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Chapter 1

Introduction

This document describes how to calibrate and image interferometric and single-dish radio astro-
nomical data using the CASA (Common Astronomy Software Application) package. CASA is a
suite of astronomical data reduction tools and tasks that can be run via the IPython interface to
Python. CASA is being developed in order to fulfill the data post-processing requirements of the
ALMA and EVLA projects, but also provides basic and advanced capabilities useful for the analysis
of data from other radio, millimeter, and submillimeter telescopes.

You have in your hands the latest release of CASA. This package is under active development, and
thus there are a number of caveats and limitations for the use of this package. See the release notes
(§ 1.1) below for more information, and pay heed to the numerous ALERTs placed throughout
this reference. You can expect regular updates and patches, as well as increasing functionality.

Inside the Toolkit:
Throughout this user reference, we
will occasionally intersperse boxed-
off pointers to parts of the toolkit
that power users might want to ex-
plore.

This user reference and cookbook is a task-based walk-
through of interferometric data reduction and analysis. In
CASA, tasks represent the more streamlined operations
that a typical user would carry out. The idea for having
tasks is that they are simple to use, provide a more familiar
interface, and are easy to learn for most astronomers who
are familiar with radio interferometric data reduction (and
hopefully for novice users as well). In CASA, the tools pro-
vide the full capability of the package, and are the atomic
functions that form the basis of data reduction. These tools augment the tasks, or fill in gaps left by
tasks that are under development but not yet available. See the CASA User Reference Manual
for more details on the tools. Note that in most cases, the tasks are Python interface scripts to the
tools, but with specific, limited access to them and a standardized interface for parameter setting.
The tasks and tools can be used together to carry out more advanced data reduction operations.

For the moment, the audience is assumed to have some basic grasp of the fundamentals of synthesis
imaging, so details of how a radio interferometer or telescope works and why the data needs to
undergo calibration in order to make synthesis images are left to other documentation — a good
place to start might be Synthesis Imaging in Radio Astronomy II (1999, ASP Conference Series
Vol. 180, eds. Taylor, Carilli & Perley).

20
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This reference is broken down by the main phases of data analysis:

• data import, export, and selection (Chapter 2),

• examination and flagging of data (Chapter 3),

• interferometric calibration (Chapter 4),

• interferometric imaging (Chapter 5),

• image analysis (Chapter 6), and

• data and image visualization (Chapter 7).

There are also special chapters in the Appendix on

• single dish data analysis (Chapter A), and

• simulation (Chapter B).

These are included for users that will be doing EVLA and ALMA telescope commissioning and
software development.

The general appendices provide more details on what’s happening under the hood of CASA, as
well as supplementary material on tasks, scripts, and relating CASA to other packages. These
appendices include:

• obtaining and installing CASA (Appendix C),

• more details about Python and CASA (Appendix D),

• a discussion of the Hamaker-Bregman-Sault Measurement Equation (Appendix E),

• annotated scripts for typical data reduction cases (Appendix F), and

• CASA dictionaries to AIPS, MIRIAD, and CLIC (Appendix G).

• Writing your own CASA Task (Appendix H).

The CASA User Documentation includes:

• CASA User Reference & Cookbook — this document, a task-based data analysis walk-
through and instructions;

• CASA in-line help — accessed using help in the casapy interface;

• The CASA Toolkit Reference Manual — details on a specific task or tool does and how
to use it.
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• The CASA Task Reference Manual — the information from the inline help and task
documentation, available online in HTML.

The CASA home page can be found at:

http://casa.nrao.edu

From there you can find documentation and assistance for the use of the package, including the
User Documentation. You will also find information on how to obtain the latest release and receive
user support.

There is also a user-created CASAGuides Wiki

http://casaguides.nrao.edu

that contains helpful information on processing your data in CASA, along with hints and tricks to
best use this package.

1.1 About This Release

ALERT
Boxes like this will bring to your
attention some of the features (or
lack thereof) in the current release
of CASA. There are also ALERT
notes in the text.

This release (3.0.0) is the first public non-beta release. This
means that at this stage, most, but not all, of the eventual
functionality is available at some level. However, the pack-
age is still under development, and some features might
change in future releases. This should be taken into ac-
count as users begin to learn the package. We will do our
best to point out commands, tasks, and parameters that
are likely to change underfoot. Although many bugs were
eradicated in the Beta Release stage, there are some that persist. We will do our best to stamp
these out as soon as we find them. See the release notes for the current version for more details.
In this reference, we will try to point out known pitfalls and workarounds in the ALERT boxes or
notes in the text.

We occasionally issue patches to the current release in between formal releases. Please check the
CASA Home page (http://casa.nrao.edu) regularly to look for updates to the release and the
documentation, and to check the list of known problems. You can find the contact information for
feedback here also.

