.A flushes all the mappings from TLB-A while TLBFLUSH.B
flushes all the mappings from TLB-B.

7.8.4 TLBPROBE (TLB Probe)
The TLBPROBE instructions are TLBPROBE.A and TLBPROBE.I.

The TLBPROBE.A (TLB Probe Address) instruction takes a data register (Da) as a parameter and
is used to probe the MMU for a virtual address. The Da register contains the virtual address for the
probe. The address space identifier for the probe is obtained from the ASI register.

The TLBPROBE.I (TLB Probe Index) instruction takes a data register (Da) as a parameter and is
used to probe the TLB at a given index. The Da register contains the index for the probe. 
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The TLBPROBE instructions return the ASI and VPN of the translation in the Translation Virtual
Address register (TVA), the PPN and attributes in the Translation Physical Address register (TPA),
and the TLB index of the translation in the Translation Page Index register (TPX). The TPA.V bit is
set to zero if the TTE contained an invalid translation or an invalid index was used for the probe. 

7.9 MMU Special Function Registers 
All MMU Special Function Registers are memory-mapped. All registers can be read using the
MFCR instructon. The MMUCON and ASI registers are the only software-writeable registers. The
MMUCON and ASI registers are written using the MTCR instruction. 

7.9.1 MMU Configuration register (MMUCON)

 

MMUCON
MMU Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MXT - TSZ SZB SZA V

Field Bits Type Value Description
MXT 15 r MMU Exists

indication if there is an MMU physically instantiated. This aids SW 
diagnostics and OSs to determine if there is an MMU resource present, and 
indicates whether MMU instructions will trap

0 MMU exists in the design and is present
1 MMU does not exist in the design (all other bits in MMUCON 

undefined)
TSZ 11:5 r  TLB Size

Determines the size of each of the TLBs. The entries of TLB-A are indexed 
0 through TSZ while the entries of TLB-B are indexed 128, 128 through 
128+TSZ. Thus, each TLB has a maximum of TSZ+1 entries.
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Note: If MMUCON.MXT = 1 (MMU does not exist) then all other registers in the section do not exist
and are undefined. If they are accessed no error occurs, but the read and write results are
undefined.

7.9.2 Address Space Identifier (ASI)

SZB 4:3 rw Page Size B.
Page size of the mappings in TLB-B. 

00 1KB
01 4KB

10 16KB
11 64KB

SZA 2:1 rw Page Size A.
Page size of the mappings in TLB-A. 
00 1KB

01 4KB
10 16KB

11 64KB
V 0 rw Virtual mode. 

In Virtual mode, the lower half of the virtual address space undergoes PTE-
based translation and the upper half of the virtual address space undergoes 
direct translation. Clearing this bit sets the processor in Physical mode 
whereby the virtual address is used directly as the physical address.
0 Physical mode

1 Virtual mode

ASI
Address Space Identifier Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- ASI

Field Bits Type Value Description
 97      v. 1.3.1
 



Memory Management
MMU Special Function Registers Architecture Manual
2001-04-30 @ 15:16
 

7.9.3 Translation Virtual Address register (TVA)
The TVA register is used to return the ASI and VPN of a translation by a TLBPROBE instruction.

Field Bits Type Value Description
ASI 4:0 rw Address Space Identifier

The ASI register contains the Address Space Identifier of the 
current process.

TVA
Translation Virtual Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 ASI VPN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN

Field Bits Type Value Description
ASI 28:24 r Address Space Identifier

The ASI register contains the Address Space Identifier of the 
current process.

VPN 23:0 r Virtual Page Number
98      v. 1.3.1



Memory Management
MMU Special Function RegistersArchitecture Manual

2001-04-30 @ 15:16
7.9.4 Translation Physical Address register (TPA)
The TPA register is used to return the PPN and attributes of a translation by a TLBPROBE
instruction. 

 

TPA
Translation Physical Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

V XE WE RE G C PSZ PPN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPN

Field Bits Type Value Description
V 31 r Valid bit

Indicates that the TTE contains a valid mapping

0 Invalid
1 Valid

XE 30 r Execute Enable
Enables instruction fetches to the page.
0 Disabled

1 Enabled
WE 29 r Write Enable

Enables data writes to the page.
0 Disabled

1 Enabled
RE 28 r Read Enable

Enables data reads from the page.
0 Disabled

1 Enabled
G 27 r Global bit

Indicates that the page is globally mapped thus making it visible in all 
address spaces.
0 Not globally mapped

1 Globally mapped
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7.9.5 Translation Page Index Register (TPX)
The TPX register is used to return the TLB index of a translation by a tlbprobe instruction. 

C 26 r Cacheability bit
Indicates that the page is cacheable.

0 Not cacheable
1 Cacheable

PSZ 25:24 r Page size
1 KB, 4 KB, 16 KB, and 64 KB page sizes
00 1 KB

01 4 KB
10 16 KB

11 64 KB
PPN 23:0 r Physical Page Number

Stores 32 – log2 Pagesize bits where Pagesize is the size of the page in 
bytes based on the PSZ field.

TPX
Translation Page Index Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- Index

Field Bits Type Value Description
Index 7:0 r Translation index.

Field Bits Type Value Description
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7.9.6 Translation Fault Address register (TFA)
The TFA register contains the faulting virtual address right shifted by 10 + 2*min(SZA, SZB) bits.  

7.9.7 Reset values
All registers other than the MMUCON register have undefined values at reset. The MMUCON
register is set to 0b0yyyyyyy00000 at reset where yyyyyyy is implementation-dependent.

TFA
Translation Fault Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 FVA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FVA

Field Bits Type Value Description
FVA 23:0 r Faulting virtual address
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8 Protection System
Protection is increasingly important as embedded applications increase in size and complexity. The
focus for embedded systems is different than it is for workstations and PCs, because embedded
systems normally are not faced with the problem of maintaining their integrity against unknown and
perhaps hostile user code. However, protection capabilities are useful for protecting core system
functionality from bugs that may have slipped through testing. They are also important aids to
testing and debugging.

The TriCore protection system provides the essential features needed to isolate errors and facilitate
debugging. It protects critical system functions against both software and transient hardware errors.
The TriCore protection system is unobtrusive, imposing little overhead and avoiding non-
deterministic run-time behavior. 

This chapter describes the hardware operation of the protection system. Other sections introduce
the use of the protection features by software in real-time systems.

8.1 Direct and Page Table Entry Addressing
Virtual addresses are translated into  physical addresses using one of two translation mechanisms:
(a) direct translation, and (b) Page Table Entry (PTE) based translation. Memory protection for
addresses that undergo direct address translation is enforced using the range-based memory
protection system described in this chapter. The range-based protection mechanism provides
support for protecting memory ranges from unauthorized read, write, or instruction fetch accesses.
Page Table Entry based translation occurrs if the processor is operating in Virtual mode. For a
discussion of virtual addressing, see Memory Management.

User-0 accesses to virtual addresses in the upper half of the virtual address space are disallowed
when operating in Virtual mode. In Physical mode, User-0 accesses are disallowed only to
segments 14 and 15. Any User-0 access to a virtual address that is restricted to User-1 or
Supervisor mode will cause a Virtual Address Protection (VAP) Trap in both the Physical and Virtual
modes.  

8.2 Protection System Registers
There are 2 major components to the protection system: 

● The control bit fields in the Program Status Word (PSW) register
● The memory protection registers which control program execution and memory access

See Program Status Word (PSW) section in the Core Registers chapter.
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8.2.1 Memory Protection Registers
The memory protection model for the TriCore architecture is based on address ranges, with specific
access permissions associated with each range. Ranges and their associated permissions are
specified in two to four identical sets of tables residing in Core Special Function Register (CSFR)
space. Each set is referred to as a protection register set. A protection register set consists of Data
Segment Protection Registers, Data Protection Mode Registers, Code Segment Protection
Registers, and Code Protection Mode Registers.           

DPRx_n
Data Segment Protection Register Pair

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

upper bound

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

upper bound

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

lower bound

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lower bound
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CPRx_n
Code Segment Protection Register Pair

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

upper bound

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

upper bound

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

lower bound

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lower bound
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DPMx_n
Data Protection Mode Register

7 6 5 4 3 2 1 0

WE RE WS RS WBL RBL WBU RBU

Field Bits Type Value Description
WE 7 rw  Address Field Write Enable

0 Data write accesses to  associated address range not permitted
1 Data write accesses to  associated address range  permitted

RE 6 rw Address Field Read Enable
0 Data read accesses to  associated address range not permitted

1 Data read accesses to  associated address range permitted
WS 5 rw Address Range Data Write Signal

0 Data write signal disabled
1 Signal asserted to debug unit on data write accesses to associated 

address range

RS 4 rw Address Range Data Read Signal
0 Data read signal disabled

1 Signal asserted to debug unit on data read accesses to associated 
address range

WBL 3 rw  Data Write Signal on Lower Bound Access
0 Data write signal disabled

1 Signal asserted to debug unit on data write  access to an address 
that matches lower bound address of associated address range

RBL 2 rw Data Read Signal on Lower Bound Access
0 Data read signal disabled

1 Signal asserted to debug unit on data read  access to an address 
that matches lower bound address of  associated address range

WBU 1 rw Data Write Signal on Upper Bound Access

0 Write signal disabled

1 Signal asserted to debug unit on data write  access to an address 
that matches upper bound address of associated address range
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RBU 0 rw Data Read Signal on Upper Bound Access
0 Data read signal disabled

1 Signal asserted to debug unit on data read  access to an address 
that matches upper bound address of associated address range

Field Bits Type Value Description
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CPMx_n
Code Protection Mode Register

7 6 5 4 3 2 1 0

XE Res XS Res BL Res Res BU

Field Bits Type Value Description
XE 7 Address Range Execute Enable

0 Instruction fetch accesses to associated address range not permitted
1 Instruction fetch accesses to associated address range permitted

Res 6 -
XS 5 Address Range Execute Signal

0 Execute signal disabled
1 Signal asserted to debug unit on instruction fetch accesses to 

associated address range

Res 4 -
BL 3 Execute Signal on Lower Bound Access

0 Lower bound execute signal disabled
1 Signal asserted to debug unit on instruction fetch access to an 

address that matches lower bound address of associated address 
range

Res 2:1 -
BU 0 Execute Signal on Upper  Bound Access

0 Upper bound execute signal disabled
1 Signal asserted to debug unit on instruction fetch access to an 

address that matches upper bound address of associated address 
range
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At any given time, one of the sets is the current protection register set, which determines the legality
of memory accesses by the current task or ISR. The PRS field in the PSW indicates the current
protection register set number.

Each protection register set contains separate address range tables for checking data accesses
and code accesses. The range table entry is a pair of words specifying a lower and an upper bound
for the associated range. The range defined by one range table entry is the address interval:
lower bound <= address < upper bound

Each range table entry has an associated mode table entry where access permissions and debug
signal conditions for that range are specified. On load and store operations, data address values are
checked against the entries in the data range table. On instruction fetches, the PC value for the
fetch is checked against the entries in the code range table. When an address is found to fall within
a range defined in the appropriate range table, the associated mode table entry is checked for
access permissions and debug signal generation.

The number of protection register sets in a TriCore derivative is implementation-dependent. The
minimum number in a conforming implementation is 2, and the maximum number is 4. In a 2-set
implementation, 1 of the sets corresponds to the current background task, and the other is common
to any ISR. (In this case “background” task means the control thread executes at hardware priority
level 0 when the interrupt stack is empty.) This configuration allows taking an interrupt and then
returning from the interrupt to the interrupted task without changing any protection register or
address range table values. Only the selection of the active set of protection registers changes.

8.2.1.1 Modes of Use for Range Table Entries
Individual range table entries can be used just for memory protection or for debugging. One entry
rarely is used for both purposes. If the upper and lower bound values have been set for debug
breakpoints, they probably are not meaningful for defining protection ranges, and vice versa.
However, it is both possible and reasonable to have some entries used for memory protection and
other used for debugging.

To disable an entry for use in memory protection, clear both the RE and WE bits in a data range
table entry or clear the XE bit in a code range table entry. The entry can be disabled for use in
debugging by clearing any debug signal bits.

When a range entry is being used for debugging, the debug signal bits that are set determine
whether it is used as a single range comparator (giving an in-range/not in-range signal) or as a pair
of equal comparators. The 2 uses are not mutually exclusive.

8.2.1.2 Using Protection Register Sets
If there were only 1 protection register set, then either the mappings used would have to be general
enough to apply to all tasks and ISRs—and hence not terribly useful for isolating software errors in
individual tasks—or there would have to be a substantial overhead paid on interrupts and task
context switches for updating the tables to match the currently executing task or ISR. By providing
for multiple sets of tables, with 2 bits in the PSW to select the currently active set, those drawbacks
are avoided.

Note that supervisor mode does not automatically disable memory protection. The protection
register set that is selected for supervisor tasks will normally be set up to allow write access to
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regions of memory that are protected from user mode access. In addition, of course, supervisor
tasks can execute instructions to change the protection maps, or to disable the protection system
entirely. But supervisor mode does not implicitly override memory protection, and it is possible for
a supervisor task to take a memory protection trap.

8.3 Sample Protection Register Set
Figure 8-1 illustrates Data Protection Register Set n, where n is one of the 4 sets as selected by the
PSW.PRS field. Each register set in this example consists of 4 range table entries. The ranges
defined can potentially overlap, or be nested. Nesting of ranges can be used, for example, to allow
write access to a subrange of a larger range in which the current task is allowed read access. The
4 Data Segment Protection Registers and 4 Data Protection Mode Registers are set up as follows:

● Data Segment Protection Register 3 (DPRx_3) defines the upper and lower bound for Data 
Range 4. Data Protection Mode Register 3 (DPMx_3) defines the permissions and debug 
conditions for Data Range 4. 

● Data Segment Protection Register 2 (DPRx_2) defines the upper and lower bound for Data 
Range 3. Data Protection Mode Register 2 (DPMx_2) defines the permissions and debug 
conditions for Data Range 3. Note that Data Range 3 is nested within Data Range 4. 

● Data Segment Protection Register 1 (DPRx_1) defines the upper and lower bound for Data 
Range 2. Data Protection Mode Register 1 (DPMx_1) defines the permissions and debug 
conditions for Data Range 2. 

● Data Segment Protection Register 0 (DPRx_0) defines the upper and lower bound for Data 
Range 1. Data Protection Mode Register 0 (DPMx_0) defines the permissions and debug 
conditions for Data Range 1. 

This same configuration can be used to illustrate Code Protection Register Set n.
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Figure 8-1
Example Configuration of a Data Protection Register Set

8.4 Memory Access Checking
When the protection system is enabled, every memory access (read, write, or execute) is checked
for legality before the access is performed. The legality is determined by all of the following:

● The protection enable bits in the Syscon Register, 
● The current I/O privilege level (0 = User-0; 1 = User-1; 2 = Supervisor), and 
● The ranges defined in the currently selected protection register set. 

Data addresses (read and write accesses) are checked against the currently selected data address
range table, while instruction fetch addresses are checked against the code address range tables.
The mode entries for the data range table entries enable only read and write accesses, while the
mode entries for the code range table entries enable only execute access. In order for data to be
read from program space, there must be an entry in the data address range table that covers the
address being read. Conversely there must be an entry in the code address range table that covers
the instruction being read.

Access to the internal and external peripherals is through the 2 upper segments of the TriCore
address space (high-order address bits equal to 11102 and 11112). Access checking for addresses
in the peripheral segments is independent of access checking in the remainder of the address
space. Access to peripheral segments is not allowed for tasks at I/O privilege level 0 (User-0 tasks).
Tasks at I/O privilege 1 and higher have access rights to the peripheral segment space. However,
the validity of any access attempt depends on the presence of a peripheral at the accessed address,

Upper Bound

Lower Bound

Protection Mode DPMx_3

Data Range
4Data Range

3

Data Range
2

Data Range
1

Upper Bound

Lower Bound

Protection Mode DPMx_2

Upper Bound

Lower Bound

Protection Mode DPMx_1

Upper Bound

Lower Bound

Protection Mode DPMx_0

DPRx_3

DPRx_2

DPRx_1

DPRx_0
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and any restrictions it may impose on its own access. Protected peripherals, for example, require
that the I/O privilege be 2, as reflected by the supervisor line value on the system bus. 

If the memory protection system is disabled, then any access to any memory address outside of the
peripheral segments is permitted, regardless of the I/O privilege level. There are no memory regions
reserved for supervisor access only, when the memory protection system is disabled.

When the memory protection system is enabled, for an access to be permitted, the address for the
access must fall within 1 or more of the ranges specified in the currently selected protection register
set. Furthermore, the mode entry for at least 1 of the matching ranges must enable the requested
type of access. 

8.4.1 Permitted vs. Valid Accesses
A memory access can be permitted within the ranges specified in the data and code range tables
without necessarily being valid. A range specified in a range table entry could cover 1 or more
address regions where no physical memory was implemented. Although that would normally reflect
an error in the system code that set up the address range, the memory protection system only uses
the range table entries when determining whether an access is permitted. In addition, if the memory
protection system is disabled, all accesses must be taken as permitted, though individual accesses
may or may not be valid.

An access that is not permitted under the memory protection system results in a memory protection
trap. When permitted, an access to an unimplemented memory address results in a bus error trap,
provided that the memory address is in 1 of the segments reserved for local memory. If the address
is an external memory address, the result depends on the memory implementation, and is not
architecturally defined.

An access can also be permitted but invalid due to a misaligned address. Misaligned accesses
result in an alignment trap, rather than a protection trap.

8.4.2 Crossing Protection Boundaries
An access can straddle two regions. For example, Figure 8-2 illustrates the condition where
Instruction A lies in an execute region of memory, Instruction C lies in a no-execute region of
memory, and Instruction B straddles the execute/no execute boundary.

Figure 8-2
Protection Boundaries
Because the PC is used in the comparison with the range registers, the execute permissions
exception is not signaled until Instruction C is fetched. The same is true for all comparisons—the
address of the first accessed byte is compared against the memory protection range registers.

A B C

Execute No Execute
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Hence, an access assumes the memory protection properties of the first byte in the access
regardless of the number of bytes involved in the access.

For normal accesses, this assumption is not a problem, because the regions are set up according
to the natural access boundaries for the code or data that the region contains. For wild accesses
due to software or hardware errors, stores are the main concern. In the worst case, a doubleword
store that is aligned on a halfword boundary can extend three halfwords beyond the end of the
region in which its address lies. 

One way to prevent boundary crossings is to leave at least three halfwords of buffer space between
regions. This configuration prevents wild stores from destroying data in adjacent read-only regions,
for example. 
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9 Instruction Set Overview
This chapter provides an overview of the TriCore instruction set architecture. The basic properties
and usage of each instruction type are described, as well as the selection and usage of the 16-bit
(short) instructions.

9.1 Arithmetic Instructions
Arithmetic instructions operate on data and addresses in registers. Status information about the
result of the arithmetic operations is recorded in the five status flags in the Program Status Word
(PSW) register. The status flags are described in Table 9-1.

The two signed overflow conditions (overflow and advance overflow) are calculated for all arithmetic
instructions. In the case of packed instructions, the conditions are the OR of the conditions for each
byte or halfword (parallel) operation. In the case of the multiply-accumulate instructions, the
conditions are calculated after the accumulate operation.

The unsigned overflow condition is carry for addition and borrow, i.e. no carry, for subtraction.

Numerically, for signed 32-bit values, overflow occurs when a positive result is greater than
0x7FFFFFFF or a negative result is smaller than 0x80000000. For unsigned 32-bit values, overflow
occurs when the result is greater than 0xFFFFFFFF or less than 0x00000000. 

The status flags can be read by software using the Move From Core Register (MFCR) instruction
and can be written using the Move to Core Register (MTCR) instruction. The Trap on Overflow
(TRAPV) and Trap on Sticky Overflow (TRAPSV) instructions can be used to cause a trap if the V
and SV bits, respectively, are set. The overflow bits can be cleared using the Reset Overflow Bits
instruction (RSTV). 

Individual arithmetic operations can be checked for overflow by reading and testing V. If one is only
interested in knowing if an overflow occurred somewhere in an entire block of computation, then the
SV bit is reset before the block (using the RSTV instruction) and tested after completion of the block

Table 9-1 
PSW Status Flags

Status 
Flag

Description

C Carry. This flag is set as the result of a carry out from an addition or subtraction instruction. 
Carry out can result from either signed or unsigned operations. It is also set by arithmetic 
shift.

V Overflow. This flag is set when the signed result cannot be represented in the data size of 
the result; for example, when the result of a signed 32-bit operation is greater than 231–1.

SV Sticky Overflow. This flag is set when the overflow flag is set. It remains set until it is 
explicitly cleared by an RSTV (Reset Overflow bits) instruction.

AV Advance Overflow. This flag is updated by all instructions that update the overflow flag 
and no others. This flag is determined as the Boolean exclusive-or of the two most-
significant bits of the result.

SAV Sticky Advance Overflow. This flag is set whenever the advanced overflow flag is set. It 
remains set until it is explicitly cleared by an RSTV (Reset Overflow bits) instruction.
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(using MFCR). Jumping based on the overflow result can be done using a MFCR followed by a JZ.T
or JNZ.T (conditional jump on the value of a bit).

The AV and SAV bits are set as a result of the exclusive OR of the two most-significant bits of the
particular data type (byte, halfword, word, or doubleword) of the result, which indicates that an
overflow almost occurred. 

Because most signal-processing applications can handle overflow by simply saturating the result,
most of the arithmetic instructions have a saturating version for signed and unsigned overflow. Note
that saturating versions of all instructions can be synthesized using short code sequences. 

When saturation is used for 32-bit signed arithmetic overflow, if the true result of the computation is
greater than (231–1) or less than –231, the result is set to (231–1) or –231, respectively. The bounds
for 16-bit signed arithmetic are (215–1) and –215, and the bounds for 8-bit signed arithmetic are (27–
1) and –27. When saturation is used for unsigned arithmetic, the lower bound is always zero and the
upper bounds are (232–1), (216–1), and (28–1). Saturation is indicated in the instruction mnemonic
by an “S”, and unsigned is indicated by a “U” following the period (.). For example, the instruction
mnemonic for a signed saturating addition is ADDS, and the mnemonic for an unsigned saturating
addition is ADDS.U.

Saturation is also used for signed fractions in DSP operations.

9.1.1 Integer Arithmetic

9.1.1.1 Move
The move instructions move a value in a data register or a constant value in the instruction to a
destination data register, and can be used to quickly load a large constant into a data register. A 16-
bit constant is created using MOV (which sign-extends the value to 32 bits) or MOV.U (which zero-
extends to 32 bits). The MOVH (Move Highword) instruction loads a 16-bit constant into the most-
significant 16 bits of the register and zero fills the least-significant 16 bits, which is useful for loading
a left-justified constant fraction. Loading a 32-bit constant can be done using a MOVH instruction
followed by an ADDI (Add Immediate), or a MOV.U followed by ADDIH (Add Immediate High Word).

9.1.1.2 Addition and Subtraction
The addition instructions have 3 versions: no saturation (ADD), signed saturation (ADDS), and
unsigned saturation (ADDS.U). For extended precision addition, the ADDX (Add Extended)
instruction sets the PSW carry bit to the value of the ALU carry out. The ADDC (Add with Carry)
instruction uses the PSW carry bit as the carry in, and updates the PSW carry bit with the ALU carry
out. For extended precision addition, the least-significant word of the operands is added using the
ADDX instruction, and the remaining words are added using the ADDC instruction. The ADDC and
ADDX instructions do not support saturation.

Often it is necessary to add 16- or 32-bit constants to integers. The ADDI (Add Immediate) and
ADDIH (Add Immediate High) instructions add a 16-bit, sign-extended constant or a 16-bit constant,
left-shifted by 16. Addition of any 32-bit constant can be done using ADDI followed by an ADDIH.

All add instructions except those with constants have similar corresponding subtract instructions.
Because the  immediate of ADDI is sign-extended, it may be used for both addition and subtraction.
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The RSUB (Reverse Subtract) instruction subtracts a register from a constant. Using zero as the
constant yields negation as a special case.

9.1.1.3 Multiply and Multiply-Add
To efficiently support both compiled C applications code and DSP code, there are a large number
of instruction forms for multiplication and for multiplication with accumulation.  Many of these
instructions share common assembler mnemonics, but are distinguished by the operand forms
encoded in the assembly instruction.

For multiplication of 32-bit integers, the available mnemonics are MUL (Multiply Signed), MULS
(Multiply Signed with Saturation), and MULS.U (Multiply Unsigned with Saturation).  These translate
to machine instructions producing either 32- or 64-bit results, depending on whether the destination
operand encoded in the assembly instruction is a single data register (Dn, where n = 0, 1, .. 15) or
an extended data register (En, where n = 0, 2, .. 14).

For multiplication of fractional data types ("Q" format), the available mnemonics are MUL.Q (Multiply
Q format) and MULR.Q (Multiply Q format with Rounding).  For each of these mnemonics, there are
eight distinct instructions.  The operand encodings for these instructions distinguish between 16-bit
source operands in either the upper of lower half of a data register (DnU and DnL), 32-bit source
operands (Dn), and 32- or 64-bit destination operands (Dn or En).  For both mnemonics, the
supported operand combinations are:

16U * 16U ➠  32

16L * 16L ➠  32

16U * 32 ➠  32

16L * 32 ➠  32

32 * 32 ➠  32

16U * 32 ➠  64

16L * 32 ➠  64

32 * 32 ➠  64

In those cases where the number of bits in the destination is less than the sum of the bits in the two
source operands, the result is taken from the upper bits of the product.  

These operations are also qualified by a shift count specifier of zero or one, which is applied to the
product before it is stored into the result.  A shift count of '1' removes the redundant sign bit in a
fractional product, and is the normal value for multiplication of fractional numbers.  A shift count of
'0' leaves in the redundant sign bit, and effectively scales the result by an implicit factor of 0.5.

There are also three assembler mnemonics for various forms of multiplication on packed 16-bit
fractionals.  The mnemonics are MUL.H (Packed Multiply Q format), MULR.H (Packed Multiply Q
format with Rounding), and MULM.H (Packed Multiply Q format, Multiprecision).  All of the
instructions using these mnemonics perform two 16 x 16 bit multiplications in parallel, using 16-bit
source operands in the upper or lower halves of their source operand registers.  MUL.H produces
two 32-bit products, stored into the upper and lower registers of an extended register pair.  Its
results are exact, with no need for rounding.  MULR.H produces two 16-bit Q-format products,
stored into the upper and lower halves of a single 32-bit register.  Its 32-bit intermediate products
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are rounded before discarding the low order bits, to produce the 16-bit Q-format results.  MULM.H
sums the two intermediate products, producing a single accumulator-format result that is stored into
an extended destination register pair.  For all three instruction groups, there are four supported
source operand combinations for the two multiplications.  They are:

16U * 16U, 16L * 16L

16U * 16L, 16L * 16U

16U * 16L, 16L * 16L

16L * 16U, 16U * 16U

The instruction forms for multiplication with accumulation, MADD and MSUB and related variations
(MADDS, MADDS.H,  MADD.Q, MADDS.Q, etc.), parallel the instruction forms for multiplication.  In
all cases, a third source operand register is specified, which provides the accumulator to which the
multiplier results are added.  Refer to the specific MADD and MSUB instruction descriptions for
details on the operand encodings supported.

9.1.1.4 Division 
Division of 32-bit by 32-bit integers is supported for both signed and unsigned integers. Because an
atomic divide instruction would require an excessive number of cycles to execute, a divide-step
sequence is used, which keeps down interrupt latency. The divide step sequence allows the divide
time to be proportional to the number of significant quotient bits expected.

The sequence begins with a Divide-Initialize instruction (DVINIT(.U), DVINIT.H(U), or DVINIT.B(U),
depending on the size of the quotient and on whether the operands are to be treated as signed or
unsigned). The divide initialization instruction extends the 32-bit dividend to 64 bits, then shifts it left
by 0, 16, or 24 bits. Simultaneously it shifts in that many copies of the quotient sign bit to the low-
order bit positions. Then follows 4, 2, or 1 Divide-Step instructions (DVSTEP or DVSTEP.U). Each
divide step instruction develops eight bits of quotient.

At the end of the divide step sequence, the 32-bit quotient occupies the low-order word of the 64-
bit dividend register pair, and the remainder is held in the high-order word. If the divide operation
was signed, the Divide-Adjust instruction (DVADJ) is required to perform a final adjustment of
negative values. If the dividend and the divisor are both known to be positive, the DVADJ instruction
can be omitted. 

9.1.1.5 Absolute Value, Absolute Difference
A common operation on data is the computation of the absolute value of a signed number or the
absolute value of the difference between 2 signed numbers. These operations are provided directly
by the ABS and ABSDIF instructions, and there is a version of each instruction which saturates
when the result is too large to be represented as a signed number. 

9.1.1.6 Min, Max, Saturate
Instructions are provided that directly calculate the minimum or maximum of 2 operands. The MIN
and MAX instructions are used for signed integers, and MIN.U and MAX.U are used for unsigned
integers.
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The SAT instructions can be used to saturate the result of a 32-bit calculation before storing it in a
byte or halfword in memory or a register.

9.1.1.7 Conditional Arithmetic Instructions
The conditional instructions—Conditional Add (CADD), Conditional Subtract (CSUB), and Select
(SEL)—provide efficient alternatives to conditional jumps around very short sequences of code. All
of the conditional instructions use a condition operand that controls the execution of the instruction.
The condition operand is a data register, with any non-zero value interpreted as TRUE, and a zero
value interpreted as FALSE. For the CADD and CSUB instructions, the addition/subtraction is
performed if the condition is TRUE, and for the CADDN and CSUBN instructions it is performed if
the condition is FALSE. 

The SEL instruction copies one of its 2 source operands to its destination operand, with the
selection of source operands determined by the value of the condition operand (This operation is
the same as the C language “?” operation).  A typical use might be to record the index value yielding
the larger of two array elements:
index_max = (a[i] > a[j]) ? i : j;

If one of the 2 source operands in a Select instruction is the same as the destination operand, then
the Select instruction implements a simple conditional move. This occurs fairly often, in source
statements of the general form:
if (<condition>) then <variable> = <expression>;

Provided that <expression> is simple, it is more efficient to evaluate it unconditionally into a source
register, using a SEL instruction to perform the conditional assignment, rather than conditionally
jumping around the assignment statement. 

9.1.1.8 Logical
The TriCore architecture provides a complete set of 2-operand, bit-wise logic operations. In addition
to the AND, OR, and XOR functions, there are the negations of the output — NAND, NOR, and
XNOR — and negations of 1 of the inputs — ANDN and ORN (the negation of an input for XOR is
the same as XNOR).

9.1.1.9 Count Leading Zeroes, Ones, and Signs
To provide efficient support for normalization of numerical results, prioritization, and certain
graphics operations, 3 Count Leading instructions are provided: CLZ (Count Leading Zeros), CLO
(Count Leading Ones), and CLS (Count Leading Signs). These instructions are used to determine
the amount of left shifting necessary to remove redundant zeros, ones, or signs. Note that the CLS
instruction returns the number of leading redundant signs, which is the number of leading signs
minus 1. Further, the following special cases are defined: CLZ(0) = 32, CLO(-1) = 32, and CLS(0)
= CLS(-1) = 31.

For example, CLZ returns the number of consecutive zeros starting from the most-significant bit of
the value in the source data register. In the example shown below (Figure 9-1), there are 7 zeros in
the most-significant portion of the input register. If the most-significant bit of the input is a 1, CLZ
returns 0.
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Figure 9-1
Operation of CLZ Instruction
The Count Leading instructions are useful for parsing certain Huffman codes and bit strings
consisting of Boolean flags, since the code or bit string can be quickly classified by determining the
position of the first one (scanning from left to right).

9.1.1.10 Shift
The shift instructions support multi-bit shifts. The shift amount is specified by a signed integer (n),
which may be the contents of a register or a sign-extended constant in the instruction. If n >= 0, the
data is shifted left by n[4:0]; otherwise, the data is shifted right by (-n)[4:0]. The (logical) shift
instruction, SH, shifts in zeroes for both right and left shifts; the arithmetic shift instruction, SHA,
shifts in sign bits for right shifts and zeroes for left shifts. The arithmetic shift with saturation
instruction, SHAS, will saturate (on a left shift) if the sign bits that are shifted out are not identical to
the sign bit of the result.

9.1.1.11 Bit-Field Extract and Insert
The TriCore architecture supports 3 bit-field extract instructions. The EXTR.U and EXTR
instructions extract w (width) consecutive bits from the source, beginning with the bit number
specified by the pos (position) operand. The width and position can be specified by 2 immediate
values, by an immediate value and a data register, or by a data register pair. The EXTR.U
instruction (Figure 9-2) zero-fills the most significant (32-w) bits of the result.

Data Register

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1

0 1 1 1

Count Leading Zero Logic

0 TAM021.1
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Figure 9-2
Operation of EXTR.U Instruction
The EXTR instruction (Figure 9-3) fills the most-significant bits of the result by sign-extending the bit
field extracted (i.e. duplicating the most-significant bit of the bit field). 

Figure 9-3
Operation of EXTR Instruction
The DEXTR instruction (Figure 9-4), concatenates two data register sources to form a 64-bit value
from which 32 consecutive bits are extracted. The operation can be thought of as a left shift by pos
bits, followed by the truncation of the least-significant 32 bits of the result. The value of pos is
contained in a data register or is an immediate value in the instruction. 

The DEXTR instruction can be used to normalize the result of a DSP filter accumulation in which a
64-bit accumulator is used with several guard bits. The value of pos can be determined by using the
CLS (Count Leading Signs) instruction. The DEXTR instruction can also be used to perform a multi-
bit rotation by using the same source register for both of the sources (that are concatenated).
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Figure 9-4
Operation of DEXTR Instruction
The INSERT instruction (Figure 9-5) takes the w least-significant bits of a source data register,
shifted left by pos bits and substitutes them into the value of another source register. All other (32-
w) bits of the value of the second register are passed through. The values of width and pos are
specified in the same way as for EXTR(.U). There is also an alternative form of INSERT that allows
a zero-extended 4-bit constant to be the value which is inserted.

Figure 9-5
Operation of INSERT Instruction

9.1.2 DSP Arithmetic
DSP arithmetic instructions operate on 16-bit, signed fractional data in the 1.15 format (also known
as Q15) and 32-bit signed fractional data in 1.31 format (also known as Q31). Data values in this
format have a single, high-order sign bit, with a value of 0 or -1, followed by an implied binary point
and fraction. Their values are in the range [-1, 1). 

16-bit DSP data is loaded into the most significant half of a data register, with the 16 least-significant
bits set to zero. The left alignment of 16-bit data allows it to be directly added to 32-bit data in 1.31
format. All other fractional formats can be synthesized by explicitly shifting data as required.
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Operations created for this format are multiplication, multiply-add, and multiply-subtract. The signed
fractional formats 1.15 and 1.31 are supported with the MUL.Q and MULR.Q instructions. These
instructions operate on 2 left-justified, signed fractions and return a 32-bit signed fraction.

9.1.2.1 Scaling
The multiplier result can be shifted in two ways:

● Left shifted by 1
– 1 sign bit is suppressed and the result is left-aligned, thus conserving the input format.

● Not shifted
– The result retains its 2 sign bits (2.30 format). 
– This format can be used with IIR filters, in which some of the coefficients are between 1 and

2, and to have 1 guard bit for accumulation.

9.1.2.2 Special case = –1 * –1 => +1 
When multiplying two maximum-negative 16-bit values (–1), the result should be the maximum
positive number (+1). For example, 
0x8000 * 0x8000 = 0x4000 0000

is correctly interpreted in Q format as:
-1(1.15 format) * -1(1.15 format) = +1 (2.30 format)

However, when the result is shifted left by 1, the result is 0x8000 0000, which is incorrectly
interpreted as: 
-1(1.15 format) * -1(1.15 format) = -1 (1.31 format)

To avoid this problem, the result of a Q format operation (–1 * –1) that has been left-shifted by 1 (left-
justified), is saturated to the maximum positive value. Thus, 
0x8000 * 0x8000 = 0x7FFF FFFF

is correctly interpreted in Q format as:
-1(1.15 format) * -1(1.15 format) = (nearest representation of)+1 (1.31 format)

This operation is completely transparent to the user and does not set the overflow flags. It applies
only to 16-bit by 16-bit multiplies and does not apply to 16 by 32-bit or 32 by 32-bit multiplies.

9.1.2.3 Guard bits
When accumulating sums (for example, in filter calculations) guard bits are often required to prevent
overflow. The instruction set directly supports the use of 1 guard bit when using a 32-bit
accumulator; when more guard bits are required, a register pair (64 bits) can be used.

9.1.2.4 Rounding
Rounding is used to retain the 16 most-significant bits of a 32-bit result. Rounding is combined with
the MUL, MADD, MSUB instructions, and is implemented by adding 1 to bit 15 of a 32-bit register.
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9.1.2.5 Overflow and Saturation
Saturation on signed and unsigned overflow is implemented as part of the MUL, MADD, MSUB
instructions. 

9.1.2.6 Sticky Advance Overflow and Block Scaling in FFT
The Sticky Advance Overflow (SAV) bit, which is set whenever an overflow “almost” occurred, can
be used in block scaling of intermediate results during an FFT calculation. Before each pass of
applying a butterfly operation, the SAV bit is cleared, and after the pass the SAV bit is tested. If it is
set, then all of the data is scaled (using an arithmetic right shift) before starting the next pass. This
procedure gives the greatest dynamic range for intermediate results without the risk of overflow.

9.1.3 Packed Arithmetic
The packed arithmetic instructions partition a 32-bit word into several identical objects, which can
then be fetched, stored, and operated on in parallel. These instructions, in particular, allow the full
exploitation of the 32-bit word of the TriCore architecture in signal and data processing applications.

The TriCore architecture supports two packed formats. The first format (Figure 9-6) divides the 32-
bit word into two, 16-bit (halfword) values. Instructions which operate on data in this way are
denoted in the instruction mnemonic by the “.H” and “.HU” data type modifiers.  

Figure 9-6
Packed Halfword Data Format
The second packed format (Figure 9-7) divides the 32-bit word into four, 8-bit values. Instructions
which operate on the data in this way are denoted by the “.B” and “.BU” data type modifiers. 
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Figure 9-7
Packed Byte Data Format
The loading and storing of packed values into data registers is supported by the normal Load Word
and Store Word instructions (LD.W and ST.W). The packed objects can then be manipulated in
parallel by a set of special packed arithmetic instructions that perform such arithmetic operations as
addition, subtraction, multiplication, etc. 

Addition is performed on individual packed bytes or halfwords using the ADD.B and ADD.H
instructions and their saturating variations ADDS.B and ADDS.H. ADD.B ignores overflow/
underflow within individual bytes, while ADDS.B will saturate individual bytes to the most positive,
8-bit signed integer (127) on individual overflow, or to the most negative, 8-bit signed integer (-128)
on individual underflow. Similarly, the ADD.H instruction ignores overflow/underflow within
individual halfwords, while the ADDS.H will saturate individual halfwords to the most positive 16-bit
signed integer (215-1) on individual overflow, or to the most negative 16-bit signed integer (-215) on
individual underflow. Saturation for unsigned integers is also supported by the ADDS.BU and
ADDS.HU instructions.

Besides addition, arithmetic on packed data includes subtraction, multiplication, absolute value,
and absolute difference.

9.2 Compare Instructions
The compare instructions perform a comparison of the contents of two registers. The Boolean result
(1 = true and 0 = false) is stored in the least-significant bit of a data register, and the remaining bits
in the register are cleared to zero. Figure 9-8 illustrates the operation of the LT (Less Than) compare
instruction.

Byte 3

Byte 3

Destination 3

Operation

Byte 2

Byte 2

Byte 1

Byte 1

Byte 0

Byte 0

Destination 2 Destination 1 Destination 0

Byte 1Byte 2Byte 3

Operand m

Operand n

Result
126      v. 1.3.1



Instruction Set Overview
Compare InstructionsArchitecture Manual

2001-04-30 @ 15:16
Figure 9-8
LT Comparison
The comparison instructions are: equal (EQ), not equal (NE), less than (LT), and greater than or
equal to (GE), with versions for both signed and unsigned integers. 

Comparison conditions not explicitly provided in the instruction set can be obtained by either
swapping the operands when comparing two registers, or by incrementing the constant by one
when comparing a register and a constant (Table 9-2). 

To accelerate the computation of complex conditional expressions, accumulating versions of the
comparison instructions are supported. These instructions, indicated in the instruction mnemonic by
“op” preceding the “ . “ (for example, op.LT), combine the result of the comparison with a previous
comparison result. The combination is a logic AND, OR, or XOR; for example, AND.LT, OR.LT, and
XOR.LT. Figure 9-9 illustrates combining the LT instruction with a Boolean operation. 