1.1.1 What’s New in Release 3.0.0

This document is for CASA Release Version 3.0.0). This patch differs from previous versions of
CASA in a number of ways:

• New interface changes:

http://casa.nrao.edu
http://casaguides.nrao.edu
http://casa.nrao.edu
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– There is now a tput command to save task inputs to the <taskname>.last file for later
use (§ 1.3.5.7).

– The uv-distance units are "lambda" rather then just "l" (conflicted with litre in quanta).

• New data handling features:

– (Task importasdm) The importasdm task now reads SDM v1.0 and has better handling
of EVLA SDM data (§ 2.2.1).

– (Task importoldasdm) The previous version of importasdm is retained as importoldasdm
for reading SDM v0 format data (§ 2.2.1.1).

– (Task importvla) New option evlabands=T to use EVLA defined band boundaries, e.g.
to access frequencies outside the old VLA bands (§ 2.2.2).

– (Task exportuvfits) Efficiency has been improved, particularly for MS produced by
importasdm (§ 2.2.3.2).

– (Task listvis) Now prints u,v,w of data (§ 2.2.6).

– (Task vishead) New task to list meta-data in header of MS (§ 2.2.7).

– (Task visstat) New task to calculate statistics on data in MS (§ 2.2.8).

– Data selection now handles the correlation parameter (§ 2.3).

• New plotting and flagging features:

– (Task flagdata) There are a number of improvements, including an easier list-mode
for selection parameters under mode=’manualflag’, and automatic backup of previous
flags using flagbackup=T (§ 3.5).

– (Task plotms) The new prototype MS plotting application plotms has many new fea-
tures (§ 3.4.1).

• New synthesis calibration features:

– (Task cvel) There is a new task cvel that will regrid a spectral MS onto a new frequency
channel system (§ 4.7.5).

– (Task gencal) There is a new task gencal that will create a calibration table from lists,
including options for delays and antenna position errors (§ 4.3.5).

– (Task setjy) The calibration models provided for use in setjy now cover wider band-
widths (§ 4.3.4).

– (Task split) You can now split a read only ms as long as you have write access to
output disk (§ 4.7.1).

• New synthesis imaging features:

– (Task clean) A number of improvements were made to the clean task (§ 5.3):

1. There is a new calready parameter to create a scratch column and save model
visibilities (e.g. for self-cal).

2. There are new options using gridmode parameter, including ’widefield’ for w-
projection and faceting, and ’aprojection’ for squint correction.
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3. Mosaicing with ftmachine=’mosaic’ now improved using flat-noise residuals.
4. For interactive=T there is now a chaniter=T option to fully clean each cube

channel sequentially.
5. Frame handling via outframe and veltype for mode=’velocity’ and ’frequency’.
6. Sault-Wieringa MFS for higher-order Taylor expansion of spectrum now available

in mode=’mfs’.

– (Task autoclean) New prototype (experimental) task to automatically clean data, in-
cluding auto-boxing of emission (§ 5.9).

– (Task boxit) New prototype (experimental) task to automatically generate clean boxes
from an image (§ 5.5.1).

– The task widefield was removed, as its functionality is now available in clean.

• New image analysis features:

– (Task imfit) Now does multi-component fitting (starting from estimates provided in a
file) and returns a Python dictionary instead of a component list (§ 6.4).

– (Task immath) Now uses the imagename parameter to assign image name syntax in
mode=’evalexpr’ (§ 6.5).

– (Task immath) Known Bug: For mode=’pola’ you MUST call as a function, giving
the parameters as arguments, or immath will fail.

• New visualization features in the viewer (§ 7):

– (Task viewer) The viewer now handles images in different frames more robustly.

– (Task viewer) The Spectral Plot tool has some slight improvements.

– (Task viewer) For spectral cubes, you now see the channel velocities by default in the
upper right corner of image. The number of decimal places shown is not sufficient to
distinguish channels.

– (Task viewer) There is now a FileBox tool to display/edit clean-box regions.

• New single-dish processing features (Appendix A):

– The single dish package was upgraded from using ASAP 2.2 to ASAP2.3.1.

– (Task sdimaging) Added new Single-Dish task sdimaging that performs imaging both
total power and spectral data for Single-Dish observation.

– (Task sdimprocess) New task sdimprocess for raster scans implementing Emerson-
Grave and Sofue-Reich algorithms.

– There are a number of other changes, as this CASA module is under continuous devel-
opment. See the Appendix A for the latest guide.

• New simulator features:

– The simulator task simdata has a number of new features (§ B).
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1.2 CASA Basics — Information for First-Time Users

This section assumes that CASA has been installed on your LINUX or OSX system. See Appendix C
for instructions on how to obtain and install CASA.

1.2.1 Before Starting CASA

First, you will most likely be starting CASA running from a working directory that has your data
in it, or at least where you want your output to go. It is easiest to start from there rather than
changing directories inside casapy. ALERT: There is at least one task (plotxy) that fails if the
path to your working directory contains spaces in its name, e.g. /users/smyers/MyTest/ is fine,
but /users/smyers/My Test/ is not! We will try to bulletproof the file-handling better.

If you have done a default installation under Linux using rpms, or on the Mac with the CASA
application, then there should be a sh script called casapy in the /usr/bin area which is in your
path. This shell will set up its environment and run the version of casapy that it points to. If this
is how you set up the system, then you need to nothing further and can run casapy.

Depending on your setup, there may be other specially built versions available. For example at the
NRAO AOC, the “stable build” can be started by running “casapy-test”, e.g.

/usr/bin/casapy-test

On some systems, particularly if you have multiple versions installed, to define environment vari-
ables and the casapy alias, you will need to run one of the casainit shell scripts. The location of
the startup scripts for CASA will depend upon where you installed CASA on your system. For a
default installation this will likely be in /usr/lib/casapy/. For example, at the NRAO AOC, the
current release is executed as

/usr/bin/casapy

and uses the pathname to

/usr/lib/casapy/23.0.6654-001

Sometimes, you will have multiple non-default versions (for example, various development versions).
For example at the NRAO AOC, the “stable build” is in /home/casa. Then, to use this version:

In bash:
> . /home/casa/casainit.sh
or for csh:
> source /home/casa/casainit.csh

depending on what shell you are running (Bourne or [t]csh).

ALERT: If you want to run the casabrowser (see § 3.6) outside of the casapy shell, then you
will need to put the CASA root in your path using one of the above mechanisms, or give its path
explicitly.
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1.2.1.1 Environment Variables

Before starting up casapy, you should set or reset any environment variables needed, as CASA
will adopt these on startup. For example, the PAGER environment variable determines how help is
displayed in the CASA terminal window (see § 1.2.8.3). The choices are less, more, and cat.

In bash, pick one of

PAGER=less
PAGER=more
PAGER=cat

followed by

export PAGER

In csh or tcsh, pick one of

setenv PAGER less
setenv PAGER more
setenv PAGER cat

The actions of these are as if you were using the equivalent Unix shell command to view the help
material. See § 1.2.8.3 for more information on these choices. We recommend using the cat option
for most users, as this works smoothly both interactively and in scripts.

1.2.1.2 Where is CASA?

Note that the path to the CASA installation, which contains the scripts and data repository, will
also depend upon the installation. With a default installation under Linux this will probably be in

/usr/lib/casapy/

while in a Mac OSX default install it will likely be an application (in the Applications folder), with
the data repository in:

/opt/casa/

You can find the location after initialized by looking at the CASAPATH environment variable. You
can find it within casapy by

pathname=os.environ.get(’CASAPATH’).split()[0]
print pathname
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1.2.2 Starting CASA

After having run the appropriate casainit script, CASA is started by typing
casapy
on the UNIX command line, e.g.

casapy

After startup information, you should get an IPython
CASA <1>:
command prompt in the xterm window where you started CASA. CASA will take approximately 10
seconds to initialize at startup in a new working directory; subsequent startups are faster. CASA
is active when you get a
CASA <1>
prompt in the command line interface. You will also see a logger GUI appear on your Desktop
(usually near the upper left). Note: Under MacOSX the logger will appear in a Console window.

You also have the option of starting CASA with various logger options (see § 1.4.2.1). For example,
if you are running remotely in a terminal window without an X11 connection, or if you just do not
want to see the logger GUI, and want the logger messages to come to your terminal, do

casapy --nologger --log2term

See § 1.4.2 for information on the logger in general.

1.2.3 Ending CASA

You can exit CASA by typing quit. This will bring up the query

Do you really want to exit ([y]/n)?

to give you a chance in case you did not mean to exit. You can also quit using %exit or CTRL-D.

If you don’t want to see the question "Do you really want to exit [y]/n?", then just type
Exit or exit and CASA will stop right then and there.

1.2.4 What happens if something goes wrong?

ALERT: Please check the CASA Home Page for Release Notes and FAQ information including
a list of known problems. If you think you have encountered an unknown problem, please consult
the CASA HelpDesk (contact information on the CASA Home Page). See also the caveats to this
Release (§ 1.1 for pointers to our policy on User Support.

First, always check that your inputs are correct; use the

help <taskname>
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(§ 1.2.8.2) or

help par.<parameter name>

(§ 1.2.8.4) to review the inputs/output.

1.2.5 Aborting CASA execution

If something has gone wrong and you want to stop what is executing, then typing CNTL-C (Control
and C keys simultaneously) will usually cleanly abort the application. This will work if you are
running a task synchronously. If this does not work on your system, or you are running a task
asynchronously (§ 1.3.4) then try CNTL-Z to put the task or shell in the background, and then
follow up with a kill -9 <PID> where you have found the relevant casapy process ID (PID) using
ps (see § 1.2.6 below).