Table 9-2 
Equivalent Comparison Operations

“Missing” Comparison Operation TriCore Equivalent Comparison Operation
LE   Dc, Da, Db GE   Dc, Db, Da

LE   Dc, Da, const LT   Dc, Da, (const+1)
GT   Dc, Da, Db LT   Dc, Db, Da

GT   Dc, Da, const GE   Dc, Da, (const+1)
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Figure 9-9
Combining LT Comparison with Boolean Operation
The evaluation of the following C expression can be optimized using the combined compare-
Boolean operation:
d5 = (d1 < d2) || (d3 == d4);

Assuming all variables are in registers, the following two instructions will compute the value in d5:
lt d5,d1,d2 ; compute (d1 < d2)

or.eq d5,d3,d4 ; or with (d3 == d4)

Certain control applications require that several Booleans be packed into a single register. These
packed bits can be used as an index into a table of constants or a jump table, which permits complex
Boolean functions and/or state machines to be evaluated efficiently. To facilitate the packing of
Boolean results into a register, compound Compare with Shift instructions (for example, SH.EQ) are
supported. The result of the comparison is placed in the least-significant bit of the result after the
contents of the destination register have been shifted left by one position. Figure 9-10 illustrates the
operation of the SH.LT (Shift Less Than) instruction. 
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Figure 9-10
SH.LT Instruction

For packed bytes, there are special compare instructions that perform four individual byte
comparisons and produce a 32-bit mask consisting of four “extended” Booleans. For example,
EQ.B yields a result where individual bytes are 0xFF for a match or 0x00 for no match. Similarly, for
packed halfwords there are special compare instructions that perform two individual halfword
comparisons and produce two extended Booleans. The EQ.H instruction results in two extended
Booleans: 0xFFFF for a match and 0x0000 for no match. There are even abnormal packed-word
compare instructions that compare two words in the normal way but produce a single extended
Boolean. The EQ.W instruction results in the extended Boolean 0xFFFFFFFF for match and
0x00000000 for no match.

Extended Booleans are useful as masks, which can be used by subsequent bit-wise logic
operations. Also, CLZ (count leading zeros) or CLO (count leading ones) can be used on the result
to quickly find the position of the left-most match. Figure 9-11 shows an example of the EQ.B
instruction.
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Figure 9-11
EQ.B Instruction Operation

9.3 Bit Operations
Instructions are provided that operate on single bits, denoted in the instruction mnemonic by the “T”
data type modifier (for example, AND.T). 

There are eight instructions for combinatorial logic functions with two inputs, eight instructions with
three inputs, and eight with two inputs and a shift.

The one-bit result of a two-input function (for example, AND.T) is stored in the least-significant bit of
the destination data register, and the most-significant 31 bits are set to zero. The source bits can be
any bit of any data register. This is illustrated in Figure 9-12. The available Boolean operations are:
AND, NAND, OR, NOR, XOR, XNOR, ANDN, and ORN.

Figure 9-12
Boolean Operations
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Evaluation of complex Boolean equations can use the 3-input Boolean operations, in which the
output of a two-input instruction, together with the least-significant bit of a third data register, forms
the input to a further operation. The result is written to bit 0 of the third data register, with the
remaining bits unchanged (Figure 9-13)

Figure 9-13
Three-input Boolean Operation
Of the many possible 3-input operations, eight have been singled out for the efficient evaluation of
logical expressions. 

The instructions provided are: AND.AND.T, AND.ANDN.T, AND.NOR.T, AND.OR.T, OR.AND.T,
OR.ANDN.T, OR.NOR.T, and OR.OR.T. 

Just as for the comparison instructions, the results of bit operations often need to be packed into a
single register for controller applications. For this reason, the basic two-input instructions can be
combined with a shift prefix (for example, SH.AND.T). These operations first perform a single-bit left
shift on the destination register and then store the result of the two-input logic function into its least-
significant bit (Figure 9-14). 
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Shift Plus Boolean Operation
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9.4 Address Arithmetic
The TriCore architecture provides selected arithmetic operations on the address registers. These
operations supplement the address calculations inherent in the addressing modes used by the load
and store instructions. 

Initialization of base pointers requires loading a constant into an address register. When the base
pointer is in the first 16 Kbytes of each segment, this can be done using the Load Effective Address
(LEA) instruction, using the absolute addressing mode. Loading a 32-bit constant into an address
register can be accomplished using MOVH.A followed by an LEA that uses the base plus 16-bit
offset addressing mode. For example, 
movh.a a5, ((ADDRESS+0x8000)>>16) & 0xffff

lea a5, [a5](ADDRESS & 0xffff)

The MOVH.A instruction loads a 16-bit immediate into the most-significant 16-bits of an address
register and zero-fills the least-significant 16-bits.

Adding a 16-bit constant to an address register can be done using the LEA instruction with the base
plus offset addressing mode. Adding a 32-bit constant to an address register can be done in two
instructions: an Add Immediate High Word (ADDIH.A), which adds a 16-bit immediate to the most-
significant 16 bits of an address register, followed by an LEA using the base plus offset addressing
mode. For example, 
addih.a a8, ((OFFSET+0x8000)>>16) & 0xffff

lea a8, [a8](OFFSET & 0xffff)

The Add Scaled (ADDSC.A) instruction directly supports the use of a data variable as an index into
an array of bytes, halfwords, words, or doublewords. 

9.5 Address Comparison
As with the comparison instructions that use the data registers (see Compare Instructions), the
comparison instructions using the address registers put the result of the comparison in the least-
significant bit of the destination data register and clear the remaining register bits to zeros. An
example using the Less Than (LT.A) instruction is shown in Figure 9-15. 

Figure 9-15
LT.A Comparison Operation
There are comparison instructions for equal (EQ.A), not equal (NE.A), less than (LT.A), and greater
than or equal to (GE.A). As with the comparison instructions using the data registers, comparison
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conditions not explicitly provided in the instruction set can be obtained by swapping the two operand
registers (Table 9-3).

In addition to these instructions, instructions that test whether an address register is equal to zero
(EQZ.A), or not equal to zero (NEZ.A) are supported. These instructions are useful to test for null
pointers, which is a frequent operation when dealing with linked lists and complex data structures.

9.6 Branch Instructions
Branch instructions change the flow of program control by modifying the value in the PC register.
There are two types of branch instructions: conditional and unconditional. Whether or not a
conditional branch is taken depends on the result of a Boolean compare operation (see Compare
Instructions) rather than on the state of condition codes.

9.6.1 Unconditional Branch
There are three groups of unconditional branch instructions: Jump instructions, Jump and Link
instructions, and Call and Return instructions. 

A Jump instruction simply loads the Program Counter with the address specified in the instruction.
A Jump and Link instruction does the same, and also stores the address of the next instruction in the
“return address register” A11/RA. A jump and Link instruction can be used to implement a
subroutine call when the called routine does not modify any of the caller’s non-volatile registers. The
Call instructions differ from a Jump and Link in that they save the caller’s non-volatile registers in a
dynamically-allocated save area. The Return instruction, in addition to performing the return jump,
restores the non-volatile registers. 

Each group of unconditional jump instructions contains separate instructions that differ in how the
target address is specified. There are instructions using a relative 24-bit signed displacement (J, JL,
and CALL), instructions using 24 bits of displacement as an absolute address (JA, JLA, and
CALLA), and instructions using the address contained in an address register (JI, JLI, CALLI, RET,
and RFE). 

There are additional 16-bit instructions for a relative jump using an 8-bit displacement (J), an
instruction for an indirect jump (JI), and an instruction for a return (RET).

Both the 24-bit and 8-bit relative displacements are scaled by two before they are used, because all
instructions must be aligned on an even address. The use of a 24-bit displacement is shown in
Figure 9-16. 

Table 9-3 
Operation Equivalents

“Missing” Comparison Operation TriCore Equivalent Comparison Operation
LE.A   Dc, Aa, Ab GE.A   Dc, Ab, Aa
GT.A   Dc, Aa, Ab LT.A   Dc, Ab, Aa
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Figure 9-16
Displacement as Absolute Address 

9.6.2 Conditional Branch
The conditional branch instructions use the relative addressing mode, with a displacement value
encoded in 4, 8, or 15 bits. The displacement is scaled by 2 before it is used, because all instructions
must be aligned on an even (halfword) address. The scaled displacement is sign-extended to 32
bits before it is added to the program counter, unless otherwise noted. 

The Boolean test uses the contents of data registers, address registers, or individual bits in data
registers. 

9.6.2.1 Conditional Jumps on Data Registers
Six of the conditional jump instructions use a 15-bit signed displacement field: comparison for
equality (JEQ), non-equality (JNE), less than (JLT), less than unsigned (JLT.U), greater than or
equal (JGE), and greater than or equal unsigned (JGE.U). The second operand to be compared
may be an 8-bit sign- or zero-extended constant. There are two 16-bit instructions that test whether
the implicit D15 register is equal to zero (JZ) or not equal to zero (JNZ). The displacement is 8-bit
in this case. Another two 16-bit instructions compare the implicit D15 register with a 4-bit, sign-
extended constant (JEQ, JNE). The jump displacement field is limited to 4 zero-extended bits in this
case.

There is a full set of 16-bit instructions that compare a data register to zero: JZ, JNZ, JLTZ, JLEZ,
JGTZ, and JGEZ. Because any data register may be specified, the jump displacement is limited to
4-bit zero-extended constant in this case.

9.6.2.2 Conditional Jumps on Address Registers
The conditional jump instructions that use address registers are a subset of the data register
conditional jump instructions. Four conditional jump instructions use a 15-bit signed displacement
field: comparison for equality (JEQ.A), non-equality (JNE.A), equal to zero (JZ.A), and non-equal to
zero (JNZ.A).

Because testing pointers for equality to zero is so frequent, two 16-bit instructions, JZ.A and JNZ.A,
are provided, with a displacement field limited to 4  zero-extended bits.

20 0272831 21

0000000 0
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9.6.2.3 Conditional Jumps on Bits
Conditional jumps can be performed based on the value of any bit in any data register. The JZ.T
instruction jumps when the bit is clear, and the JNZ.T instruction jumps when the bit is set. For these
instructions, the jump displacement field is 15 bits.

There are two 16-bit instructions that test any of the lower 16 bits in the implicit register D15 and
have a displacement field of 4 zero-extended bits.

9.6.3 Loop Instructions
Four special versions of conditional jump instructions are intended for efficient implementation of
loops. The JNEI and JNED instructions are like a normal JNE instruction, but with an additional
increment or decrement operation of the first register operand. The increment or decrement
operation is performed unconditionally after the comparison. The jump displacement field is 15 bits.
For example, a loop that should be executed for D3 = 3, ..., 10 can be implemented as follows:

lea d3,3

loop1:

...

jnei d3,10,loop1

The LOOP instruction is a special kind of jump which utilizes the special TriCore hardware that
implements “zero overhead” loops. The LOOP instruction only requires execution time in the
pipeline the first and last time it is executed (for a given loop); for all other iterations of the loop, the
LOOP instruction has zero execution time. For example, a loop that should be executed 100 times
may be implemented as:

mova a2,99

loop2:

...

loop a2,loop2

The LOOP instruction above requires execution cycles the first time it is executed, but the other 99
executions require no cycles.

Note that the LOOP instruction differs from the other conditional jump instructions in that it uses an
address register, rather than a data register, for the iteration count. This allows it to be used in filter
calculations in which a large number of data register reads and writes occur each cycle. Using an
address register for the LOOP instruction reduces the need for an extra data register read port.

The LOOP instruction has a 32-bit version using a 15-bit displacement field (left-shifted by one bit
and sign-extended), and a 16-bit version that uses a 4-bit displacement field. Unlike other 16-bit
relative jumps, the 4-bit value is one-extended rather than zero-extended, because this instruction
is specifically intended for loops. 

An unconditional variant of the LOOP instruction, LOOPU, is provided which utilizes the zero
overhead LOOP hardware. Such an instruction is used at the end of a while LOOP body to optimize
the jump back to the start of the while construct.
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9.7 Load and Store Instructions
The load and store instructions move data between registers and memory, using seven addressing
modes (Table 9-4). The addressing mode determines the effective byte address for the load or store
instruction and any update of the base pointer address register.

9.7.1 Load/Store Basic Data Types
The TriCore architecture defines loads and stores for the basic data types — corresponding to
bytes, halfwords, words and doublewords — as well as for signed fractions and addresses. The
movement of data between registers and memory for the basic data types is illustrated in Figure 9-
17. Note that when the data loaded from memory is smaller than the destination register (i.e. 8- and
16-bit quantities), the data is loaded into the least-significant bits of the register (except for fractions
which are loaded into the most-significant bits of a register), and the remaining register bits are sign-
or zero-extended to 32 bits, depending on the particular instruction. 

Table 9-4 
Addressing Modes

Addressing Mode  Syntax Effective Address Instruction Format
Absolute constant {offset18[17:14], 14’bo, offset 

18[13:0]}
ABS

Base + Short 
Offset

[An]offset A[n]+sign_ext(offset10) BO

Base + Long 
Offset

[An]offset A[n]+sign_ext(offset16) BOL

Pre-increment [+An]offset A[n]+sign_ext(offset10) BO

Post-increment [An+]offset A[n] BO
Circular [An/An+1+c] A[n]+A[n+1][15:0] (n is even) BO

Bit-reverse [An/An+r] A[n]+A[n+1][15:0] (n is even) BO
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Figure 9-17
Load/Store Basic Data Types

9.7.2 Load Bit
The approaches for loading individual bits depend on whether the bit within the word (or byte) is
given statically or dynamically.

Loading a single bit with a fixed bit offset from a byte pointer is accomplished with an ordinary load
instruction. One then can extract, logically operate on, or jump on any bit in a register.

Loading a single bit with a variable bit offset from a word-aligned byte pointer is done with a special
scaled offset instruction. This offset instruction shifts the bit offset to the right by three positions
(producing a byte offset), adds this result to the byte pointer above, and finally zeroes out the two
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lower bits, thus aligning the access on a word boundary. A word load can then access the word that
contains the bit, which can be extracted with an extract instruction that only uses the lower five bits
of the bit pointer, that is, the bits that were either shifted out or masked out above. An example is:
ADDSC.AT A8,A9,D8 ; A9 = byte pointer. D8 = bit offset.

LD.W D9,[A8]

EXTR.U D10,D9,D8,1 ; D10[0] = loaded bit.

9.7.3 Store Bit and Bit Field
The ST.T instruction can clear or set single memory or peripheral bits, resulting in reduced code
size. ST.T statically specifies a byte address and a bit number within that byte, and indicates
whether the bit should be set or cleared. The addressable range for this instruction is the first 16
KBytes of each of the 16 memory segments.

The Insert Mask (IMASK) instruction can be used in conjunction with the Load-Modify-Store 
(LDMST instruction) to store a single bit or a bit field to a location in memory, using any of the
addressing modes. This operation is especially useful for reading and writing memory-mapped
peripherals. The IMASK instruction is very similar to the INSERT instruction, but IMASK generates
a data register pair that contains a mask and a value. The LDMST instruction uses the mask to
indicate which portion of the word to modify. An example of a typical instruction sequence is:
imask E8,3,4,2 ; insert value = 3, position = 4, width = 2

ldmst _IOREG,E8 ; at absolute address "_IOREG"

To clarify the operation of the IMASK instruction, consider the following example. The binary value
10112 is to be inserted starting at bit position 7 (the width is four). The IMASK instruction would
result in the following two values: 
0000 0000 0000 0000 0000 0111 1000 0000 MASK

0000 0000 0000 0000 0000 0101 1000 0000 VALUE

To store a single bit with a variable bit offset from a word-aligned byte pointer, first the word address
is determined in the same way as for the load above. Again the special scaled offset instruction
shifts the bit offset to the right by three positions, which produces a byte offset, then adds this offset
to the byte pointer above, and finally zeroes out the two lower bits, thus aligning the access on a
word boundary. An IMASK and LDMST instruction can store the bit into the proper position in the
word. An example is:
ADDSC.AT A8,A9,D8 ; A9 = byte pointer. D8 = bit offset.

IMASK E10,D9,D8,1 ; D9[0] = data bit.

LDMST [A8],E10

9.8 Context Related Instructions 
Besides the instructions that implicitly save and restore contexts (such as Calls and Returns), the
TriCore instruction set includes instructions that allow a task’s contexts to be explicitly saved,
restored, loaded, and stored. These instructions are detailed in the following sections.
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9.8.1 Context Saving and Restoring
The upper context of a task is always automatically saved on a call, interrupt, or trap, and is
automatically restored on a return. However, the lower context of a task must be saved/restored
explicitly.

The SVLCX instruction (Save Lower Context) saves registers A2 through A7 and D0 through D7
together with the return address in register A11/RA and the PCXI. This operation is performed when
using the FCX and PCX pointers to manage the CSA lists.

The RSLCX instruction (Restore Lower Context) restores the lower context. It loads registers A2
through A7 and D0 through D7 from the CSA. It also loads A11/RA from the saved PC field. This
operation is performed when using the FCX and PCX pointers to manage the CSA lists.

The BISR instruction (Begin Interrupt Service Routine) enables the interrupt system (ICR.IE is set
to one), allows the modification of the CPU priority number (CCPN), and saves the lower context in
the same manner as the SVLCX instruction.

9.8.2 Context Loading and Storing
The effective address of the memory area where the context is stored to or loaded from is part of the
Load or Store instruction. The effective address must resolve to a memory location aligned on a 16-
word boundary, otherwise a data address alignment trap (ALN) is generated.

The STUCX instruction (Store Upper Context) stores the same context information that is saved
with an implicit upper context save operation: Registers A10 - A15 and D8 - D15, and the current
PSW and PCXI.

The LDUCX instruction (Load Upper Context) loads registers A10 - A15 and D8 - D15. The PSW
and link word fields in the saved context in memory are ignored. The PSW, FCX, and PCXI are
unaffected.

The STLCX instruction (Store Lower Context) stores the same context information that is saved with
an explicit lower context save operation: Registers A2-A7 and D0-D7, together with the return
address (RA) in A11 and the PCXI. The LDLCX instruction (Load Lower Context) loads registers A2
through A7 and D0 through D7. The saved return address and the link word fields in the context
stored in memory are ignored. Registers A11/RA, FCX, and PCXI are not affected.

9.9 System Instructions
The system instructions allow user-mode and supervisor-mode programs to access and control
various system services, including interrupts, and the TriCore’s debugging facilities. There are also
instructions that read and write the core registers, for both user and supervisor-only mode
programs. There are special instructions for the memory-management system. See Section 7.8,
”MMU instructions,” and the cache management system.

9.9.1 System Call
The SYSCALL instruction generates a system call trap, providing a secure mechanism for user-
mode application code to request supervisor services. The system call trap, like other traps, vectors
to the trap handler table, using the three-bit hardware-furnished trap class ID as an index. The trap
class ID for system call traps is six. The trap identification number (TIN) is specified by an immediate
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constant in the SYSCALL instruction, and serves to identify the specific supervisor service that is
being requested. 

9.9.2 Synchronization Primitives
The TriCore architecture provides two synchronization primitives. These primitives provide a
mechanism to software through which it can guarantee the ordering of various events within the
machine.

9.9.2.1 DSYNC
The first primitive, DSYNC, provides a mechanism through which a data memory barrier can be
implemented. The DSYNC instruction guarantees that all data accesses associated with
instructions semantically prior to the DSYNC instruction are completed before any data memory
accesses associated with an instruction semantically after DSYNC are initiated. This includes all
accesses to the system bus and local data memory.

9.9.2.2 ISYNC
The second primitive, ISYNC, provides a mechanism through which the following can be
guaranteed:

● If an instruction semantically prior to ISYNC makes a software visible change to a piece of 
architectural state, then the effects of this change are seen by all instructions semantically after 
ISYNC. For example, if an instruction changes a code range in the protection table, the use of an 
ISYNC will guarantee that all instructions after the ISYNC are fetched and matched against the 
new protection table entry.

● All cached states in the pipeline, such as loop cache buffers, are invalidated.

The operation of the ISYNC instruction, therefore, is described as follows:

1. Wait until all instructions semantically prior to the ISYNC have completed.
2. Flush the CPU pipeline and cancel all instructions semantically after the ISYNC.
3. Invalidate all cached state in the pipeline.
4. Refetch the next instruction after the ISYNC.

9.9.3 Access to the Core Special Function Registers 
The TriCore accesses the CSFRs through two instructions: MFCR and MTCR. The MFCR
instruction (Move From Core Register) moves the contents of the addressed CSFR into a data
register. MFCR can be executed at any privilege level. The MTCR instruction (Move To Core
Register) moves the contents of a data register to the addressed CSFR. To prevent unauthorized
writes to the CSFRs, the MTCR instruction can only be executed at the supervisor privilege level.

The CSFRs are also mapped into the memory address space. This mapping makes the complete
architectural state of the core visible in the address map, which allows efficient debug and emulator
support. Note it is not permitted for the core to access the CSFRs through this mechanism; it must
use MFCR and MTCR.
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There are no instructions allowing bit, bit field or load-modify store accesses to the CSFRs. The
RSTV instruction (Reset Overflow Flags) resets the overflow flags in the PSW, without modifying
any of the other bits in the PSW. This instruction can be executed at any privilege level.

9.9.4 Enabling/Disabling the Interrupt System
For non-interruptible operations, the ENABLE and DISABLE instructions allow the explicit enabling
and disabling of interrupts in user and supervisor modes. While disabled, an interrupt will not be
taken by the CPU regardless of the relative priorities of the CPU and the highest interrupt pending.
The only "interrupt" that will be serviced while interrupts are disabled is the NMI (non-maskable
interrupt) since it is a trap. 

If a user process accidentally disables interrupts for longer than a specified time, watchdog timers
can be used to recover.

Programs executing in supervisor mode can use the 16-bit Begin ISR (BISR) instruction to save the
lower context of the current task, set the current CPU priority number, and re-enable interrupts
(which are disabled by the processor when an interrupt is taken). 

9.9.5 RET and RFE
The function return instruction, RET, is used to return from a function that was invoked via a CALL
instruction. The return from exception instruction, RFE, is used to return from an interrupt or trap
handler. The two instructions perform very similar operations; they restore the upper context of the
calling function or interrupted task, and branch to the return address contained in register A11 (prior
to the context restore operation). The instructions differ in the error checking they perform for call
depth management. Issuing an RFE instruction when the current call depth (as tracked in the PSW)
is nonzero generates a context nesting error trap. Conversely, a context call depth underflow trap
is generated when an RET instruction is issued when the current call depth is zero. 

9.9.6 Trap Instructions
The Trap on Overflow (TRAPV) and Trap on Sticky Overflow (TRAPSV) instructions can be used to
cause a trap if the PSW’s V and SV bits, respectively, are set (see Arithmetic Instructions).

9.9.7 No-operation
Although there are many ways to represent a no-operation (for example, adding zero to a register),
an explicit NOP instruction is included so that it can be easily recognized, and the CPU can then
minimize power consumption during its execution. For example, a sequence of NOP instructions in
a loop could be used as a low-power state that has a very fast interrupt response time.

9.10 16-bit Instructions
The 16-bit instructions are a subset of the 32-bit instruction set, chosen because of their frequency
of static use. They significantly reduce static code size and thus provide a reduction in the cost of
code memory and a higher effective instruction bandwidth. Because the 16-bit and 32-bit
instructions all differ in the primary opcode, the two instruction sizes can be freely intermixed. 

The 16-bit instructions are formed by imposing one or more of the following format constraints:
smaller constants, smaller displacements, smaller offsets, implicit source, destination, or base
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address registers, and combined source and destination registers (the 2-operand format). In
addition, the 16-bit load and store instructions support only a limited set of addressing modes.

The registers D15 and A15 are used as implicit registers in many 16-bit instructions. For example,
there is a 16-bit compare instruction (EQ) that puts a Boolean result in D15, and a 16-bit conditional
move instruction (CMOV) which is controlled by the Boolean in D15.

The 16-bit load and store instructions are limited to the register indirect (base plus zero offset), base
plus offset (with implicit base or source/destination register), and post-increment (with default offset)
addressing modes.
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10 TriCore Instruction Set
This chapter contains descriptions of all the TriCore instructions arranged alphabetically by
instruction mnemonic. Each instruction page is organized as in Table 10-1.

Note : Throughout this chapter, information relating to instructions, in particular 16-bit instructions,
is shown in gray boxes such as the one below:

Note: See the Data Book for instruction format and encoding.

10.1 Instruction Syntax 
The syntax definition for an instruction specifies the operation to be performed and the operands
used in the operation. Instruction operands are separated by commas. Table 10-2 describes the
terms used in the syntax definitions. 

Table 10-1 
MNEMONIC (Example)

Syntax Assembler syntax (See Table 10-2) followed by the instruction format in 
parentheses.

Description A brief verbal description of the instruction’s operation
Operation A description of the instruction’s operation in Register Transfer Language (RTL) 

(See Table 10-6)
Status Any status flags that are affected by the instruction’s execution (See Table 10-7)

Examples One or more instruction examples
See also Related instructions

The shading of this box indicates that it should contain information about 16-bit instructions.

Table 10-2 
Instruction Syntax Definitions

Symbol Description
Dn Data register n

An Address register n
En Extended data register n containing a 64-bit value made from an even/odd pair of 

registers (Dn, Dn+1)
dispn Displacement value of n bits used to form the effective address in branch instructions.

constn Constant value of n bits used as instruction operand 

offsetn Offset value of n bits used to form the effective address in load and store instructions
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An instruction mnemonic is composed of up to three basic parts: a base operation, an operation
modifier, and an operand (data type) modifier. For example, in the instruction:
ADDS.U

‘ADD’ is the base operation, ‘S’ is an operation modifier specifying that the result is saturated, and
‘U’ is a data type modifier specifying that the operands are unsigned.

The base operation specifies the basic operation that the instruction performs, for example, ADD for
addition, J for jump, and LD for memory load. The operation modifier specifies more exactly the
operation performed, for example, ADDI for addition using an immediate value, JL for a jump that
includes a link. More than one operation modifier may be used for some instructions (for example,
ADDIH). The data type modifier indicates the data type of the source operands, for example, ADD.B
for byte addition, JZ.A for a jump using an address register, and LD.H for a halfword load. The data
type modifier is separated by a period (“.”). Some instructions, for example, OR.EQ, have more than
one base operation, and these base operations are also separated by a period. 

Note that some 16-bit instructions (Table 10-3) use a general-purpose register as an implicit source
or destination: 

In the syntax section of the instruction descriptions, the implicit registers are included as explicit
operand fields. However, they are not explicitly encoded in the 16-bit instructions.

p, p1, p2 Specifies the position of a single bit in bit field instructions

w Specifies the width of the bit field in bit and bit field instructions
<mode> An addressing mode 

CR Core Registers

Table 10-3 
Registers Used for 16-bit Instructions

Location Description
D15 Implicit Data Register for many 16-bit instructions

A10 Stack Pointer (SP)
A11 Return Address Register (RA) for CALL, JL, JLA, and JLI instructions, and Return PC 

value on interrupts
A15 Implicit Address Register for many 16-bit load/store instructions

Table 10-2 
Instruction Syntax Definitions (cont’d)
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The operation modifiers are shown in Table 10-4. The order of the modifiers in the table is the same
as the order in which they appear as modifiers in an instruction mnemonic. 

The data type modifiers used in the instruction mnemonics are listed in Table 10-5. When multiple
suffixes occur in an instruction, their order of occurrence in the mnemonic is the same as their order
in the table.

Table 10-4 
Operation Modifiers

Operation Modifier Name Description Example
L Link Record link (jump subroutine) JL
I Indirect Register indirect (jump) JLI

A Absolute Absolute (jump) JLA
EQ Equal Comparison equal JEQ

NE Not equal Comparison not equal JNE
LT Less than Comparison less than JLT

GE Greater than Comparison greater than or equal JGE
N Not Logical NOT SELN

I Immediate Large immediate ADDI
H High word Immediate value put in most-significant bits ADDIH

Z Zero Use zero immediate JNZ
R Round Round result (Q format data) MULR

M Multi-word Multi-word result MULM
S Saturation Saturate result ADDS

X Carry out Update PSW carry bit ADDX
C Carry Use and update PSW carry bit ADDC

I Increment Increment counter JNEI
D Decrement Decrement counter JNED

Table 10-5 
Data Type Modifiers

Data Type 
Modifier

Name Description Example

D Data 32-bit data MOV.D
D Doubleword 64-bit data/address LD.D

W Word 32-bit (word) data EQ.W
A Address 32-bit address ADD.A

Q Q Format 16-bit signed fraction (Q format) MADD.Q
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10.2 Instruction Operation
The operation of each instruction is described using a C-like Register Transfer Level (RTL) notation,
summarized in Table 10-6. 

Note that the numbering of bits begins with bit zero, which is the least-significant bit of the word.
Concatenation of bits and bit fields is specified using the notation “{x, y}” where “x” and “y” are
expressions representing a bit or bit field. Any number of expressions can be concatenated, for
example, “{x, y, z}”. 

.

H Halfword 16-bit data or two packed halfwords ADD.H

B Byte 8-bit data or four packed bytes ADD.B
T Bit 1-bit data AND.T

U Unsigned Unsigned data type ADDS.U

Table 10-6 
RTL Syntax Description

Symbol Description
D[n] Data register n
A[n] Address register n

E[n] Data register containing a 64-bit value, with the least-significant bit in D[n] and 
the most-significant bit in D[n+1], where n is even. The two parts are also 
referred to as E[n] (upper) and E[n] (lower)

p Single bit p
(expression)[p] Single bit p in multi-bit value

n’h pppp Constant bit string, where n is the number of bits in the constant and “pppp” is 
the constant in hexadecimal; for example, “16’h FFFF”

n’b pppp Constant bit string, where n is the number of bits in the constant and “pppp” is 
the constant in binary; for example, “2’b 11”

{x, y} A bit string. x and y are expressions representing a bit or bit field. Any number 
of expressions can be concatenated, for example, “{x,y,z}”.

[x:y] Bits y, y+1, ... , x where x>y; for example D[a][x:y], if x=y then this is a single bit 
range which is also denoted by [x] as in D[a][x]. For cases where x<y this 
denotes an empty range.

dispn Displacement value of n bits used to form the effective address in branch 
instructions where the constant is either sign-, 0-, or 1-extended

constn Constant value of n bits used as instruction operand 

Table 10-5 
Data Type Modifiers (cont’d)
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10.3 Status
The Status section of the instruction page lists any of the five status flags in the Program Status
Word (PSW) that may be affected by the operation (See Table 10-7). 

offsetn Offset value of n bits used to form the effective address in load and store 
instructions

sign_ext Sign extension; high-order bit is left extended
one_ext One extension; high-order bits are set to 1

zero_ext High order bits are set to 0
round16 The operation of adding 16’h8000 to a 32-bit value and then zeroing the least-

significant 16 bits of the result

M Memory 
EA Effective address

target address Address from which next instruction will be fetched. Used in call instructions. 
M(EA, data_size) Memory locations beginning at the specified byte location, EA, and extending 

to EA+data_size–1
and Bit-wise logical AND

or Bit-wise logical OR
xor Bit-wise logical exclusive OR

! Logical NOT

Table 10-7 
PSW Status Flags

Status Flag Description
C Carry. This flag is set as the result of a carry out from an addition or subtraction 

instruction. Carry out can result from either signed or unsigned operations. It is also 
set by arithmetic shift.

Table 10-6 
RTL Syntax Description (cont’d)

Symbol Description
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10.4 Instruction Descriptions
Note : The instruction mnemonics are in alphabetical order, grouped into families of  similar or

related instructions (e.g., ABS.B and ABS.H are on the same page).

10.4.1 Absolute Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ABS

V Overflow. This flag is updated by most arithmetic instructions. It is set when the 
signed result cannot be represented in the data size of the result; for example, when 
the result of a signed 32-bit operation is greater than 231–1.

SV Sticky Overflow. This flag is set when the overflow flag is set. It remains set until it 
is explicitly cleared by an RSTV (Reset Overflow bits) instruction.

AV Advance Overflow. This flag is updated by all instructions that update the overflow 
flag and no others. This flag is determined as the Boolean exclusive-or of the two 
most-significant bits of the result.

SAV Sticky Advance Overflow. This flag is set whenever the advance overflow flag is set. 
It remains set until it is explicitly cleared by an RSTV (Reset Overflow bits) 
instruction.

Table 10-8 
ABS

Syntax abs   Dc, Da (RR)
Description Put the absolute value of data register Da in data register Dc; that is, if the contents 

of Da are greater than or equal to zero, copy it to Dc; otherwise, change the sign of 
Da and copy it to Dc. The operands are treated as signed, 32-bit integers. If Da = 
0x80000000 (the maximum negative value), then Dc = 0x80000000, and an 
overflow is generated.

Operation if (D[a] >= 0) then D[c] = D[a]
else D[c] = –D[a]; signed

Status V, SV, AV, SAV
Examples abs d3, d1

See also ABSDIF, ABSDIFS, ABSS

Table 10-7 
PSW Status Flags (cont’d)
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10.4.2 Absolute Value Packed Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ABS.B
Absolute Value Packed Halfword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ABS.H

10.4.3 Absolute Value of Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ABSDIF

Table 10-9 
ABS.B & ABS.H

Syntax abs.b  Dc, Da (RR)
abs.h  Dc, Da (RR)

Description Put the absolute value of each byte/halfword in data register Da into the 
corresponding byte/halfword of data register Dc. The operands are treated as 
signed, 8-bit/16-bit integers. The overflow condition is calculated for each byte/
halfword of the packed quantity. Overflow occurs only if D[a] [(n +7):n] / D[a] 
[(n+15):n] has the maximum negative value of 0x80/0x8000, which also becomes 
the result.

Operation if (D[a][(n+7):n] >= 0)
then D[c][(n+7):n] = D[a][(n+7):n]
else D[c][(n+7):n] = –D[a][(n+7):n]; n = 0, 8, 16, 24; signed

if (D[a][(n+15):n] >= 0)
then D[c][(n+15):n] = D[a][(n+15):n]
else D[c][(n+15):n] = –D[a][(n+15):n]; n = 0, 16; signed

Status V, SV, AV, SAV
Examples abs.b d3, d1

abs.h d3, d1

See also ABSS.H, ABSDIF.B, ABSDIF.H, ABSDIFS.H

Table 10-10 
ABSDIF

Syntax absdif Dc, Da, Db (RR)
absdif Dc, Da, const9 (RC)

Description Put the absolute value of the difference between Da and Db/const9 in Dc; namely, 
if the contents of data register Da are greater than Db/const9, then subtract Db/
const9 from Da and put the result in data register Dc; otherwise, subtract Da from 
Db/const9 and put the result in Dc. The operands are treated as signed, 32-bit 
integers, and the const9 value is sign-extended to 32 bits. 
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10.4.4 Absolute Value of Difference Packed Byte. . . . . . . . . . . . . . . . . . . . . . . . . .ABSDIF.B
Absolute Value of Difference Packed Halfword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ABSDIF.H

Operation if (D[a] > D[b]) then D[c] = D[a] – D[b]
else D[c] = D[b] – D[a]; signed

if (D[a] > sign_ext(const9)) then D[c] = D[a] – sign_ext(const9)
else D[c] = sign_ext(const9) – D[a]; signed

Status V, SV, AV, SAV

Examples absdif d3, d1, d2

absdif d3, d1, 126

See also ABS, ABSS, ABSDIFS

Table 10-11 
ABSDIF.B & ABSDIF.H

Syntax absdif.b  Dc, Da, Db (RR)
absdif.h  Dc, Da, Db (RR)

Description Compute the absolute value of the difference between the corresponding bytes/
halfwords of Da and Db and put each result in the corresponding byte/halfword of 
Dc. The operands are treated as signed, 8-bit/16-bit integers. The overflow 
condition is calculated for each byte/halfword of the packed quantity.

Operation if (D[a][(n+7):n]>D[b][(n+7):n])
then D[c][(n+7):n] = D[a][(n+7):n] – D[b][(n+7):n]
else D[c][(n+7):n] = D[b][(n+7):n] – D[a][(n+7):n]; n = 0, 8, 16, 24; signed

if (D[a][(n+15):n] > D[b][(n+15):n])
then D[c][(n+15):n] = D[a][(n+15):n] – D[b][(n+15):n]
else D[c][(n+15):n] = D[b][(n+15):n] – D[a][(n+15):n]; n = 0, 16; signed

Status V, SV, AV, SAV
Examples absdif.b d3, d1, d2

absdif.h d3, d1, d2

See also ABS.B, ABS.H, ABSS.H,                                                                                                                                                                                                                                                                                                                 
ABSDIFS.H

Table 10-10 
ABSDIF
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10.4.5 Absolute Value of Difference with Saturation  . . . . . . . . . . . . . . . . . . . . . . . ABSDIFS

10.4.6 Abs Value Diff Packed Halfword w/Saturation . . . . . . . . . . . . . . . . . . . . . ABSDIFS.H

Table 10-12 
ABSDIFS

Syntax absdifs Dc, Da, Db (RR)
absdifs Dc, Da, const9 (RC)

Description Put the absolute value of the difference between Da and Db/const9 in Dc: namely, 
if the contents of data register Da are greater than Db/const9, then subtract Db/
const9 from Da and put the result in data register Dc; otherwise, subtract Da from 
Db/const9 and put the result in Dc. The operands are treated as signed, 32-bit 
integers, with saturation on signed overflow. The const9 value is sign-extended to 
32 bits.

Operation if (D[a] > D[b]) then D[c] = D[a] – D[b]
else D[c] = D[b] – D[a]; signed; ssov

if (D[a] > sign_ext(const9)) then D[c] = D[a] – sign_ext(const9)
else D[c] = sign_ext(const9) – D[a]; signed; ssov

Status V, SV, AV, SAV
Examples absdifs d3, d1, d2

absdifs d3, d1, 126

See also ABS, ABSDIF, ABSS

Table 10-13 
ABSDIFS.H

Syntax absdif.h  Dc, Da, Db (RR)
Description Compute the absolute value of the difference of the corresponding halfwords of Da 

and Db and put each result in the corresponding halfword of Dc. The operands are 
treated as signed, 16-bit integers, with saturation on signed overflow. The overflow 
condition is calculated for each halfword of the packed quantity.

Operation if (D[a][(n+15):n] > D[b][(n+15):n])
then D[c][(n+15):n] = D[a][(n+15):n] – D[b][(n+15):n]
else D[c][(n+15):n] = D[b][(n+15):n] – D[a][(n+15):n]; n = 0, 16; signed

Status V, SV, AV, SAV

Examples absdifs.h d3, d1, d2

See also ABS.B, ABS.H, ABSS.H, ABSDIFS.H
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10.4.7 Absolute Value with Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ABSS

10.4.8 Absolute Value Packed Halfword w/ Saturation. . . . . . . . . . . . . . . . . . . . . . . ABSS.H

Table 10-14 
ABSS

Syntax abss Dc, Da (RR)
Description Put the absolute value of data register Da in data register Dc; that is, if the contents 

of Da are greater than or equal to zero, copy it to Dc; otherwise, change the sign 
of Da and copy it to Dc. The operands are treated as signed, 32-bit integers, with 
saturation on signed overflow. If Da = 0x80000000 (the maximum negative value), 
then Dc = 0x7FFFFFFF.

Operation if (D[a] >= 0) then D[c] = D[a]
else D[c] = –D[a]; signed; ssov

Status V, SV, AV, SAV

Examples abss d3, d1

See also ABS, ABSDIF, ABSDIFS

Table 10-15 
 ABSS.H

Syntax abss.h  Dc, Da (RR)
Description Put the absolute value of each byte/halfword in data register Da in the 

corresponding byte/halfword of data register Dc. The operands are treated as 
signed, 8-bit/16-bit integers, with saturation on signed overflow. The overflow 
condition is calculated for each byte/halfword of the packed quantity. Overflow 
occurs only if D[a] [(n+15):n] has the maximum negative value of 0x8000, and the 
saturation yields 0x7FFF.

Operation if (D[a][(n+15):n] >= 0)
then D[c][(n+15):n] = D[a][(n+15):n]
else D[c][(n+15):n] = –D[a][(n+15):n];n = 0, 16; signed; ssov

Status V, SV, AV, SAV
Examples abss.h d3, d1

See also ABS.B, ABS.H, ABSDIF.B, ABSDIF.H, ABSDIFS.H
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10.4.9 Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADD
Table 10-16 
ADD

Syntax add Dc, Da, Db, (RR)
add Dc, Da, const9 (RC)

add Da, Db (SRR)
add Da, const4 (SRC)
add D15, Da, Db (SRR)
add D15, Da, const4 (SRC)
add Da, D15, Db (SRR)
add Da, D15, const4(SRC)

Description Add the contents of data register Da to the contents of data register Db/const9 and
put the result in data register Dc. The operands are treated as 32-bit integers, and
the const9 value is sign-extended to 32 bits before the addition is performed. 
Add the contents of data register Da/D15 to the contents of data register Db/const4
and put the result in data register Da/D15. The operands are treated as 32-bit
integers, and the const4 value is sign-extended to 32 bits before the addition is
performed.