See § 1.3.2 for more information on running tasks.

If the problem causes CASA to crash, see the next sub-section.

1.2.6 What happens if CASA crashes?

Usually, restarting casapy is sufficient to get you going again after a crash takes you out of
the Python interface. Note that there may be spawned subprocesses still running, such as the
casaviewer or the logger. These can be dismissed manually in the usual manner. After a crash,
there may also be hidden processes. You can find these by listing processes, e.g. in linux:

ps -elf | grep casa

or on MacOSX (or other BSD Unix):

ps -aux | grep casa

You can then kill these, for example using the Unix kill or killall commands. This may be
necessary if you are running remotely using ssh, as you cannot logout until all your background
processes are terminated. For example,

killall ipcontroller

or

killall Python

will terminate the most common post-crash zombies.
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1.2.7 Python Basics for CASA

Within CASA, you use Python to interact with the system. This does not mean an extensive
Python course is necessary - basic interaction with the system (assigning parameters, running
tasks) is straightforward. At the same time, the full potential of Python is at the more experienced
user’s disposal. Some further details about Python, IPython, and the interaction between Python
and CASA can be found in Appendix D.

The following are some examples of helpful hints and tricks on making Python work for you in
CASA.

1.2.7.1 Variables

Python variables are set using the <parameter> = <value> syntax. Python assigns the type
dynamically as you set the value, and thus you can easily give it a non-sensical value, e.g.

vis = ’ngc5921.ms’
vis = 1

The CASA parameter system will check types when you run a task or tool, or more helpfully when
you set inputs using inp (see below). CASA will check and protect the assignments of the global
parameters in its namespace.

Note that Python variable names are case-sensitive:

CASA <109>: Foo = ’bar’
CASA <110>: foo = ’Bar’
CASA <111>: foo
Out[111]: ’Bar’

CASA <112>: Foo
Out[112]: ’bar’

so be careful.

Also note that mis-spelling a variable assignment will not be noticed (as long as it is a valid Python
variable name) by the interface. For example, if you wish to set correlation=’RR’ but instead
type corellation=’RR’ you will find correlation unset and a new corellation variable set.
Command completion (see § 1.2.8.1) should help you avoid this.

1.2.7.2 Lists and Ranges

Sometimes, you need to give a task a list of indices. If these are consecutive, you can use the
Python range function to generate this list:

CASA <1>: iflist=range(4,8)
CASA <2>: print iflist
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[4, 5, 6, 7]
CASA <3>: iflist=range(4)
CASA <4>: print iflist
[0, 1, 2, 3]

See Appendix D.3 for more information.

1.2.7.3 Indexes

As in C, Python indices are 0-based. For example, the first element in a list antlist would be
antlist[0]:

CASA <113>: antlist=range(5)
CASA <114>: antlist
Out[114]: [0, 1, 2, 3, 4]

CASA <115>: antlist[0]
Out[115]: 0

CASA <116>: antlist[4]
Out[116]: 4

CASA also uses 0-based indexing internally for elements in the Measurement Set (MS – the basic
construct that contains visibility and/or single dish data; see Chapter 2). Thus, we will often talk
about Field or Antenna “ID”s which will be start at 0. For example, the first field in an MS would
have FIELD ID==0 in the MSselect syntax, and can be addressed as be indexed as field=’0’ in
most tasks, as well as by name field=’0137+331’ (assuming thats the name of the first field).
You will see these indices in the MS summary from the task listobs.

1.2.7.4 Indentation

Python pays attention to the indentation of lines, as it uses indentation to determine the level
of nesting in loops. Be careful when cutting and pasting: if you get the wrong indentation, then
unpredictable things can happen (usually it just gives an error).

See Appendix D.2 for more information.

1.2.7.5 System shell access

If you want to access system commands from a script, use the os.system command (Appendix D.6.1).

In interactive mode, any input line beginning with a ’!’ character is passed verbatim (minus the
’!’, of course) to the underlying operating system. Also, several common commands (ls, pwd,
less) may be executed with or without the ’!’, although the cp command must use ’!’ and cd
must be executed without the ’!’. For example:

CASA <5>: !rm -r mydata.ms
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Note that if you want to access a Unix environment variable, you will need to prefix with a double
$$ instead of a single $ — for example, to print the value of the $PAGER variable, you would use

CASA <6>: !echo $$PAGER

See Appendix D.6 for more information.

1.2.7.6 Executing Python scripts

You can execute Python scripts (ASCII text files containing Python or casapy commands) using
the execfile command. For example, to execute the script contained in the file myscript.py (in
the current directory), you would type

CASA <7>: execfile(’myscript.py’)

or

CASA <8>: execfile ’myscript.py’

which will invoke the IPython auto-parenthesis feature.

NOTE: in some cases, you can use the IPython run command instead, e.g.

CASA <9>: run myscript.py

In this case, you do not need the quotes around the filename. This is most useful for re-initializing
the task parameters, e.g.

CASA <10>: run clean.last

(see § 1.3.5.8).

See Appendix D.11 for more information.

1.2.8 Getting Help in CASA

1.2.8.1 TAB key

At any time, hitting the <TAB> key will complete any available commands or variable names and
show you a list of the possible completions if there’s no unambiguous result. It will also complete
filenames in the current directory if no CASA or Python names match.

For example, it can be used to list the available functionality using minimum match; once you have
typed enough characters to make the command unique, <TAB> will complete it.
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CASA <15>: cle<TAB>
clean clean_description clearcal_check_params
clearplot clearstat
clean_check_params clear clearcal_defaults
clearplot_defaults clearstat_defaults
clean_defaults clearcal clearcal_description
clearplot_description clearstat_description

1.2.8.2 help <taskname>

Basic information on an application, including the parameters used and their defaults, can be
obtained by typing pdoc task, help task, help ’task’ or task?. The pdoc task currently
gives the cleanest documentation format with the smallest amount of object-oriented (programmer)
output. This inline help provides a one line description of the task and then lists all parameters,
a brief description of the parameter, the parameter default, an example setting the parameter and
any options if there are limited allowed values for the parameter.

For example:

CASA <10>: pdoc importvla
Class Docstring:

Import VLA archive file(s) to a measurement set

Imports an arbitrary number of VLA archive-format data sets into
a casa measurement set. If more than one band is present, they
will be put in the same measurement set but in a separate spectral
window. The task will handle old style and new style VLA (after
July 2007) archive data and apply the tsys to the data and to
the weights.

Keyword arguments:
archivefiles -- Name of input VLA archive file(s)

default: none. Must be supplied
example: archivefiles = ’AP314_A959519.xp1’
example: archivefiles=[’AP314_A950519.xp1’,’AP314_A950519.xp2’]

vis -- Name of output visibility file
default: none. Must be supplied.
example: vis=’NGC7538.ms’
Will not over-write existing ms of same name.
A backup flag-file version ’Original’ will be made in
vis.flagversions. See help flagmanager

bandname -- VLA Frequency band
default: => ’’ = all bands
example: bandname=’K’
Options: ’4’=48-96 MHz,’P’=298-345 MHz,’L’=1.15-1.75 GHz,
’C’=4.2-5.1 GHz,’X’=6.8-9.6 GHz,’U’=13.5-16.3 GHz,
’K’=20.8-25.8 GHz,’Q’=38-51 GHz

frequencytol -- Tolerance in frequency shift in making spectral windows
default: => 150000 (Hz). For Doppler shifted data, <10000 Hz may
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may produce too many unnecessary spectral windows.
example: frequencytol = 1500000.0 (units = Hz)

project -- Project name to import from archive files:
default: ’’ => all projects in file
example: project=’AL519’
project = ’al519’ or AL519 will work. Do not include
leading zeros; project = ’AL0519’ will not work.

starttime -- Time after which data will be considered for importing
default: ’’ => all: Date must be included.
syntax: starttime = ’2003/1/31/05:05:23’

stoptime -- Time before which data will be considered for importing
default: ’’ => all: Date must be included.
syntax: stoptime = ’2003/1/31/08:05:23’

applytsys -- Apply data scaling and weight scaling by nominal
sensitivity (~Tsys)
default: True. Strongly recommended

autocorr -- import autocorrelations to ms
default: => False (no autocorrelations)

antnamescheme -- ’old’ or ’new’ antenna names.
default => ’new’ gives antnenna names
’VA04’ or ’EA13 for VLA telescopse 04 and 13 (EVLA)
’old’ gives names ’04’ or ’13’

async -- Run asynchronously
default = False; do not run asychronously

You can also get the short help for a CASA tool method by typing ’help tool.method’.

CASA <46>: help ia.subimage
----------> help(ia.subimage)
Help on built-in function subimage:

subimage(...)
Create a (sub)image from a region of the image‘ :
outfile
region
mask
dropdeg = false
overwrite = false
list = true

----------------------------------------

For a full list of keywords associated with the various tools, see the CASA User Reference
Manual.

1.2.8.3 help and PAGER

Your PAGER environment variable (§ 1.2.1) determines how help is displayed in the terminal window
where you start CASA. If you set your bash environment variable PAGER=less (setenv PAGER less
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in csh) then typing help <taskname> will show you the help but the text will vanish and return
you to the command line when you are done viewing it. Setting PAGER=more (setenv PAGER more)
will scroll the help onto your command window and then return you to your prompt (but leaving
it on display). Setting PAGER=cat (setenv PAGER cat) will give you the more equivalent without
some extra formatting baggage and is the recommended choice.