Operation D[c] = D[a] + D[b]
D[c] = D[a] + sign_ext(const9)
D[a] = D[a] + D[b]
D[a] = D[a] + sign_ext(const4)
D[15] = D[a] + D[b]
D[15] = D[a] + sign_ext(const4)
D[a] = D[15] + D[b]
D[a] = D[15] + sign_ext(const4)

Status V, SV, AV, SAV
Examples add d3, d1, d2

add d3, d1, 126

add d1, d2

add d1, 6

add d15, d1, d2

add d15, d1, 6

add d1, d15, d2

add d1, d15, 6

See also ADDC, ADDI, ADDIH, ADDS, ADDS.U, ADDX
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10.4.10 Add Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADD.A

10.4.11 Add Packed Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADD.B
Add Packed Halfword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADD.H

Table 10-17 
ADD.A

Syntax add.a Ac, Aa, Ab (RR)
add.a Aa, Ab (SRR)
add.a Aa, const4 (SRC)

Description Add the contents of address register Aa to the contents of address register Ab and 
put the result in address register Ac.
Add the contents of address register Aa to the contents of address register Ab/
const4 and put the result in address register Aa.

Operation A[c] = A[a] + A[b]
A[a] = A[a] + A[b]
A[a] = A[a] + sign_ext(const4)

Status -

Examples add.a a3, a4, a2

add.a a1, a2

add.a a3, 6

See also ADDIH.A, ADDSC.A, ADDSC.AT

Table 10-18 
ADD.B & ADD.H

Syntax add.b  Dc, Da, Db (RR)
add.h  Dc, Da, Db (RR)

Description Add the contents of each byte/halfword of Da and Db and put the result in each 
corresponding byte/halfword of Dc. The overflow condition is calculated for each 
byte/halfword of the packed quantity, and the status flags are set if any of the bytes/
halfwords generate or almost generate an overflow.

Operation D[c][(n+7):n] = D[a][(n+7):n] + D[b][(n+7):n]; n = 0, 8, 16, 24 
D[c][(n+15):n] = D[a][(n+15):n] + D[b][(n+15):n]; n = 0, 16

Status V, SV, AV, SAV

Examples add.b d3, d1, d2

add.h d3, d1, d2

See also ADD.H, ADDS.H, ADDS.HU
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10.4.12 Add with Carry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADDC

10.4.13 Add Immediate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADDI

10.4.14 Add Immediate High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADDIH

Table 10-19 
ADDC

Syntax addc Dc, Da, Db (RR)
addc Dc, Da, const9 (RC)

Description Add the contents of data register Da to the contents of data register Db/const9 plus 
the carry bit and put the result in data register Dc. The operands are treated as 32-
bit integers, and the value const9 is sign-extended to 32 bits before the addition is 
performed. The PSW carry bit is set to the value of the ALU carry out.

Operation D[c] = D[a] + D[b] + PSW.C; PSW.C = carry_out
D[c] = D[a] + sign_ext(const9) + PSW.C; PSW.C = carry_out

Status C, V, SV, AV, SAV

Examples addc d3, d1, d2

addc d3, d1, 126

See also ADD, ADDI, ADDIH, ADDS, ADDS.U, ADDX

Table 10-20 
ADDI

Syntax addi Dc, Da, const16 (RLC)
Description Add the contents of data register Da to the value const16, and put the result in data 

register Dc. The operands are treated as 32-bit integers. The value const16 is sign-
extended to 32 bits before the addition is performed.

Operation D[c] = D[a] + sign_ext(const16)

Status V, SV, AV, SAV
Examples addi d3, d1, -14526

See also ADD, ADDC, ADDIH, ADDS, ADDS.U, ADDX

Table 10-21 
ADDIH

Syntax addih Dc, Da, const16 (RLC)
Description Left-shift const16 by 16 bits, add the contents of data register Da, and put the result 

in data register Dc.
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10.4.15 Add Immediate High to Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ADDIH.A

10.4.16 Add Signed with Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADDS

Operation D[c] = D[a] + {const16, 16’h 0000}

Status V, SV, AV, SAV
Examples addih d3, d1, -14526

See also ADD, ADDC, ADDI, ADDS, ADDS.U, ADDX

Table 10-22 
ADDIH.A

Syntax addih.a Ac, Aa, const16 (RLC)
Description Left-shift const16 by 16 bits, add the contents of address register Aa, and put the 

result in address register Ac.
Operation A[c] = A[a] + {const16, 16’h 0000}

Status -
Examples addih.a a3, a4, -14526

See also ADD.A, ADDSC.A, ADDSC.AT

Table 10-23 
ADDS

Syntax adds Dc, Da, Db (RR)
adds Dc, Da, const9 (RC)
adds Da, Db (SRR)

Description Add the contents of data register Da to the value in data register Db/const9 and put 
the result in data register Dc. The operands are treated as signed, 32-bit integers, 
with saturation on signed overflow. The value const9 is sign-extended to 32 bits 
before the addition is performed.
Add the contents of data register Db to the contents of data register Da and put the 
result in data register Da.The operands are treated as signed 32-bit integers, with 
saturation on signed overflow.

Operation D[c] = D[a] + D[b]; signed; ssov
D[c] = D[a] + sign_ext(const9); signed; ssov
D[a] = D[a] + D[b]; signed; ssov

Table 10-21 
ADDIH
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10.4.17 Add Signed Packed Halfword with Saturatio . . . . . . . . . . . . . . . . . . . . . . . . nADDS.H
Add Unsigned Packed Halfword w/ Saturation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADDS.HU

10.4.18 Add Unsigned with Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADDS.U

Status V, SV, AV, SA

Examples adds d3, d1, d2

adds d3, d1, 126

adds d3, d1

See also ADD, ADDC, ADDI, ADDIH, ADDS.U, ADDX

Table 10-24 
ADDS.H & ADDS.HU

Syntax adds.h  Dc, Da, Db (RR)
adds.hu  Dc, Da, Db (RR)

Description Add the contents of each halfword of Da and Db and put the result in each 
corresponding halfword of Dc, with saturation on signed/unsigned overflow. The 
overflow and advance overflow conditions are calculated for each halfword of the 
packed quantity.

Operation D[c][(n+15):n] = D[a][(n+15):n] + D[b][(n+15):n]; n = 0, 16; signed; ssov
D[c][(n+15):n] = D[a][(n+15):n] + D[b][(n+15):n]; n = 0, 16; unsigned; suov

Status V, SV, AV, SAV
Examples adds.h d3, d1, d2

adds.hu d3, d1, d2

See also ADD.B, ADD.H, 

Table 10-25 
ADDS.U

Syntax adds.u Dc, Da, Db (RR)
adds.u Dc, Da, const9 (RC)

Description Add the contents of data register Da to the contents of data register Db/const9 and 
put the result in data register Dc. The operands are treated as unsigned, 32-bit 
integers, with saturation on unsigned overflow. The const9 value is zero-extended 
to 32 bits.

Table 10-23 
ADDS (cont’d)
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10.4.19 Add Scaled Index to Address  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADDSC.A
Add Bit-Scaled Index to Address  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADDSC.AT

Operation D[c] = D[a] + D[b]; unsigned; suov
D[c] = D[a] + zero_ext(const9); unsigned; suov

Status V, SV, AV, SAV

Examples adds.u d3, d1, d2

adds.u d3, d1, 126

See also ADD, ADDC, ADDI, ADDIH, ADDS, ADDX

Table 10-26 
ADDSC.A & ADDSC.AT

Syntax addsc.a   Ac, Ab, Da, n (RRS)
addsc.at  Ac, Ab, Da (RRS)

addsc.a Aa, Ab, D15, n (SRRS) 
Description Left-shift the contents of data register Da by the amount specified by n, where n 

can be 0, 1, 2, or 3. Add that value to the contents of address register Ab and put 
the result in address register Ac.

Right-shift the contents of Da by 3 (with sign fill). Add that value to the contents of 
address register Ab and clear the bottom two bits to zero. Put the result in Ac.
The instruction ADDSC.AT generates the address of the word containing the bit 
indexed by Db, starting from the base address in Aa.
Left-shift the contents of data register D15 by the amount specified by n, where n 
can be 0, 1, 2, or 3. Add that value to the contents of address register Ab and put 
the result in address register Aa. 

Operation A[c] = A[b] + (D[a] << n), n = 0, 1, 2, or 3
 
A[c] = (A[b] + (D[a] >> 3)) and ! 2’b 11
A[a]=(A[b] + (D[15]<<n)), n=0,1,2, or 3

Status -
Examples addsc.a a3, a4, d2, 2

addsc.at a3, a4, d2

addsc.a a3, a4, d15, 2

See also ADD.A, ADDIH.A, SUB.A

Table 10-25 
ADDS.U
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10.4.20 Add Extended  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADDX

10.4.21 Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ANDAND

Table 10-27 
ADDX

Syntax addx Dc, Da, Db (RR)
addx Dc, Da, const9 (RC)

Description Add the contents of data register Da to the contents of data register Db/const9 and 
put the result in data register Dc. The operands are treated as 32-bit integers, and 
the const9 value is sign-extended to 32 bits before the addition is performed. The 
PSW carry bit is set to the value of the ALU carry out. 

Operation D[c] = D[a] + D[b]; PSW.C = carry_out
D[c] = D[a] + sign_ext(const9); PSW.C = carry_out

Status C, V, SV, AV, SAV

Examples addx d3, d1, d2

addx d3, d1, 126

See also ADD, ADDC, ADDI, ADDIH, ADDS, ADDS.U

Table 10-28 
AND

Syntax and Dc, Da, Db (RR)
and Dc, Da, const9 (RC)
and Da, Db (SRR)
and D15, const8 (SC)

Description Compute the bitwise logical AND of the contents of data register Da and the 
contents of data register Db/const9 and put the result in data register Dc. The  
const9 value is zero-extended to 32 bits.
Compute the bitwise logical AND of the contents of data register Da/D15 and the 
contents of data register Db/const8 and put the result in data register Da/D15. The 
const8 value is zero-extended to 32 bits.

Operation D[c] = D[a] AND D[b]
D[c] = D[a] AND zero_ext(const9)
D[a] = D[a] AND D[b]
D[15] = D[15] AND zero_ext(const8)
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10.4.22 Accumulating Logical AND-AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AND.AND.T
Accumulating Logical AND-AND-Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AND.ANDN.T
Accumulating Logical AND-NOR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AND.NOR.T
Accumulating Logical AND-OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AND.OR.T

Status -

Examples and d3, d1, d2

and d3, d1, 126

and d1, d2

and d15, 126

See also ANDN, NAND, NOR, NOT, OR, ORN, XNOR, XOR

Table 10-29 
AND.AND.T, AND.ANDN.T, AND.NOR.T & AND.OR.T

Syntax and.and.t Dc, Da, p1, Db, p2 (BIT)
and.andn.t Dc, Da, p1, Db, p2 (BIT)
and.nor.t Dc, Da, p1, Db, p2 (BIT)
and.or.t Dc, Da, p1, Db, p2 (BIT)

Description Compute the logical AND/ANDN/NOR/OR of the value of bit p1 of data register Da 
and bit p2 of Db. Then compute the logical AND of that result and bit 0 of Dc, and 
put the result back in bit 0 of Dc. All other bits in Dc are unchanged. 

Operation D[c] = {D[c][31:1], D[c][0] AND  (D[a][p1] AND D[b][p2])}
D[c] = {D[c][31:1], D[c][0] AND  (D[a][p1] AND !D[b][p2])}

D[c] = {D[c][31:1], D[c][0] AND !(D[a][p1] OR D[b][p2])
D[c] = {D[c][31:1], D[c][0] AND  (D[a][p1] OR D[b][p2])

Status -

Examples and.and.t d3, d1, 4, d2, 9

and.andn.t d3, d1, 6, d2, 15

and.nor.t d3, d1, 5, d2, 9

and.or.t d3, d1, 4, d2, 6

See also OR.AND.T, OR.ANDN.T , OR.NOR.T , OR.OR.T, SH.AND.T , SH.ANDN.T, 
SH.NAND.T , SH.NOR.T, SH.OR.T, SH.ORN.T, SH.XNOR.T, SH.XOR.T

Table 10-28 
AND (cont’d)
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10.4.23 Equal Accumulating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AND.EQ

10.4.24 Greater Than or Equal Accumulating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AND.GE
Greater Than or Equal Accumulating Unsigned  . . . . . . . . . . . . . . . . . . . . . . . . . . . . AND.GE.U

Table 10-30 
AND.EQ

Syntax and.eq Dc, Da, Db (RR)
and.eq Dc, Da, const9 (RC)

Description Compute the logical AND of Dc[0] and the Boolean result of the EQ operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. The const9 value is sign-extended to 32 bits.

Operation D[c] = {D[c][31:1], D[c][0] AND (D[a]==D[b])} 

D[c] = {D[c][31:1], D[c][0] AND (D[a]==sign_ext(const9))}
Status -

Examples and.eq d3, d1, d2

and.eq d3, d1, 126

See also OR.EQ, XOR.EQ

Table 10-31 
AND.GE & AND.GE.U

Syntax and.ge Dc, Da, Db (RR)
and.ge Dc, Da,const9 (RC)
and.ge.uDc, Da, Db (RR)
and.ge.uDc, Da,const9 (RC)

Description Calculate the logical AND of Dc[0] and the Boolean result of the GE operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. Da and Db are treated as 32-bit signed integers. 
The const9 value is sign-extended to 32 bits. 

Calculate the logical AND of Dc[0] and the Boolean result of the GE.U operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. Da and Db are treated as 32-bit unsigned 
integers. The const9 value is zero-extended to 32 bits. 
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10.4.25 Less Than Accumulating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AND.LT
Less Than Accumulating Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AND.LT.U

Operation D[c] = {D[c][31:1], D[c][0] AND (D[a]>=D[b])}; signed 
D[c] = {D[c][31:1], D[c][0] AND (D[a]>=sign_ext(const9))}; signed

D[c] = {D[c][31:1], D[c][0] AND (D[a]>=D[b])}; unsigned 
D[c] = {D[c][31:1], D[c][0] AND (D[a]>=zero_ext(const9))}; unsigned 

Status -

Examples and.ge d3, d1, d2

and.ge d3, d1, 126

and.ge.u d3, d1, d2

and.ge.u d3, d1, 126

See also OR.GE, OR.GE.U, XOR.GE, XOR.GE.U

Table 10-32 
AND.LT & AND.LT.U

Syntax and.lt Dc, Da, Db (RR)
and.lt Dc, Da,const9 (RC)
and.lt.u Dc, Da, Db (RR)
and.lt.u Dc, Da,const9 (RC)

Description Calculate the logical AND of Dc[0] and the Boolean result of the LT operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. Da and Db are treated as 32-bit signed integers. 
The const9 value is sign-extended to 32 bits.

Calculate the logical AND of Dc[0] and the Boolean result of the LT.U operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. Da and Db are treated as 32-bit unsigned 
integers. The const9 value is zero-extended to 32 bits.

Table 10-31 
AND.GE & AND.GE.U (cont’d)
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10.4.26 Not Equal Accumulating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AND.NE

10.4.27 Bit Logical AND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AND.T

Operation D[c] = {D[c][31:1], D[c][0] AND (D[a]<D[b])}; signed 
D[c] = {D[c][31:1], D[c][0] AND (D[a]<sign_ext(const9))}; signed

D[c] = {D[c][31:1], D[c][0] AND (D[a]<D[b])}; unsigned 
D[c] = {D[c][31:1], D[c][0] AND (D[a]<zero_ext(const9))}; unsigned

Status -

Examples and.lt d3, d1, d2

and.lt d3, d1, 126

and.lt.u d3, d1, d2

and.lt.u d3, d1, 126

See also OR.LT, OR.LT.U, XOR.LT, XOR.LT.U

Table 10-33 
AND.NE

Syntax and.ne Dc, Da, Db (RR)
and.ne Dc, Da,const9 (RC)

Description Calculate the logical AND of Dc[0] and the Boolean result of the NE operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. The const9 value is sign-extended to 32 bits.

Operation D[c] = {D[c][31:1], D[c][0] AND (D[a]!=D[b])} 
D[c] = {D[c][31:1], D[c][0] AND (D[a]!=sign_ext(const9))}

Status -
Examples and.ne d3, d1, d2

and.ne d3, d2, 126

See also OR.NE, XOR.NE

Table 10-34 
AND.T

Syntax and.t Dc, Da, p1, Db, p2 (BIT)
Description Compute the logical AND of bit p1 of data register Da and bit p2 of data register Db. 

Put the result in the least-significant bit of data register Dc and clear the remaining 
bits of Dc to zero. 

Table 10-32 
AND.LT & AND.LT.U
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10.4.28 AND-Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ANDN

10.4.29 Bit Logical AND-Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ANDN.T

Operation D[c] = D[a][p1] AND D[b][p2]

Status -
Examples and.t d3, d1, 7, d2, 2

See also ANDN.T, NAND.T, NOR.T, OR.T, ORN.T, XNOR.T, XOR.T

Table 10-35 
AND.N

Syntax andn Dc, Da, Db (RR)
andn Dc, Da,const9 (RC)

Description Compute the bitwise logical AND of the contents of data register Da and the ones-
complement of the contents of data register Db/const9 and put the result in data 
register Dc.  The const9 value is zero-extended to 32 bits. 

Operation D[c] = D[a] AND !D[b]
D[c] = D[a] AND !zero_ext(const9)

Status -
Examples andn d3, d1, d2

andn d3, d1, 126

See also AND, NAND, NOR, NOT, OR, ORN, XNOR, XOR

Table 10-36 
ANDN.T

Syntax andn.t Dc, Da, p1, Db, p2 (BIT)
Description Compute the logical AND of bit p1 of data register Da and the inverse of bit p2 of 

data register Db. Put the result in the least-significant bit of data register Dc and 
clear the remaining bits of Dc to zero.

Operation D[c] = D[a][p1] AND !D[b][p2]
Status -

Examples andn.t d3, d1, 2, d2, 5

See also AND.T, NAND.T, NOR.T, OR.T, ORN.T, XNOR.T, XOR.T

Table 10-34 
AND.T
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10.4.30 Begin ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BISR
Table 10-37 
BISR

Syntax bisr const9 (RC)
bisr const8 (SC)

Description Save the lower context by storing  contents of A2 – A7, D0 – D7, and current return 
address (A11) to the current memory location pointed to by the FCX. Set the current 
CPU priority number (ICR.CCPN) to the value of const9[7:0]/const8, and enable 
interrupts (set ICR.IE to one). Note that BISR can be executed only in supervisor 
privilege mode.

This instruction is intended to be one of the first executed instructions in an interrupt 
routine. If the interrupt routine has not altered the lower context, the saved lower 
context is from the interrupted task.

If a BISR instruction is issued at the beginning of an interrupt, then an RSLCX 
instruction should be performed before returning with the RFE instruction.

Operation Save lower context;
ICR.IE = 1
ICR.CCPN = const9[7:0]
Save lower context;
ICR.IE = 1
ICR.CCPN = const8

Status -

Examples bisr 126

bisr 126

See also DISABLE, ENABLE, LDLCX, LDUCX, RET, RFE, RSLCX, STLCX, STUCX, SVLCX
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10.4.31 Cache Address, Invalidate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CACHEA.I

Table 10-39 
CACHEA.I Operation

Table 10-38 
CACHEA.I

Syntax cachea.i <mode>
Description If the cache line containing the memory location specified by the addressing mode 

is present in the L1 data cache invalidate the line.  Note no write back is performed 
of any dirty data in the cache line prior to the invalidation. 
If the cache line containing the memory location specified by the addressing mode 
is not present in the L1 data cache then no operation should be performed in the 
L1 data cache. Specifically a refill of the line containing the byte pointed to by the 
effective address should not be performed. 
Note any address register updates associated with the addressing mode are 
always performed regardless of the cache operation.
This instruction can be executed in supervisor mode only.

Operation See Table 10-39.
Status -

Examples cachea.i [a3]4

cachea.i [+a3]4

cachea.i [a3+]4

cachea.i [a3/a4+c]4

cachea.i [a3/a4+r]

See also CACHEA.W, CACHEA.WI

<mode>  Syntax Effective Address Instruction Format
Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO

Pre-increment [+An]offset A[b]+sign_ext(offset10) BO
Post-increment [An+]offset A[b] BO

Circular [An/An+1+c] A[b]+A[b+1][15:0] (b is even) BO
Bit-reverse [An/An+r] A[b]+A[b+1][15:0] (b is even) BO
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10.4.32 Cache Address, Writeback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CACHEA.W

Table 10-41 
CACHEA.W Operation

Table 10-40 
CACHEA.W

Syntax cachea.w <mode>
Description If the cache line containing the memory location specified by the addressing mode 

is present in the L1 data cache, write back any modified  data. The line will still be 
present in the L1 data cache and will be marked as unmodified. 
If the cache line containing the memory location specified by the addressing mode 
is not present in the L1 data cache then no operation should be performed in the 
L1 data cache. Specifically a refill of the line containing the byte pointed to by the 
effective address should not be performed. 
Note any address register updates associated with the addressing mode are 
always performed regardless of the cache operation.
This instruction can be executed in supervisor mode only.

Operation See Table 10-41
Status -

Examples cachea.w [a3]4

cachea.w [+a3]4

cachea.w [a3+]4

cachea.w [a3/a4+c]4

cachea.w [a3/a4+r]

See also CACHEA.I, CACHEA.WI

<mode>  Syntax Effective Address Instruction Format
Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO

Pre-increment [+An]offset A[b]+sign_ext(offset10) BO
Post-increment [An+]offset A[b] BO

Circular [An/An+1+c] A[b]+A[b+1][15:0] (b is even) BO
Bit-reverse [An/An+r] A[b]+A[b+1][15:0] (b is even) BO
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10.4.33 Cache Address, Writeback and Invalidate . . . . . . . . . . . . . . . . . . . . . . . . CACHEA.WI

Table 10-43 
CACHEA.WI Operation

Table 10-42 
CACHEA.WI

Syntax cachea.wi <mode>
Description If the cache line containing the memory location specified by the addressing mode 

is present in the L1 data cache, write back any modified data and then invalidate 
the line in the L1 data cache.  
If the cache line containing the memory location specified by the addressing mode 
is not present in the L1 data cache then no operation should be performed in the 
L1 data cache. Specifically a refill of the line containing the byte pointed to by the 
effective address should not be performed. 
Note any address register updates associated with the addressing mode are 
always performed regardless of the cache operation.
This instruction can be executed in supervisor mode only.

Operation See Table 10-43.
Status -

Examples cachea.wi [a3]4

cachea.wi [+a3]4

cachea.wi [a3+]4

cachea.wi [a3/a4+c]4

cachea.wi [a3/a4+r]

See also CACHEA.I, CACHEA.W

<mode>  Syntax Effective Address Instruction Format
Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO

Pre-increment [+An]offset A[b]+sign_ext(offset10) BO
Post-increment [An+]offset A[b] BO

Circular [An/An+1+c] A[b]+A[b+1][15:0] (b is even) BO
Bit-reverse [An/An+r] A[b]+A[b+1][15:0] (b is even) BO
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10.4.34 Conditional Add  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CADD

Note : Status is modified only when the contents of Dd are not zero, else these bits are unchanged.

10.4.35 Conditional Add-Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CADDN

Table 10-44 
CADD

Syntax cadd Dc, Dd, Da, Db (RRR)
cadd Dc, Dd, Da, const9 (RCR)

cadd Da, D15, const4 (SCR)
Description If contents of data register Dd are non-zero, add contents of data register Da and  

contents of register Db/const9 and put the result in data register Dc; otherwise, put  
contents of Da in Dc. The const9 value is sign-extended to 32 bits.
If contents of data register D15 are non-zero, add contents of data register Da and 
the contents of const4 and put the result in data register Da; otherwise, the contents 
of Da is unchanged. The const4 value is sign-extended to 32 bits.

Operation D[c] = ((D[d]  != 0) ? D[a] + D[b] : D[a])
D[c] = ((D[d]  != 0) ? D[a] + sign_ext(const9) : D[a])
D[a] = ((D[15] != 0) ? D[a] + sign_ext(const4) : D[a])

Status V, SV, AV, SAV 
Examples cadd d3, d4, d1, d2

cadd d3, d4, d1, 126

cadd d1, d15, 6

See also CADDN, CMOV, CMOVN, CSUB, CSUBN, SEL, SELN

Table 10-45 
CADDN

Syntax caddn Dc, Dd, Da, Db (RRR)
caddn Dc, Dd, Da, const9 (RCR)
caddn Da, D15, const4 (SRC)

Description If contents of data register Dd are zero, add the contents of data register Da and 
the contents of register Db/const9 and put the result in data register Dc; otherwise, 
put the contents of Da in Dc. The const9 value is sign-extended to 32 bits.
If  contents of data register D15 are zero, add the contents of data register Da and 
the contents of const4 and put the result in data register Da; otherwise, the contents 
of Da is unchanged. The const4 value is sign-extended to 32 bits.

Operation D[c] = ((D[d] == 0) ? D[a] + D[b] : D[a])
D[c] = ((D[d] == 0) ? D[a] + sign_ext(const9) : D[a])
D[a] = ((D[15] == 0) ? D[a] + sign_ext(const4) : D[a])
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Note : Status is modified only when the contents of Dd are zero, else these bits are unchanged.

10.4.36 Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CALL

Note : After CALL, upper context registers other than A10 and A11 are undefined.

Status V, SV, AV, SAV 

Examples caddn d3, d4, d1, d2

caddn d3, d4, d1, 126

caddn d1, d15, 6

See also CADD, CMOV, CMOVN, CSUB, CSUBN, SEL, SELN

Table 10-46 
CALL

Syntax call disp24 (B)
call       disp8 (SB)

Description Add the value specified by disp24, multiplied by two and sign-extended to 32 bits, 
to the address of the CALL instruction, and jump to the resulting address. The 
target address range is ± 16 MBytes relative to the current PC. In parallel with the 
jump, save the caller’s upper context to an available context save area (CSA). 
Then set register A11 to the address of the next instruction beyond the call.
Add the value specified by disp8, multiplied by two and sign-extended to 32 bits, to 
the address of the CALL instruction, and jump to the resulting address. The target 
address range is ±256  bytes relative to the current PC. In parallel with the jump, 
save the caller’s upper context to an available context save area (CSA). Then set 
register A11 to the address of the next instruction beyond the call.

Operation ret_addr = PC + 4;
PC = PC + sign_ext(2 * disp24);
Save upper context;
A[11] = ret_addr;

ret_addr = PC + 2;
PC = PC + sign_ext(2 * disp8);
Save upper context;
A[11] = ret_addr;

Status -

Examples call foobar

call   foobar

See also CALLA, CALLI, RET

Table 10-45 
CADDN
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10.4.37 Call Absolute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CALLA

Figure 10-1
CALLA jump description

Table 10-47 
CALLA

Syntax calla disp24 (B)
Description Jump to the address specified by disp24  (See Figure 10-1). In parallel with the 

jump, save the caller’s upper context to an available context save area (CSA). 
Then set register A11 to the address of the next instruction beyond the call.

Operation ret_addr = PC+4
PC = {disp24[23:20], 7’b0000000, disp24[19:0], 1’b0};
Save upper context;
A[11] = ret_addr;

Status -

Examples calla foobar

See also CALL, CALLI, JL, JLA, RET

20 0272831 21

0000000 0

01923 20
disp24

target address
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10.4.38 Call Indirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CALLI

10.4.39 Count Leading Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLO

10.4.40 Count Leading Ones in Packed Halfwords. . . . . . . . . . . . . . . . . . . . . . . . . . . . .CLO.H

Table 10-48 
CALLI

Syntax calli Aa (RR)
Description Jump to  address specified by contents of address register Aa. In parallel with the 

jump, save the caller’s upper context to an available context save area (CSA). 
Then set register A11 to the address of the next instruction beyond the call.

Operation ret_addr = PC + 4;
PC = {A[a][31:1],1b0};
Save upper context;
A[11]= ret_addr;

Status -

Examples calli a2

See also CALL, CALLA, RET

Table 10-49 
CLO

Syntax clo  Dc, Da (RR)
Description Count  number of consecutive ones in Da, starting with bit 31, and put  result in Dc.

Operation D[c] = #leading_ones (D[a])
Status -

Examples clo d3, d1

See also CLS, CLZ

Table 10-50 
CLO.H

Syntax clo.h  Dc, Da (RR)

Description Count  number of consecutive ones in each halfword of Da, starting with the most-
significant bit, and put each result in the corresponding halfword of Dc.

Operation clo.h : D[c][(n+15):n] = #leading_ones(D[a][(n+15):n]); n = 0, 16
Status TBD

Examples clo.h d3, d1

See also CLO, CLS, CLS.H, CLZ,  CLZ.H
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10.4.41 Count Leading Signs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CLS

10.4.42 Count Leading Signs in Packed Halfwords  . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLS.H

10.4.43 Count Leading Zeroes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CLZ

Table 10-51 
CLS

Syntax cls Dc, Da (RR)
Description Count the number of consecutive bits which have the same value as bit 31 in Da, 

starting with bit 30, and put the result in Dc. The result is the number of leading sign 
bits minus one, giving the number of redundant sign bits in Da.

Operation D[c] = #leading_signs(D[a]) – 1
Status -

Examples cls d3, d1

See also CLO, CLZ

Table 10-52 
CLS.H

Syntax cls.h  Dc, Da (RR)
Description Count number of consecutive bits in each halfword in data register Da, which have 

the same state as the most-significant bit (msb) in that halfword, starting with the 
next bit right of the msb. Put each result in the corresponding halfword of Dc. The 
results are the number of leading sign bits minus one in each halfword, giving the 
number of redundant sign bits in the halfwords of Da.

Operation cls.h : D[c][(n+15):n] = #leading_signs(D[a][(n+15):n]) – 1; n = 0, 16

Status TBD
Examples cls.h d3, d1

See also CLO, CLO.H, CLS, CLZ, CLZ.H

Table 10-53 
CLZ

Syntax clz  Dc, Da (RR)
Description Count  number of consecutive zeroes in Da starting with bit 31, and put result in Dc.

Operation D[c] = #leading_zeroes(D[a])
Status -

Examples clz d3, d1

See also CLO, CLS
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10.4.44 Count Leading Zeroes in Packed Halfwords  . . . . . . . . . . . . . . . . . . . . . . . . . . . CLZ.H

10.4.45 Conditional Move  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CMOV

10.4.46 Conditional Move-Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CMOVN

Table 10-54 
CLZ.H

Syntax clz.h  Dc, Da (RR)
Description Count the number of consecutive zeroes in each byte/halfword of Da, starting with 

the most-significant bit of each byte/halfword, and put each result in the 
corresponding byte/halfword of Dc.

Operation clz.h : D[c][(n+15):n] = #leading_zeroes(D[a][(n+15):n]); n = 0, 16
Status TBD

Examples clz.h d3, d1

See also CLO, CLO.H, CLS, CLS.H, CLZ

Table 10-55 
CMOV

Syntax cmov Da, D15, Db (SRR)
cmov Da, D15, const4 (SRC)

Description If the contents of data register D15 are non-zero, copy the contents of data register 
Db/const4 to data register Da; otherwise, the contents of Da is unchanged. The 
const4 value is sign-extended to 32 bits.

Operation D[a] = ((D[15]  != 0) ? D[b] : D[a])
D[a] = ((D[15]  != 0) ? sign_ext(const4) : D[a])

Status -
Examples cmov d1, dl5, d2

cmov d1, dl5, 6

See also CADD, CADDN, CMOVN, CSUB, CSUBN, SEL, SELN

Table 10-56 
CMOVN

Syntax cmovn Da, D15, Db (SRR)
cmovn Da, D15, const4 (SRC)

Description If the contents of data register D15 are zero, copy the contents of data register Db/
const4 to data register Da; otherwise, the contents of Da is unchanged.The const4 
value is sign-extended to 32 bits.
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10.4.47 Conditional Subtract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CSUB

Note : Status is modified only when the contents of Dd are not zero, else these bits are unchanged.

10.4.48 Conditional Subtract-Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CSUBN

Note : Status is modified only when the contents of Dd are not zero, else these bits are unchanged.

Operation D[a] = ((D[15] ==0) ? D[b] : D[a])
D[a] = ((D[15] ==0) ? sign_ext(const4) : D[a])

Status -

Examples cmovn d1, dl5, d2

cmovn d1, dl5, 6

See also CADD, CADDN, CMOV, CSUB, CSUBN, SEL, SELN

Table 10-57 
CSUB

Syntax csub Dc, Dd, Da, Db (RRR)
Description If the contents of data register Dd are non-zero, subtract the contents of data 

register Db from the contents of data register Da and put the result in data register 
Dc; otherwise, put the contents of Da in Dc. 

Operation D[c] = ((D[d]  != 0) ? D[a] – D[b] : D[a])

Status V, SV, AV, SAV
Examples csub d3, d4, d1, d2

See also CADD, CADDN, CMOV, CMOVN, CSUBN, SEL, SELN

Table 10-58 
CSUBN

Syntax csubn Dc, Dd, Da, Db (RRR)
Description If the contents of data register Dd are zero, subtract the contents of data register 

Db/const9 from the contents of data register Da and put the result in data register 
Dc; otherwise, put the contents of Da in Dc.

Operation D[c] = ((D[d] == 0) ? D[a] – D[b] : D[a])
Status V, SV, AV, SAV

Examples csubn d3, d4, d1, d2

See also CADD, CADDN, CMOV, CMOVN, CSUB, SEL, SELN.A

Table 10-56 
CMOVN
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10.4.49 Debug. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DEBUG

10.4.50 Extract from Double Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DEXTR

Table 10-59 
DEBUG

Syntax debug (SYS)
debug (SR)

Description If the debug mode is enabled, cause a debug event; otherwise, execute a NOP.
If the debug mode is enabled, cause a debug event; otherwise, execute a NOP.

Operation -
-

Status -
Examples debug

debug

See also -

Table 10-60 
DEXTR

Syntax dextr Dc, Da, Db, Dd (RRRR)
dextr Dc, Da, Db, p (RRPW)

Description Extract 32 bits from registers {Da, Db} (where Da contains the most-significant 32 
bits of the value) starting at bit number specified by 63 – Dd[4:0]/p. Put result in Dc.
Note: Da and Db can be any two data registers or the same register. For this 
instruction they are treated as a 64-bit entity where Da contributes the high order 
bits and Db the low order bits.

Operation pos = D[d][4:0] / p;
D[c] = ({D[a], D[b]} << pos)[63:32];
 

Status -

Examples dextr d1, d3, d5, d7

dextr d1, d3, d5, 11

See also EXTR, EXTR.U, INSERT, INS.T, INSN.T
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10.4.51 Disable Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DISABLE

Note :  DISABLE can be executed only in User1 or Supervisor privilege mode

10.4.52 Synchronize Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSYNC

Table 10-61 
DISABLE

Syntax disable (SYS)
Description Disable interrupts by clearing Interrupt Enable bit (ICR.IE) in the Interrupt Control 

Register.
Operation -

Status -
Examples disable

See also ENABLE

Table 10-62 
DSYNC

Syntax dsync (SYS)
Description Forces all data accesses to complete before any data accesses associated with an 

instruction semantically after the DSYNC are initiated. 
Note : dcache is not invalidated by dsync.

Operation -
Status -

Examples dsync

See also ISYNC
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10.4.53 Divide-Adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVADJ
Table 10-63 
DVADJ

Syntax dvadj Ec, Ed, Db (RRR)
Description Divide-adjust the contents of extended register Ed, using the value in data register 

Db, and put the result in extended register Ec. Ed contains the unadjusted quotient 
and remainder resulting from a sequence of divide-step (DVSTEP) operations, with 
the quotient in the least-significant word of Ed (data register Dd) and the remainder 
in the most-significant word of Ed (data register Dd+1). Db contains the divisor that 
was used to generate the values in Ed. All three values are inspected, and an 
adjusted quotient and remainder are written to Ec.

Two types of adjustment are performed, as needed. Following a divide-step 
sequence, the sign of the remainder is always the same as the sign of the original 
dividend. If the original dividend was negative, and was exactly divisible by the 
divisor, then the unadjusted remainder will be equal in magnitude to the divisor, 
and the magnitude of the quotient will be one too small. In that case, the remainder 
will be set to zero, and the magnitude of the quotient will be increased by one.

Negative quotient and remainder values produced by the divide-step algorithm are 
developed in 1’s complement form. The DVADJ operation converts negative 
quotient and remainder values to 2’s complement representation.

If the quotient and remainder are statically known to be non-negative (the original 
dividend was non-negative, and the divisor was positive), then the DVADJ 
operation is not required. This operation is never required following an unsigned 
divide sequence.

Operation E[c] = divide_adjust(E[d], D[b]) 

Status V, SV
Examples -
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10.4.54 Divide-Initialization Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVINIT
Divide-Initialization Word Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVINIT.U
Divide-Initialization Byte  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVINIT.B
Divide-Initialization Byte Unsigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVINIT.BU
Divide-Initialization Halfword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVINIT.H
Divide-Initialization Halfword Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVINIT.HU
Table 10-64 
DVINIT, DVINIT.U, DVINIT.B, DVINIT.BU, DVINIT.H, & DVINIT.HU

Syntax dvinit Ec, Da, Db (RR)
dvinit.u Ec, Da, Db (RR)
dvinit.b Ec, Da, Db (RR)
dvinit.buEc, Da, Db (RR)
dvinit.h Ec, Da, Db (RR)
dvinit.huEc, Da, Db (RR)

Description Sign-extend (DVINT, DVINIT.B, DVINIT.H) or zero-extend (DVINIT.U, DVINIT.BU, 
DVINIT.HU) to 64 bits and left-shift the contents of data register Da, and put the 
result in extended register Ec. The shift amount depends on the expected size of 
the quotient: for DVINIT and DVINIT.U, the shift amount is zero, for DVINIT.H and 
DVINIT.HU it is 16, and for DVINIT.B and DVINIT.BU it is 24. The vacated bits are 
filled with the sign bit of the quotient. Overflow occurs if the magnitude of the partial 
remainder in the most-significant word of Ec is greater than or equal to the 
magnitude of the divisor, in register Db.

When the shift amount is nonzero, this instruction performs the same operation as 
a divide initialization with no shift amount (DVINIT or DVINIT.U) followed by two or 
three divide-step instructions (DVSTEP). The shifting is effectively substituting for 
an initial group of divide-step instructions, which would be expected to develop 
quotient bits that were exclusively copies of the quotient sign bit.

Operation E[c] = divide_init(D[a], D[b])
E[c] = divide_init_u(D[a], D[b])

E[c] = divide_init_b(D[a], D[b])
E[c] = divide_init_b_u(D[a], D[b])

E[c] = divide_init_h(D[a], D[b])
E[c] = divide_init_h_u(D[a], D[b])

Status V, SV

Examples -

See also DVADJ, DVSTEP, DVSTEP.U
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10.4.55 Divide-Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVSTEP
Divide-Step Unsigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVSTEP.U
Table 10-65 
DVSTEP & DVSTEP.U

Syntax dvstep Ec, Ed, Db (RRR)
dvstep.uEc, Ed, Db (RRR)

Description Divide the contents of extended register Ed, 8 bits at a time, by data register Db, 
and put the result in extended register Ec. Ed contains the result of a previous 
divide-initialization (DVINIT or similar) or divide-step (DVSTEP or DVSTEP.U) 
instruction. Db contains the divisor for the current divide operation
The most-significant word of Ed (data register D[d+1)) contains the 32-bit partial 
remainder for the divide operation, up to the current point in the divide-step 
sequence. The least-significant word of Ed (data register Dd ) contains a mix of 
unprocessed bits from the dividend and quotient bits developed up to this point. 
The unprocessed dividend bits occupy the most-significant bit positions of Dd, 
while the quotient bits occupy the least-significant bits. The total of the two bit sets 
is always 32 bits, but the boundary between them depends on the current 
instruction’s position within the divide sequence.
Each divide-step instruction processes 8 additional dividend bits, and develops 8  
additional bits of quotient. A divide operation yielding a 32-bit quotient value 
requires four divide-step instructions. (Refer to the description of the DVINIT and 
DVADJ instruction). A divide operation yielding a halfword quotient requires two 
divide-step instructions, while a divide operation yielding an 8-bit quotient requires 
only one divide-step instruction. All cases also require the appropriate divide-
initialization instruction, and may require a terminating divide adjust, (or equivalent 
set-up).
The unsigned divide-step instructions treat the dividend and partial remainders as 
unsigned, 32-bit values and develop positive quotients. An unsigned divide 
operation does not require a terminating DVADJ instruction. The signed divide-
step instructions treat the dividend and partial remainders as signed values, and 
normally require terminating DVADJ instructions. The terminating DVADJ may be 
omitted, however, if the original dividend and the divisor are known to be non-
negative.

Operation E[c] = divide_step(E[d], D[b]) 
E[c] = divide_step_u(E[d], D[b])

Status -

Examples -

See also DVADJ, DVINIT, DVINIT.B, DVINIT.BU, DVINIT.H, DVINIT.HU, DVINIT.U
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10.4.56 Enable Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ENABLE

Note : ENABLE can be executed only in User1 or Supervisor privilege mode

10.4.57 Equal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EQ

Table 10-66 
ENABLE

Syntax enable (SYS)
Description Enable interrupts by setting Interrupt Enable bit (ICR.IE) in Interrupt Control 

Register to 1.
Operation -

Status -
Examples enable

See also DISABLE

Table 10-67 
EQUAL

Syntax eq Dc, Da, Db (RR)
eq Dc, Da, const9 (RC)

eq D15, Da, Db (SRR)
eq D15, Da, const4 (SRC)

Description If the contents of data register Da are equal to the contents of data register Db/
const9, set the least-significant bit of Dc to 1 and clear the remaining bits to zero; 
otherwise, clear all bits in Dc. The const9 value is sign-extended to 32 bits.

If the contents of data register Da are equal to the contents of data register Db/
const4, set the least-significant bit of D15 to 1 and clear the remaining bits to zero; 
otherwise, clear all bits in D15. The const4 value is sign-extended to 32 bits. 

Operation D[c] = (D[a] == D[b])
D[c] = (D[a] == sign_ext(const9)) 

D[15] = (D[a] == D[b])
D[15] = (D[a] == sign_ext(const4))

Status -
Examples eq d3, d1, d2

eq d3, d1, 126

eq d15, d1, d2

eq d15, d1, 6

See also GE, GE.U, LT, LT.U, NE
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10.4.58 Equal to Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EQ.A

10.4.59 Equal Packed Byte  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EQ.B
Equal Packed Halfword  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EQ.H
Equal Packed Word  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EQ.W

Table 10-68 
EQ.A

Syntax eq.a Dc, Aa, Ab (RR)
Description If the contents of address registers Aa and Ab are equal, set the least-significant bit 

of Dc to 1 and clear the remaining bits to zero; otherwise, clear all bits in Dc.
Operation D[c] = (A[a] == A[b])

Status -
Examples eq.a d3, a4, a2

See also EQZ.A, GE.A, LT.A, NE.A, NEZ.A

Table 10-69 
EQ.B, EQ.H, & EQ.W

Syntax eq.b Dc, Da, Db (RR)
eq.h Dc, Da, Db (RR)
eq.w Dc, Da, Db (RR)

Description Compare each byte/halfword/word of Da with corresponding byte/halfword/word of 
Db. In each case, if the two are equal, set the corresponding byte/halfword/word of 
Dc to all 1’s; otherwise, set the corresponding byte/halfword/word of Dc to all 0’s.

Operation if (D[a][(n+7):n] == D[b][(n+7):n]) 
then D[c][(n+7):n] = 8’h FF 
else D[c][(n+7):n] = 8’h 00; n = 0, 8, 16, 24

if (D[a][(n+15):n] == D[b][(n+15):n])
then D[c][(n+15):n] = 16’h FFFF 
else D[c][(n+15):n] = 16’h 0000; n = 0, 16

if (D[a] == D[b])
then D[c] = 32’h FFFFFFFF
else D[c] = 32’h 00000000

Status -

Examples eq.b d3, d1, d2

eq.h d3, d1, d2

eq.w d3, d1, d2

See also LT.B, LT.BU, LT.H, LT.HU, LT.W, LT.WU
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10.4.60 Equal Any Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EQANY.B
Equal Any Halfword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EQANY.H

10.4.61 Equal Zero Address  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EQZ.A

Table 10-70 
EQANY.B & EQANY.H

Syntax eqany.b Dc, Da, Db (RR)
eqany.b Dc, Da, const9 (RC)
eqany.h Dc, Da, Db (RR)
eqany.h Dc, Da, const9 (RC)

Description Compare each byte/halfword of Da with the corresponding byte/halfword of Db/
const9. If the logical OR of the Boolean results from each comparison is TRUE, set 
the least-significant bit of Dc to 1 and clear the remaining bits to zero; otherwise, 
clear all bits in Dc. Const9 is sign-extended to 32 bits.

Operation D[c] = (D[a][31:24] == D[b][31:24]) 
OR (D[a][23:16] == D[b][23:16])
OR (D[a][15:8]   == D[b][15:8])
OR (D[a][7:0] == D[b][7:0])

D[c] = (D[a][31:24] == sign_ext(const9)[31:24]) 
OR (D[a][23:16] == sign_ext(const9)[23:16]) 
OR (D[a][15:8] == sign_ext(const9)[15:8]) 
OR (D[a][7:0] == sign_ext(const9)[7:0]) 

Status -

Examples eqany.b d3, d1, d2

eqany.b d3, d1, 126

eqany.h d3, d1, d2

eqany.h d3, d1, 126

See also EQ, GE, GE.U, LT, LT.U, NE

Table 10-71 
EQZ.A

Syntax eqz.a Dc, Aa (RR)
Description If the contents of address register Aa are equal to zero, set the least significant bit 

of Dc to 1 and clear the remaining bits to zero; otherwise, clear all bits in Dc. 
Operation D[c] = (A[a] == 0)

Status -
Examples eqz.a d3, a4

See also EQ.A, GE.A, LT.A, NE.A, NEZ.A
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10.4.62 Extract Bit Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EXTR
Extract Bit Field Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EXTR.U
Table 10-72 
EXTR & EXTR.U

Syntax extr Dc, Da, Ed (RRRR)
extr Dc, Da, Dd, w (RRRW)
extr Dc, Da, p, w (RRPW)
extr.u Dc, Da, Ed (RRRR)
extr.u Dc, Da, Dd, w (RRRW)
extr.u Dc, Da, p, w (RRPW)

Description Extract from Da the number of consecutive bits specified by Ed(upper)/w, starting at 
the bit number specified by Ed(lower)/Dd/p, and put the result, sign-extended (extr) 
or zero-extended (extr.u) to 32 bits, in Dc.

Operation pos  =  E[d](lower) [4:0] / D[d][4:0]/p; 
width = E[d](upper)[4:0] / w
D[c] = sign_ext((D[a]>>pos)[width-1:0])
 
pos   = E[d](lower) [4:0] / D[d][4:0]/p; 
width = E[d](upper)[4:0] / w
D[c] = zero_ext ((D[a]>>pos)[width-1:0])

Note: For EXTR and EXTR.U and either (pos+width > 32) or (width = 0)  the results 
of the instruction are undefined.

Status -

Examples extr d3, d1, e2

extr d3, d1, d2, 4

extr d3, d1, 2, 4

extr.u d3, d1, e2

extr.u d3, d1, d2, 4

extr.u d3, d1, 2, 4

See also DEXTR, INSERT, INS.T, INSN.T
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10.4.63 Greater Than or Equal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  GE
Greater Than or Equal Unsigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .GE.U

10.4.64 Greater Than or Equal Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GE.A

Table 10-73 
GE & GE.U

Syntax ge Dc, Da, Db (RR)
ge Dc, Da, const9 (RC)
ge.u Dc, Da, Db (RR)
ge.u Dc, Da, const9 (RC)

Description If the contents of data register Da are greater than or equal to the contents of data 
register Db/const9, set the least-significant bit of Dc to 1 and clear the remaining bits 
to zero; otherwise, clear all bits in Dc. Da and Db are treated as 32-bit signed 
integers, and the const9 value is sign-extended to 32 bits. 

If the contents of data register Da are greater than or equal to the contents of data 
register Db/const9, set the least-significant bit of Dc to 1 and clear the remaining bits 
to zero; otherwise, clear all bits in Dc. Da and Db are treated as 32-bit unsigned 
integers, and the const9 value is zero-extended to 32 bits. 

Operation D[c] = (D[a] >= D[b]); signed
D[c] = (D[a] >= sign_ext(const9)); signed

D[c] = (D[a] >= D[b]); unsigned
D[c] = (D[a] >= zero_ext(const9)); unsigned

Status -
Examples ge d3, d1, d2

ge d3, d1, 126

ge.u d3, d1, d2

ge.u d3, d1, 126

See also EQ, LT, LT.U, NE

Table 10-74 
GE.A

Syntax ge.a Dc, Aa, Ab (RR)

Description If  contents of address register Aa are greater than or equal to contents of address 
register Ab, set the least-significant bit of Dc to 1 and clear remaining bits to zero; 
otherwise, clear all bits in Dc. Operands are treated as unsigned 32-bit integers.

Operation D[c] = (A[a] >= A[b]); unsigned

Status -
Examples ge.a d3, a4, a2

See also EQ.A, EQZ.A, LT.A, NE.A, NEZ.A
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10.4.65 Insert Mask  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IMASK

10.4.66 Insert Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .INS.T
Insert Bit-Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INSN.T

Table 10-75 
IMASK

Syntax imask Ec, Db, Dd, w (RRRW)
imask Ec, Db, p, w (RRPW)
imask Ec, const4, Dd, w (RCRW)
imask Ec, const4, p, w (RCPW)

Description Create a mask containing the number of bits specified by w, starting at the bit 
number specified by Dd[4:0]/p, and put the mask in data register Ec(upper). Left-
shift the value in Db/const4 by the amount specified by Dd[4:0]/p and put the result 
value in Ec(lower). The value const4 is zero-extended to 32 bits. This mask and 
value can be used by the Load-Modify-Store (LDMST) instruction to write a 
specified bit field to a location in memory.

Operation pos = D[d][4:0] / p;
E[c](upper) = ((2w–1) << pos); 
E[c](lower) = (D[b] << pos); 
zero_ext(const4) may replace D[b]

Status -

Examples imask e2, d1, d2, 11

imask e2, d1, 5, 11

imask e2, 6, d2, 11

imask e2, 6, 5, 11

See also LDMST, ST.T

Table 10-76 
INS.T & INSN.T

Syntax ins.t Dc, Da, p1, Db, p2 (BIT)
insn.t Dc, Da, p1, Db, p2 (BIT)

Description Move value of Da, with bit p1 of this value replaced with bit p2 of register Db, to Dc.
Move value of Da, with bit p1 of this value replaced with  inverse of bit p2 of register 
Db, to Dc.

Operation D[c] = {D[a][31:(p1+1)],  D[b][p2], D[a][(p1–1):0]}
D[c] = {D[a][31:(p1+1)], !D[b][p2], D[a][(p1–1):0]}

Status -
Examples ins.t d3, d1, 5, d2, 7

insn.t d3, d1, 5, d2, 7

See also DEXTR, EXTR, EXTR.U, INSERT
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10.4.67 Insert Bit Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .INSERT

10.4.68 Synchronize Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ISYNC

Table 10-77 
INSERT

Syntax insert Dc, Da, Db, Ed (RRRR)
insert Dc, Da, Db, Dd, w (RRRW)
insert Dc, Da, Db, p, w (RRPW)
insert Dc, Da, const4, Ed (RCRR)
insert Dc, Da, const4, Dd, w (RCRW)
insert Dc, Da, const4, p, w (RCPW)

Description Extract from Db/const4, starting at bit 0, the number of consecutive bits specified 
by Ed(upper)/w, and shift the result left by the number of bits specified by 
Ed(upper)/Dd/p; extract a copy of Da, clearing the bits starting at the bit position 
specified by Ed(upper)/Dd/p, and extending for the number of bits specified by 
Ed(upper)/w.  Put the logical OR of the two extracted words into Dc.

Operation pos = E[d](lower)[4:0] / D[d][4:0]/p; 
width = E[d](upper)[4:0] / w;
m = (2width–1) << pos;
D[c] = (D[a] and !m) or ((D[b] << pos) and m)
zero_ext(const4) may replace D[b]
Note: When pos+width>31 some of the high order bits selected from D[b] will not 
be inserted into D[a].    

Status -

Examples insert d3, d1, d2, e4
insert d3, d1, d2, d4, 8
insert d3, d1, d2, 16, 8
insert d3, d1, 0, e4
insert d3, d1, 0, d4, 8
insert d3, d1, 0, 16, 8

See also DEXTR, EXTR, EXTR.U, INS.T, INSN.T

Table 10-78 
ISYNC

Syntax isync (SYS)
Description Forces completion of all previous instructions, then flushes the CPU pipelines, and 

invalidates any cached pipeline state before proceeding to the next instruction. 
Note: I-cache is not invalidated by ISYNC.

Operation -

Status -
Examples isync

See also DSYNC
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10.4.69 Jump Unconditional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J

10.4.70 Jump Unconditional Absolute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JA

Table 10-79 
J

Syntax j disp24 (B)
j disp8 (SB)

Description Add the value specified by disp24, multiplied by two and sign-extended to 32 bits, 
to the contents of the PC, and jump to that address.

Add the value specified by disp8, multiplied by two and sign-extended to 32 bits, to 
the contents of the PC, and jump to that address.

Operation PC = PC + sign_ext(2 * disp24)
PC = PC + sign_ext(2 * disp8)

Status -
Examples j foobar

j   foobar

See also JA, JI, JL, JLA, JLI

Table 10-80 
JA

Syntax ja disp24 (B)
Description Load the value specified by disp24 into the PC and jump to that address. The value 

disp24 is used to form the effective address (See Figure 10-2).

Operation PC = {disp24[23:20], 7’b0000000, disp24[19:0], 1’b0};
Status -

Examples ja foobar

See also JI, JL, JLA, JLI
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Figure 10-2
JA Jump Description

10.4.71 Jump if Equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .JEQ
Table 10-81 
JEQ

Syntax jeq Da, Db, disp15 (BRR)
jeq Da, const4, disp15 (BRC)
jeq D15, Db, disp4 (SBR)
jeq D15, const4, disp4 (SBC)

Description If the contents of Da are equal to the contents Db/const4, then add the value 
specified by disp15, multiplied by two and sign-extended to 32 bits, to the contents 
of the PC, and jump to that address. The const4 value is sign-extended to 32 bits.
If the contents of D15 are equal to the contents Db/const4, then add the value 
specified by disp4, multiplied by two and zero-extended to 32 bits, to the contents 
of the PC, and jump to that address. The const4 value is sign-extended to 32 bits.

Operation if (D[a]==D[b]) then PC = PC+sign_ext(2 * disp15)
if (D[a]==sign_ext(const4)) then PC = PC+sign_ext(2 * disp15)
if (D[15] ==D[b]) then PC = PC+zero_ext(2 * disp4)
if (D[15] ==sign_ext(const4)) then PC = PC+zero_ext(2 * disp4)

Status -

Examples jeq d1, d2, foobar

jeq d1, 6, foobar

jeq d15, d2, foobar

jeq d15, 6 foobar

See also JGE, JGE.U, JLT, JLT.U, JNE

20 0272831 21
0000000 0

01923 20
disp24

target address
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10.4.72 Jump if Equal Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JEQ.A

10.4.73 Jump if Greater Than or Equal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .JGE
Jump if Greater Than or Equal Unsigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JGE.U

Table 10-82 
JEQ.A

Syntax jeq.a Aa, Ab, disp15 (BRR)
Description If the contents of Aa are equal to the contents Ab, then add the value specified by 

disp15, multiplied by two and sign-extended to 32 bits, to the contents of the PC, 
and jump to that address. 

Operation if (A[a]==A[b]) then (PC = PC+sign_ext(2 * disp15)
Status -

Examples jeq.a a4, a2, foobar

See also JNE.A

Table 10-83 
JGE & JGE.U

Syntax jge Da, Db, disp15 (BRR)
jge Da, const4, disp15 (BRC)
jge.u Da, Db, disp15 (BRR)
jge.u Da, const4, disp15 (BRC)

Description If  contents of Da are greater than or equal to contents of Db/const4, then add value 
specified by disp15, multiplied by two and sign-extended to 32 bits, to  contents of  
PC, and jump to that address. Operands are treated as signed/unsigned, 32-bit 
integers. The const4 value is sign-extended/zero-extended to 32 bits.

Operation if (D[a]>=D[b]) then (PC = PC+sign_ext(2 * disp15); signed
if (D[a]>=sign_ext(const4)) then (PC = PC+sign_ext(2 * disp15); signed

if (D[a]>=D[b]) then (PC = PC+sign_ext(2 * disp15); unsigned
if (D[a]>=zero_ext(const4)) then (PC = PC+sign_ext(2 * disp15); unsigned

Status -

Examples jge d1, d2, foobar

jge d1, 6, foobar

jge.u d1, d2, foobar

jge.u d1, 6, foobar

See also JEQ, JLT, JLT.U, JNE
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10.4.74 Jump if Greater Than or Equal to Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JGEZ

10.4.75 Jump if Greater Than Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .JGTZ

10.4.76 Jump Indirect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .JI

Table 10-84 
JGEZ

Syntax jgez Db, disp4 (SBR)
Description If the contents of Db are greater than or equal to zero, then add the value specified 

by disp4, multiplied by two and zero-extended to 32 bits, to the contents of the PC, 
and jump to that address.

Operation if (D[b] >= 0) then (PC = PC + zero_ext(2 * disp4)
Status -

Examples jgez d2, foobar

See also JGTZ, JLEZ, JLTZ, JNZ, JZ

Table 10-85 
JGTZ

Syntax jgtz Db, disp4 (SBR)
Description If the contents of Db are greater than zero, then add the value specified by disp4, 

multiplied by two and zero-extended to 32 bits, to the contents of the PC, and jump 
to that address.

Operation if (D[b] > 0) then PC = PC + zero_ext(2 * disp4)
Status -

Examples jgtz d2, foobar

See also JGEZ, JLEZ, JLTZ, JNZ, JZ

Table 10-86 
JI

Syntax ji Aa (RR)
ji Aa (SBR)

Description Load the contents of address register Aa into the PC and jump to that address. The 
least-significant bit is always set to 0.

Load the contents of address register Aa into the PC and jump to that address. The 
least-significant bit is always set to 0.

Operation PC = {A[a][31:1], 1’b 0}
PC = {A[a][31:1], 1’b 0}
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10.4.77 Jump and Link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JL

10.4.78 Jump and Link Absolute  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JLA

Status -

Examples ji a2

ji a2

See also J, JA, JL, JLA, JLI

Table 10-87 
JL

Syntax jl disp24 (B)

Description Store the address of the next instruction in A11. Then add the value specified by 
disp24, scaled by two and sign-extended to 32 bits, to the contents of the PC, and 
jump to that address.

Operation A[11] = PC + 4; PC = PC + sign_ext(2 * disp24);
Status -

Examples jl foobar

See also J, JI, JA, JLA, JLI

Table 10-88 
JLA

Syntax jla disp24 (B)

Description Store the address of the next instruction in A11. Then load the value specified by 
disp24 into the PC and jump to that address. The value disp24 is used to form the 
effective address (See Figure 10-3).

Operation A[11] = PC + 4; PC = {disp24[23:20], 7’b0000000, disp24[19:0], 1’b 0};
Status -

Examples jla foobar

See also J, JI, JA, JL, JLI

Table 10-86 
JI
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Figure 10-3
JLA Jump Description

10.4.79 Jump if Less Than or Equal to Zero  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JLEZ

10.4.80 Jump and Link Indirect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .JLI

Table 10-89 
JLEZ

Syntax jlez Db, disp4 (SBR)

Description If the contents of Db are less than or equal to zero, then add the value specified by 
disp4, multiplied by two and zero-extended to 32 bits, to the contents of the PC, and 
jump to that address.

Operation If (D[b] <= 0) then PC = PC + zero_ext(2 * disp4)
Status -

Examples jlez d2, foobar

See also JGEZ, JGTZ, JLTZ, JNZ, JZ

Table 10-90 
JLI

Syntax jli Aa (RR)

Description Store the address of the next instruction in A11. Then load the contents of address 
register Aa into the PC and jump to that address. The least-significant bit is set to 0. 

Operation A[11] = PC + 4; PC = {A[a][31:1], 1’b 0}
Status -

Examples jli a2

See also J, JI, JA, JL, JLA

20 0272831 21
0000000 0

01923 20
disp24

target address
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10.4.81 Jump if Less Than. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JLT
Jump if Less Than Unsigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JLT.U

10.4.82 Jump if Less Than Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JLTZ

Table 10-91 
JLT & JLT.U

Syntax jlt Da, Db, disp15 (BRR)
jlt Da, const4, disp15 (BRC)
jlt.u Da, Db, disp15 (BRR)
jlt.u Da, const4, disp15 (BRC)

Description If the contents of Da are less than the contents Db/const4, then add the value 
specified by disp15, multiplied by two and sign-extended to 32 bits, to the contents 
of the PC, and jump to that address. The operands are treated as signed/unsigned, 
32-bit integers.The const4 value is sign-extended/zero-extended to 32 bits.

Operation if (D[a]<D[b]) then PC = PC+sign_ext(2 * disp15); signed
if (D[a]<sign_ext(const4)) then PC = PC+sign_ext(2 * disp15); signed

if (D[a]<D[b]) then PC = PC+sign_ext(2 * disp15); unsigned
if (D[a]<zero_ext(const4)) then PC = PC+sign_ext(2 * disp15); unsigned

Status -

Examples jlt d1, d2, foobar

jlt d1, 6, foobar

jlt.u d1, d2, foobar

jlt.u d1, 6, foobar

See also JEQ, JGE, JGE.U, JNE

Table 10-92 
JLTZ

Syntax jltz Db, disp4 (SBR)
Description If the contents of Db are less than zero, then add the value specified by disp4, 

multiplied by two and zero-extended to 32 bits, to the contents of the PC, and jump 
to that address. 

Operation if (D[b] < 0) then (PC = PC + zero_ext(2 * disp4)

Status -
Examples jltz d2, foobar

See also JGEZ, JGTZ, JLEZ,  JNZ, JZ
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10.4.83 Jump if Not Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .JNE

10.4.84 Jump if Not Equal Address  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JNE.A

Table 10-93 
JNE

Syntax jne Da, Db, disp15 (BRR)
jne Da, const4, disp15 (BRC)

jne D15, Db, disp4 (SBR)
jne D15, const4, disp4 (SBC)

Description If the contents of Da are not equal to the contents Db/const4, then add the value 
specified by disp15, multiplied by two and sign-extended to 32 bits, to the contents 
of the PC, and jump to that address. The const4 value is sign-extended to 32 bits.

If the contents of D15 are not equal to the contents Db/const4, then add the value 
specified by disp4, multiplied by two and sign-extended to 32 bits, to the contents 
of the PC, and jump to that address. The const4 value is sign-extended to 32 bits.

Operation if (D[a] !=D[b]) then PC = PC+sign_ext(2 * disp15)
if (D[a] !=sign_ext(const4)) then PC = PC+sign_ext(2 * disp15)

if (D[15] != D[b]) then PC = PC+zero_ext(2 * disp4)
if (D[15] != sign_ext(const4)) then PC = PC+zero_ext(2 * disp4)

Status -
Examples jne d1, d2, foobar

jne d1, 6, foobar

jne d15, d2, foobar

jne d15, 6, foobar

See also JEQ, JGE, JGE.U, JLT, JLT.U

Table 10-94 
JNE.A

Syntax jne.a Aa, Ab, disp15 (BRR)
Description If the contents of Aa are not equal to the contents Ab, then add the value specified 

by disp15, multiplied by two and sign-extended to 32 bits, to the contents of the PC, 
and jump to that address. 

Operation if (A[a] != A[b]) then PC = PC+sign_ext(2 * disp15)

Status -
Examples jne.a a4, a2, foobar

See also JEQ.A
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10.4.85 Jump if Not Equal and Decrement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JNED

Note : The decrement is unconditional.

10.4.86 Jump if Not Equal and Increment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JNEI

Note : The increment is unconditional.

Table 10-95 
JNED

Syntax jned Da, Db, disp15 (BRR)
jned Da, const4, disp15 (BRC)

Description If the contents of Da are not equal to the contents Db/const4, then add the value 
specified by disp15, multiplied by two and sign-extended to 32 bits, to the contents 
of the PC, and jump to that address. Decrement the value in Da by 1. The const4 
value is sign-extended to 32 bits.

Operation if (D[a] != D[b]) then PC = PC+sign_ext(2 * disp15); D[a] = D[a]–1
if (D[a] != sign_ext(const4)) then PC = PC+sign_ext(2 * disp15); D[a] = D[a]–1

Status -

Examples jned d1, d2, foobar

jned d1, 6, foobar

See also JNEI, LOOP, LOOPU

Table 10-96 
JNEI

Syntax jnei Da, Db, disp15 (BRR)
jnei Da, const4, disp15 (BRC)

Description If the contents of Da are not equal to the contents Db/const4, then add the value 
specified by disp15, multiplied by two and sign-extended to 32 bits, to the contents 
of the PC, and jump to that address. Increment the value in Da by 1. The const4 
value is sign-extended to 32 bits.

Operation if (D[a] != D[b]) then PC = PC+ sign_ext(2 * disp15); D[a] = D[a]+1
if (D[a] != sign_ext(const4)) then PC = PC + sign_ext(2 * disp15); D[a] = D[a]+1

Status -
Examples jnei d1, d2, foobar

jnei d1, 6, foobar

See also JNED, LOOP, LOOPU
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10.4.87 Jump if Not Equal to Zero  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JNZ

10.4.88 Jump if Not Equal to Zero Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JNZ.A

Table 10-97 
JNZ

Syntax jnz Db, disp4 (SBR)
jnz D15, disp8 (SB)

Description If contents of Db/D15 are not equal to zero, then add value specified by disp4/disp8, 
multiplied by two and zero-/sign-extended to 32 bits, to contents of PC, and jump 
to that address. 

Operation if (D[b] != 0) then PC = PC + zero_ext(2 * disp4)
if (D[15]!=0) then PC = PC + sign_ext (2* disp8)

Status -
Examples jnz d2, foobar

jnz d15, foobar

See also JGEZ, JGTZ, JLEZ, JLTZ, JZ

Table 10-98 
JNZ.A

Syntax jnz.a Aa, disp15 (BRR)
jnz.a Aa, disp4 (SBR)

Description If the contents of Aa are not equal to zero, then add the value specified by disp15, 
multiplied by two and sign-extended to 32 bits, to the contents of the PC, and jump 
to that address.
If the contents of Aa are not equal to zero, then add the value specified by disp4, 
multiplied by two and zero-extended to 32 bits, to the contents of the PC, and jump 
to that address.

Operation if (A[b] != 0) then PC = PC + sign_ext(2 * disp15)

if (A[b] != 0) then PC = PC + zero_ext(2 * disp4)
Status -

Examples jnz.a a4, foobar

jnz.a  a4, foobar
See also JZ.A
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10.4.89 Jump if Not Equal to Zero Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JNZ.T

10.4.90 Jump if Zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JZ

Table 10-99 
JNZ.T

Syntax jnz.t Da, n, disp15 (BRN)
jnz.t D15, n, disp4 (SBRN)

Description If bit n of register Da is not equal to zero, then add the value specified by  disp15, 
multiplied by two and sign-extended to 32 bits, to the contents of the PC and jump 
to that address.
if bit n of register D15 is not equal to zero, then add the value specified by disp4, 
multiplied by two and zero-extended to 32 bits, to the contents of the PC and jump 
to that address.

Operation if (D[a][n]) then (PC = PC + sign_ext(2 * disp15));( n = 0 – 31)

if (D[15][n]) then PC = PC + zero_ext(2* disp4); (n = 0 – 15)
Status -

Examples jnz.t d1, 1, foobar
Note: some assemblers require the format:
jnz.t d1: 1, foobar

jnz.t d15, 1, foobar

See also JZ.T

Table 10-100 
JZ

Syntax jz Db, disp4 (SBR)
jz D15, disp8 (SB)

Description If contents of D15/Db are equal to zero, then add the value specified by disp8/disp4, 
multiplied by two and sign-extended/zero-extended to 32 bits, to the contents of the 
PC, and jump to that address.

Operation if (D[b] == 0) then PC = PC + zero_ext(2 * disp4)
if (D[15] == 0) then PC = PC + sign_ext(2 * disp8)

Status -

Examples jz d2, foobar

jz d15, foobar

See also JGEZ, JGTZ, JLEZ, JLTZ, JNZ
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10.4.91 Jump if Zero Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JZ.A

10.4.92 Jump if Zero Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JZ.T

Table 10-101 
JZ.A

Syntax jz.a Aa, disp15 (BRR)
jz.a Ab, disp4 (SBR)

Description If contents of Aa are equal to zero, then add value specified by disp15, multiplied by 
two and sign-extended to 32 bits, to contents of PC and jump to that address.

If contents of Ab are equal to zero, then add value specified by disp4, multiplied by 
two and zero-extended to 32 bits, to contents of PC and jump to that address.

Operation if (A[a] == 0) then PC = PC + sign_ext(2 * disp15)
if (A[b] == 0) then PC = PC + zero_ext(2 * disp4)

Status -
Examples jz.a a4, foobar

jz.a a2, foobar

See also JNZ.A

Table 10-102 
JZ.T

Syntax jz.t Da, n, disp15 (BRN)

jz.t D15, n, disp4 (SBRN)
Description If bit n of register Da is equal to zero, then add value specified by disp15, multiplied 

by two and sign-extended to 32 bits, to contents of PC, and jump to that address.
If bit n of register D15 is equal to zero, then add value specified by disp4, multiplied 
by two and zero-extended to 32 bits, to contents of PC, and jump to that address.

Operation if (!D[a][n]) then PC= PC + sign_ext(2 * disp15); (n = 0 – 31)
if (!D[15][n]) then PC = PC + zero_ext(2* disp4); (n = 0 – 15)

Status -
Examples jz.t d1, 1, foobar

Note: some assemblers require the format:
jz.t d1: 1, foobar

jz.t d15, 1, foobar

See also JNZ.T
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10.4.93 Load Word to Address Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LD.A 

Note : If the target register is modified by the addressing mode, the result is undefined.

Table 10-103 
LD.A

Syntax ld.a Aa, <mode> 
Description Load word contents of memory location specified by addressing mode into address 

register Aa.
Operation A[a] = M(EA, word) 

Status -
Examples -

See also LD.B, LD.BU, LD.D, LD.DA, LD.H, LD.HU, LD.Q, LD.W, 

Table 10-104 
LD.A Operation

<mode>  Syntax Effective Address Instruction
Format

Absolute offset {offset18[17:14], 14b’0, offset18[13:0]} ABS

Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO
Base + Long Offset [An]offset A[b]+sign_ext(offset16) BOL

Pre-increment [+An]offset A[b]+sign_ext(offset10) BO
Post-increment [An+]offset A[b] BO

Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO
Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO
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10.4.94 Load Word to Address Register (16-bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LD.A

Note : If the target register is modified by the addressing mode, the result is undefined.

10.4.95 Load Byte  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LD.B
Load Byte Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LD.BU

Table 10-105 
LD.A (16-bit)

Syntax ld.a   Aa, [Ab]                    (SLR)       Register indirect
id.a   Aa, [A15] offset4     (SLRO)     Implicit base + offset
id.a   A15, [Ab] offset4      (SRO)       Implicit destination register
ld.a   A15, [A10] offset8    (SC)          Stack pointer + offset
ld.a   Aa, [Ab+]                  (SLR)         Post-increment

Description Load word contents of memory location specified by addressing mode into address 
register Aa/A15.

Operation A[a] = M(A[b], word) 
A[a] = M(A[15] + zero_ext (4*offset4), word)
A[15] = M(A[b] + zero_ext (4*offset4), word)
A[15] = M(A[10] + zero_ext (4*offset8), word)
A[a] = M(A[b] , word); A[b]=A[b]+4

Status -

Examples -

See also LD.BU, LD.H, LD.W

Table 10-106 
LD.B & LD.BU

Syntax ld.b Da, <mode> 
ld.bu Da, <mode> 

Description Load the byte contents of the memory location specified by the addressing mode, 
sign-extended/zero-extended to 32 bits, into data register Da.

Operation D[a] = sign_ext(M(EA, byte))
D[a] = zero_ext(M(EA, byte))
(See Table 10-107)

Status -
Examples -

See also LD.A, LD.D, LD.DA, LD.H, LD.HU, LD.Q, LD.W
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10.4.96 Load Byte Unsigned (16-bit)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LD.BU

10.4.97 Load Doubleword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LD.D 

Table 10-107 
LD.B & LD.BU Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14],14’b0, offset18[13:0]} ABS

Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO
Pre-increment [+An]offset A[b]+sign_ext(offset10) BO

Post-increment [An+]offset A[b] BO
Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 10-108 
LD.BU (16-bit)

Syntax ld.bu Da, [Ab]                (SLR)            Register indirect
id.bu       Da, [A15] offset4  (SLRO)         Implicit base + offset
id.bu       D15, [Ab] offset4   (SRO)           Implicit destination register
id.bu       Da, [Ab+]               (SLR)            Post-increment

Description Load the byte contents of the memory location specified by the addressing mode, 
zero-extended to 32 bits, into data register Da/D15.

Operation D[a] = zero_ext(M(A[b], byte, byte)
D[a] = zero_ext(M(A[15]+ zero_ext (offset4), byte)
D[15] = zero_ext(M(A[b] +zero_ext (offset4), byte)
D[a] = zero_ext(M(A[b], byte);A[b]+A[b]+1

Status -
Examples -

See also LD.A,  LD.H, LD.W

Table 10-109 
LD.D

Syntax ld.d Ea, <mode>

Description Load  doubleword contents of memory location specified by addressing mode into 
extended data register Ea. Least-significant word of doubleword value is loaded into 
even register (Dn) and most-significant word is loaded into odd register (Dn+1).
 203      v. 1.3.1
 



TriCore Instruction Set
Instruction Descriptions Architecture Manual
2001-04-30 @ 15:16
10.4.98 Load Doubleword to Address Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LD.DA 

Operation E[a] = M(EA, doubleword) (See Table 10-110 )

Status -
Examples -

See also LD.A, LD.B, LD.BU, LD.DA, LD.H, LD.HU, LD.Q, LD.W

Table 10-110 
LD.D Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS

Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO
Pre-increment [+An]offset A[b]+sign_ext(offset10) BO

Post-increment [An+]offset A[b] BO
Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 10-111 
LD.DA

Syntax ld.da Aa, <mode> 
Description Load doubleword contents of memory location specified by addressing mode into 

address register pair Aa. Least-significant word of doubleword value is loaded into  
even register (An) and most-significant word is loaded into odd register (An+1).

Operation A[a](pair) = M(EA, doubleword) (See Table 10-112)

Status -
Examples -

See also LD.A, LD.B, LD.BU, LD.D, LD.H, LD.HU, LD.Q, LD.W

Table 10-112 
LD.DA Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS

Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO

Table 10-109 
LD.D
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10.4.99 Load Halfword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LD.H
Load Halfword Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LD.HU

Pre-increment [+An]offset A[b]+sign_ext(offset10) BO

Post-increment [An+]offset A[b] BO
Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 10-113 
LD.H & LD.HU

Syntax ld.h Da, <mode> 
ld.hu Da, <mode>  

Description Load the halfword contents of the memory location specified by the addressing 
mode, sign-extended/zero-extended to 32 bits, into data register Da.

Operation D[a] = sign_ext(M(EA, halfword))
D[a] = zero_ext(M(EA, halfword))

Status -
Examples -

See also LD.A, LD.B, LD.BU, LD.D, LD.DA,  LD.Q, LD.W

Table 10-114 
LD.H & LD.HU Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS
Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO

Pre-increment [+An]offset A[b]+sign_ext(offset10) BO
Post-increment [An+]offset A[b] BO

Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO
Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 10-112 
LD.DA Operation

<mode>  Syntax Effective Address Instruction 
Format
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10.4.100 Load Halfword (16-bit)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LD.H  

10.4.101 Load Halfword Signed Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LD.Q

Table 10-115 
LD.H (16-bit)

Syntax ld.h Da, [Ab]                 (SLR)            Register indirect
id.h         Da, [A15] offset4   (SLRO)         Implicit base + offset
id.h         D15, [Ab] offset4   (SRO)           Implicit destination register
id.h         Da, [Ab+]               (SLR)            Post-increment

Description Load the halfword contents of the memory location specified by the addressing 
mode, zero-extended to 32 bits, into data register Da/D15

Operation D[a] = sign_ext(M(A[b], halfword
D[a] = sign_ext(M(A[15]+ zero_ext (2*offset4), halfword)
D[15] = sign_ext(M(A[b] +zero_ext (2*offset4), halfword)
D[a] = sign_ext(M(A[b], halfword);A[b]=A[b]+2

Status -
Examples -

See also LD.A,  LD.H, LD.W

Table 10-116 
LD.Q

Syntax ld.q Da, <mode>   
Description Load halfword contents of memory location specified by addressing mode into most-

significant halfword of data register Da, setting 16 least-significant bits of Da to zero.

Operation D[a] = {M(EA, halfword), 16’h 0000}  (See Table 10-117)
Status -

Examples -

See also LD.A, LD.D, LD.DA, LD.B, LD.BU, LD.H, LD.HU, LD.W

Table 10-117 
LD.Q Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS

Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO
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10.4.102 Load Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LD.W

Pre-increment [+An]offset A[b]+sign_ext(offset10) BO

Post-increment [An+]offset A[b] BO
Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 10-118 
LD.W

Syntax ld.w Da,<mode>
Description Load word contents of memory location specified by addressing mode into data 

register Da.
Operation D[a] = M(EA, word)

Status -
Examples -

See also LD.A, LD.D, LD.DA, LD.B, LD.BU, LD.H, LD.HU, LD.Q

Table 10-119 
LD.W Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS
Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO

Base + Long Offset [An]offset A[b]+sign_ext(offset16) BOL
Pre-increment [+An]offset A[b]+sign_ext(offset10) BO

Post-increment [An+]offset A[b] BO
Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 10-117 
LD.Q Operation

<mode>  Syntax Effective Address Instruction 
Format
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10.4.103 Load Word (16-bit)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LD.W 

10.4.104 Load Lower Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LDLCX

Table 10-120 
LD.W (16-bit)

Syntax ld.w Da, [Ab]                   (SCR)    Register indirect
ld.w Da, [A15] offset4      (SLRO)  Implicit base + offset
ld.w D15, [Ab] offset4      (SRO)    Implicit destination register
ld.w D15, [A10]offset8     (SC)       Stack pointer + offset
ld.w Da, [Ab+]                 (SLR)     Post-increment

Description Load word contents of memory location specified by addressing mode into data 
register Da/D15.

Operation D[a] = M(A[b], word)
D[a] = M(A[15]+ zero_ext(4*offset4), word)
D[a] = M(A[b]+ zero_ext(4*offset4), word)
D[a] = M(A[10]+ zero_ext(4*offset8), word)
D[a] = M(A[b], word);A[b]=A[b]+4

Status -

Examples -
See also LD.A, LD.BU, LD.H

Table 10-121 
LDLCX

Syntax ldlcx <mode>

Description Load the contents of the memory block specified by the addressing mode into 
registers A2 – A7 and D0 – D7. This operation is used normally to restore GPR 
values that were saved previously by an STLCX instruction. 

Note that the effective address specified by the addressing mode must be aligned 
on a 16-word boundary. For this instruction, the addressing mode is restricted to 
absolute (ABS) or base plus short offset (BO).

Operation {dummy, dummy, A[2:3], D[0:3], A[4:7], D[4:7]} = M(EA, 16-word)

Status -
Examples -

See also LDUCX, RSLCX, STLCX, STUCX, SVLCX

Table 10-122 
LDLCX Operation

<mode>  Syntax Effective Address Instruction Format
Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS
Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO
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10.4.105 Load-Modify-Store  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LDMST
Table 10-123 
LDMST

Syntax ldmst <mode>, Ea
Description The atomic Load-Modify-Store implements a store under a mask of a value to the 

memory word, whose address is specified by the addressing mode. Only those bits 
of the value Ea(lower), where the corresponding bits in the mask Ea(upper) are set 
are stored into memory. The value and mask may be generated using the IMASK 
instruction.

Operation M(Ea, word) = (M(Ea, word) AND !Ea(upper)) OR (Ea(lower) AND Ea(upper))  
(See Table 10-124)

Status -

Examples -

See also IMASK, ST.T

Table 10-124 
LDMST Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS

Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO
Pre-increment [+An]offset A[b]+sign_ext(offset10) BO

Post-increment [An+]offset A[b] BO
Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO
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10.4.106 Load Upper Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LDUCX

10.4.107 Load Effective Address  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LEA

Table 10-125 
LDUCX

Syntax lducx <mode>
Description Load the contents of the memory block specified by the addressing mode into 

registers A10 – A15 and D8 – D15. This operation is used normally to restore GPR 
values that were saved previously by an STUCX instruction. 

Note that the effective address specified by the addressing mode must be aligned 
on a 16-word boundary. For this instruction, the addressing mode is restricted to 
absolute (ABS) or base plus short offset (BO).

Operation {dummy, dummy, A[10:11], D[8:11], A[12:15], D[12:15]} = M(EA, 16-word)        See 
Table 10-126

Status -
Examples -

See also LDLCX , RSLCX, STLCX, STUCX, SVLCX

Table 10-126 
LDUCX Operation

<mode>  Syntax Effective Address Instruction Format
Absolute constant {offset18[17:14], 14’b0, offset18[13:0]} ABS
Base + Short Offset [An]offset A[a]+sign_ext(offset10) BO

Table 10-127 
LEA

Syntax lea Aa, <mode>

Description Compute the absolute (effective) address defined by the addressing mode and put 
the result in address register Aa. 
Note: For this instruction the auto-increment addressing modes are not supported.