If you have set PAGER=more or PAGER=less, the help display will be fine, but the display of
’taskname?’ will often have confusing formatting content at the beginning (lots of ESC surrounding
the text). This can be remedied by exiting casapy and doing an ’unset PAGER’ (unsetenv PAGER
in [t]csh) at the Unix command line.

You can see the current value of the PAGER environment variable with CASA by typing:

!echo $$PAGER

(note the double $$). This will show what command paging is pointed to.

1.2.8.4 help par.<parameter>

Typing help par.<parameter> provides a brief description of a given parameter <parameter>.

CASA <46>: help par.robust
Help on function robust in module parameter_dictionary:

robust()
Brigg’s robustness parameter.

Options: -2.0 (close to uniform) to 2.0 (close to natural)

1.2.8.5 Python help

Typing help at the casapy prompt with no arguments will bring up the native Python help facility,
and give you the help> prompt for further information; hitting <RETURN> at the help prompt
returns you to the CASA prompt.

CASA <2>: help
--------> help()

Welcome to Python 2.5! This is the online help utility.

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at http://www.python.org/doc/tut/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and
return to the interpreter, just type "quit".



CHAPTER 1. INTRODUCTION 35

To get a list of available modules, keywords, or topics, type "modules",
"keywords", or "topics". Each module also comes with a one-line summary
of what it does; to list the modules whose summaries contain a given word
such as "spam", type "modules spam".

help> keywords

Here is a list of the Python keywords. Enter any keyword to get more
help.

and else import raise
assert except in return
break exec is try
class finally lambda while
continue for not yield
def from or
del global pass
elif if print

help>

# hit <RETURN> to return to CASA prompt

You are now leaving help and returning to the Python interpreter.
If you want to ask for help on a particular object directly from the
interpreter, you can type "help(object)". Executing
"help(’string’)" has the same effect as typing a particular string
at the help> prompt.

Further help in working within the Python shell is given in Appendix D.

1.3 Tasks and Tools in CASA

Originally, CASA consisted of a collection of tools, combined in the so-called toolkit. Since the
majority of prospective users is far more familiar with the concept of tasks, an effort is underway
to replace most - if not all - toolkit functionality by tasks.

While running CASA, you will have access to and be interacting with tasks, either indirectly
by providing parameters to a task, or directly by running a task. Each task has a well defined
purpose, and a number of associated parameters, the values of which are to be supplied by the
user. Technically speaking, tasks are built on top of tools - when you are running a task, you are
running tools in the toolkit, though this should be transparent.

As more tasks are being written, and the functionality of each task is enhanced, there will be less
and less reason to run tools in the toolkit. We are working toward a system in which direct access
to the underlying toolkit is unnecessary for all standard data processing.
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1.3.1 What Tasks are Available?

As mentioned in the introduction, tasks in CASA are python interfaces to the more basic toolkit.
Tasks are executed to perform a single job, such as loading, plotting, flagging, calibrating, and
imaging the data.

Basic information on tasks, including the parameters used and their defaults, can be obtained by
typing help <taskname> or <taskname>? at the CASA prompt, where <taskname> is the name
of a given task. As described above in § 1.2.8.2, help <taskname> provides a description of the
task and then lists all parameters, a brief description of the parameter, the parameter default, an
example setting the parameter and any options if there are limited allowed values for the parameter.

To see what tasks are available in CASA, use tasklist, e.g.

CASA <4>: tasklist()
Available tasks:

Import/Export Information Data Editing Display/Plot
------------- ----------- ------------ ------------
importvla listcal flagautocorr clearplot
(importasdm) listhistory flagdata plotants
importfits listobs flagmanager plotcal
importuvfits listvis plotxy plotxy
exportfits imhead viewer
exportuvfits imstat

vishead

Calibration Imaging Modelling Utility
----------- ------- --------- -------
accum clean setjy help task
applycal deconvolve uvcontsub help par.parameter
bandpass feather uvmodelfit taskhelp
(blcal) ft tasklist
gaincal invert browsetable
fluxscale makemask clearplot
(fringecal) mosaic clearstat
clearcal concat
listcal filecatalog
smoothcal startup
polcal split
hanningsmooth fixvis

Image Analysis Simulation Single Dish
-------------- ---------- -----------
imcontsub simdata sdaverage
imhead sdbaseline
immath sdcal
immoments sdcoadd
imregrid sdfit
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imstat sdflag
imval sdlist
(specfit) sdplot

sdsave
sdscale
sdsmooth
sdstat

The tasks with name in parentheses are experimental.

Typing taskhelp provides a one line description of all available tasks.