Operation A[a] = EA (See Table 10-128)
Status -

Examples -

See also MOV.A, MOV.D, MOVH.A
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10.4.108 Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LOOP

10.4.109 Loop Unconditional  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LOOPU

Table 10-128 
LEA Operation

<mode>  Syntax Effective Address Instruction Format
Absolute constant {offset18[17:14], 14’b0, 

offset18[13:0]}
ABS

Base + Short Offset [Ab]offset A[b]+sign_ext(offset10) BO
Base + Long Offset [Ab]offset A[b]+sign_ext(offset16) BOL

Table 10-129 
LOOP

Syntax loop Aa, disp15 (BRR)

loop Aa, disp4 (SBR)
Description If address register Aa is not equal to zero, then add value specified by disp15, 

multiplied by two and sign-extended to 32 bits, to contents of PC, and jump to that 
address. The address register is decremented unconditionaly
If address register Aa is not equal to zero, then add value specified by disp4, 
multiplied by two and one-extended to a 32-bit negative number, to contents of PC, 
and jump to that address. Address register is decremented  unconditionaly.

Operation if (A[a] != 0) then PC = PC + sign_ext(2 * disp15); A[a] = A[a]–1
if (A[a] != 0) then PC = PC + one_ext(2 * disp4); A[a] = A[a]–1

Status -
Examples loop a4, iloop

loop   a4, iloop

See also JNED, JNEI, LOOPU

Table 10-130 
LOOPU

Syntax loopu disp15 (BRR)
Description Add value specified by disp15 multiplied by two and sign-extended to 32 bits, to 

contents of PC, and jump to that address.

Operation PC = PC + sign_ext(2 * disp15)

Status -
Examples loopu iloop

See also J,JA, JI, JL, JLA, JLI
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10.4.110 Less Than . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT
Less Than Unsigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT.U
Table 10-131 
LT & LT.U

Syntax lt Dc, Da, Db (RR)
lt Dc, Da, const9 (RC)

lt.u Dc, Da, Db (RR)
lt.u Dc, Da, const9 (RC)
lt D15, Da, Db (SRR)
lt D15, Da, const4 (SRC)

Description If the contents of data register Da are less than the contents of data register Db/
const9, set the least-significant bit of Dc to 1 and clear the remaining bits to zero; 
otherwise, clear all bits in Dc. The operands are treated as signed integers, and 
the const9 value is sign-extended to 32 bits.

If the contents of data register Da are less than the contents of data register Db/
const9, set the least-significant bit of Dc. The operands are treated as unsigned 
integers, and the const9 value is zero-extended to 32 bits.

If the contents of data register Da are less than the contents of data register Db/
const4, set the least-significant bit of D15 to 1 and clear the remaining bits to zero; 
otherwise, clear all bits in D15. The operands are treated as signed 32-bit integers, 
and the const4 value is sign-extended to 32 bits.

Operation D[c] = (D[a] < D[b]); signed
D[c] = (D[a] < sign_ext(const9)); signed

D[c] = (D[a] < D[b]); unsigned
D[c] = (D[a] < zero_ext(const9)); unsigned
D[15] = (D[a] < D[b]); signed
D[15] = (D[a] < sign_ext(const4)); signed

Status -
Examples lt d3, d1, d2

lt d3, d1, 126

lt.u d3, d1, d2

lt.u d3, d1, 253

lt d15, d1, d2

lt d15, d1, 6

See also EQ, GE, GE.U, NE
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10.4.111 Less Than Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT.A

10.4.112 Less Than Packed Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT.B
Less Than Packed Byte Unsigned  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT.BU

Table 10-132 
LT.A

Syntax lt.a Dc, Aa, Ab (RR)
Description If contents of address register Aa are less than contents of address register Ab, set  

least-significant bit of Dc to 1 and clear remaining bits to zero; otherwise, clear all 
bits in Dc. The operands are treated as unsigned 32-bit integers. 

Operation D[c] = (A[a] < A[b]); unsigned
Status -

Examples lt.a d3, a4, a2

See also EQ.A, EQZ.A, GE.A, NE.A, NEZ.A

Table 10-133 
LT.B & LT.BU

Syntax lt.b Dc, Da, Db (RR)
lt.bu Dc, Da, Db (RR)

Description Compare each byte of data register Da with the corresponding byte of Db. In each 
case, if the value of the byte in Da is less than the value of the byte in Db, set all 
bits in the corresponding byte of Dc to 1; otherwise, clear all the bits. The operands 
are treated as signed 8-bit integers.

Compare each byte of data register Da with the corresponding byte of Db. In each 
case, if the value of the byte in Da is less than the value of the byte in Db, set all 
bits in the corresponding byte of Dc to 1; otherwise, clear all the bits. The operands 
are treated as unsigned 8-bit integers.

Operation if (D[a][(n+7):n] < D[b][(n+7):n])
then D[c][(n+7):n] = 8’h FF 
else D[c][(n+7):n] = 8’h 00; n = 0, 8, 16, 24;signed

if (D[a][(n+7):n] < D[b][(n+7):n])
then D[c][(n+7):n] = 8’h FF
else D[c][(n+7):n] = 8’h 00; n = 0, 8, 16, 24;unsigned

Status -
Examples lt.b d3, d1, d2

lt.bu d3, d1, d2

See also EQ.B, EQ.H, EQ.W, LT.H, LT.HU, LT.W, LT.WU
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10.4.113 Less Than Packed Halfword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT.H
Less Than Packed Halfword Unsigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT.HU
Table 10-134 
LT.H & LT.HU

Syntax lt.h Dc, Da, Db (RR)
lt.hu Dc, Da, Db (RR)

Description Compare each halfword of data register Da with the corresponding halfword of Db. 
In each case, if the value of the halfword in Da is less than the value of the 
corresponding halfword in Db, set all bits of the corresponding halfword of Dc to 1; 
otherwise, clear all the bits. The operands are treated as signed 16-bit integers.

Compare each halfword of data register Da with the corresponding halfword of Db. 
In each case, if the value of the halfword in Da is less than the value of the 
corresponding halfword in Db, set all bits of the corresponding halfword of Dc to 1; 
otherwise, clear all the bits. The operands are treated as unsigned 16-bit integers.

Operation if (D[a][(n+15):n] < D[b][(n+15):n])
then D[c][(n+15):n] = 16’h FFFF 
else D[c][(n+15):n] = 16’h 0000; n = 0, 16;signed

if (D[a][(n+15):n] < D[b][(n+15):n])
then D[c][(n+15):n] = 16’h FFFF 
else D[c][(n+15):n] = 16’h 0000; n = 0, 16;unsigned

Status -
Examples lt.h d3, d1, d2

lt.hu d3, d1, d2

See also EQ.B, EQ.H, EQ.W, LT.B, LT.BU, LT.W, LT.WU
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10.4.114 Less Than Packed Word  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT.W
Less Than Packed Word Unsigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT.WU
Table 10-135 
LT.H & LT.HU

Syntax lt.w Dc, Da, Db (RR)
lt.wu Dc, Da, Db (RR)

Description If the contents of data register Da are less than the contents of data register Db, set 
all bits in Dc to 1 and clear the remaining bits to zero; otherwise, clear all bits in Dc. 
Da and Db are treated as signed 32-bit integers.

If the contents of data register Da are less than the contents of data register Db, 
set all bits in Dc to 1 and clear the remaining bits to zero; otherwise, clear all bits 
in Dc. The operands are treated as unsigned 32-bit integers.

Operation if (D[a] < D[b])
then D[c] = 32’h FFFFFFFF 
else D[c] = 32’h 00000000;signed

if (D[a] < D[b])
then D[c] = 32’h FFFFFFFF
else D[c] = 32’h 00000000;unsigned

Status -

Examples lt.w d3, d1, d2

lt.wu d3, d1, d2

See also EQ.B, EQ.H, EQ.W, LT.B, LT.BU, LT.H, LT.HU
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10.4.115 Multiply-Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MADD(S)
Table 10-136 
MADD(S)

Syntax 1. madd Dc,Dd,Da,Db ; 32 + (32*32)--> 32 signed
2. madd Dc,Dd,Da,const9 ; 32 + (32*K9)--> 32 signed
3. madd Ec,Ed,Da,Db ; 64 + (32*32)--> 64 signed
4. madd Ec,Ed,Da,const9 ; 64 + (32*K9)--> 64 signed
5. madds Dc,Dd,Da,Db ; 32 + (32*32)--> 32 signed sat
6. madds Dc,Dd,Da,const9 ; 32 + (32*K9)--> 32 signed sat
7. madds Ec,Ed,Da,Db ; 64 + (32*32)--> 64 signed sat
8. madds Ec,Ed,Da,const9 ; 64 + (32*K9)--> 64 signed sat

Description Multiply 2 signed 32-bit integers, add the product to a signed 32-bit or 64-bit integer 
and put the result into a 32-bit or 64-bit register.
The value const9 is sign-extended to 32 bits before the multiplication is performed. 
Overflow and advanced overflow are calculated on the final result.
(S) On overflow the result is saturated 

Operation 1. D[c][31:0] = D[d][31:0] + (D[a][31:0] * D[b][31:0]);signed 
2. D[c][31:0] = D[d][31:0] + (D[a][31:0] * sign_ext(const9));signed
3. E[c][63:0] = E[d][63:0] + (D[a][31:0] * D[b][31:0]);signed 
4. E[c][63:0] = E[d][63:0] + (D[a][31:0] * sign_ext(const9));signed
5. D[c][31:0] = D[d][31:0] + (D[a][31:0] * D[b][31:0]);signed;ssov
6. D[c][31:0] = D[d][31:0] + (D[a][31:0] * sign_ext(const9));signed ;ssov 
7. E[c][63:0] = E[d][63:0] + (D[a][31:0] * D[b][31:0]);signed;ssov 
8. E[c][63:0] = E[d][63:0] + (D[a][31:0] * sign_ext(const9));signed;ssov

Status V, SV, AV, SAV

Examples
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10.4.116 Packed Multiply-Add Q Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MADD(S).H
Table 10-137 
MADD(S).H

Syntax 1. madd.h Ec,Ed,Da,DbUL,n ; 32||32  +||+  (16U*16U || 16L*16L)--> 32||32
2. madd.h Ec,Ed,Da,DbLU,n ; 32||32  +||+  (16U*16L || 16L*16U)--> 32||32
3. madd.h Ec,Ed,Da,DbLL,n ; 32||32  +||+  (16U*16L || 16L*16L)--> 32||32
4. madd.h Ec,Ed,Da,DbUU,n ;32||32  +||+  (16L*16U || 16U*16U)--> 32||32
5. madds.h Ec,Ed,Da,DbUL,n ; 32||32 +||+  (16U*16U || 16L*16L)--> 32||32  sat
6. madds.h Ec,Ed,Da,DbLU,n ; 32||32 +||+  (16U*16L || 16L*16U)--> 32||32  sat
7. madds.h Ec,Ed,Da,DbLL,n ; 32||32  +||+  (16U*16L || 16L*16L)--> 32||32   
sat
8. madds.h Ec,Ed,Da,DbUU,n ; 32||32 +||+ (16L*16U || 16U*16U)--> 32||32 sat

Description This operation is duplicated.
Multiply 2 signed 16-bit (halfword) values, add the product ( left justified if n=1) to 
a signed 32-bit value and put the result into a 32-bit register.  
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow and advanced overflow are calculated on the final result.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow each result is independently saturated.

Operation 1. E[c][63:32] = E[d][63:32] + (((D[a][31:16]* D[b][31:16])<<n)[31:0]) ;
    E[c][31:0]   = E[d][31:0]  + (((D[a][15:0]  * D[b][15:0])<<n)[31:0]) ;
2. E[c][63:32] = E[d][63:32] + (((D[a][31:16]* D[b][15:0])<<n)[31:0]) ;
    E[c][31:0]   = E[d][31:0]  + (((D[a][15:0]  * D[b][31:16])<<n)[31:0]) ; 
3. E[c][63:32] = E[d][63:32] + (((D[a][31:16]* D[b][15:0])<<n)[31:0]) ;
    E[c][31:0]   = E[d][31:0]  + (((D[a][15:0]  * D[b][15:0])<<n)[31:0]) ;
4. E[c][63:32] = E[d][63:32] + (((D[a][15:0]  * D[b][31:16])<<n)[31:0]);
    E[c][31:0]   = E[d][31:0]  + (((D[a][31:16]* D[b][31:16])<<n)[31:0]); 
5. E[c][63:32] = E[d][63:32] + (((D[a][31:16]* D[b][31:16])<<n)[31:0]);ssov
    E[c][31:0]   = E[d][31:0]  + (((D[a][15:0]  * D[b][15:0])<<n)[31:0]) ;ssov
6. E[c][63:32] = E[d][63:32] + (((D[a][31:16]* D[b][15:0])<<n)[31:0]) ;ssov
    E[c][31:0]   = E[d][31:0]  + (((D[a][15:0]  * D[b][31:16])<<n)[31:0]);ssov
7. E[c][63:32] = E[d][63:32] + (((D[a][31:16]* D[b][15:0])<<n)[31:0]) ;ssov 
    E[c][31:0]   = E[d][31:0]  + (((D[a][15:0]  * D[b][15:0])<<n)[31:0]) ;ssov
8. E[c][63:32] = E[d][63:32] + (((D[a][15:0]  * D[b][31:16])<<n)[31:0]);ssov
    E[c][31:0]   = E[d][31:0]  + (((D[a][31:16]* D[b][31:16])<<n)[31:0]) ;ssov
for all operations = signed; n=0,1;

Status V, SV, AV, SAV

Examples
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10.4.117 Multiply-Add Q Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MADD(S).Q
Table 10-138 
MADD(S).Q 

Syntax 1. madd.q Dc,Dd,Da,Db,n ;32 + (32*32)Up --> 32
2. madd.q Dc,Dd,Da,DbU,n ;32 + (16U*32)Up --> 32
3. madd.q Dc,Dd,Da,DbL,n ;32 + (16L*32)Up --> 32
4. madd.q Dc,Dd,DaU,DbU,n ;32 + (16U*16U) --> 32
5. madd.q Dc,Dd,DaL,DbL,n ;32 + (16L*16L) --> 32
6. madd.q Ec,Ed,Da,Db,n ;64 + (32*32)  --> 64
7. madd.q Ec,Ed,Da,DbU,n ;64 + (16U* 32) --> 64
8. madd.q Ec,Ed,Da,DbL,n ;64 + (16L* 32) --> 64 
9. madd.q Ec,Ed,DaU,DbU,n ;64 + (16U*16U) --> 64
10. madds.q Ec,Ed,DaL,DbL,n ;64 + (16L*16L) --> 64 
11. madds.q Dc,Dd,Da,Db,n ;32 + (32*32)Up --> 32 sat
12. madds.q Dc,Dd,Da,DbU,n ;32 + (16U*32)Up --> 32 sat
13. madds.q Dc,Dd,Da,DbL,n ;32 + (16L*32)Up --> 32 sat
14. madds.q Dc,Dd,DaU,DbU,n ;32 + (16U*16U) --> 32 sat
15. madds.q Dc,Dd,DaL,DbL,n ;32 + (16L*16L) --> 32 sat
16. madds.q Ec,Ed,Da,Db,n ;64 + (32*32)  --> 64 sat
17. madds.q Ec,Ed,Da,DbU,n ;64 + (16U* 32) --> 64 sat
18. madds.q Ec,Ed,Da,DbL,n ;64 + (16L* 32) --> 64 sat
19. madds.q Ec,Ed,DaU,DbU,n ;64 + (16U*16U) --> 64 sat
20. madds.q Ec,Ed,DaL,DbL,n ;64 + (16L*16L) --> 64 sat

Description Multiply 2 signed 16-bit or 32-bit values, add the product (left justified if n=1) to a 
signed 32-bit or 64-bit value and put the result into a 32-bit or 64-bit register.
There are 8 cases of 16*16 operations, 8 cases of 16x32 operations and 4 cases 
of 32*32 operations.
Overflow and advanced overflow are calculated on the final result. 
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF (only for 16 by 16-bit operations).
(S)  On overflow the result is saturated. 
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Operation 1.   D[c][31:0] = D[d][31:0] + (((D[a][31:0]   * D[b][31:0]) <<n)[63:32])          ;
2.   D[c][31:0] = D[d][31:0] + (((D[a][31:0]   * D[b][31:16])<<n)[47:16])         ;
3.   D[c][31:0] = D[d][31:0] + (((D[a][31:0]   * D[b][15:0]) <<n)[47:16])          ;
4.   D[c][31:0] = D[d][31:0] + (((D[a][31:16] * D[b][31:16])<<n)[31:0])           ;
5.   D[c][31:0] = D[d][31:0] + (((D[a][15:0]   * D[b][15:0]) <<n)[31:0])            ;
6.   E[c][63:0] = E[d][63:0]  + (((D[a][31:0]   * D[b][31:0]) <<n)[63:0])            ;
7.   E[c][63:0] = E[d][63:0]  + (((D[a][31:0]   * D[b][31:16])<<n)[47:0])           ;
8.   E[c][63:0] = E[d][63:0]  + (((D[a][31:0]   * D[b][15:0]) <<n)[47:0])            ;
9.   E[c][63:0] = E[d][63:0]  + (((D[a][31:16 ]* D[b][31:16])<<n)[31:0]<<16)   ;
10. E[c][63:0] = E[d][63:0]  + (((D[a][15:0]   * D[b][15:0]) <<n)[31:0]<<16)    ;
11. D[c][31:0] = D[d][31:0] + (((D[a][31:0]   * D[b][31:0]) <<n)[63:32])          ;ssov
12. D[c][31:0] = D[d][31:0] + (((D[a][31:0]   * D[b][31:16])<<n)[47:16])         ;ssov
13. D[c][31:0] = D[d][31:0] + (((D[a][31:0]   * D[b][15:0]) <<n)[47:16])          ;ssov
14. D[c][31:0] = D[d][31:0] + (((D[a][31:16] * D[b][31:16])<<n)[31:0])           ;ssov
15. D[c][31:0] = D[d][31:0] + (((D[a][15:0]   * D[b][15:0]) <<n)[31:0])            ;ssov
16. E[c][63:0] = D[d][63:0] + (((D[a][31:0]   * D[b][31:0]) <<n)[63:0])            ;ssov
17. E[c][63:0] = D[d][63:0] + (((D[a][31:0]   * D[b][31:16])<<n)[47:0])           ;ssov
18. E[c][63:0] = D[d][63:0] + (((D[a][31:0]   * D[b][15:0]) <<n)[47:0])            ;ssov
19. E[c][63:0] = D[d][63:0] + (((D[a][31:0]   * D[b][31:0]) <<n)[31:0]<<16)    ; ssov
20. E[c][63:0] = D[d][63:0] + (((D[a][15:0]   * D[b][15:0]) <<n)[31:0]<<16)    ; ssov
for all operations =  signed ; n=0,1; 

Status V, SV, AV, SAV

Examples

Table 10-138 
MADD(S).Q  (cont’d)
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10.4.118 Multiply-Add Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MADD(S).U
Table 10-139 
MADD(S).U

Syntax 1. madd.u Dc,Dd,Da,Db ;32 + (32*32)--> 32 unsigned
2. madd.u Dc,Dd,Da,const9 ;32 + (32*K9)--> 32 unsigned
3. madd.u Ec,Ed,Da,Db ;64 + (32*32)--> 64 unsigned
4. madd.u Ec,Ed,Da,const9 ;64 + (32*K9)--> 64 unsigned
5. madds.u Dc,Dd,Da,Db ;32 + (32*32)--> 32 unsigned sat
6. madds.u Dc,Dd,Da,const9 ;32 + (32*K9)--> 32 unsigned sat
7. madds.u Ec,Ed,Da,Db ;64 + (32*32)--> 64 unsigned sat
8. madds.u Ec,Ed,Da,const9 ;64 + (32*K9)--> 64 unsigned sat

Description Multiply 2 unsigned 32-bit integers, add the product to an unsigned 32-bit or 64-bit 
integer, and put the result into a 32-bit or 64-bit register. 
The value const9 is zero-extended to 32 bits before the multiplication is performed. 
Overflow and advanced overflow are calculated on the final result.
(S) On overflow the result is saturated 

Operation 1. D[c][31:0] = D[d][31:0] + (D[a][31:0] * D[b][31:0]) ;signed
2. D[c][31:0] = D[d][31:0] + (D[a][31:0] * zero_ext(const9)) ;signed 
3. E[c][63:0] = E[d][63:0] + (D[a][31:0] * D[b][31:0]) ;signed 
4. E[c][63:0] = E[d][63:0] + (D[a][31:0] * zero_ext(const9)) ;signed 
5. D[c][31:0] = D[d][31:0] + (D[a][31:0] * D[b][31:0]) ;signed;suov 
6. D[c][31:0] = D[d][31:0] + (D[a][31:0] * zero_ext(const9)) ;signed;suov 
7. E[c][63:0] = E[d][63:0] + (D[a][31:0] * D[b][31:0]) ;signed;suov 
8. E[c][63:0] = E[d][63:0] + (D[a][31:0] * zero_ext(const9)) ;signed ;suov

Status V, SV, AV, SAV

Examples
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10.4.119 Packed Multiply-Add Q Format-Multiprecision  . . . . . . . . . . . . . . . . . . . MADDM(S).H
Table 10-140 
MADDM(S).H

Syntax 1. maddm.h Ec,Ed,Da,DbUL,n ;64 +  16U*16U + 16L*16L  --> 64
2. maddm.h Ec,Ed,Da,DbLU,n ; ;64 +  16U*16L + 16L*16U  --> 64
3. maddm.h Ec,Ed,Da,DbLL,n ;64 +  16U*16L + 16L*16L  --> 64
4. maddm.h Ec,Ed,Da,DbUU,n ;64 +  16L*16U + 16U*16U --> 64
5. maddms.h Ec,Ed,Da,DbUL,n ;64 +  16U*16U + 16L*16L  --> 64    sat
6. maddms.h Ec,Ed,Da,DbLU,n ;64 +  16U*16L + 16L*16U  --> 64    sat
7. maddms.h Ec,Ed,Da,DbLL,n ;64 +  16U*16L + 16L*16L  --> 64     sat
8. maddms.h Ec,Ed,Da,DbUU,n ;64 +  16L*16U + 16U*16U --> 64    sat

Description Perform 2 multiplications of 2 signed 16-bit (halfword). Add the 2 products ( left 
justified if n=1) (left-shifted by 16) to a signed 64-bit value and put the result in a 
64-bit register.
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow and advanced overflow are calculated on the final result.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow the result is saturated.

Operation 1. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][31:16])<<n) 
+ ((D[a][15:0]  * D[b][15:0] )<<n)<<16) ;signed,n=0,1 

2. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][15:0]) <<n)
+ ((D[a][15:0]  * D[b][31:16])<<n)<<16) ;signed,n=0,1 

3. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][15:0]) <<n) 
+ ((D[a][15:0]  * D[b][15:0]) <<n)<<16) ;signed,n=0,1 

4. E[c][63:0] = E[d][63:0] + (((D[a][15:0] * D[b][31:16])<<n) 
+ ((D[a][31:16] * D[b][31:16])<<n)<<16) ;signed,n=0,1 

5. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][31:16])<<n) 
+ ((D[a][15:0]  * D[b][15:0] )<<n)<<16);signed,n=0,1;ssov

6. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][15:0]) <<n) 
+ ((D[a][15:0]  *D[b][31:16])<<n)<<16);signed,n=0,1;ssov 

7. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][15:0]) <<n) 
+ ((D[a][15:0]  * D[b][15:0]) <<n)<<16);signed,n=0,1;ssov 

8. E[c][63:0] = E[d][63:0] + (((D[a][15:0] * D[b][31:16])<<n)
 +((D[a][31:16]*D[b][31:16])<<n)<<16);signed,n=0,1;ssov 

Status V, SV, AV, SAV

Examples
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10.4.120 Packed Multiply-Add Q Format w/ Rounding . . . . . . . . . . . . . . . . . . . . . MADDR(S).H
Table 10-141 
MADDR(S).H 

Syntax 1.   maddr.h Dc,Dd,Da,DbUL,n    ;16U ||16L +||+ (16U*16U || 16L*16L) R --> 16||16
2.   maddr.h Dc,Dd,Da,DbLU,n    ;16U ||16L +||+ (16U*16L || 16L*16U) R --> 16||16
3.   maddr.h Dc,Dd,Da,DbLL,n    ;16U ||16L +||+ (16U*16L || 16L*16L) R --> 16||16
4.   maddr.h Dc,Dd,Da,DbUU,n   ;16U ||16L +||+ (16L*16U || 16U*16U) R --> 16||16
5.   maddr.h Dc,Ed,Da,DbUL,n    ; 32  ||32   +||+ (16U*16U || 16L*16L) R --> 16||16
6.   maddrs.h Dc,Dd,Da,DbUL,n  ;16U ||16L +||+ (16U*16U || 16L*16L) R --> 16||16  sat
7.   maddrs.h Dc,Dd,Da,DbLU,n  ;16U ||16L +||+ (16U*16L || 16L*16U) R --> 16||16  sat
8.   maddrs.h Dc,Dd,Da,DbLL,n  ;16U ||16L +||+ (16U*16L || 16L*16L)  R--> 16||16  sat
9.   maddrs.h Dc,Dd,Da,DbUU,n ;16U ||16L +||+ (16L*16U || 16U*16U) R --> 16||16 sat
10. maddrs.h Dc,Ed,Da,DbUL,n ; 32 || 32    +||+ (16U*16U || 16L*16L) R--> 16||16 sat

Description This operation is duplicated.
Multiply 2 signed 16-bit (halfword) values, add the product ( left justified if n=1) to 
a signed 16-bit value and put the rounded result into half of a 32-bit register. 
(Note: since there are 2 results the two register halves are used) .  
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
There is a special case: add the product ( left justified if n=1) to a signed 32-bit 
value and put the rounded result into half of a 32-bit register.  
Overflow and advanced overflow are calculated on the final results.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow each result is independently saturated.
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Operation 1. D[c][31:16] = round16(D[d][31:16] + ((D[a][31:16]* D[b][31:16])<<n)[31:0]);
    D[c][15:0]   = round16(D[d][15:0]   + ((D[a][15:0] * D[b][15:0] )<<n)[31:0]) ;
2. D[c][31:16] = round16(D[d][31:16] + ((D[a][31:16]* D[b][15:0]) <<n)[31:0]);
    D[c][15:0]   = round16(D[d][15:0]   + ((D[a][15:0] * D[b][31:16])<<n)[31:0]) ;
3. D[c][31:16] = round16(D[d][31:16] + ((D[a][31:16]* D[b][15:0]) <<n)[31:0]) ;
    D[c][15:0]   = round16(D[d][15:0]   + ((D[a][15:0] * D[b][15:0]) <<n)[31:0]) ;
4. D[c][31:16] = round16(D[d][31:16] + (((D[a][15:0] * D[b][31:16])<<n)[31:0]);
    D[c][15:0]   = round16(D[d][15:0]   + ((D[a][31:16]* D[b][31:16])<<n)[31:0]) ;
5. D[c][31:16] = round16(E[d][63:32] + ((D[a][31:16]* D[b][31:16])<<n)[31:0]) ;
    D[c][15:0]   = round16(E[d][31:0]   +  ((D[a][15:0] * D[b][15:0]) <<n)[31:0]) ;
6. D[c][31:16] = round16(D[d][31:16] + ((D[a][31:16]* D[b][31:16])<<n)[31:0]) ;ssov
    D[c][15:0]   = round16(D[d][15:0]   + ((D[a][31:16]* D[b][31:16])<<n)[31:0]) ;ssov
7. D[c][31:16] = round16(D[d][31:16] +  ((D[a][31:16]* D[b][15:0]) <<n)[31:0]) ;ssov
    D[c][15:0]   = round16(D[d][15:0]   + ((D[a][15:0] * D[b][31:16])<<n)[31:0]) ;ssov
8. D[c][31:16] = round16(D[d][31:16] + ((D[a][31:16]* D[b][15:0]) <<n)[31:0]);ssov
    D[c][15:0]   = round16(D[d][15:0]   + ((D[a][15:0] * D[b][15:0]) <<n)[31:0]) ;ssov
9. D[c][31:16] = round16(D[d][31:16] + ((D[a][15:0] * D[b][31:16])<<n)[31:0]);ssov
    D[c][15:0]   = round16(D[d][15:0]   + ((D[a][31:16]* D[b][31:16])<<n)[31:0]) ;ssov
10.D[c][31:16] = round16(E[d][63:32] + ((D[a][31:16]* D[b][31:16])<<n)[31:0]);ssov
     D[c][15:0]   = round16(E[d][31:0]   + ((D[a][15:0] * D[b][15:0]) <<n)[31:0]);ssov
for all operations =  signed ; n=0,1;
round16 == add 0x8000 to 32bit value and clear bits[15:0] 

Status V, SV, AV, SAV
Examples

Table 10-141 
MADDR(S).H  (cont’d)
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10.4.121 Multiply-Add Q Format with Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . MADDR(S).Q
Table 10-142 
MADDR(S).Q

Syntax 1. maddr.q Dc,Dd,DaU,DbU,n ;32 + (16U*16U)  R--> 32
2. maddr.q Dc,Dd,DaL,DbL,n ;32 + (16L*16L)   R--> 32
3. maddrs.q Dc,Dd,DaU,DbU,n ;32 + (16U*16U)  R--> 32   sat
4. maddrs.q Dc,Dd,DaL,DbL,n ;32 + (16L*16L)   R--> 32    sat 

Description Multiply 2 signed 16-bit (halfword) values, add the product (left justified if n=1) to a 
32-bit signed value,  put the rounded result in a 32-bit register. 
The lower  halfword is cleared. 
Overflow and advanced overflow are calculated on the final results.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF (only for 16 by 16-bit operations).
(S)  On overflow the result is saturated.  

Operation 1. D[c][31:0] = round16(D[d][31:0] + ((D[a][31:16]* D[b][31:16])<<n)[31:0])
2. D[c][31:0] = round16(D[d][31:0] + ((D[a][15:0] * D[b][15:0]) <<n)[31:0])
3. D[c][31:0] = round16(D[d][31:0] + ((D[a][31:16]* D[b][31:16])<<n)[31:0]);ssov
4. D[c][31:0] = round16(D[d][31:0] + ((D[a][15:0] * D[b][15:0]) <<n)[31:0]);ssov
for all operations = signed; n=0,1;
round16 == add 0x8000 to 32bit value and clear bits[15:0] 

Status V, SV, AV, SAV
Examples
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10.4.122 Packed Multiply-Add/Sub Q Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . MADDSU(S).H
Table 10-143 
MADDSU(S).H

Syntax 1. maddsu.h Ec,Ed,Da,DbUL,n ;32||32 +||- (16U*16U || 16L*16L)--> 32||32
2. maddsu.h Ec,Ed,Da,DbLU,n ;32||32 +||- (16U*16L || 16L*16U)--> 32||32
3. maddsu.h Ec,Ed,Da,DbLL,n ;32||32 +||- (16U*16L || 16L*16L)--> 32||32
4. maddsu.h Ec,Ed,Da,DbUU,n ;32||32 +||- (16L*16U || 16U*16U)--> 32||32
5. maddsus.h Ec,Ed,Da,DbUL,n ;32||32 +||- (16U*16U || 16L*16L)--> 32||32sat
6. maddsus.h Ec,Ed,Da,DbLU,n ;32||32 +||- (16U*16L || 16L*16U)--> 32||32sat
7. maddsus.h Ec,Ed,Da,DbLL,n ;32||32 +||- (16U*16L || 16L*16L)--> 32||32sat
8. maddsus.h Ec,Ed,Da,DbUU,n ;32||32 +||- (16L*16U || 16U*16U)--> 32||32sat

Description This operation is duplicated.
Multiply 2 signed 16-bit (halfword) values, add (or substract) the product ( left 
justified if n=1) to a signed 32-bit value and put the result into a 32-bit register.  
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow and advanced overflow are calculated on the final results.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow each result is independently saturated.

Operation 1. E[c][63:32] = E[d][63:32] + (((D[a][31:16]* D[b][31:16])<<n)[31:0]) ; 
    E[c][31:0]   = E[d][31:0]   - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]) ;
2. E[c][63:32] = E[d][63:32] + (((D[a][31:16]* D[b][15:0]) <<n)[31:0]) ; 
    E[c][31:0]   = E[d][31:0]   - (((D[a][15:0] * D[b][31:16])<<n)[31:0]) ; 
3. E[c][63:32] = E[d][63:32] + (((D[a][31:16]* D[b][15:0]) <<n)[31:0]);  
    E[c][31:0]   = E[d][31:0]   - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]) ;  
4. E[c][63:32] = E[d][63:32] + (((D[a][15:0] * D[b][31:16])<<n)[31:0]); 
    E[c][31:0]   = E[d][31:0]   - (((D[a][31:16]* D[b][31:16])<<n)[31:0]); 
5. E[c][63:32] = E[d][63:32] + (((D[a][31:16]*D[b][31:16])<<n)[31:0]) ;ssov
    E[c][31:0]   = E[d][31:0]   -  (((D[a][31:16]*D[b][31:16])<<n)[31:0]) ;ssov
6. E[c][63:32] = E[d][63:32] + (((D[a][31:16]* D[b][15:0]) <<n)[31:0])  ;ssov
    E[c][31:0]   = E[d][31:0]    - (((D[a][15:0] * D[b][31:16])<<n)[31:0]) ;ssov
7. E[c][63:32] = E[d][63:32] + (((D[a][31:16]* D[b][15:0]) <<n)[31:0]) ;ssov 
    E[c][31:0]   = E[d][31:0]    - (((D[a][15:0] * D[b][15:0]) <<n)[31:0])  ;ssov
8. E[c][63:32] = E[d][63:32] + (((D[a][15:0] * D[b][31:16])<<n)[31:0])  ;ssov 
    E[c][31:0]   = E[d][31:0]    - (((D[a][31:16]* D[b][31:16])<<n)[31:0]) ;ssov
for all operations =  signed ; n=0,1;

Status V, SV, AV, SAV
Examples
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10.4.123 Packed Multiply-Add/Sub Q Format-Multiprecision  . . . . . . . . . . . . .MADDSUM(S).H
Table 10-144 
MADDSUM(S).H

Syntax 1. maddsum.h Ec,Ed,Da,DbUL,n ; 64 + 16U*16U - 16L*16L  --> 64
2. maddsum.h Ec,Ed,Da,DbLU,n ; 64 + 16U*16L - 16L*16U  --> 64
3. maddsum.h Ec,Ed,Da,DbLL,n ; 64 + 16U*16L - 16L*16L  --> 64
4. maddsum.h Ec,Ed,Da,DbUU,n ; 64 + 16L*16U - 16U*16U  --> 64
5. maddsums.h Ec,Ed,Da,DbUL,n ; 64 + 16U*16U - 16L*16L  --> 64  sat
6. maddsums.h Ec,Ed,Da,DbLU,n ; 64 + 16U*16L - 16L*16U  --> 64  sat
7. maddsums.h Ec,Ed,Da,DbLL,n ; 64 + 16U*16L - 16L*16L  --> 64   sat
8. maddsums.h Ec,Ed,Da,DbUU,n ; 64 + 16L*16U - 16U*16U --> 64  sat

Description Perform 2 multiplications of 2 signed 16-bit (halfword). Add 1 product and substract 
the other product (left justified if n=1) (left-shifted by 16) to/from a signed 64-bit 
value and put the result in a 64-bit register.
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow and advanced overflow are calculated on the final result.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow the result is saturated.

Operation 1. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][31:16])<<n) 
                                          -((D[a][15:0] * D[b][15:0])<<n)<<16) ;signed,n=0,1 
2. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][15:0]) <<n) 
                                        -((D[a][15:0] * D[b][31:16])<<n)<<16) ;signed,n=0,1 
3. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][15:0]) <<n) 
                                        -((D[a][15:0] * D[b][15:0]) <<n)<<16) ;signed,n=0,1 
4. E[c][63:0] = E[d][63:0] + (((D[a][15:0] * D[b][31:16])<<n) 
                                        -((D[a][31:16] * D[b][31:16])<<n)<<16) ;signed,n=0,1 
5. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][31:16])<<n) 
                                         -((D[a][15:0] * D[b][15:0]) <<n)<<16) ;signed,n=0,1;ssov 
6. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][15:0]) <<n) 
                                        -((D[a][15:0] * D[b][31:16])<<n)<<16) ;signed,n=0,1;ssov 
7. E[c][63:0] = E[d][63:0] + (((D[a][31:16] * D[b][15:0]) <<n) 
                                        -((D[a][15:0] * D[b][15:0]) <<n)<<16) ;signed,n=0,1;ssov 
8. E[c][63:0] = E[d][63:0] + (((D[a][15:0] * D[b][31:16])<<n) 
                                        -((D[a][31:16] * D[b][31:16])<<n)<<16) ;signed,n=0,1;ssov 

Status V, SV, AV, SAV

Examples
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10.4.124 Packed Multiply-Add/Sub Q Format w/Rounding  . . . . . . . . . . . . . . . MADDSUR(S).H
Table 10-145 
MADDSUR(S).H

Syntax 1. maddsur.h Dc,Dd,Da,DbUL,n    ;16U||16L +||- (16U*16U  || 16L*16L) R  --> 16||16
2. maddsur.h Dc,Dd,Da,DbLU,n    ;16U||16L +||- (16U*16L || 16L*16U) R   --> 16||16
3. maddsur.h Dc,Dd,Da,DbLL,n    ;16U||16L +||- (16U*16L || 16L*16L) R    --> 16||16
4. maddsur.h Dc,Dd,Da,DbUU,n   ;16U||16L +||- (16L*16U || 16U*16U) R   --> 16||16
5. maddsurs.h Dc,Dd,Da,DbUL,n    ;16U||16L +||- (16U*16U || 16L*16L) R  -->16||16 
sat
6. maddsurs.h Dc,Dd,Da,DbLU,n   ;16U||16L +||- (16U*16L || 16L*16U) R --> 16||16 sat
7. maddsurs.h Dc,Dd,Da,DbLL,n    ;16U||16L +||- (16U*16L || 16L*16L) R --> 16||16 sat
8. maddsurs.h Dc,Dd,Da,DbUU,n   ;16U||16L +||- (16L*16U || 16U*16U) R -->16||16 sat

Description This operation is duplicated.
Multiply 2 signed 16-bit (halfword) values, add (substract) the product ( left justified 
if n=1) from a signed 16-bit value and put the rounded result into half of a 32-bit 
register.(Note: since there are 2 results the two register halves are used) .  
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow and advanced overflow are calculated on the final results.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow each result is independently saturated.

Operation 1. D[c][31:16] = round16(D[d][31:16] + (((D[a][31:16]* D[b][31:16])<<n)[31:0]);
    D[c][15:0]  =  round16(D[d][15:0]  - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]) 
2. D[c][31:16] = round16(D[d][31:16] + (((D[a][31:16]* D[b][15:0]) <<n)[31:0])
    D[c][15:0]  =   round16(D[d][15:0]  - (((D[a][15:0] * D[b][31:16])<<n)[31:0]) 
3. D[c][31:16] = round16(D[d][31:16] + (((D[a][31:16]* D[b][15:0]) <<n)[31:0])
    D[c][15:0]  =   round16(D[d][15:0]  - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]) 
4. D[c][31:16] = round16(D[d][31:16] + (((D[a][15:0] * D[b][31:16])<<n)[31:0])   
    D[c][15:0]  =   round16(D[d][15:0]  - (((D[a][31:16]* D[b][31:16])<<n)[31:0]) 
5. D[c][31:16] = round16(D[d][31:16] + (((D[a][31:16]* D[b][31:16])<<n)[31:0]);ssov 
    D[c][15:0]  =   round16(D[d][15:0]  - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]);ssov 
6. D[c][31:16] = round16(D[d][31:16] + (((D[a][31:16]* D[b][15:0]) <<n)[31:0]);ssov 
    D[c][15:0]  =   round16(D[d][15:0]  - (((D[a][15:0] * D[b][31:16])<<n)[31:0]);ssov 
7. D[c][31:16] = round16(D[d][31:16] + (((D[a][31:16]* D[b][15:0]) <<n)[31:0]);ssov 
    D[c][15:0]  =   round16(D[d][15:0]  - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]);ssov 
8. D[c][31:16] = round16(D[d][31:16] + (((D[a][15:0] * D[b][31:16])<<n)[31:0]);ssov
    D[c][15:0]  =   round16(D[d][15:0]  - (((D[a][31:16]* D[b][31:16])<<n)[31:0]);ssov 
for all operations =  signed ; n=0,1;
round16 == add 0x8000 to 32bit value and clear bits[15:0] 

Status V, SV, AV, SAV
Examples
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10.4.125 Maximum Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAX

10.4.126 Maximum Value Packed Byte  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAX.B
Maximum Value Packed Byte Unsigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAX.BU

Table 10-146 
MAX

Syntax max Dc, Da, Db (RR)
max Dc, Da, const9 (RC)

Description If the contents of data register Da are greater than the contents of data register Db/
const9, put the contents of Da in data register Dc; otherwise, put the contents of Db/
const9 in Dc. The operands are treated as signed, 32-bit integers.