CASA <5>: taskhelp()
Available tasks:

accum : Accumulate incremental calibration solutions into a calibration table
almasimmos : ALMA mosaic simulation task (prototype):
applycal : Apply calibrations solutions(s) to data
bandpass : Calculates a bandpass calibration solution
blcal : Calculate a baseline-based calibration solution (gain or bandpass)
browsetable : Browse a table (MS, calibration table, image)
clean : Deconvolve an image with selected algorithm
clearcal : Re-initializes the calibration for a visibility data set
clearplot : Clear the matplotlib plotter and all layers
clearstat : Clear all read/write locks
concat : Concatenate two visibility data sets.
deconvolve : Image based deconvolver
exportfits : Convert a CASA image to a FITS file
exportuvfits : Convert a CASA visibility data set to a UVFITS file:
feather : Feathering: Combine two images using the Fourier Addition
find : Find string in tasks, task names, parameter names:
flagautocorr : Flag autocorrelations
flagdata : All purpose flagging task based on selections
flagmanager : Enable list, save, restore and delete flag version files.
fluxscale : Bootstrap the flux density scale from standard calibrators
fringecal : Calculate a baseline-based fringe-fitting solution (phase, delay, delay-rate); Note: currently this is limited to delays and delay-rates in the central ambiguity
ft : Insert a source model into the MODEL_DATA column of a visibility set:
gaincal : Determine temporal gains from calibrator observations
hanningsmooth : Hanning smooth frequency channel data to remove Gibbs ringing
imcontsub : Subtracts specified continuum channels from a spectral line data set
imfit : Fit One Elliptical Gaussian Component on an image region(s)
imhead : List, get and put image header parameters
immath : Perform math operations on images
immoments : Compute moments from an image
importasdm : Convert an ALMA Science Data Model observation into a CASA visibility file
importfits : Convert an image FITS file into a CASA image
importuvfits : Convert a UVFITS file to a CASA visibility data set
importvla : Import VLA archive file(s) to a measurement set
imregrid : regrid an image onto a template image
imstat : Displays statistical information from an image or image region
imval : Get the data value(s) and/or mask value in an image.
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invert : Calculate the dirty image and dirty beam from a visibility set
listcal : List calibrated antenna gain solutions
listhistory : List the processing history of a dataset:
listobs : List data set summary in the logger
listvis : List measurement set visibilities.
makemask : Derive a mask image from a cleanbox blc, trc regions
mosaic : Create a multi-field deconvolved image with selected algorithm
newclean : Deconvolve an image with selected algorithm
newflagdata : Flag/Clip data based on selections
oldclean : Deconvolve an image with selected algorithm
plotants : Plot the antenna distribution in the local reference frame:
plotcal : An all-purpose plotter for calibration results
plotxy : An X-Y plotter/interactive flagger for visibility data.
polcal : Determine instrumental polarization calibrations
sdaverage : ASAP SD task: do data selection, calibration, and averaging
sdbaseline : ASAP SD task: fit/remove a spectral baseline
sdcal : ASAP SD task: do sdaverage, sdsmooth, and sdbaseline in one task
sdcoadd : ASAP SD task: coadd multiple scantables into one
sdfit : ASAP SD task: fit a spectral line
sdflag : ASAP SD spectral flagging task
sdlist : ASAP SD task: list summary of single dish data
sdplot : ASAP SD plotting task
sdsave : ASAP SD task: save the sd spectra in various format
sdscale : ASAP SD task: scale the sd spectra
sdsmooth : ASAP SD task: do smoothing of spectra
sdstat : ASAP SD task: list statistics of spectral region
sdtpimaging : SD task: do a simple calibration and imaging for total power data
setjy :
smoothcal : Smooth calibration solution(s) derived from one or more sources:
(specfit) : Fit 1-dimentional profile(s) or polynomial(s) to an image or image region
split :
uvcontsub : Continuum fitting and subtraction in the uv plane
uvmodelfit : Fit a single component source model to the uv data
uvsub : Subtract/add model from/to the corrected visibility data.
viewer : View an image or visibility data set:

Typing startup will provide the startup page displayed when entering CASA. For example,

CASA <6>: startup()
___________________________________________________________
Available tasks:

accum flagdata invert sdflag
applycal flagmanager listcal sdlist
bandpass fluxscale listhistory sdplot
browsetable ft listobs sdsave
clean gaincal listvis sdscale
clearcal hanningsmooth makemask sdsmooth
clearplot imcontsub mosaic sdstat
clearstat imhead plotants setjy
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concat immoments plotcal smoothcal
deconvolve importfits plotxy specfit
exportfits importuvfits sdaverage split
exportuvfits importvls sdbaseline tget
feather imregrid sdcal uvcontsub
filecatalog imstat sdciadd uvmodelfit
find imval sdfit viewer