Operation if (D[a] > D[b]) then D[c] = D[a]
else D[c] = D[b]; signed

if (D[a] > sign_ext(const9)) then D[c] = D[a]
else D[c] = sign_ext(const9); signed

Status -
Examples max d3, d1, d2

max d3, d1, 126

See also MAX.U, MIN, MIN.U

Table 10-147 
MAX.B & MAX.BU

Syntax max.b  Dc, Da, Db (RR)
max.bu  Dc, Da, Db (RR)

Description Compute the maximum value of the corresponding bytes in Da and Db and put 
each result in the corresponding byte of Dc. The operands are treated as signed/
unsigned, 8-bit integers.

Operation if (D[a][(n+7):n] > D[b][(n+7):n])
then D[c][(n+7):n] = D[a][(n+7):n]
else D[c][(n+7):n] = D[b][(n+7):n]; n = 0, 8, 16, 24; signed

if (D[a][(n+7):n] > D[b][(n+7):n])
then D[c][(n+7):n] = D[a][(n+7):n]
else D[c][(n+7):n] = D[b][(n+7):n]; n = 0, 8, 16, 24; unsigned

Status -
Examples max.b d3, d1, d2

max.bu d3, d1, d2

See also MAX.H, MAX.HU, MIN.B, MIN.BU, MIN.H, MIN.HU
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10.4.127 Maximum Value Packed Halfword  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAX.H
Maximum Value Packed Halfword Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAX.HU

10.4.128 Maximum Value Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAX.U

Table 10-148 
MAX.H & MAX.HU

Syntax max.h  Dc, Da, Db (RR)
max.hu  Dc, Da, Db (RR)

Description Compute the maximum value of the corresponding halfwords in Da and Db and put 
each result in the corresponding halfword of Dc. The operands are treated as 
signed/unsigned, 16-bit integers.

Operation if (D[a][(n+15):n] > D[b][(n+15):n])
then D[c][(n+15):n] = D[a][(n+15):n]
else D[c][(n+15):n] = D[b][(n+15):n]; n = 0, 16; signed

if (D[a][(n+15):n] > D[b][(n+15):n])
then D[c][(n+15):n] = D[a][(n+15):n]
else D[c][(n+15):n] = D[b][(n+15):n]; n = 0, 16; unsigned

Status -
Examples max.h d3, d1, d2

max.hu d3, d1, d2

See also MAX.B, MAX.BU, MIN.B, MIN.BU, MIN.H, MIN.HU

Table 10-149 
MAX.U

Syntax max.u Dc, Da, Db (RR)
max.u Dc, Da, const9 (RC)

Description If the contents of data register Da are greater than the contents of data register Db/
const9, put the contents of Da in data register Dc; otherwise, put the contents of Db/
const9 in Dc. The operands are treated as unsigned, 32-bit integers.

Operation if (D[a] > D[b]) then D[c] = D[a]
else D[c] = D[b]; unsigned

if (D[a] > zero_ext(const9)) then D[c] = D[a]
else D[c] = zero_ext(const9); unsigned

Status -
Examples max.u d3, d1, d2

max.u d3, d1, 126

See also MAX, MIN, MIN.U
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10.4.129 Move From Core Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MFCR

10.4.130 Minimum Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIN

Table 10-150 
MFCR

Syntax mfcr Dc, const16 (RLC)
Description Move the contents of the core SFR register, selected by the value const16, to data 

register Dc. The core SFR address is a const16 byte offset from the core SFR base 
address. It must be word-aligned (the least-significant two bits equal zero). Non-
aligned addresses have an undefined effect. This instruction can be executed on 
any privilege level.
This instruction may not be used to access GPRs, attempting to access a GPR with 
this instruction will return an undefined value.

Operation D[c] = CR[const16]
Status -

Examples mfcr d3, oxfeo4

See also MTCR

Table 10-151 
MIN

Syntax min Dc, Da, Db (RR)
min Dc, Da, const9 (RC)

Description If the contents of data register Da are less than the contents of data register Db/
const9, put the contents of Da in data register Dc; otherwise, put the contents of Db/
const9 in Dc. The operands are treated as signed, 32-bit integers.

Operation if (D[a] < D[b]) then D[c] = D[a]
else D[c] = D[b]; signed

if (D[a] < sign_ext(const9)) then D[c] = D[a]
else D[c] = sign_ext(const9); signed

Status -

Examples min d3, d1, d2

min d3, d1, 126

See also MAX, MAX.U, MIN.U
230      v. 1.3.1



TriCore Instruction Set
Instruction DescriptionsArchitecture Manual

2001-04-30 @ 15:16
10.4.131 Minimum Value Packed Byte  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIN.B
Minimum Value Packed Byte Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIN.BU

10.4.132 Minimum Value Packed Halfword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIN.H
Minimum Value Packed Halfword Unsigned  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIN.HU

Table 10-152 
MIN.B & MIN.BU

Syntax min.b  Dc, Da, Db (RR)
min.bu  Dc, Da, Db (RR)

Description Compute the minimum value of the corresponding bytes in Da and Db and put each 
result in the corresponding byte of Dc. The operands are treated as signed/
unsigned, 8-bit integers.

Operation if (D[a][(n+7):n] < D[b][(n+7):n])
then D[c][(n+7):n] = D[a][(n+7):n]
else D[c][(n+7):n] = D[b][(n+7):n];n = 0, 8, 16, 24; signed

if (D[a][(n+7):n] < D[b][(n+7):n])
then D[c][(n+7):n] = D[a][(n+7):n]
else D[c][(n+7):n] = D[b][(n+7):n]; n = 0, 8, 16, 24; unsigned

Status -
Examples min.b d3, d1, d2

min.bu d3, d1, d2

See also MAX.B, MAX.BU, MAX.H, MAX.HU, MIN.H, MIN.HU

Table 10-153 
MIN. H & MIN.HU

Syntax min.h  Dc, Da, Db (RR)
min.hu  Dc, Da, Db (RR)

Description Compute the minimum value of the corresponding halfwords in Da and Db and put 
each result in the corresponding halfword of Dc. The operands are treated as 
signed/unsigned, 16-bit integers.
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10.4.133 Minimum Value Unsigned  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIN.U

Operation if (D[a][(n+15):n] < D[b][(n+15):n])
then D[c][(n+15):n] = D[a][(n+15):n]
else D[c][(n+15):n] = D[b][(n+15):n]; n = 0, 16; signed

if (D[a][(n+15):n] < D[b][(n+15):n])
then D[c][(n+15):n] = D[a][(n+15):n]
else D[c][(n+15):n] = D[b][(n+15):n]; n = 0, 16; unsigned

Status -
Examples min.h d3, d1, d2

min.hu d3, d1, d2

See also MAX.B, MAX.BU, MAX.H, MAX.HU, MIN.B, MIN.BU

Table 10-154 
MIN. U

Syntax min.u Dc, Da, Db (RR)
min.u Dc, Da, const9 (RC)

Description If the contents of data register Da are less than the contents of data register Db/
const9, put the contents of Da in data register Dc; otherwise, put the contents of Db/
const9 in Dc. The operands are treated as unsigned, 32-bit integers.

Operation if (D[a] < D[b]) then D[c] = D[a]
else D[c] = D[b]; unsigned

if (D[a] < zero_ext(const9)) then D[c] = D[a]
else D[c] = zero_ext(const9); unsigned

Status -

Examples min.u d3, d1, d2

min.u d3, d1, 126

See also MAX, MAX.U, MIN

Table 10-153 
MIN. H & MIN.HU
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10.4.134 Move. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOV

10.4.135 Move Value to Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOV.A

Table 10-155 
MOV

Syntax mov Dc, Db (RR)
mov Dc, const16 (RLC)

mov Da, Db (SRR)
mov Da, const4 (SRC)
mov D15, const8 (SC)

Description Move the contents of data register Db/const16 to data register Dc. The value 
const16 is sign-extended to 32 bits before it is moved.

Move the contents of data register Db/const4/const8 to data register Da/D15. The 
value const4 is sign-extended to 32 bits before it is moved. The value const8 is 
zero-extended to 32 bits before it is moved.

Operation D[c] = D[b]
D[c] = sign_ext(const16)

D[a] = D[b]
D[a] = sign_ext(const4)
D[15] = zero_ext(const8)

Status -
Examples mov d3, d1

mov d3, -30000

mov d1, d2

mov d1, 6

mov d15, 126

See also MOV.U, MOVH

Table 10-156 
MOV.A

Syntax mov.a Ac, Db (RR)
mov.a Aa, Db (SRR)
mov.a Aa, const4 (SRC)

Description Move the contents of data register Db to address register Ac. 
Move the contents of data register Db/const4 to address register Aa. .The value 
const4 is zero-extended to 32 bits before it is moved

Operation A[c] = D[b]

A[a] = D[b]
A[a] = zero_ext(const4)
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10.4.136 Move Address from Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOV.AA

10.4.137 Move Address to Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOV.D

Status -

Examples mov.a a3, d1

mov.a a4, d2

mov.a a4, 7

See also LEA, MOV.AA, MOV.D, MOVH.A

Table 10-157 
MOV.AA

Syntax mov.aa Ac, Ab (RR)
mov.aa Aa, Ab (SRR)

Description Move the contents of address register Ab to address register Ac.
Move the contents of address register Ab to address register Aa. 

Operation A[c] = A[b]
A[a] = A[b]

Status -
Examples mov.aa a3, a4

mov.aa a4, a2

See also LEA, MOV.A, MOV.D, MOVH.A

Table 10-158 
MOV.D

Syntax mov.d Dc, Ab (RR)
mov.d Da, Ab (SRR)

Description Move the contents of address register Ab to data register Dc. 
Move the contents of address register Ab to data register Da. 

Operation D[c] = A[b]
D[a] = A[b]

Status -
Examples mov.d d3, a4

mov.d d1, a2

See also LEA, MOV.A, MOV.AA, MOVH.A

Table 10-156 
MOV.A
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10.4.138 Move Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOV.U

10.4.139 Move High  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MOVH

10.4.140 Move High to Address  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOVH.A

Table 10-159 
MOV. U

Syntax mov.u Dc, const16 (RLC)
Description Move the zero-extended value const16 to data register Dc.

Operation D[c] = zero_ext(const16)
Status -

Examples mov.u d3, 526

See also MOV, MOVH

Table 10-160 
MOVH

Syntax movh Dc, const16 (RLC)

Description Move the value const16 to the most-significant halfword of data register Dc and set 
the least-significant 16 bits to zero.

Operation D[c] = {const16, 16’h 0000}
Status -

Examples movh d3, 526

See also MOV, MOV.U

Table 10-161 
MOVH.A

Syntax movh.a Ac, const16 (RLC)
Description Move the value const16 to the most-significant halfword of address register Ac and 

set the least-significant 16 bits to zero.
Operation A[c] = {const16, 16’h 0000}

Status -
Examples movh.a a3, 526

See also LEA, MOV.A, MOV.AA, MOV.D
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10.4.141 Multiply-Sub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MSUB(S)
Table 10-162 
MSUB(S) 

Syntax 1. msub Dc,Dd,Da,Db ; 32 - (32*32)--> 32 signed
2. msub Dc,Dd,Da,const9 ; 32 - (32*K9)--> 32 signed
3. msub Ec,Ed,Da,Db ; 64 - (32*32)--> 64 signed
4. msub Ec,Ed,Da,const9 ; 64 - (32*K9)--> 64 signed
5. msubs Dc,Dd,Da,Db ; 32 - (32*32)--> 32 signed sat
6. msubs Dc,Dd,Da,const9 ; 32 - (32*K9)--> 32 signed sat
7. msubs Ec,Ed,Da,Db ; 64 - (32*32)--> 64 signed sat
8. msubs Ec,Ed,Da,const9 ; 64 - (32*K9)--> 64 signed sat

Description Multiply 2 signed 32-bit integers, substract the product from a signed 32-bit or 64-
bit integer and put the result into a 32-bit or 64-bit register. 
The value const9 is sign-extended to 32 bits before the multiplication is performed. 
Overflow and advanced overflow are calculated on the final result.
(S) On overflow the result is saturated

Operation 1. D[c][31:0] = D[d][31:0] - (D[a][31:0] * D[b][31:0])            ;signed
2. D[c][31:0] = D[d][31:0] - (D[a][31:0] * sign_ext(const9)) ;signed
3. E[c][63:0] = E[d][63:0] - (D[a][31:0] * D[b][31:0])            ;signed
4. E[c][63:0] = E[d][63:0] - (D[a][31:0] * sign_ext(const9)) ;signed
5. D[c][31:0] = D[d][31:0] - (D[a][31:0] * D[b][31:0])           ;signed;ssov
6. D[c][31:0] = D[d][31:0] - (D[a][31:0] * sign_ext(const9)) ;signed;ssov
7. E[c][63:0] = E[d][63:0] - (D[a][31:0] * D[b][31:0])            ;signed ;ssov
8. E[c][63:0] = E[d][63:0] - (D[a][31:0] * sign_ext(const9)) ;signed;ssov

Status V, SV, AV, SAV

Examples
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10.4.142 Packed Multiply-Sub Q Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MSUB(S).H
Table 10-163 
MSUB(S).H

Syntax 1. msub.h Ec,Ed,Da,DbUL,n ; 32||32  -||-  (16U*16U || 16L*16L)--> 32||32
2. msub.h Ec,Ed,Da,DbLU,n ; 32||32  -||-  (16U*16L || 16L*16U)--> 32||32
3. msub.h Ec,Ed,Da,DbLL,n ; 32||32  -||-  (16U*16L || 16L*16L)--> 32||32
4. msub.h Ec,Ed,Da,DbUU,n ; 32||32  -||-  (16L*16U || 16U*16U)--> 32||32
5. msubs.h Ec,Ed,Da,DbUL,n ; 32||32  -||-  (16U*16U || 16L*16L)--> 32||32 sat
6. msubs.h Ec,Ed,Da,DbLU,n ; 32||32  -||-  (16U*16L || 16L*16U)--> 32||32 sat
7. msubs.h Ec,Ed,Da,DbLL,n ; 32||32  -||-  (16U*16L || 16L*16L)--> 32||32 sat
8. msubs.h Ec,Ed,Da,DbUU,n ; 32||32  -||-  (16L*16U || 16U*16U)--> 32||32 sat

Description This operation is duplicated.
Multiply 2 signed 16-bit (halfword) values, substract the product ( left justified if 
n=1) from a signed 32-bit value and put the result into a 32-bit register.  
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow and advanced overflow are calculated on the final result.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow each result is independently saturated.

Operation 1. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][31:16])<<n)[31:0]) ;
    E[c][31:0]  = E[d][31:0]  - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]) ;
2. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][15:0])<<n)[31:0]);
    E[c][31:0]  = E[d][31:0]  - (((D[a][15:0] * D[b][31:16])<<n)[31:0]) ;
3. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][15:0])<<n)[31:0]) ;
    E[c][31:0]  = E[d][31:0]  - (((D[a][15:0] * D[b][15:0])<<n)[31:0]) ;
4. E[c][63:32] = E[d][63:32] - (((D[a][15:0] * D[b][31:16])<<n)[31:0]);
    E[c][31:0]  = E[d][31:0]  - (((D[a][31:16]* D[b][31:16])<<n)[31:0]);
5. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][31:16])<<n)[31:0]);ssov
    E[c][31:0]  = E[d][31:0]  - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]) ;ssov
6. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][15:0])<<n)[31:0])   ;ssov
    E[c][31:0]  = E[d][31:0]  - (((D[a][15:0] * D[b][31:16])<<n)[31:0])    ;sssov
7. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][15:0])<<n)[31:0])   ;ssov
    E[c][31:0]  = E[d][31:0]  - (((D[a][15:0] * D[b][15:0])<<n)[31:0]) ;ssov
8. E[c][63:32] = E[d][63:32] - (((D[a][15:0] * D[b][31:16])<<n)[31:0]);ssov
   E[c][31:0]  = E[d][31:0]  - (((D[a][31:16]* D[b][31:16])<<n)[31:0]); ssov
for all operations = signed; n=0,1 

Status V, SV, AV, SAV
Examples
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10.4.143 Multiply-Sub Q Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MSUB(S).Q
Table 10-164 
MSUB(S).Q 

Syntax 1. msub.q Dc,Dd,Da,Db,n ; 32 - (32*32)Up --> 32
2. msub.q Dc,Dd,Da,DbU,n ; 32 - (16U*32)Up --> 32
3. msub.q Dc,Dd,Da,DbL,n ; 32 - (16L*32)Up --> 32
4. msub.q Dc,Dd,DaU,DbU,n ; 32 - (16U*16U) --> 32
5. msub.q Dc,Dd,DaL,DbL,n ; 32 - (16L*16L) --> 32
6. msub.q Ec,Ed,Da,Db,n ; 64 - (32*32)  --> 64
7. msub.q Ec,Ed,Da,DbU,n ; 64 - (16U* 32) --> 64
8. msub.q Ec,Ed,Da,DbL,n ; 64 - (16L* 32) --> 64
9. msub.q Ec,Ed,DaU,DbU,n ; 64 - (16U*16U) --> 64
10. msub.q Ec,Ed,DaL,DbL,n ; 64 - (16L*16L) --> 64
11. msubs.q Dc,Dd,Da,Db,n ; 32 - (32*32)Up --> 32 sat
12. msubs.q Dc,Dd,Da,DbU,n ; 32 - (16U*32)Up --> 32 sat
13. msubs.q Dc,Dd,Da,DbL,n ; 32 - (16L*32)Up --> 32 sat
14. msubs.q Dc,Dd,DaU,DbU,n ; 32 - (16U*16U) --> 32 sat
15. msubs.q Dc,Dd,DaL,DbL,n ; 32 - (16L*16L) --> 32 sat
16. msubs.q Ec,Ed,Da,Db,n ; 64 - (32*32)  --> 64 sat
17. msubs.q Ec,Ed,Da,DbU,n ; 64 - (16U* 32) --> 64 sat
18. msubs.q Ec,Ed,Da,DbL,n ; 64 - (16L* 32) --> 64 sat
19. msubs.q Ec,Ed,DaU,DbU,n ; 64 - (16U*16U) --> 64 sat
20. msubs.q Ec,Ed,DaL,DbL,n ; 64 - (16L*16L)    --> 64       sat

Description Multiply 2 signed 16-bit or 32-bit values, substract the product (left justified if n=1) 
from a signed 32-bit or 64-bit value and put the result into a 32-bit or 64-bit register.
There are 8 cases of 16*16 operations, 8 cases of 16x32 operations and 4 cases 
of 32*32 operations.
Overflow and advanced overflow are calculated on the final result. 
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF.
(S)  On overflow the result is saturated. 
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Operation 1. D[c][31:0] = D[d][31:0] - (((D[a][31:0] * D[b][31:0]) <<n)[63:32]) ; 
2. D[c][31:0] = D[d][31:0] - (((D[a][31:0] * D[b][31:16])<<n)[47:16])  
3. D[c][31:0] = D[d][31:0] - (((D[a][31:0] * D[b][15:0]) <<n)[47:16]) ; 
4. D[c][31:0] = D[d][31:0] - (((D[a][31:16]* D[b][31:16])<<n)[31:0]) ; 
5. D[c][31:0] = D[d][31:0] - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]) ; 
6. E[c][63:0] = E[d][63:0] - (((D[a][31:0] * D[b][31:0]) <<n)[63:0]) ; 
7. E[c][63:0] = E[d][63:0] - (((D[a][31:0] * D[b][31:16])<<n)[47:0]) ; 
8. E[c][63:0] = E[d][63:0] - (((D[a][31:0] * D[b][15:0]) <<n)[47:0]) ;   
9. E[c][63:0] = E[d][63:0] - (((D[a][31:16]* D[b][31:16])<<n)[31:0]<<16); 
10. E[c][63:0] = E[d][63:0] - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]<<16); 
11. D[c][31:0] = D[d][31:0] - (((D[a][31:0] * D[b][31:0]) <<n)[63:32]) 
12. D[c][31:0] = D[d][31:0] - (((D[a][31:0] * D[b][31:16])<<n)[47:16])ssov 
13. D[c][31:0] = D[d][31:0] - (((D[a][31:0] * D[b][15:0]) <<n)[47:16]);ssov
14. D[c][31:0] = D[d][31:0] - (((D[a][31:16]* D[b][31:16])<<n)[31:0]);ssov
15. D[c][31:0] = D[d][31:0] - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]);ssov
16. E[c][63:0] = D[d][63:0] - (((D[a][31:0] * D[b][31:0]) <<n)[63:0]);ssov
17. E[c][63:0] = D[d][63:0] - (((D[a][31:0] * D[b][31:16])<<n)[47:0]);ssov
18. E[c][63:0] = D[d][63:0] - (((D[a][31:0] * D[b][15:0]) <<n)[47:0]);ssov
19. E[c][63:0] = D[d][63:0] - (((D[a][31:0] * D[b][31:0]) <<n)[31:0]<<16); ssov 
20. E[c][63:0] = D[d][63:0] - (((D[a][15:0] * D[b][15:0]) <<n)[31:0]<<16); ssov
for all operations = signed; n=0,1 

Status V, SV, AV, SAV

Examples

Table 10-164 
MSUB(S).Q  (cont’d)
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10.4.144 Multiply-Sub Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MSUB(S).U
Table 10-165 
MSUB(S).U

Syntax 1. msub.u Dc,Dd,Da,Db ; 32 - (32*32)--> 32 unsigned
2. msub.u Dc,Dd,Da,const9 ; 32 - (32*K9)--> 32 unsigned
3. msub.u Ec,Ed,Da,Db ; 64 - (32*32)--> 64 unsigned
4. msub.u Ec,Ed,Da,const9 ; 64 - (32*K9)--> 64 unsigned
5. msubs.u Dc,Dd,Da,Db ; 32 - (32*32)--> 32 unsigned sat
6. msubs.u Dc,Dd,Da,const9 ; 32 - (32*K9)--> 32 unsigned sat
7. msubs.u Ec,Ed,Da,Db ; 64 - (32*32)--> 64 unsigned sat
8. msubs.u Ec,Ed,Da,const9 ; 64 - (32*K9)--> 64 unsigned sat

Description Multiply 2 unsigned 32-bit integers, substract the product from an unsigned 32-bit 
or 64-bit integer, and put the result into a 32-bit or 64-bit register. 
The value const9 is zero-extended to 32 bits before the multiplication is performed. 
Overflow and advanced overflow are calculated on the final result.
(S) On overflow the result is saturated 

Operation 1. D[c][31:0] = D[d][31:0] - (D[a][31:0] * D[b][31:0])             ;signed
2. D[c][31:0] = D[d][31:0] - (D[a][31:0] * zero_ext(const9))  ;signed
3. E[c][63:0] = E[d][63:0] - (D[a][31:0] * D[b][31:0])             ;signed
4. E[c][63:0] = E[d][63:0] - (D[a][31:0] * zero_ext(const9))  ;signed
5. D[c][31:0] = D[d][31:0] - (D[a][31:0] * D[b][31:0])            ;signed;suov
6. D[c][31:0] = D[d][31:0] - (D[a][31:0] * zero_ext(const9)) ;signed ;suov
7. E[c][63:0] = E[d][63:0] - (D[a][31:0] * D[b][31:0])            ;signed;suov
8. E[c][63:0] = E[d][63:0] - (D[a][31:0] * zero_ext(const9)) ;signed;suov

Status V, SV, AV, SAV

Examples
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10.4.145 Packed Multiply-Sub/Add Q Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . MSUBAD(S).H
Table 10-166 
MSUBAD(S).H

Syntax 1. msubad.h Ec,Ed,Da,DbUL,n   ;32||32  -||+  (16U*16U || 16L*16L)--> 32||32 
2. msubad.h Ec,Ed,Da,DbLU,n   ;32||32  -||+  (16U*16L || 16L*16U)--> 32||32  
3. msubad.h Ec,Ed,Da,DbLL,n   ;32||32  -||+  (16U*16L || 16L*16L) --> 32||32  
4. msubad.h Ec,Ed,Da,DbUU,n  ;32||32  -||+  (16L*16U || 16U*16U)    --> 32||32  
5. msubads.h Ec,Ed,Da,DbUL,n   ;32||32  -||+  (16U*16U || 16L*16L)--> 32||32 sat
6. msubads.h Ec,Ed,Da,DbLU,n   ;32||32  -||+  (16U*16L || 16L*16U)--> 32||32 
sat
7. msubads.h Ec,Ed,Da,DbLL,n   ;32||32   -||+  (16U*16L || 16L*16L)--> 32||32 sat
8. msubads.h Ec,Ed,Da,DbUU,n  ;32||32   -||+  (16L*16U || 16U*16U)  --> 32||32 
sat

Description This operation is duplicated.
Multiply 2 signed 16-bit (halfword) values, substract(or add)  the product ( left 
justified if n=1) from a signed 32-bit value and put the result into a 32-bit register.  
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow and advanced overflow are calculated on the final results.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow each result is independently saturated.

Operation 1. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][31:16])<<n)[31:0]); 
    E[c][31:0]  = E[d][31:0]  + (((D[a][15:0] * D[b][15:0]) <<n)[31:0]) ;
2. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][15:0]) <<n)[31:0]) ; 
    E[c][31:0]  = E[d][31:0]  + (((D[a][15:0] * D[b][31:16])<<n)[31:0]) ; 
3. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][15:0]) <<n)[31:0]) ;
    E[c][31:0]  = E[d][31:0]  + (((D[a][15:0] * D[b][15:0]) <<n)[31:0]) ; 
4. E[c][63:32] = E[d][63:32] - (((D[a][15:0] * D[b][31:16])<<n)[31:0]); 
    E[c][31:0]  = E[d][31:0]  + (((D[a][31:16]* D[b][31:16])<<n)[31:0]); 
5. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][31:16])<<n)[31:0]);   ;ssov
   E[c][31:0]  = E[d][31:0]  + (((D[a][15:0] * D[b][15:0]) <<n)[31:0]);ssov
6. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][15:0]) <<n)[31:0]) ;ssov
   E[c][31:0]  = E[d][31:0]  + (((D[a][15:0] * D[b][31:16])<<n)[31:0];ssov
7. E[c][63:32] = E[d][63:32] - (((D[a][31:16]* D[b][15:0]) <<n)[31:0]) ;ssov 
   E[c][31:0]  = E[d][31:0]  + (((D[a][15:0] * D[b][15:0]) <<n)[31:0])  ;ssov
8. E[c][63:32] = E[d][63:32] - (((D[a][15:0] * D[b][31:16])<<n)[31:0])  ;ssov
   E[c][31:0]  = E[d][31:0]  + (((D[a][31:16]* D[b][31:16])<<n)[31:0])  ;ssov
for all operations  =  signed ; n= 0,1; 

Status V, SV, AV, SAV

Examples
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10.4.146 Packed Multiply-Sub/Add Q Format-Multiprecision  . . . . . . . . . . . . .MSUBADM(S).H
Table 10-167 
MSUBADM(S).H

Syntax 1. msubadm.h  Ec,Ed,Da,DbUL,n   ; 64 - 16U*16U + 16L*16L  --> 64
2. msubadm.h  Ec,Ed,Da,DbLU,n   ; 64 - 16U*16L + 16L*16U  --> 64
3. msubadm.h  Ec,Ed,Da,DbLL,n   ; 64 - 16U*16L + 16L*16L  --> 64
4. msubadm.h  Ec,Ed,Da,DbUU,n   ; 64 - 16L*16U + 16U*16U --> 64
5. msubadms.h Ec,Ed,Da,DbUL,n   ; 64 - 16U*16U + 16L*16L --> 64  sat
6. msubadms.h Ec,Ed,Da,DbLU,n   ; 64 - 16U*16L + 16L*16U --> 64  sat
7. msubadms.h Ec,Ed,Da,DbLL,n   ; 64 - 16U*16L + 16L*16L  --> 64 sat
8. msubadms.h Ec,Ed,Da,DbUU,n   ; 64 - 16L*16U + 16U*16U--> 64  sat

Description Perform 2 multiplications of 2 signed 16-bit (halfword). Substract 1 product and add 
the other product (left justified if n=1) (left-shifted by 16) from/to a signed 64-bit 
value and put the result in a 64-bit register.
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow and advanced overflow are calculated on the final result.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow the result is saturated.

Operation 1. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][31:16])<<n) 
                                      -  ((D[a][31:16] * D[b][31:16])<<n)<<16) ;signed,n=0,1
2. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][15:0])     <<n) 
-  ((D[a][15:0]  * D[b][31:16])<<n)<<16)                ;signed,n=0,1 
3. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][15:0]) <<n) 
-  ((D[a][15:0]  * D[b][15:0]) <<n)<<16)                 ;signed,n=0,1 
4. E[c][63:0] = E[d][63:0] - (((D[a][15:0]  * D[b][31:16]) <<n) 
-((D[a][31:16] * D[b][31:16])<<n)<<16)              ;signed,n=0,1 
5. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][31:16]) <<n) 
- ((D[a][31:16] * D[b][31:16])<<n)<<16)              ;signed,n=0,1;ssov 
6. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][15:0]) <<n)
 -  ((D[a][15:0] * D[b][31:16])<<n)<<16)                ;signed,n=0,1;ssov 
7. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][15:0]) <<n) 
- ((D[a][15:0] * D[b][15:0]) <<n)<<16)                 ;signed,n=0,1;ssov 
8. E[c][63:0] = E[d][63:0] - (((D[a][15:0]  * D[b][31:16]) <<n) 
-  ((D[a][31:16] * D[b][31:16])<<n)<<16)              ;signed,n=0,1;ssov

Status V, SV, AV, SAV

Examples
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10.4.147 Packed Multiply-Sub/Add Q Format w/Rounding  . . . . . . . . . . . . . . . MSUBADR(S).H
Table 10-168 
MSUBADR(S).H

Syntax 1. msubadr.h  Dc,Dd,Da,DbUL,n  ;16U||16L  -||+ (16U*16U || 16L*16L) R--> 16||16
2. msubadr.h  Dc,Dd,Da,DbLU,n  ;16U||16L  -||+  (16U*16L || 16L*16U) R--> 16||16
3. msubadr.h  Dc,Dd,Da,DbLL,n  ;16U||16L  -||+  (16U*16L || 16L*16L) R --> 16||16
4. msubadr.h  Dc,Dd,Da,DbUU,n ;16U||16L -||+ (16L*16U||16U*16U) R -->16||16
5. msubadrs.h Dc,Dd,Da,DbUL,n  ;16U||16L  -||+  (16U*16U ||16L*16L) R --> 16||16 sat
6. msubadrs.h Dc,Dd,Da,DbLU,n   ;16U||16L  -||+ (16U*16L || 16L*16U) R --> 16||16 sat
7. msubadrs.h Dc,Dd,Da,DbLL,n   ;16U||16L  -||+ (16U*16L || 16L*16L) R--> 16||16  sat
8. msubadrs.h Dc,Dd,Da,DbUU,n ;16U||16L   -||+ (16L*16U|| 16U*16U) R--> 16||16  sat

Description This operation is duplicated.
Multiply 2 signed 16-bit (halfword) values, substract (or add) the product (left 
justified if n=1) from a signed 16-bit value and put the rounded result into half of a 
32-bit register.(Note: since there are 2 results the two register halves are used) .  
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow and advanced overflow are calculated on the final results.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow each result is independently saturated.

Operation 1. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][31:16])<<n)[31:0])  
    D[c][15:0]  = round16(D[d][15:0]  + ((D[a][15:0] * D[b][15:0]) <<n)[31:0]) 
2. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][15:0]) <<n)[31:0]) 
    D[c][15:0]  = round16(D[d][15:0]  + ((D[a][15:0] * D[b][31:16])<<n)[31:0]) 
3. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][15:0]) <<n)[31:0])
    D[c][15:0]  = round16(D[d][15:0]  + ((D[a][15:0] * D[b][15:0]) <<n)[31:0]) 
4. D[c][31:16] = round16(D[d][31:16] - ((D[a][15:0] * D[b][31:16])<<n)[31:0]) 
    D[c][15:0]  = round16(D[d][15:0]  + ((D[a][31:16]* D[b][31:16])<<n)[31:0]) 
5. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][31:16])<<n)[31:0]);ssov 
    D[c][15:0]  = round16(D[d][15:0]  + ((D[a][15:0] * D[b][15:0]) <<n)[31:0]);ssov 
6. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][15:0]) <<n)[31:0]);ssov 
    D[c][15:0]  = round16(D[d][15:0]  + ((D[a][15:0] * D[b][31:16])<<n)[31:0]);ssov 
7. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][15:0]) <<n)[31:0]);ssov 
    D[c][15:0]  = round16(D[d][15:0]  + ((D[a][15:0] * D[b][15:0]) <<n)[31:0]);ssov 
8. D[c][31:16] = round16(D[d][31:16] - ((D[a][15:0] * D[b][31:16])<<n)[31:0]);ssov 
    D[c][15:0]  = round16(D[d][15:0]  + ((D[a][31:16]* D[b][31:16])<<n)[31:0]);ssov 
for all operations =  signed ; n=0,1;
round16 == add 0x8000 to 32bit value and clear bits[15:0] 

Status V, SV, AV, SAV

Examples
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10.4.148 Packed Multiply-Sub Q Format-Multiprecision  . . . . . . . . . . . . . . . . . . . MSUBM(S).H
Table 10-169 
MSUBM(S).H

Syntax 1. msubm.h Ec,Ed,Da,DbUL,n ;64 -  16U*16U - 16L*16L  --> 64
2. msubm.h Ec,Ed,Da,DbLU,n ;64 -  16U*16L - 16L*16U  --> 64
3. msubm.h Ec,Ed,Da,DbLL,n ;64 -  16U*16L - 16L*16L  --> 64
4. msubm.h Ec,Ed,Da,DbUU,n ;64 -  16L*16U - 16U*16U --> 64
5. msubms.h Ec,Ed,Da,DbUL,n ;64 -  16U*16U - 16L*16L --> 64  sat
6. msubms.h Ec,Ed,Da,DbLU,n ;64 -  16U*16L - 16L*16U --> 64  sat
7. msubms.h Ec,Ed,Da,DbLL,n ;64 -  16U*16L - 16L*16L  --> 64  sat
8. msubms.h Ec,Ed,Da,DbUU,n ;64 -  16L*16U - 16U*16U --> 64 sat

Description Perform 2 multiplications of 2 signed 16-bit (halfword). Substract the 2 products 
(left justified if n=1) (left-shifted by 16) from a signed 64-bit value and put the 
result in a 64-bit register.
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow and advanced overflow are calculated on the final result.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow the result is saturated.

Operation 1. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][31:16])   <<n) 
                                       + ((D[a][15:0] * D[b][15:0])<<n) <<16) ;signed,n=0,1
2. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][15:0]) <<n) 
                                       + ((D[a][15:0] * D[b][31:16])<<n)<<16) ;signed,n=0,1
3. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][15:0]) <<n) 
                                       + ((D[a][15:0] * D[b][15:0]) <<n)<<16) ;signed,n=0,1
4. E[c][63:0] = E[d][63:0] - (((D[a][15:0] * D[b][31:16])  <<n) 
                                      +  ((D[a][31:16] * D[b][31:16])<<n)<<16) ;signed,n=0,1
5. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][31:16]) <<n) 
                                       + ((D[a][15:0] * D[b][15:0])<<n) <<16) ;signed,n=0,1;ssov
6. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][15:0])   <<n) 
                                       + ((D[a][15:0] * D[b][31:16])<<n)<<16) ;signed,n=0,1;ssov
7. E[c][63:0] = E[d][63:0] - (((D[a][31:16] * D[b][15:0])<<n)  
                                       + ((D[a][15:0] * D[b][15:0]) <<n)<<16) ;signed,n=0,1;ssov
8. E[c][63:0] = E[d][63:0] - (((D[a][15:0] * D[b][31:16])<<n) 
                                      +  ((D[a][31:16] * D[b][31:16])<<n)<<16);signed,n=0,1;ssov

Status V, SV, AV, SAV

Examples
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10.4.149 Packed Multiply-Sub Q Format w/Rounding  . . . . . . . . . . . . . . . . . . . . . MSUBR(S).H
Table 10-170 
MSUBR(S).H 

Syntax 1. msubr.h Dc,Dd,Da,DbUL,n ;16U||16L -||- (16U*16U || 16L*16L) R-->16||16
2. msubr.h Dc,Dd,Da,DbLU,n ;16U||16L -||- (16U*16L || 16L*16U) R-->16||16
3. msubr.h Dc,Dd,Da,DbLL,n ;16U||16L -||- (16U*16L || 16L*16L) R-->16||16
4. msubr.h Dc,Dd,Da,DbUU,n ;16U||16L -||- (16L*16U || 16U*16U) R -->16||16
5. msubr.h Dc,Ed,Da,DbUL,n ;32 ||32  -||- (16U*16U || 16L*16L) R--> 16||16
6. msubrs.h Dc,Dd,Da,DbUL,n ;16U||16L -||- (16U*16U || 16L*16L) R-->16||16 sat
7. msubrs.h Dc,Dd,Da,DbLU,n ;16U||16L -||- (16U*16L || 16L*16U) R-->16||16sat
8. msubrs.h Dc,Dd,Da,DbLL,n ;16U||16L -||- (16U*16L || 16L*16L) R-->16||16sat
9. msubrs.h Dc,Dd,Da,DbUU,n ;16U||16L -||- (16L*16U || 16U*16U) R-->16||16sat
10. msubrs.h Dc,Ed,Da,DbUL,n ;32||32   -||- (16U*16U || 16L*16L) R-->16||16sat

Description This operation is duplicated.
Multiply 2 signed 16-bit (halfword) values, substract the product ( left justified if 
n=1) from a signed 16-bit value and put the rounded result into half of a 32-bit 
register.(Note= since there are 2 results the two register halves are used) .  
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
There is a special case: substract ( left justified if n=1) from a 32-bit value and put 
the rounded result into half of a 32-bit register.  
Overflow and advanced overflow are calculated on the final results.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF
(S) On overflow each result is independently saturated.
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Operation 1. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][31:16])<<n)[31:0]) ;
   D[c][15:0]  = round16(D[d][15:0]  - ((D[a][15:0] * D[b][15:0] )  <<n)[31:0]) ;
2. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][15:0])  <<n)[31:0]); 
   D[c][15:0]  = round16(D[d][15:0]  - ((D[a][15:0] * D[b][31:16]) <<n)[31:0]) ;
3. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][15:0])  <<n)[31:0]) ;
   D[c][15:0]  = round16(D[d][15:0]  - ((D[a][15:0] * D[b][15:0])  <<n)[31:0]) ;
4. D[c][31:16] = round16(D[d][31:16] - ((D[a][15:0] * D[b][31:16]) <<n)[31:0]) ;
   D[c][15:0]  = round16(D[d][15:0]  - ((D[a][31:16]* D[b][31:16])   <<n)[31:0]) ;
5. D[c][31:16] = round16(E[d][63:32] - ((D[a][31:16]* D[b][31:16]) <<n)[31:0]) ;
   D[c][15:0]  = round16(E[d][31:0]  - ((D[a][15:0] * D[b][15:0] ) <<n)[31:0]) ;
6. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][31:16]) <<n)[31:0]) ;ssov
   D[c][15:0]  = round16(D[d][15:0]  - ((D[a][15:0] * D[b][15:0] ) <<n)[31:0]) ;ssov
7. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][15:0])  <<n)[31:0]) ;ssov
   D[c][15:0]  = round16(D[d][15:0]  - ((D[a][15:0] * D[b][31:16]) <<n)[31:0]) ;ssov
8. D[c][31:16] = round16(D[d][31:16] - ((D[a][31:16]* D[b][15:0])  <<n)[31:0]) ;ssov
   D[c][15:0]  = round16(D[d][15:0]  - ((D[a][15:0] * D[b][15:0])  <<n)[31:0]) ;ssov
9. D[c][31:16] = round16(D[d][31:16] - ((D[a][15:0] * D[b][31:16])  <<n)[31:0]) ;ssov
   D[c][15:0]  = round16(D[d][15:0]  - ((D[a][31:16]* D[b][31:16])  <<n)[31:0]) ;ssov
10.D[c][31:16] = round16(E[d][63:32] - ((D[a][31:16]* D[b][31:16]) <<n)[31:0]);ssov 
   D[c][15:0]  = round16(E[d][31:0]  - (((D[a][15:0] * D[b][15:0] )<<n)[31:0]) ;ssov
for all operations =  signed ; n=0,1;
round16 == add 0x8000 to 32bit value and clear bits[15:0]  

Status V, SV, AV, SAV
Examples

Table 10-170 
MSUBR(S).H  (cont’d)
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10.4.150 Multiply-Sub Q Format with Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . MSUBR(S).Q

10.4.151 Move To Core Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTCR

Table 10-171 
MSUBR(S).Q

Syntax 1. msubr.q Dc,Dd,DaU,DbU,n ; 32 - (16U*16U)  R--> 32
2. msubr.q Dc,Dd,DaL,DbL,n ; 32 - (16L*16L)  R--> 32
3. msubrs.q Dc,Dd,DaU,DbU,n ; 32 - (16U*16U)  R--> 32  sat
4. msubrs.q Dc,Dd,DaL,DbL,n ; 32 - (16L*16L)  R--> 32  sat 

Description Multiply 2 signed 16-bit (halfword) values, substract the product (left justified if n=1) 
from a 32-bit signed value,  put the rounded result in a 32-bit register. 
The lower  halfword is cleared. 
Overflow and advanced overflow are calculated on the final results.
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF  (only for 16 by 16-bit operations).
(S)  On overflow the result is saturated.  

Operation 1. D[c][31:0] = round16(D[d][31:0] - ((D[a][31:16]* D[b][31:16])<<n)[31:0]);ssov 
2. D[c][31:0] = round16(D[d][31:0] - ((D[a][15:0] * D[b][15:0]) <<n)[31:0]);ssov
3. D[c][31:0] = round16(D[d][31:0] - ((D[a][31:16]* D[b][31:16])<<n)[31:0]);ssov
4. D[c][31:0] = round16(D[d][31:0] - ((D[a][15:0] * D[b][15:0]) <<n)[31:0]);ssov
for all operations =  signed ; n=0,1;
round16 == add 0x8000 to 32bit value and clear bits[15:0] 

Status V, SV, AV, SAV
Examples

Table 10-172 
MTCR

Syntax mtcr const16, Da (RLC)

Description Move the value in data register Da to the core SFR register selected by the value 
const16. The core SFR address is a const16 byte offset from the core SFR base 
address. It must be word-aligned (the least-significant 2 bits are zero). Non-aligned 
address have an undefined effect. 
This instruction may not be used to access GPRs. Attempting to update a GPR with 
this instruction will have no effect.
This instruction can be executed in supervisor mode only.

Operation CR[const16] = D[a]

Status modified by write to PSW core SFR
Examples mtcr 4, d1

See also MFCR
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10.4.152 Multiply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MUL(S)
Table 10-173 
MUL(S)

Syntax 1. mul Dc,Da,Db ; (32*32) --> 32 signed
2. mul Dc,Da,const9 ; (32*K9)  --> 32 signed
3. mul Ec,Da,Db ; (32*32)  --> 64 signed
4. mul Ec,Da,const9 ; (32*K9)  --> 64 signed
5. muls Dc,Da,Db ; (32*32)  --> 32 signed sat

Description Multiply 2 signed 32-bit integers and put the product into a 32-bit or 64-bit register.
The value const9 is sign-extended to 32 bits before the multiplication is performed. 
Overflow and advanced overflow are calculated on the final result.
(S) On overflow the result is saturated

Operation 1. D[c][31:0] = D[a][31:0] * D[b][31:0]            ;signed
2. D[c][31:0] = D[a][31:0] * sign_ext(const9) ;signed
3. E[c][63:0] = D[a][31:0] * D[b][31:0]            ;signed
4. E[c][63:0] = D[a][31:0] * sign_ext(const9) ;signed
5. D[c][31:0] = D[a][31:0] * D[b][31:0]             ;signed;ssov

Status V, SV, AV, SAV

Examples
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10.4.153 Packed Multiply Q Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MUL.H
Table 10-174 
MUL.H

Syntax 1. mul.h  Ec,Da,DbUL,n (16U*16U  || 16L*16L)  --> 32||32
2. mul.h  Ec,Da,DbLU,n (16U*16L  || 16L*16U)  --> 32||32
3. mul.h  Ec,Da,DbLL,n (16U*16L  || 16L*16L)  --> 32||32
4. mul.h  Ec,Da,DbUU,n (16L*16U  || 16U*16U)  --> 32||32

Description This operation is duplicated.
Multiply 2 signed 16-bit (halfword) values and put the product ( left justified if n=1)  
into a 32-bit register.  
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow =0 ;
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF

Operation 1. E[c][63:32] = (D[a][31:16] * D[b][31:16])<< n ;signed,n=0,1
    E[c][31:0]   = (D[a][15:0]   * D[b][15:0] )<< n  ;signed,n=0,1
2. E[c][63:32] = (D[a][31:16] * D[b][15:0] )<< n  ;signed,n=0,1
    E[c][31:0]   = (D[a][15:0]   * D[b][31:16])<< n ;signed,n=0,1
3. E[c][63:32] = (D[a][31:16] * D[b][15:0] )<< n  ;signed,n=0,1
    E[c][31:0]   = (D[a][15:0]   * D[b][15:0] )<< n  ;signed,n=0,1
4. E[c][63:32] = (D[a][15:0]   * D[b][31:16])<< n ;signed,n=0,1
    E[c][31:0]   = (D[a][31:16] * D[b][31:16])<< n ;signed,n=0,1

Status V, SV, AV, SAV

Examples
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10.4.154 Multiply Q Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MUL.Q
Table 10-175 
MUL.Q

Syntax 1. mul.q Dc,DaU,DbU,n ;(16U*16U) --> 32
2. mul.q Dc,DaL,DbL,n ;(16L*16L) --> 32
3. mul.q Dc,Da,DbU,n ;(16U*32)Up--> 32
4. mul.q Dc,Da,DbL,n ;(16L*32)Up --> 32
5. mul.q Dc,Da,Db,n ;(32*32) Up --> 32
6. mul.q Ec,Da,DbU,n ;(16U*32) --> 64
7. mul.q Ec,Da,DbL,n ;(16L*32) --> 64
8. mul.q Ec,Da,Db,n ;(32*32) --> 64

Description Multiply 2 signed 16-bit or 32-bit values and put the product (left justified if n=1) into 
a 32-bit or 64-bit register. 
There are 2 cases of 16*16 operations, 4 cases of 16x32 operations and 2 cases 
of 32*32 operations.
Overflow =0. 
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF  (only for 16 by 16-bit operations).

Operation 1. D[c][31:0] = (D[a][31:16] * D[b][31:16])<< n ;signed;n=0,1
2. D[c][31:0] = (D[a][15:0]   * D[b][15:0]) << n  ;signed;n=0,1
3. D[c][31:0] = ((D[a][31:0]   * D[b][31:16])<< n)[47:16] ;signed;n=0,1
4. D[c][31:0] = ((D[a][31:0]   * D[b][15:0]) << n)[47:16]  ;signed;n=0,1
5. D[c][31:0] = ((D[a][31:0]   * D[b][31:0]) << n)[63:32]  ;signed;n=0,1
6. E[c][63:0] = ((D[a][31:0]   * D[b][31:16])<< n)[47:0] ;signed;n=0,1 ;  (1)
7. E[c][63:0] = ((D[a][31:0]   * D[b][15:0]) << n)[47:0]  ;signed;n=0,1 ;  (1)
8. E[c][63:0] = ((D[a][31:0]   * D[b][31:0]) << n)[63:0]  ;signed;n=0,1
(1) 16*32 --> 64   note : Ec[63:48]=sign; Ec=[47:0]= product

Status V, SV, AV, SAV

Examples
250      v. 1.3.1



TriCore Instruction Set
Instruction DescriptionsArchitecture Manual

2001-04-30 @ 15:16
10.4.155 Multiply Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MUL(S).U
Table 10-176 
MUL(S).U

Syntax 1. mul.u Ec,Da,Db ;(32*32) --> 64 unsigned
2. mul.u Ec,Da,const9 ;(32*K9) --> 64 unsigned
3. muls.u Dc,Da,Db ;(32*32) --> 32 unsigned sat

Description Multiply 2 unsigned 32-bit integers and put the product into a 32-bit or 64-bit 
register.
The value const9 is zero-extended to 32 bits before the multiplication is performed. 
Overflow and advanced overflow are calculated on the final result.
(S) On overflow the result is saturated.
Note : (32 x 32) -> 32 unsigned is equivalent to (32 by 32) -> signed, so MUL can

be used.

Operation 1. E[c][63:0] = D[a][31:0] * D[b][31:0]             ;unsigned;
2. E[c][63:0] = D[a][31:0] * zero_ext(const9)  ;unsigned
3. D[c][31:0] = D[a][31:0] * D[b][31:0]             ;unsigned;ssuv

Status V, SV, AV, SAV
Examples
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10.4.156 Packed Multiply Q Format-Multiprecision  . . . . . . . . . . . . . . . . . . . . . . . . . . . MULM.H
Table 10-177 
MULM.H

Syntax 1. mulm.h Ec,Da,DbUL,n ; 16U*16U + 16L*16L      --> 64
2. mulm.h Ec,Da,DbLU,n ; 16U*16L + 16L*16U      --> 64
3. mulm.h Ec,Da,DbLL,n ; 16U*16L + 16L*16L      --> 64
4. mulm.h Ec,Da,DbUU,n ; 16L*16U + 16U*16U      --> 64 

Description Perform 2 multiplications of 2 signed 16-bit (halfword). Add the 2 products ( left 
justified if n=1) (left-shifted by 16) in a 64-bit register.
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow and advanced overflow=0 
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF

Operation 1. E[c][63:0] = (((D[a][31:16] * D[b][31:16])<< n) +((D[a][15:0] * D[b][15:0] )<< n)) 
<<16 ;
2. E[c][63:0] = (((D[a][31:16] * D[b][15:0] )<< n) +((D[a][15:0] * D[b][31:16])<< n)) 
<<16;
3. E[c][63:0] = (((D[a][31:16] * D[b][15:0] )<< n) +((D[a][15:0] * D[b][15:0] )<< n)) 
<<16;
4. E[c][63:0] = (((D[a][15:0] * D[b][31:16])<< n) +((D[a][31:16] * D[b][31:16])<< n)) 
<<16;
for all operations =  signed ; n=0,1

Status V, SV, AV, SAV

Examples
252      v. 1.3.1



TriCore Instruction Set
Instruction DescriptionsArchitecture Manual

2001-04-30 @ 15:16
10.4.157 Packed Multiply Q Format with Rounding  . . . . . . . . . . . . . . . . . . . . . . . . . . . MULR.H
Table 10-178 
MULR.H

Syntax 1. mulr.h Dc,Da,DbUL,n ; (16U*16U || 16L*16L) R --> 16||16
2. mulr.h Dc,Da,DbLU,n ; (16U*16L || 16L*16U) R --> 16||16
3. mulr.h Dc,Da,DbLL,n ; (16U*16L || 16L*16L) R --> 16||16
4. mulr.h Dc,Da,DbUU,n ; (16L*16U || 16U*16U) R --> 16||16

Description This operation is duplicated.
Multiply 2 signed 16-bit (halfword) values, add the product ( left justified if n=1) to 
a signed 16-bit value and put the rounded result into half of a 32-bit register. 
(Note: since there are 2 results the two register halves are used) .  
There are 4 cases of halfword multiplication: (1) upper * upper and lower*lower,  (2) 
upper*lower and lower*upper,  (3) upper*lower and lower*lower,  (4) lower*upper 
and upper*upper. 
Overflow=0 ; 
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF

Operation 1. D[c][31:16] = round16(((D[a][31:16] * D[b][31:16])<< n)[31:0]) 
    D[c][15:0]  = round16(((D[a][15:0]    * D[b][15:0] )<< n)[31:0]) 
2. D[c][31:16] = round16(((D[a][31:16] * D[b][15:0] )<< n )[31:0])
    D[c][15:0]  = round16(((D[a][15:0]    * D[b][31:16])<< n)[31:0])
3. D[c][31:16] = round16(((D[a][31:16] * D[b][15:0] )<< n )[31:0])
    D[c][15:0]  = round16(((D[a][15:0]    * D[b][15:0] )<< n)[31:0])
4. D[c][31:16] = round16(((D[a][15:0]   * D[b][31:16])<< n)[31:0])
    D[c][15:0]  = round16(((D[a][31:16]  * D[b][31:16])<< n)[31:0])
for all operations =  signed ; n=0,1;
round16 == add 0x8000 to 32bit value and clear bits[15:0] 

Status V, SV, AV, SAV

Examples
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10.4.158 Multiply Q Format with Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MULR.Q

10.4.159 Logical NAND  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NAND

Table 10-179 
MULR.Q

Syntax 1. mulr.q Dc,DaU,DbU,n ; (16U*16U) Round  --> 32
2. mulr.q Dc,DaL,DbL,n ; (16L*16L) Round  --> 32

Description Multiply 2 signed 16-bit (halfword) values and put the rounded result (left justified 
if n=1) into a 32-bit register. The lower halfword is cleared.
Overflow =0. 
If n=1, 0x8000 * 0x8000 = 0x7FFFFFFF (==7FFF0000 after clearing lower half)

Operation 1. D[c][31:0] = round16(((D[a][31:16]*D[b][31:16])<< n)[31:0])
2. D[c][31:0] = round16(((D[a][15:0] *D[b][15:0] )<< n) [31:0])
for all operations =  signed ; n=0,1;
round16 == add 0x8000 to 32bit value and clear bits[15:0] 

Status V, SV, AV, SAV
Examples

Table 10-180 
NAND

Syntax nand Dc, Da, Db (RR)
nand Dc, Da, const9 (RC)

Description Compute the bitwise logical NAND of the contents of data register Da and data 
register Db/const9  and put the result in data register Dc. The const9 value is zero-
extended to 32 bits.

Operation D[c] = !(D[a] AND D[b])
D[c] = !(D[a] AND zero_ext(const9))

Status -
Examples nand d3, d1, d2

nand d3, d1, 126

See also AND, ANDN, NOR, NOT, OR, ORN, XNOR, XOR
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10.4.160 Bit Logical NAND  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NAND.T

10.4.161 Not Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .NE

10.4.162 Not Equal Address  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NE.A

Table 10-181 
NAND.T

Syntax nand.t Dc, Da, p1, Db, p2 (BIT)
Description Compute the logical NAND of bit p1 of data register Da and bit p2 of data register 

Db. Put the result in the least-significant bit of data register Dc and clear the 
remaining bits of Dc to zero.

Operation D[c] = !(D[a][p1] AND D[b][p2])
Status -

Examples nand.t d3, d1, 2, d2, 4

See also AND.T, ANDN.T, OR.T, ORN.T, XNOR.T, XOR.T

Table 10-182 
NE

Syntax ne Dc, Da, Db (RR)
ne Dc, Da, const9 (RC)

Description If the contents of data register Da are not equal to the contents of data register Db/
const9, set the least-significant bit of Dc to 1 and clear the remaining bits to zero; 
otherwise, clear all bits in Dc. The const9 value is sign-extended to 32 bits.

Operation D[c] = (D[a] != D[b])
D[c] = (D[a] != sign_ext(const9))

Status -
Examples ne d3, d1, d2

ne d3, d1, 126

See also EQ, GE, GE.U, LT, LT.U

Table 10-183 
NE.A

Syntax ne.a Dc, Aa, Ab (RR)
Description If the contents of address registers Aa and Ab are not equal, set the least-significant 

bit of Dc to 1 and clear the remaining bits to zero; otherwise, clear all bits in Dc. 
Operation D[c] = (A[a] != A[b])

Status -
Examples ne.a d3, a4, a2

See also EQ.A, EQZ.A, GE.A, LT.A, NEZ.A
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10.4.163 Not Equal Zero Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NEZ.A

10.4.164 No Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NOP

10.4.165 Logical NOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NOR

Table 10-184 
NEZ.A

Syntax nez.a Dc, Aa (RR)
Description If the contents of address register Aa are not equal to zero, set the least significant 

bit of Dc to 1 and clear the remaining bits to zero; otherwise, clear all bits in Dc.
Operation D[c] = (A[a] != 0)

Status -
Examples nez.a d3, a4

See also EQ.A, EQZ.A, GE.A, LT.A, NE.A

Table 10-185 
NOP

Syntax nop (SYS)
nop (SR)

Description NOP is used to implement efficient low-power non-operational instructions.
NOP is used to implement efficient low-power non-operational instructions.

Operation no operation
no operation

Status -
Examples nop

nop

See also -

Table 10-186 
NOR

Syntax nor Dc, Da, Db (RR)
nor Dc, Da,const9 (RC)
nor Da, const_zero (SR)

Description Compute the bitwise logical NOR of the contents of data register Da and the 
contents of data register Db/const9 and put the result in data register Dc. The  const9 
value is zero-extended to 32 bits.

Compute the bitwise NOT of the contents of register Da and put the result in data 
register Da. The operation is performed by a bitwise NOR of Da and const_zero 
value is zero-extended to 32 bits.
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10.4.166 Bit Logical NOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .NOR.T

10.4.167 Bitwise Complement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NOT

Note : The 32-bit equivalent of the NOT instruction is a NOR with a constant of zero.

Operation D[c] = !(D[a] OR D[b])
D[c] = !(D[a] OR zero_ext(const9))
D[a] = !(D[a] OR zero_ext(zero))

Status -
Examples nor d3, d1, d2

nor d3, d1, 126

nor d2, 0

See also AND, ANDN, NAND, NOT, OR, ORN, XNOR, XOR

Table 10-187 
NOR.T

Syntax nor.t Dc, Da, p1, Db, p2 (BIT)

Description Compute the logical NOR of bit p1 of data register Da and bit p2 of data register Db. 
Put the result in the least-significant bit of data register Dc and clear the remaining 
bits of Dc to zero.

Operation D[c] = !(D[a][p1] OR D[b][p2])
Status -

Examples nor.t d3, d1, 5, d2, 3

See also AND.T, ANDN.T, NAND.T, OR.T, ORN.T, XNOR.T, XOR.T

Table 10-188 
NOT

Syntax not Da (Alias to nor16)

Description Compute the bitwise complement of the contents of data register Da.
Operation D[a] = !D[a]

Status -
Examples not   d15

See also XNOR

Table 10-186 
NOR
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10.4.168 Logical OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OR
Table 10-189 
OR

Syntax or Dc, Da, Db (RR)
or Dc, Da, const9 (RC)

or Da, Db (SRR)
or D15, const8 (SC)

Description Compute the bitwise logical OR of the contents of data register Da and the 
contents of data register Db/const9 and put the result in data register Dc. The  const9 
value is zero-extended to 32 bits.

Compute the logical OR of the contents of data register Da/D15 and the contents 
of data register Db/const8 and put the result in data register Da/D15. The const8 
value is zero-extended to 32 bits.

Operation D[c] = D[a] OR D[b]
D[c] = D[a] OR zero_ext(const9)

D[a] = D[a] or D[b]
D[15] = D[15] or zero_ext(const8)

Status -
Examples or d3, d1, d2

or d3, d1, 126

or d1, d2

or d15, 126

See also AND, ANDN, NAND, NOR, NOT, ORN, XNOR, XOR
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10.4.169 Accumulating Logical OR-AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OR.AND.T
Accumulating Logical OR-AND-Not  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OR.ANDN.T
Accumulating Logical OR-NOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OR.NOR.T
Accumulating Logical OR-OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .OR.OR.T

10.4.170 Equal Accumulating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OR.EQ

Table 10-190 
OR.AND.T, OR.ANDN.T, OR.NOR.T & OR.OR.T

Syntax or.and.t   Dc, Da, p1, Db, p2 (BIT)
or.andn.t  Dc, Da, p1, Db, p2 (BIT)
or.nor.t   Dc, Da, p1, Db, p2 (BIT)
or.or.t   Dc, Da, p1, Db, p2 (BIT)

Description Compute the logical AND/ANDN/NOR/OR of the value of bit p1 of data register Da 
and bit p2 of Db. Then compute the bitwise logical OR of that result and bit 0 of Dc, 
and put the result back in bit 0 of Dc. All other bits in Dc are unchanged. 

Operation D[c] = {D[c][31:1], D[c][0] OR (D[a][p1] AND D[b][p2])}
D[c] = {D[c][31:1], D[c][0] OR (D[a][p1] AND !D[b][p2])}

D[c] = {D[c][31:1], D[c][0] OR !(D[a][p1] OR D[b][p2])}
D[c] = {D[c][31:1], D[c][0] OR (D[a][p1]  OR D[b][p2])}

Status -

Examples or.and.t d3, d1, 3, d2, 5

or.andn.t d3, d1, 3, d2, 5

or.nor.t d3, d1, 3, d2, 5

or.or.t d3, d1, 3, d2, 5

See also AND.AND.T, AND.ANDN.T, AND.NOR.T, AND.OR.T, SH.AND.T, 
SH.ANDN.T, SH.NAND.T, SH.NOR.T, SH.OR.T, SH.ORN.T, SH.XNOR.T, 
SH.XOR.T

Table 10-191 
OR.EQ

Syntax or.eq Dc, Da, Db (RR)
or.eq Dc, Da,const9 (RC)

Description Compute the logical OR of Dc[0] and the Boolean result of the EQ operation on the 
contents of data register Da and data register Db/const9. Put the result in Dc[0]. All 
other bits in Dc are unchanged. The const9 value is sign-extended to 32 bits.
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10.4.171 Greater Than or Equal Accumulating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OR.GE
Greater Than or Equal Accumulating Unsigned  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .OR.GE.U

Operation D[c] = {D[c][31:1], D[c][0] OR (D[a]==D[b])} 
D[c] = {D[c][31:1], D[c][0] OR (D[a]==sign_ext(const9))}

Status -

Examples or.eq d3, d1, d2

or.eq d3, d1, 126

See also AND.EQ, XOR.EQ

Table 10-192 
OR.GE & OR.GE.U

Syntax or.ge Dc, Da, Db (RR)
or.ge Dc, Da,const9 (RC)
or.ge.u Dc, Da, Db (RR)
or.ge.u Dc, Da,const9 (RC)

Description Calculate the logical OR of Dc[0] and the Boolean result of the GE operation on the 
contents of data register Da and data register Db/const9. Put the result in Dc[0]. All 
other bits in Dc are unchanged. Da and Db are treated as 32-bit signed integers. 
The const9 value is sign-extended to 32 bits.

Calculate the logical OR of Dc[0] and the Boolean result of the GE.U operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. Da and Db are treated as 32-bit unsigned 
integers. The const9 value is zero-extended to 32 bits.

Operation D[c] = {D[c][31:1], D[c][0] OR (D[a]>=D[b])}; signed 
D[c] = {D[c][31:1], D[c][0] OR (D[a]>=sign_ext(const9))}; signed

D[c] = {D[c][31:1], D[c][0] OR (D[a]>=D[b])}; unsigned 
D[c] = {D[c][31:1], D[c][0] OR (D[a]>=zero_ext(const9))}; unsigned

Status -

Examples or.ge d3, d1, d2

or.ge d3, d1, 126

or.ge.u d3, d1, d2

or.ge.u d3, d1, 126

See also AND.GE, AND.GE.U, XOR.GE, XOR.GE.U

Table 10-191 
OR.EQ
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10.4.172 Less Than Accumulating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OR.LT
Less Than Accumulating Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OR.LT.U

10.4.173 Not Equal Accumulating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OR.NE

Table 10-193 
OR.LT & OR.LT.U

Syntax or.lt Dc, Da, Db (RR)
or.lt Dc, Da,const9 (RC)
or.lt.u Dc, Da, Db (RR)
or.lt.u Dc, Da,const9 (RC)

Description Calculate the logical OR of Dc[0] and the Boolean result of the LT operation on the 
contents of data register Da and data register Db/const9. Put the result in Dc[0]. All 
other bits in Dc are unchanged. Da and Db are treated as 32-bit signed integers. 
The const9 value is sign-extended to 32 bits.

Calculate the logical OR of Dc[0] and the Boolean result of the LT.U operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. Da and Db are treated as 32-bit unsigned 
integers. The const9 value is zero-extended to 32 bits.

Operation D[c] = {D[c][31:1], D[c][0] OR (D[a]<D[b])}; signed 
D[c] = {D[c][31:1], D[c][0] OR (D[a]<sign_ext(const9))}; signed

D[c] = {D[c][31:1], D[c][0] OR (D[a]<D[b])}; unsigned 
D[c] = {D[c][31:1], D[c][0] OR (D[a]<zero_ext(const9))}; unsigned

Status -
Examples or.lt d3, d1, d2

or.lt d3, d1, 126

or.lt.u d3, d1, d2

or.lt.u d3, d1, 126

See also AND.LT, AND.LT.U, XOR.LT, XOR.LT.U

Table 10-194 
OR.NE

Syntax or.ne Dc, Da, Db (RR)
or.ne Dc, Da, const9 (RC)

Description Calculate the logical OR of Dc[0] and the Boolean result of the NE operation on the 
contents of data register Da and data register Db/const9. Put the result in Dc[0]. All 
other bits in Dc are unchanged.
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10.4.174 Bit Logical OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OR.T

10.4.175 Logical OR-Not  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ORN

Operation D[c] = {D[c][31:1], D[c][0] OR (D[a]!=D[b])} 
D[c] = {D[c][31:1], D[c][0] OR (D[a]!=sign_ext(const9))}

Status -

Examples or.ne d3, d1, d2

or.ne d3, d1, 126

See also AND.NE, XOR.NE

Table 10-195 
OR.T

Syntax or.t Dc, Da, p1, Db, p2 (BIT)
Description Compute the logical OR of bit p1 of data register Da and bit p2 of data register Db. 

Put the result in the least-significant bit of data register Dc and clear the remaining 
bits of Dc to zero.

Operation D[c] = D[a][p1] OR D[b][p2]

Status -
Examples or.t d3, d1, 7, d2, 9

See also AND.T, ANDN.T, NAND.T, NOR.T, ORN.T, XNOR.T, XOR.T

Table 10-196 
ORN

Syntax orn    Dc, Da, Db (RR)
orn    Dc, Da, const9 (RC)

Description Compute the bitwise logical OR of the contents of data register Da and the one’s 
complement of the contents of data register Db/const9 and put the result in data 
register Dc. The const9 value is zero-extended to 32 bits.

Operation D[c] = D[a] OR !D[b]
D[c] = D[a] OR !zero_ext(const9)

Status -

Examples orn d3, d1, d2

orn d3, d1, 126

See also AND, ANDN, NAND, NOR, NOT, OR, XNOR, XOR

Table 10-194 
OR.NE
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10.4.176 Bit Logical OR-Not  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ORN.T

10.4.177 Return from Call  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RET

Table 10-197 
ORN.T

Syntax orn.t Dc, Da, p1, Db, p2 (BIT)
Description Compute the logical OR of bit p1 of data register Da and the inverse of bit p2 of 

data register Db. Put the result in the least-significant bit of data register Dc and 
clear the remaining bits of Dc to zero.

Operation D[c] = D[a][p1] OR !D[b][p2]
Status -

Examples orn.t d3, d1, 2, d2, 5

See also AND.T, ANDN.T, NAND.T, NOR.T, OR.T, XNOR.T, XOR.T

Table 10-198 
RET

Syntax ret        (SYS)
ret        (SR)

Description Return from a function that was invoked with a CALL instruction. The return 
address is in register A11. The caller’s upper context register values are restored 
as part of the return operation.
Return from a function that was invoked with a CALL instruction. The return 
address is in register A11. The caller’s upper context register values are restored 
as part of the return operation.

Operation if (call_depth_counter == 0) then trap(CDU);
PC = A[11];
Restore upper context;

if (call_depth_counter == 0) then trap(CDU);
PC = A[11];
Restore upper context;

Status -
Examples ret

ret

See also CALL, CALLA, CALLI, RFE, SYSCALL
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10.4.178 Return from Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RFE
Table 10-199 
RFE

Syntax rfe        (SYS)
rfe        (SR)

Description Return from an interrupt service routine or trap handler to the task whose saved 
upper context is specified by the contents of the Previous Context Information 
register (PCXI). The contents are normally the context of the task that was 
interrupted or that took a trap. However, in some cases, task management 
software may have altered the contents of the PXCI register to cause another task 
to be dispatched.

The return PC value is taken from register A11 in the current context. In parallel 
with the jump to the return PC address, the upper context registers and PSW in the 
saved context are restored.
Return from an interrupt service routine or trap handler to the task whose saved 
upper context is specified by the contents of the Previous Context Information 
register (PCXI). The contents are normally the context of the task that was 
interrupted or that took a trap. However, in some cases, task management 
software may have altered the contents of the PXCI register to cause another task 
to be dispatched.

The return PC value is taken from register A11 in the current context. In parallel 
with the jump to the return PC address, the upper context registers and PSW in the 
saved context are restored.

Operation if (call_depth_counter !=0) then trap (NEST);
PC = A[11];
ICR.CCPN = PCXI.PCPN;
ICR.IE = PCXI.PIE;
Restore upper context;

if (call_depth_counter !=0) then trap (NEST);
PC = A[11];
ICR.CCPN = PCXI.PCPN;
ICR.IE = PCXI.PIE;
Restore upper context;

Status -
Examples rfe

rfe

See also CALL, CALLA, CALLI, RET, SYSCALL
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10.4.179 Restore Lower Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSLCX

10.4.180 Reset Overflow Bits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSTV

10.4.181 Reverse-Subtract  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSUB

Table 10-200 
RSLCX

Syntax rslcx        (SYS)
Description Load the contents of the memory block pointed to by the PCX field in PCXI into 

registers A2-A7, D0-D7, and A11. This operation restores the register contents of 
a previously saved lower context.

Operation Restore lower context
Status -

Examples RSLCX

See also LDLCX, LDUCX, STLCX, STUCX, SVLCX

Table 10-201 
RSTV

Syntax rstv        (SYS)
Description Reset overflow status flags in PSW.

Operation PSW.{V, SV, AV, SAV} = {0, 0, 0, 0}
Status V, SV, AV, SAV

Examples rstv

See also BISR, MTCR, ENABLE, DISABLE

Table 10-202 
RSUB

Syntax rsub   Dc, Da, const9 (RC)

rsub    Da,  (SR)
Description Subtract the contents of data register Da from the value const9 and put the result in 

data register Dc. The operands are treated as 32-bit integers. The value const9 is 
sign-extended to 32 bits before the subtraction is performed
Subtract the contents of data register Da from zero and put the result in data 
register Da. The operand is treated as a 32-bit integer.
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10.4.182 Reverse-Subtract with Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSUBS
Reverse-Subtract Unsigned with Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSUBS.U

10.4.183 Saturate Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAT.B

Operation D[c] = sign_ext(const9) – D[a]

D[a] = 0 – D[a]
Status V, SV, AV, SAV

Examples rsub d3, d1, 126

rsub d1

See also RSUBS, RSUBS.U

Table 10-203 
RSUBS & RSUBS.U

Syntax rsubs Dc, Da, const9 (RC)
rsubs.u Dc, Da, const9 (RC)

Description Subtract the contents of data register Da from the value const9 and put the result 
in data register Dc. The operands are treated as signed/unsigned, 32-bit integers, 
with saturation on signed/unsigned overflow. The value const9 is sign-extended/
zero-extended to 32 bits before the operation is performed.

Operation D[c] = sign_ext(const9) – D[a]; signed; ssov

D[c] = zero_ext(const9) – D[a]; unsigned; suov
Status V, SV, AV, SAV

Examples rsubs d3, d1, 126

rsubs.u d3, d1, 126

See also RSUB

Table 10-204 
SAT.B

Syntax sat.b Dc, Da (RR)

sat.b Da (SR)
Description If the signed 32-bit value in Da is less than –128, then store the value –128 in Dc. 

If Da is greater than 127, then store the value 127 in Dc. Otherwise, copy Da to Dc.
If the signed 32-bit value in Da is less than –128, then store the value –128 in Da. 
If Da is greater than 127, then store the value 127 in Da. Otherwise, leave the 
contents of Da unchanged.

Table 10-202 
RSUB
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10.4.184 Saturate Byte Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAT.BU

10.4.185 Saturate Halfword  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAT.H

Operation D[c] = (D[a] < –128) ? –128 : ((D[a] > 127) ? 127 : D[a]); signed

D[a] = (D[a] < –128) ? –128 : ((D[a] > 127) ? 127 : D[a]); signed
Status -

Examples sat.b d3, d1

sat.b d1

See also SAT.BU, SAT.H, SAT.HU

Table 10-205 
SAT.BU

Syntax sat.bu Dc, Da (RR)

sat.bu Da (SR)
Description If the unsigned 32-bit value in Da is greater than 255, then store the value 255 in 

Dc. Otherwise, copy Da to Dc. 
If the unsigned 32-bit value in Da is greater than 255, then store the value 255 in 
Da. Otherwise, leave the contents of Da unchanged.

Operation D[c] = (D[a] > 255) ? 255 : D[a]; unsigned
D[a] = (D[a] > 255) ? 255 : D[a]; unsigned

Status -
Examples sat.bu d3, d1

sat.bu d1

See also SAT.B, SAT.H, SAT.HU

Table 10-206 
SAT.H

Syntax sat.h Dc, Da (RR)
sat.h Da (SR)

Description If the signed 32-bit value in Da is less than –32,768, then store the value –32,768 
in Dc. If Da is greater than 32,767, then store the value 32,767 in Dc. Otherwise, 
copy Da to Dc.

If the signed 32-bit value in Da is less than –32,768, then store the value –32,768 
in Da. If Da is greater than 32,767, then store the value 32,767 in Da. Otherwise, 
leave the contents of Da unchanged.

Table 10-204 
SAT.B
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10.4.186 Saturate Halfword Unsigned  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAT.HU

10.4.187 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SEL

Operation D[c] = (D[a] < –215) ? –215 : ((D[a] > 215–1) ? 215–1 : D[a]); signed

D[a] = (D[a] < –215) ? –215 : ((D[a] > 215–1) ? 215–1 : D[a]); signed
Status -

Examples sat.h d3, d1

sat.h d1

See also SAT.B, SAT.BU, SAT.HU

Table 10-207 
SAT.HU

Syntax sat.hu Dc, Da (RR)
sat.hu Da (SR)

Description If the unsigned 32-bit value in Da is greater than 65,535, then store the value 
65,535 in Dc; otherwise, copy Da to Dc.
If the unsigned 32-bit value in Da is greater than 65,535, then store the value 
65,535 in Da; otherwise, leave the contents of Da unchanged.

Operation D[c] = (D[a] > 216–1) ? 216–1 : D[a]; unsigned

D[a] = (D[a] > 216–1) ? 216–1 : D[a]; unsigned
Status -

Examples sat.hu d3, d1

sat.hu d1

See also SAT.B, SAT.BU, SAT.H

Table 10-208 
SEL

Syntax sel Dc, Dd, Da, Db (RRR)
sel Dc, Dd, Da, const9 (RCR)

Description If the contents of data register Dd are non-zero, copy the contents of data register 
Da to data register Dc; otherwise, copy the contents of Db/const9 to Dc. The value 
const9 is sign-extended to 32 bits.

Table 10-206 
SAT.H
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10.4.188 Select-Not  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SELN

Operation D[c] = ((D[d]  != 0) ? D[a] : D[b])
D[c] = ((D[d]  != 0) ? D[a] : sign_ext(const9))

Status -

Examples sel d3, d4, d1, d2

sel d3, d4, d1, 126

See also CADD, CADDN, CMOV, CMOVN,CSUB, CSUBN, SELN

Table 10-209 
SELN

Syntax seln Dc, Dd, Da, Db (RRR)
seln Dc, Dd, Da, const9 (RCR)

Description If the contents of data register Dd are zero, copy the contents of data register Da 
to data register Dc; otherwise, copy the contents of Db/const9 to Dc. The value 
const9 is sign-extended to 32 bits.

Operation D[c] = ((D[d] == 0) ? D[a] : D[b])
D[c] = ((D[d] == 0) ? D[a] : sign_ext(const9))

Status -

Examples seln d3, d4, d1, d2

seln d3, d4, d1, 126

See also CADD, CADDN, CMOV, CMOVN, CSUB, CSUBN, SEL

Table 10-208 
SEL
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10.4.189 Shift  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SH.H
Table 10-210 
SH

Syntax sh Dc, Da, Db (RR)
sh Dc, Da, const9 (RC

sh Da, const4 (SRC)
Description If the shift count specified through the contents of Db/const9 is greater than or equal 

to zero, then left-shift the value in Da by the amount specified by shift count. 
Otherwise, right-shift the value in Da by the absolute value of the shift count. Put 
the result in Dc. In both cases, the vacated bits are filled with zeroes and bits shifted 
out are discarded. The shift count is a 6-bit signed number, derived from Db[5:0] or 
const9[5:0]. The range for the shift count therefore is –32 to +31, allowing to shift 
left up to 31 bit positions and to shift right up to 32 bit positions (a shift right by 32 
bits leaves 0s in the result).
If the shift count specified through the value const4 is greater than or equal to zero, 
then left-shift the value in Da by the amount specified by the shift count. Otherwise, 
right-shift the value in Da by the absolute value of the shift count. Put the result in 
Da. In both cases, the vacated bits are filled with zeroes and bits shifted out are 
discarded. The shift count is a 6-bit signed number, derived from the sign-
extension of const4[3:0]. The resulting range for the shift count therefore is –8 to +7, 
allowing to shift left up to 7 bit positions and to shift right up to 8 bit positions.

Operation shift_count = D[b][5:0] or const9[5:0];
if (shift_count >= 0) then D[c] = D[a] << shift_count; zero-fill
else D[c] = D[a] >> (–shift_count); zero-fill 

shift_count = sign_ext(const4[3:0]);
if (shift_count >= 0) then D[a] = D[a] << shift_count; zero-fill
else D[a] = D[a] >> (–shift_count); zero-fill

Status -

-
Examples sh d3, d1, d2

sh d3, d1, 26

sh d1, 6

See also SH.H, SHA, SHA.H, SHAS
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10.4.190 Shift Packed Halfwords  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SH

10.4.191 Shift Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SH.EQ

Table 10-211 
SH.H

Syntax sh.h Dc, Da, Db (RR)
sh.h Dc, Da. const9 (RC)

Description If the shift count specified through the contents of Db/const9 is greater than or equal 
to zero, then left-shift each halfword in Da by the amount specified by shift count. 
Otherwise, right-shift each halfword in Da by the absolute value of the shift count. 
Put the result in Dc. In both cases, the vacated bits are filled with zeroes and bits 
shifted out are discarded. Note that for these shifts, each halfword is treated 
individually, and bits shifted out of a halfword are not shifted in to the next halfword.

The shift count is a signed number, derived from the sign-extension of Db[4:0] or 
const9[4:0]. The range for the shift count therefore is  –16 to +15. The result for a 
shift count of –16 for halfwords is zero.

Operation sh.h : if (shift_count >= 0) then D[c] = D[a][(n+15):n] << shift_count; zero-fill
else D[c] = D[a][(n+15):n] >> (–shift_count); zero-fill 
shift_count = sign_ext(Db[4:0]) or sign_ext(const9[4:0]); n = 0, 16

Status TBD

Examples sh.h d3, d1, d2

sh.h d3, d1, 12

See also SH, SHA, SHA.H, SHAS

Table 10-212 
SH.EQ

Syntax sh.eq Dc, Da, Db (RR)
sh.eq Dc, Da,const9 (RC)

Description Left shift Dc by 1. If the contents of data register Da are equal to the contents of 
data register Db/const9, set the least-significant bit of Dc to 1; otherwise, set the 
least-significant bit of Dc to 0. 

 The value const9 is sign-extended to 32 bits.

Operation D[c] = {D[c][30:0], (D[a] == D[b])}
D[c] = {D[c][30:0], (D[a] == sign_ext(const9)}

Status -

Examples sh.eq d3, d1, d2

sh.eq d3, d1, 126

See also SH.GE, SH.GE.U, SH.LT, SH.LT.U, SH.NE
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10.4.192 Shift Greater Than or Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SH.GE
Shift Greater Than or Equal Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SH.GE.U
Table 10-213 
SH.GE & SH.GE.U

Syntax sh.ge Dc, Da, Db (RR)
sh.ge Dc, Da,const9 (RC)
sh.ge.u Dc, Da, Db (RR)
sh.ge.u Dc, Da,const9 (RC)

Description Left shift Dc by 1. If the contents of data register Da are greater than or equal to the 
contents of data register Db/const9, set the least-significant bit of Dc to 1; otherwise, 
set the least-significant bit of Dc to 0. 
 Da and Db are treated as signed integers. The value const9 is sign-extended to 32 
bits.

Left shift Dc by 1. If the contents of data register Da are greater than or equal to the 
contents of data register Db/const9, set the least-significant bit of Dc to 1; otherwise, 
set the least-significant bit of Dc to 0.  
 Da and Db are treated as unsigned integers. The value const9 is zero-extended to 
32 bits.

Operation D[c] = {D[c][30:0], (D[a] >= D[b])}; signed
D[c] = {D[c][30:0], (D[a] >= sign_ext(const9))}; signed

D[c] = (D[c][30:0], (D[a] >= D[b])}; unsigned
D[c] = (D[c][30:0], (D[a] >= zero_ext(const9))}; unsigned

Status -

Examples sh.ged3, d1, d2

sh.ged3, d1, 126

sh.ge.ud3, d1, d2

sh.ge.ud3, d1, 126

See also SH.EQ, SH.LT, SH.LT.U, SH.NE
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10.4.193 Shift Less Than . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SH.LT
Shift Less Than Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SH.LT.U
Table 10-214 
SH.LT & SH.LT.U

Syntax sh.lt Dc, Da, Db (RR)
sh.lt Dc, Da,const9 (RC)
sh.lt.u Dc, Da, Db (RR)
sh.lt.u Dc, Da,const9 (RC)

Description Left shift Dc by 1. If the contents of data register Da are less the contents of data 
register Db/const9, set the least-significant bit of Dc to 1; otherwise, set the least-
significant bit of Dc to 0.  
Da and Db/const9 are treated as signed integers. The value const9 is sign-extended 
to 32 bits.

Left shift Dc by 1. If the contents of data register Da are less the contents of data 
register Db/const9, set the least-significant bit of Dc to 1; otherwise, set the least-
significant bit of Dc to 0.  
Da and Db/const9 are treated as unsigned integers. The value const9 is zero-
extended to 32 bits.

Operation D[c] = {D[c][30:0], (D[a] < D[b])}; signed
D[c] = {D[c][30:0], (D[a] < sign_ext(const9))}; signed

D[c] = {D[c][30:0], (D[a] < D[b])}; unsigned
D[c] = {(D[c][30:0], (D[a] < zero_ext(const9))}; unsigned

Status -

Examples sh.lt d3, d1, d2

sh.lt d3, d1, 126

sh.lt.u d3, d1, d2

sh.lt.u d3, d1, 126

See also SH.EQ, SH.GE, SH.GE.U, SH.NE
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10.4.194 Shift Not Equal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SH.NE

10.4.195 Accumulating Shift-AND  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SH.AND.T
Accumulating Shift-AND-Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SH.ANDN.T
Accumulating Shift-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SH.NAND.T
Accumulating Shift-NOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SH.NOR.T
Accumulating Shift-OR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SH.OR.T
Accumulating Shift-OR-Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SH.ORN.T
Accumulating Shift-XNOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SH.XNOR.T
Accumulating Shift-XOR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SH.XOR.T

Table 10-215 
SH.NE

Syntax sh.ne Dc, Da, Db (RR)
sh.ne Dc, Da,const9 (RC)

Description Left shift Dc by 1. If the contents of data register Da are not equal to the contents 
of data register Db/const9, set the least-significant bit of Dc to 1; otherwise, set the 
least-significant bit of Dc to 0. The value const9 is sign-extended to 32 bits.

Operation D[c] = {D[c][30:0], (D[a] != D[b])}
D[c] = {D[c][30:0], (D[a] != sign_ext(const9))}

Status -
Examples sh.ne d3, d1, d2

sh.ne d3, d1, 126

See also SH.EQ, SH.GE, SH.GE.U, SH.LT, SH.LT.U

Table 10-216 
SH.AND.T, SH.ANDN.T, SH.NAND.T, SH.NOR.T, SH.OR.T, SH.ORN.T, SH.XNOR.T, 
SH.XOR.T

Syntax sh.and.t Dc, Da, p1, Db, p2 (BIT)
sh.andn.tDc, Da, p1, Db, p2 (BIT)
sh.nand.tDc, Da, p1, Db, p2 (BIT)
sh.nor.t Dc, Da, p1, Db, p2 (BIT)
sh.or.t Dc, Da, p1, Db, p2 (BIT)
sh.orn.t Dc, Da, p1, Db, p2 (BIT)
sh.xnor.tDc, Da, p1, Db, p2 (BIT)
sh.xor.t Dc, Da, p1, Db, p2 (BIT)

Description Left shift Dc by 1. The bit shifted out is discarded. Compute the logical AND/ANDN/
NAND/NOR/OR/ORN/XNOR/XOR of the value of bit p1 of data register Da and bit 
p2 of Db. Put the result in Dc[0].
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Operation sh.and.t :   D[c] = {D[c][30:0], (D[a][p1] AND D[b][p2])}
sh.andn.t : D[c] = {D[c][30:0], (D[a][p1] AND !(D[b][p2]))}
sh.nand.t : D[c] = {D[c][30:0], !(D[a][p1] AND D[b][p2])}
sh.nor.t :    D[c] = {D[c][30:0], !(D[a][p1] OR D[b][p2])}
sh.or.t :      D[c] = {D[c][30:0], (D[a][p1] OR D[b][p2])}
sh.orn.t :    D[c] = {D[c][30:0], (D[a][p1] OR !(D[b][p2]))}
sh.xnor.t :  D[c] = {D[c][30:0], !(D[a][p1] XOR D[b][p2])}
sh.xor.t :    D[c] = {D[c][30:0], (D[a][p1] XOR D[b][p2])}

Status -

Examples sh.and.t d3, d1, 4, d2, 7
sh.andn.t d3, d1, 4, d2, 7
sh.nand.t d3, d1, 4, d2, 7
sh.nor.t d3, d1, 4, d2, 7
sh.or.t d3, d1, 4, d2, 7
sh.orn.t d3, d1, 4, d2, 7
sh.xnor.t d3, d1, 4, d2, 7
sh.xor.t d3, d1, 4, d2, 7

See also AND.AND.T, AND.ANDN.T, AND.NOR.T, AND.OR.T, OR.AND.T, OR.ANDN.T, 
OR.NOR.T, OR.OR.T

Table 10-216 
SH.AND.T, SH.ANDN.T, SH.NAND.T, SH.NOR.T, SH.OR.T, SH.ORN.T, SH.XNOR.T, SH.XOR.T 
(cont’d) (cont’d)
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10.4.196 Arithmetic Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SHA
Table 10-217 
SHA

Syntax sha Dc, Da, Db (RR)
sha Dc, Da, const9 (RC

sha Da, const4 (SRC)
Description If shift count specified through contents of Db/const9 is greater than or equal to 

zero, then left-shift the value in Da by the amount specified by shift count. The 
vacated bits are filled with zeroes and bits shifted out are discarded. If the shift 
count is less than zero, right-shift the value in Da by the absolute value of the shift 
count. The vacated bits are filled with the sign-bit (MSB) and bits shifted out are 
discarded. Put the result in Dc. 

Shift count is a 6-bit signed number, derived from Db[5:0] or const9[5:0]. The range 
for shift count therefore is –32 to +31, allowing to shift left up to 31 bit positions & 
to shift right up to 32 bit positions (a shift right by 32 bits leaves all 0s or all 1s in 
the result, depending on the sign bit. On all 1-bit or greater shifts (left or right), 
PSW.C is set to the logical-OR of shifted out bits. On zero-bit shifts, C is cleared.
If shift count specified through the value const4 is greater than or equal to zero, then 
left-shift the value in Da by the amount specified by the shift count. The vacated 
bits are filled with zeroes and bits shifted out are discarded. If the shift count is less 
than zero, right-shift the value in Da by the absolute value of the shift count. The 
vacated bits are filled with the sign-bit (MSB) and bits shifted out are discarded. Put 
the result in Da.

The shift count is a 6-bit signed number, derived from the sign-extension of 
const4[3:0]. The resulting range for the shift count therefore is –8 to +7, allowing to 
shift left up to 7 bit positions and to shift right up to 8 bit positions.
On all 1-bit or greater shifts (left or right), PSW.C is set to the logical-OR of the 
shifted out bits. On zero-bit shifts, C is cleared.

Operation shift_count = Db[5:0] or const9[5:0];
if (shift_count >= 0) then D[c] = D[a] << shift_count; zero-fill
else D[c] = D[a] >> (–shift_count); sign-fill 
PSW.C = OR(bits shifted out)
shift_count = sign_ext(const4[3:0]);
if (shift_count >= 0) then D[a] = D[a] << shift_count; zero-fill
else D[a] = D[a] >> (–shift_count); sign-fill
PSW.C = OR(bits shifted out)
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10.4.197 Arithmetic Shift Packed Halfwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SHA.H

Status V, SV, AV, SAV, C

V, SV, AV, SAV, C
Examples sha d3, d1, d2

sha d3, d1, 26

sha d1, 6

See also SH, SH.H, SHAS

Table 10-218 
SHA.H

Syntax sha.h Dc, Da, Db (RR)
sha.h Dc, Da, const9 (RC)

Description If the shift count specified through the contents of Db/const9 is greater than or equal 
to zero, then left-shift each  halfword in Da by the amount specified by shift count. 
The vacated bits are filled with zeros and bits shifted out are discarded. If the shift 
count is less than zero, right-shift each  halfword in Da by the absolute value of the 
shift count. The vacated bits are filled with the sign-bit (MSB) of the respective  
halfword, and bits shifted out are discarded. Put the result in Dc. Note that for these 
shifts, each  halfword is treated individually, and bits shifted out of a halfword are 
not shifted in to the next halfword.

The shift count is a signed number, derived from the sign-extension of Db[4:0] or 
const9[4:0]. The range for the shift count therefore is –16 to +15. The result for each 
halfword for a shift count of –16 is either all zeros or all ones, depending on the 
sign-bit of the respective halfword.

Operation sha.h : if (shift_count >= 0) then D[c] = D[a][(n+15):n] << shift_count; zero-fill
else D[c] = D[a][(n+15):n] >> (–shift_count); sign-fill 
shift_count = sign_ext(Db[4:0]) or sign_ext(const9[4:0]); n = 0, 16

Status V, SV, AV, SAV
Examples sha.h d3, d1, d2

sha.h d3, d1, 12

See also SH, SHA, SHAS, SH.H

Table 10-217 
SHA (cont’d)
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10.4.198 Arithmetic Shift with Saturation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SHAS

10.4.199 Store Word from Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST.A 

Table 10-219 
SHAS

Syntax shas Dc, Da, Db (RR)
shas Dc, Da, const9 (RC)

Description If the shift count specified through the contents of Db/const9 is greater than or equal 
to zero, then left-shift the value in Da by the amount specified by shift count. The 
vacated bits are filled with zeroes and the result is saturated if its sign bit differs 
from the sign bits that are shifted out. If the shift count is less than zero, right-shift 
the value in Da by the absolute value of the shift count. The vacated bits are filled 
with the sign-bit (MSB) and bits shifted out are discarded. Put the result in Dc.

The shift count is a 6-bit signed number, derived from Db[5:0] or const9[5:0]. The 
range for the shift count therefore is –32 to +31, allowing to shift left up to 31 bit 
positions and to shift right up to 32 bit positions (a shift right by 32 bits leaves all 0s 
or all 1s in the result, depending on the sign-bit).

Operation shift_count = D[b][5:0] or const9[5:0];
if (shift_count >= 0) then D[c] = D[a] << shift_count; zero-fill; ssov
else D[c] = D[a] >> (–shift_count); sign-fill

Status V, SV, AV, SAV
Examples shas d3, d1, d2

shas d3, d1, 26

See also SH, SH.H, SHA, SHA.H

Table 10-220 
ST.A

Syntax st.a <mode>, Aa
Description Store the value in address register Aa to the memory location specified by the 

addressing mode.
Operation M(EA, word) = A[a]  (See Table 10-221)

Status -
Examples -

See also ST.B, ST.D, ST.DA, ST.H, ST.Q, ST.W
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10.4.200 Store Word from Address Register (16-bit)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST.A

10.4.201 Store Byte  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST.B

Table 10-221 
ST.A Operation

<mode>  Syntax Effective Address Instruction
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS

Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO
Pre-increment [+An]offset A[b]+sign_ext(offset10) BO

Post-increment [An+]offset A[b] BO
Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 10-222 
ST.A (16-bit)

Syntax st.a [Ab],Aa                 (SSR)       Register indirect
st.a [A15] offset4, Aa   (SSRO)     Implicit base + offset
st.a [Ab] offset4, A15   (SRO)       Implicit source
st.a [A10]offset8, A15  (SC)         Stack pointer + offset
st.a [Ab+], Aa              (SSR)       Post-increment

Description Store the value in address register Aa/A15 to the memory location specified by the 
addressing mode.

Operation M(A[b], word) = A[a]’
M(A[15]+ zero_ext(4*offset4), word)=A[a]
M(A[b]+ zero_ext(4*offset4), word=A[15]
M(A[10]+ zero_ext(4*offset8), word)=A[15]
M(A[b], word) = A[a]; A[b]=A[b]+4

Status -

Examples -

See also ST.B, ST.H, ST.W

Table 10-223 
ST.B

Syntax st.b <mode>, Da

Description Store the byte value in the 8 least-significant bits of data register Da to the byte 
memory location specified by the addressing mode.
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10.4.202 Store Byte (16-bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST.B

Operation M(EA, byte) = D[a][7:0] (See Table 10-224)

Status -
Examples -

See also ST.A, ST.D, ST.DA, ST.H, ST.Q, ST.W

Table 10-224 
ST.B Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS

Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO
Pre-increment [+An]offset A[b]+sign_ext(offset10) BO

Post-increment [An+]offset A[b] BO
Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 10-225 
ST.B (16-bit)

Syntax st.b A[b], Da  (SSR) Register indirect
st.b A[15]offset4, Da  (SSRO) Implicit base+offset
st.b A[b]offset4, D15  (SRO) Implicit source register
st.b A[Ab+], Da  (SSR) Post-increment

Description Store the byte value in the 8 least-significant bits of data registr Da/D15 to the byte 
memory location specified by the addressing mode.

Operation M(A[b], byte) = D[a][7:0]
M(A[15]+zero_ext (offset4), byte) = D[a][7:0] 
M(A[b]+zero_ext (2*offset4), byte) = D15][15:0]
M(A[b],byte)=D[a][7:0]; A[b]=A[b]+1

Status -
Examples -

See also ST.A, ST.H, ST.W

Table 10-223 
ST.B
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10.4.203 Store Doubleword  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST.D

10.4.204 Store Doubleword from Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .  ST.DA

Table 10-226 
ST.D

Syntax st.d <mode>, Ea
Description Store the value in the extended data register pair Ea to the memory location 

specified by the addressing mode. The value in the even register (Dn) is stored in 
the least-significant memory word, and the value in the odd register (Dn+1) is 
stored in the most-significant memory word. 

Operation M(EA, doubleword) = E[a] (See Table 10-227)
Status -

Examples -

See also ST.A, ST.B, ST.DA, ST.H, ST.Q, ST.W

Table 10-227 
ST.D Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS
Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO

Pre-increment [+An]offset A[b]+sign_ext(offset10) BO
Post-increment [An+]offset A[b] BO

Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO
Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 10-228 
ST.DA

Syntax st.da <mode>, Aa

Description Store the value in the address register pair Aa to the memory location specified by 
the addressing mode. The value in the even register (An) is stored in the least-
significant memory word, and the value in the odd register (An+1) is stored in the 
most-significant memory word.

Operation M(EA, doubleword) = A[a](pair) (See Table 10-229)

Status -
Examples -

See also ST.A, ST.B, ST.D, ST.H, ST.Q, ST.W
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10.4.205 Store Halfword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST.H

Table 10-229 
ST.DA Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS

Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO
Pre-increment [+An]offset A[b]+sign_ext(offset10) BO

Post-increment [An+]offset A[b] BO
Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 10-230 
ST.H

Syntax st.h <mode>, Da
Description Store the halfword value in the 16 least-significant bits of data register Da to the 

halfword memory location specified by the addressing mode.
Operation M(EA, halfword) = D[a][15:0] (See Table 10-231)

Status -
Examples -

See also ST.A, ST.B, ST.D, ST.DA, ST.Q, ST.W

Table 10-231 
ST.H Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS
Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO

Pre-increment [+An]offset A[b]+sign_ext(offset10) BO
Post-increment [An+]offset A[b] BO

Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO
Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO
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10.4.206 Store Halfword (16-bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST.H

10.4.207 Store Halfword Signed Fraction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ST.Q

Table 10-232 
ST.H (16-bit)

Syntax st.h [Ab],Da                  (SSR)       Register indirect
st.h [A15]offset4,Da       (SSRO)    Implicit base+offset
st.h [Ab]offset4,D15       (SRO)      Implicit source register
st.h [Ab+],Da                (SSR)      Post-increment

Description Store the halfword value in the 16 least-significant bits of data register Da/D15 to 
the halfword memory location specified by the addressing mode.

Operation M(A[b], halfword) = D[a][15:0]
M([A15] +zero_ext(2*offset4),halfword)=D[a][15:0]
M(A[b] +zero_ext(2*offset4),halfword)=D[15][15:0]
M(A[b] halfword)=D[a][15:0];A[b]=A[b]+2

Status -
Examples -

See also ST.A, ST.B, ST.W

Table 10-233 
ST.Q

Syntax st.q <mode>, Da
Description Store the value in the most-significant halfword of data register Da to the memory 

location specified by the addressing mode. 

Operation M(EA, halfword) = D[a][31:16]  (See Table 10-234)

Status -

Examples -

See also ST.A, ST.B, ST.D, ST.DA, ST.H, ST.W

Table 10-234 
ST.Q Operation 

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS
Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO

Pre-increment [+An]offset A[b]+sign_ext(offset10) BO
Post-increment [An+]offset A[b] BO

Circular [An+c]offset  A[b]+A[b+1][15:0] (b is even) BO
Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO
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10.4.208 Store Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ST.T

10.4.209 Store Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ST.W

Table 10-235 
ST.T

Syntax st.t offset18, bpos3, b
Description Store the bit value b to the byte at the memory address specified by offset18 in the 

bit position specified by bpos3. The other bits of the byte are unchanged.
Operation M(EA, byte) = (M(EA, byte) AND !(1 << bpos3)) OR (b << bpos3) (See Table 10-

236)
Status -

Examples -

See also IMASK

Table 10-236 
ST.T Operation

<mode>  Syntax Effective Address Instruction Format
Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABSB

Table 10-237 
ST.W

Syntax st.w <mode>, Da
Description Store the word value in data register Da to the memory location specified by the 

addressing mode.
Operation M(EA, word) = D[a]  (See Table 10-238)

Status -
Examples -

See also ST.B, ST.D, ST.DA, ST.H, ST.Q

Table 10-238 
ST.W Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS

Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO
Base + Long Offset [An]offset A[b]+sign_ext(offset16) BOL
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10.4.210 Store Word (16-bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ST.W

Pre-increment [+An]offset A[b]+sign_ext(offset10) BO

Post-increment [An+]offset A[b] BO
Circular [An+c]offset A[b]+a[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+a[b+1][15:0] (b is even) BO

Table 10-239 
ST.W (16-bit)

Syntax st.w [Ab], Da                (SSR)         Register indirect
st.w [A15]offset4, Da     (SSRO)      Implicit base + offset
st.w [Ab]offset4, D15     (SRO          Implicit source register
st.w [A10]offset8, D15   (SC)           Stack pointer + offsett
st.w [Ab+], Da              (SSR)        Post-increment

Description Store the word value in data register Da/D15 to the memory location specified by 
the addressing mode.

Operation M(A[b], word) = D[a]
M(A[15]+zero_ext (4*offset4), word) = D[a] 
M(A[b]+zero_ext (4*offset4), word) = D[15] 
M(A[10]+zero_ext (4*offset8), word) = D[15] 
M(A[b],word= D[a]; A[b]+A[b]+4 

Status -

Examples -

See also ST.A, ST.B, ST.H

Table 10-238 
ST.W Operation (cont’d)

<mode>  Syntax Effective Address Instruction 
Format
 285      v. 1.3.1
 



TriCore Instruction Set
Instruction Descriptions Architecture Manual
2001-04-30 @ 15:16
10.4.211 Store Lower Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  STLCX

Note : The effective address specified by the addressing mode must be aligned on a 16-word
boundary.

10.4.212 Store Upper Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STUCX

Table 10-240 
STLCX

Syntax stlcx <mode>
Description Store the contents of registers A2 – A7, D0 – D7, and A11 to the memory block 

specified by the addressing mode. For this instruction, the addressing mode is 
limited to absolute (ABS) or base plus short offset (BO).

Note that the effective address specified by the addressing mode must be aligned 
on a 16-word boundary. For this instruction, the addressing mode is restricted to 
absolute (ABS) or base plus short offset (BO).

Operation M(EA, 16-word)  = {PCXI, A[11], A[2:3], D[0:3], A[4:7], D[4:7]}   See Table 10-241 
Status -

Examples -

See also LDLCX, LDUCX, RSLCX, STUCX, SVLCX

Table 10-241 
STLCX Operation

<mode>  Syntax Effective Address Instruction Format
Absolute constant ABS

Base + Short Offset [An]offset A[a]+sign_ext(offset10) BO

Table 10-242 
STUCX

Syntax stucx <mode>

Description Store the contents of registers A10 – A15, D8 – D15, and the current PSW (the 
registers which comprise a task’s upper context) to the memory block specified by 
the addressing mode. For this instruction, the addressing mode is limited to 
absolute (ABS) or base plus short offset (BO).

Note that the effective address specified by the addressing mode must be aligned 
on a 16-word boundary. For this instruction, the addressing mode is restricted to 
absolute (ABS) or base plus short offset (BO).
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Note : The effective address specified by the addressing mode must be aligned on a 16-word
boundary.

10.4.213 Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUB

Operation M(EA, 16-word) = {PCXI, PSW, A[10:11], D[8:11], A[12:15], D[12:15]}        
SeeTable 10-243

Status -

Examples -
See also LDLCX, LDUCX, RSLCX, STLCX, SVLCX

Table 10-243 
STUCX Operation

<mode>  Syntax Effective Address Instruction Format
Absolute constant ABS

Base + Short Offset [An]offset A[a]+sign_ext(offset10) BO

Table 10-244 
SUB

Syntax sub Dc, Da, Db (RR)

sub Da, Db (SRR)
sub D15, Da, Db (SRR)
sub Da, D15, Db (SRR)

Description Subtract the contents of data register Db from the contents of data register Da and 
put the result in data register Dc. The operaands are treated as unsigned, 32-bit 
integers.
Subtract the contents of data register Db from the contents of data register Da/D15 
and put the result in data register Da/D15. The operaands are treated as unsigned, 
32-bit integers.

Operation D[c] = D[a] – D[b]

D[a] = D[a] – D[b]
D[15] = D[a] – D[b]
D[a] = D[15] - D[b]

Table 10-242 
STUCX
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10.4.214 Subtract Address  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SUB.A

Status V, SV, AV, SAV

V, SV, AV, SAV
Examples sub d3, d1, d2

sub d1, d2

sub d15, d1, d2

sub d1, d15, d2

See also SUBS, SUBS.U, SUBX, SUBC

Table 10-245 
SUB.A

Syntax sub.a Ac, Aa, Ab (RR)

sub.a SP, const8 (SC)
Description Subtract the contents of address register Ab from the contents of address register 

Aa and put the result in address register Ac. 

Decrement the Stack Pointer (A10) by the zero-extended value of const8 (a range 
of 0 through 255). 

Operation A[c] = A[a] – A[b] 
A[10] = A[10] – zero_ext(const8)

Status -
-

Examples sub.a a3, a4, a2

sub.a sp, 126

See also ADD.A, ADDIH.A, ADDSC.A, ADDSC.AT

Table 10-244 
SUB
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10.4.215 Subtract Packed Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SUB.B
Subtract Packed Halfword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SUB.H

10.4.216 Subtract With Carry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBC

Table 10-246 
SUB.B & SUB.H

Syntax sub.b  Dc, Da, Db (RR)
sub.h  Dc, Da, Db (RR)

Description Subtract the contents of each byte/halfword of data register Db from the contents 
of data register Da and put the result in each corresponding byte/halfword of data 
register Dc

Operation D[c][(n+7):n] = D[a][(n+7):n] + D[b][(n+7):n]; n = 0, 8, 16, 24;
D[c][(n+15):n] = D[a][(n+15):n] + D[b][(n+15):n]; n = 0, 16

Status V, SV, AV, SAV

Examples sub.b d3, d1, d2

sub.h d3, d1, d2

See also SUBS.H, SUBS.HU

Table 10-247 
SUBC

Syntax subc Dc, Da, Db (RR)

Description Subtract contents of data register Db from contents of data register Da plus the 
carry bit minus 1, and put the result in data register Dc. The operands are treated 
as 32-bit integers. The PSW carry bit is set to the value of the ALU carry out.

Operation D[c] = D[a] – D[b] + psw.C–1; psw.C = carry_out
Status C, V, SV, AV, SAV

Examples subc d3, d1, d2

See also SUB, SUBS, SUBS.U, SUBX
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10.4.217 Subtract Signed with Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBS
Subtract Unsigned with Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBS.U

10.4.218 Subtract Packed Halfword with Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . SUBS.H
Subtract Packed Halfword Unsigned w/Saturat’n . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBS.HU

Table 10-248 
SUBS & SUBS.U

Syntax subs Dc, Da, Db (RR)
subs.u Dc, Da, Db (RR)
subs Da, Db (SRR)

Description Subtract the contents of data register Db from the contents of data register Da and 
put the result in data register Dc. The operands are treated as signed/unsigned 32-
bit integers, with saturation on signed/unsigned overflow.

Subtract the contents of data register Db from the contents of data register Da and 
put the result in data register Da.The operands are treated as signed 32-bit 
integers, with saturation on signed overflow.

Operation D[c] = D[a] – D[b]; signed; ssov
D[c] = D[a] – D[b]; unsigned; suov

D[a] = D[a] – D[b]; signed; ssov
Status V, SV, AV, SAV

V, SV, AV, SAV
Examples subs d3, d1, d2

subs.u d3, d1, d2

subs d3, d1

See also SUB, SUBX, SUBC

Table 10-249 
SUBS.H & SUBS.HU

Syntax subs.h  Dc, Da, Db (RR)
subs.hu  Dc, Da, Db (RR)

Description Subtract the contents of each halfword of data register Db from the contents of data 
register Da and put the result in each corresponding halfword of data register Dc, 
with saturation on signed/unsigned overflow.

Operation D[c][(n+15):n] = D[a][(n+15):n] – D[b][(n+15):n]; n = 0, 16; signed; ssov
D[c][(n+15):n] = D[a][(n+15):n] – D[b][(n+15):n]; n = 0, 16; unsigned; suov

Status V, SV, AV, SAV

Examples subs.h d3, d1, d2

subs.hu d3, d1, d2

See also SUB.B
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10.4.219 Subtract Extended  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBX

10.4.220 Save Lower Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SVLCX

10.4.221 Swap with Data Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SWAP.W

Table 10-250 
SUBX

Syntax subx Dc, Da, Db (RR)
Description Subtract the contents of data register Db from the contents of data register Da and 

put the result in data register Dc. The operands are treated as 32-bit integers. The 
PSW carry bit is set to the value of the ALU carry out.

Operation D[c] = D[a] – D[b]; psw.C = carry_out
Status C, V, SV, AV, SAV

Examples subx d3, d1, d2

See also SUB, SUBC, SUBS,  SUBS.U

Table 10-251 
SVLCX

Syntax svlcx (SYS)
Description Store the contents of registers A2 – A7, D0 – D7, and the current return address 

(A11) to the memory location pointed to by the FCX register. This operation saves 
the lower context of the currently executing task.

Operation Save lower context

Status -
Examples svlcx

See also LDLCX, LDUCX, RSLCX, STLCX, STUCX

Table 10-252 
SWAP.W

Syntax swap.w Da, <mode>

Description Swap atomically the contents of data register Db and the memory word specified 
by the addressing mode.

Operation tmp = M(EA, word); 
M(EA, word) = D[a]; 
D[a] = tmp
(See Table 10-253)

Status -

Examples -

See also -
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10.4.222 System Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SYSCALL

Note : The trap return PC will be that of the instruction following the SYSCALL instruction.

Table 10-253 
SWAP.W Operation

<mode>  Syntax Effective Address Instruction 
Format

Absolute offset {offset18[17:14], 14’b0, offset18[13:0]} ABS

Base + Short Offset [An]offset A[b]+sign_ext(offset10) BO
Pre-increment [+An]offset A[b]+sign_ext(offset10) BO

Post-increment [An+]offset A[b] BO
Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO

Table 10-254 
SYSCALL

Syntax syscall const9 (RC)
Description Cause a system call trap, using Trap Identification Number (TIN) specified by 

const9. 
Operation trap(SYS, const9[7:0])

Status -
Examples syscall 4

See also RET, RFE, TRAPV, TRAPSV
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10.4.223 TLB Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TLBMAP

10.4.224 TLB Demap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TLBDEMAP

Table 10-255 
TLBMAP

Syntax tlbmap  Ea
Description The TLBMAP instruction is used to install a mapping in the MMU. The TLBMAP 

instruction takes an extended data register (Ea) as a parameter. The even Ea 
register contains the VPN for the translation while the odd Ea register contains the 
page attributes and PPN. The ASI for the translation is obtained from the ASI 
register. The page attributes are contained in the most significant byte of the odd 
register with the format shown in Section 7.8.1, “TLBMAP (TLB Map).”
This instruction can be executed in supervisor mode only.

Operation TTE.ASI = ASI
TTE.VPN = E[a](lower)[21:0]
TTE.PPN = E[a](upper)[21:0]
TTE.(attributes) = E[a](upper)[31:24]

Status
Examples tlbmap e2

See also TLBMAP, TLBDEMAP, TLBFLUSH, TLBPROBE, TLBPROBE.A, TLBPROBE.I 
and Section 7.8.1, “TLBMAP (TLB Map).”

Table 10-256 
TLBDEMAP

Syntax tlbdemap Da
Description The TLBDEMAP instruction is used to uninstall a mapping in the MMU. The

TLBDEMAP instruction takes a data register (Da) as a parameter. The Da register
contains a PSZ and a VPN for the demap operation. The address space identifier
for the demap operation is obtained from the ASI register. Demapping a translation
that does not exist in the MMU results in a NOP.

This instruction can be executed in supervisor mode only.

Operation
Status
Examples tlbdemap d2

See also TLBMAP, TLBFLUSH, TLBPROBE, TLBPROBE.A, TLBPROBE.I and Section 
7.8.2, “TLBDEMAP (TLB Demap).”
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10.4.225 TLB-A Flush. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TLBFLUSH.A
TLB-B Flush  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TLBFLUSH.B

10.4.226 TLB Probe Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TLBPROBE.A

Table 10-257 
TLBFLUSH

Syntax tlbflush  

Description The TLBFLUSH instructions are used to flush mappings from the MMU. There are
two variants of the tlbflush instruction. The tlbflush.a instruction flushes all the
mappings from TLB-A while the tlbflush.b instruction flushes all the mappings from
TLB-B.

This instruction can be executed in supervisor mode only.

Operation
Status
Examples tlbflush.a

tlbflush.b

See also TLBMAP, TLBDEMAP, TLBPROBE, TLBPROBE.A, TLBPROBE.I and Section 
7.8.3, “TLBFLUSH (TLB Flush).”

Table 10-258 
TLBPROBE.A

Syntax tlbprobe.a 
Description The TLBPROBE.A (TLB Probe Address) instruction takes a data register (Da) as a

parameter and is used to probe the MMU for a virtual address. The Da register
contains the virtual address for the probe. The address space identifier for the
probe is obtained from the ASI register.

This instruction can be executed in supervisor mode only.
Operation if ( TLB contains an entry which matches the ASI /VPN in Da ) {

index = matched TLB entry
TVA.ASI = TLB[index].ASI
TVA.VPN = TLB[index].VPN
TPA.PPN = TLB[index].PPN
TPA.{attributes} = TLB[index].{attributes}
TPX = index

} else {
TPA.V = 0

}

Status
Examples tlbprobe.a d2

See also TLBMAP, TLBDEMAP, TLBFLUSH, TLBPROBE, TLBPROBE.I and Section 7.8.4, 
“TLBPROBE (TLB Probe).”
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10.4.227 TLB Probe Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TLBPROBE.I

10.4.228 Trap on Overflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TRAPV

Table 10-259 
TLBPROBE.I

Syntax tlbprobe.i 
Description The TLBPROBE.I (TLB Probe Index) instruction takes a data register (Da) as a

parameter and is used to probe the TLB at a given index. The Da register contains
the index for the probe. 

This instruction can be executed in supervisor mode only.
Operation if (Da is a valid TLB entry index ) {

index = Da
TVA.ASI = TLB[index].ASI
TVA.VPN = TLB[index].VPN
TPA.PPN = TLB[index].PPN
TPA.{attributes} = TLB[index].{attributes}
TPX = index

} else {
TPA.V = 0

}

Status
Examples tlbprobe.i d2

See also TLBMAP, TLBDEMAP, TLBFLUSH, TLBPROBE, TLBPROBE.A and Section 
7.8.4, “TLBPROBE (TLB Probe).”

Table 10-260 
TRAPV

Syntax trapv (SYS)
Description If the PSW’s overflow status flag (PSW.V) is set, generate a trap to the vector entry 

for the overflow trap handler (OVF trap).
Operation if PSW.V then trap (OVF)

Status -
Examples trapv

See also RSTV, SYSCALL, TRAPSV
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10.4.229 Trap on Sticky Overflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TRAPSV

10.4.230 Logical XNOR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XNOR

10.4.231 Bit Logical XNOR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XNOR.T

Table 10-261 
TRAPSV

Syntax trapsv (SYS)
Description If the PSWs sticky overflow status flag (PSW.SV) is set, generate a trap to the 

vector entry for the sticky overflow trap handler (SOV-trap).
Operation if PSW.SV then trap (SOVF)

Status -
Examples trapsv

See also RSTV, SYSCALL, TRAPV

Table 10-262 
XNOR

Syntax xnor Dc, Da, Db (RR)
xnor Dc, Da, const9 (RC)

Description Compute the bitwise logical exclusive NOR of the contents of data register Da and 
the contents of data register Db/const9 and put the result in data register Dc. The 
value const9 is zero-extended to 32 bits.

Operation D[c] = !(D[a] XOR D[b])
D[c] = !(D[a] XOR zero_ext(const9))

Status -

Examples xnor d3, d1, d2

xnor d3, d1, 126

See also AND, ANDN, NAND, NOR, NOT, OR, ORN, XOR

Table 10-263 
XNOR.T

Syntax xnor.t Dc, Da, p1, Db, p2 (BIT)
Description Compute the logical exclusive NOR of bit p1 of data register Da and bit p2 of data 

register Db. Put the result in the least-significant bit of data register Dc and clear 
the remaining bits of Dc to zero.

Operation D[c] = !(D[a][p1] XOR D[b][p2])

Status -
Examples xnor.t d3, d1, 3, d2, 5

See also AND.T, ANDN.T, NAND.T, NOR.T, OR.T, ORN.T, XOR.T
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10.4.232 Logical XOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XOR

10.4.233 Equal Accumulating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XOR.EQ

Table 10-264 
XOR

Syntax xor Dc, Da, Db (RR)
xor Dc, Da, const9 (RC)

xor Da, Db (SR)
Description Compute the bitwise logical exclusive OR of the contents of data register Da and 

the contents of data register Db/const9 and put the result in data register Dc. The 
value const9 is zero-extended to 32 bits.
Compute the bitwise logical exclusive OR of the contents of data register Da and 
the contents of data register Db and put the result in data register Da.

Operation D[c] = D[a] xor D[b]
D[c] = D[a] xor zero_ext(const9)
D[a] = D[a] xor D[b]

Status -
Examples xor d3, d1, d2

xor d3, d1, 126

xor d3, d2

See also AND, ANDN, NAND, NOR, NOT, OR, ORN, XNOR

Table 10-265 
XOR.EQ

Syntax xor.eq Dc, Da, Db (RR)
xor.eq Dc, Da,const9 (RC)

Description Compute the logical XOR of Dc[0] and the Boolean result of the EQ operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. The value const9 is sign-extended to 32 bits.

Operation D[c] = {D[c][31:1], D[c][0] XOR (D[a]==D[b])} 
D[c] = {D[c][31:1], D[c][0] XOR (D[a]==sign_ext(const9))}

Status -
Examples xor.eq d3, d1, d2

xor.eq d3, d1, 126

See also AND.EQ, OR.EQ
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10.4.234 Greater Than or Equal Accumulating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XOR.GE
Greater Than or Equal Accumulating Unsigned  . . . . . . . . . . . . . . . . . . . . . . . . . . . . XOR.GE.U
Table 10-266 
XOR.GE & XOR.GE.U

Syntax xor.ge Dc, Da, Db (RR)
xor.ge Dc, Da,const9 (RC)
xor.ge.u Dc, Da, Db (RR)
xor.ge.u Dc, Da,const9 (RC)

Description Calculate the logical XOR of Dc[0] and the Boolean result of the GE operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. Da and Db are treated as 32-bit signed integers. 
The value const9 is sign-extended to 32 bits.

Calculate the logical XOR of Dc[0] and the Boolean result of the GE.U operation 
on the contents of data register Da and data register Db/const9. Put the result in 
Dc[0]. All other bits in Dc are unchanged. Da and Db are treated as 32-bit unsigned 
integers. The value const9 is zero-extended to 32 bits.

Operation D[c] = {D[c][31:1], D[c][0] XOR (D[a]>=D[b])}; signed
D[c] = {D[c][31:1], D[c][0] XOR (D[a]>=sign_ext(const9))}; signed

D[c] = {D[c][31:1], D[c][0] XOR (D[a]>=D[b])}; unsigned 
D[c] = {D[c][31:1], D[c][0] XOR (D[a]>=zero_ext(const9))}; unsigned

Status -
Examples xor.ge d3, d1, d2

xor.ge d3, d1, 126

xor.ge.u d3, d1, d2

xor.ge.u d3, d1, 126

See also AND.GE, AND.GE.U, OR.GE, OR.GE.U
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10.4.235 Less Than Accumulating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XOR.LT
Less Than Accumulating Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XOR.LT.U

10.4.236 Not Equal Accumulating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XOR.NE

Table 10-267 
XOR.LT & XOR.LT.U

Syntax xor.lt Dc, Da, Db (RR)
xor.lt Dc, Da,const9 (RC)
xor.lt.u Dc, Da, Db (RR)
xor.lt.u Dc, Da,const9 (RC)

Description Calculate the logical XOR of Dc[0] and the Boolean result of the LT operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. Da and Db are treated as 32-bit signed integers. 
The value const9 is sign-extended to 32 bits.

Calculate the logical XOR of Dc[0] and the Boolean result of the LT.U operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. Da and Db are treated as 32-bit unsigned 
integers. The value const9 is zero-extended to 32 bits.

Operation D[c] = {D[c][31:1], D[c][0] XOR (D[a]<D[b])}; signed 
D[c] = {D[c][31:1], D[c][0] XOR (D[a]<sign_ext(const9))}; signed

D[c] = {D[c][31:1], D[c][0] XOR (D[a]<D[b])}; unsigned 
D[c] = {D[c][31:1], D[c][0] XOR (D[a]<zero_ext(const9))}; unsigned

Status -
Examples xor.lt d3, d1, d2

xor.lt d3, d1, 126

xor.lt.u d3, d1, d2

xor.lt.u d3, d1, 126

See also AND.LT, AND.LT.U, OR.LT, OR.LT.U

Table 10-268 
XOR.NE

Syntax xor.ne Dc, Da, Db (RR)
xor.ne Dc, Da,const9 (RC)

Description Calculate the logical XOR of Dc[0] and the Boolean result of the NE operation on 
the contents of data register Da and data register Db/const9. Put the result in Dc[0]. 
All other bits in Dc are unchanged. The value const9 is sign-extended to 32 bits.
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10.4.237 Bit Logical XOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XOR.T

Operation D[c] = {D[c][31:1], D[c][0] XOR (D[a]!=D[b])}
D[c] = {D[c][31:1], D[c][0] XOR (D[a]!=sign_ext(const9))}

Status -

Examples xor.ne d3, d1, d2

xor.ne d3, d1, 126

See also AND.NE, OR.NE

Table 10-269 
XOR.T

Syntax xor.t Dc, Da, p1, Db, p2 (BIT)
Description Compute the logical XOR of bit p1 of data register Da and bit p2 of data register Db. 

Put the result in the least-significant bit of data register Dc and clear the remaining 
bits of Dc to zero.

Operation D[c] = D[a][p1] XOR D[b][p2]

Status -
Examples xor.t d3, d1, 3, d2, 7

See also AND.T, ANDN.T, NAND.T, NOR.T, OR.T, ORN.T, XNOR.T

Table 10-268 
XOR.NE
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Tel. (+49) 711-137 33 14
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Tel. (+49) 511-877 22 22
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Infineon Technologies AG
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Siemens Components
300 Great South Road
PO Box 17122
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Tel. (+64) 9-520 30 33
Fax (+64) 9-520 15 56 
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Postboks 10, Veitvet
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Siemens Pakistan Engineering 
Co. Ltd.
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ul. Zupnicza 11
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Total Quality Management

Quality takes on an all-encompassing significance at Infineon Technologies Corp. For
us it means living up to each and every one of your demands in the best possible way.
So we are not only concerned with product quality. We direct our efforts equally at qual-
ity of supply and logistics, service and support, as well as all the other ways in which we
advise and attend to you.

Part of Infineon’s quality is the very special attitude of our staff. Total Quality in thought
and deed, towards co-workers, suppliers and you, our customer. Our guideline is “do ev-
erything with zero defects”, in an open manner that is demonstrated beyond your imme-
diate workplace, and to constantly improve. Throughout the corporation, we also think in
terms of Time-Optimized Processes (TOP), greater speed on our part to give you that
decisive competitive edge.

Give us the chance to prove the best of performance through the best of quality—you
will be convinced.
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bit-field extract instructions  . . . . . . . . . .  121
bit-reversed
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start  . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
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C
call depth counter  . . . . . . . . . . . . . . . 28, 50
CALL instruction  . . . . . . . . . . . . . . . . 48, 51
CDO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
CDU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
circular
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circular buffer
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code

address  . . . . . . . . . . . . . . . . . . . . . . . .  21
range  . . . . . . . . . . . . . . . . . . . . . . . . . .  42

compare instruction . . . . . . . . . . . .  126, 129
comparison instructions . . . . . . . . .  131, 132
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save  . . . . . . . . . . . . . . . . . . . . . . . . . .  51
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