Additional tasks available for ALMA commissioning use
(still alpha code as of release):

simdata blcal fringecal importasdm

Available tools:

cb (calibrater) cp (cal plot) fg (flagger)
ia (image analysis) im (imager) me (measures)
mp (MS plot) ms (MS) qa (quanta)
sm (simulation) tb (table) tp (table plot)
vp (voltage patterns)

pl (pylab functions)
sd (ASAP functions - run asap_init() to import into CASA)

casalogger - Call up the casalogger (if it goes away)

___________________________________________________________________

Help :
help taskname - Full help for task
help par.parametername - Full help for parameter name
find string - Find occurances of string in doc
tasklist - Task list organized by catagory
taskhelp - One line summary of available tasks
toolhelp - One line summary of available tools
startup - The start up screen

___________________________________________________________________

1.3.2 Running Tasks and Tools

Tools are functions linked to the Python interface which must be called by name with arguments.
Tasks have higher-level capabilities than tools. Tasks require input parameters which maybe be
specified when you call the task as a function, or be set as parameters in the interface. A task, like
a tool, is a function under Python and may be written in Python, C, or C++ (the CASA toolkit
is made up of C++ functions).

There are two distinct ways to run tasks. You can either set the global CASA parameters relevant
to the task and tell the task to “go”, or you can call the task as a function with one or more
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arguments specified. These two invocation methods differ in whether the global parameter values
are used or not.

For example,

default(’plotxy’)
vis=’ngc5921.ms’
xaxis=’channel’
yaxis=’amp’
datacolumn=’data’
go

will execute plotxy with the set values for the parameters (see § 1.3.5). Instead of using go
command (§ 1.3.5.3) to invoke the task, you can also call the task with no arguments, e.g.

default(’plotxy’)
vis=’ngc5921.ms’
xaxis=’channel’
yaxis=’amp’
datacolumn=’data’
plotxy()

which will also use the global parameter values.

Second, one may call tasks and tools by name with parameters set on the same line. Parameters
may be set either as explicit <parameter>=<value> arguments, or as a series of comma delimited
<value>s in the correct order for that task or tool. Note that missing parameters will use the
default values for that task. For example, the following are equivalent:

# Specify parameter names for each keyword input:
plotxy(vis=’ngc5921.ms’,xaxis=’channel’,yaxis=’amp’,datacolumn=’data’)

# when specifying the parameter name, order doesn’t matter, e.g.:
plotxy(xaxis=’channel’,vis=’ngc5921.ms’,datacolumn=’data’,yaxis=’amp’)

# use parameter order for invoking tasks
plotxy(’ngc5921.ms’,’channel’,’amp’,’data’)

This non-use of globals when calling as a function is so that robust scripts can be written. One
need only cut-and-paste the calls and need not worry about the state of the global variables or
what has been run previously. It is also more like the standard behavior of function calls in Python
and other languages.

Tools can only be called in this second manner by name, with arguments (§ 1.3.6). Tools never use
the global parameters and the related mechanisms of inp and go.

1.3.2.1 Aborting Synchronous Tasks

If you are running CASA tasks synchronously, then you can usually use CNTL-C to abort execution
of the task. If this does not work, try CNTL-Z followed by a kill. See § 1.2.5 for more on these
methods to abort CASA execution.

You may have to quit and restart CASA after an abort, as the internal state can get mixed up.
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1.3.3 Getting Return Values

Some tasks and tools return a record (usually a Python dictionary) to the interface. For example,
the imstat task (§ 6.7) returns a dictionary with the image statistics in it. To catch these return
values into a Python variable, you MUST assign that variable to the task call, e.g.

xstat = imstat(’ngc5921.clean.image’)

or

default(’imstat’)
imagename = ’ngc5921.clean.image’
xstat = imstat()

Note that tools that return values work in the same way (§ 1.3.6).

You can print or use the return value in Python for controlling scripts. For example,

CASA <1>: xstat = imstat(’ngc5921.clean.image’)
CASA <2>: xstat
Out[2]:

{’blc’: array([0, 0, 0, 0]),
’blcf’: ’15:24:08.404, +04.31.59.181, I, 1.41281e+09Hz’,
’flux’: array([ 4.15292207]),
’max’: array([ 0.05240594]),
’maxpos’: array([134, 134, 0, 38]),
’maxposf’: ’15:21:53.976, +05.05.29.998, I, 1.41374e+09Hz’,
’mean’: array([ 1.62978083e-05]),
’medabsdevmed’: array([ 0.00127287]),
’median’: array([ -1.10467618e-05]),
’min’: array([-0.0105249]),
’minpos’: array([160, 1, 0, 30]),
’minposf’: ’15:21:27.899, +04.32.14.923, I, 1.41354e+09Hz’,
’npts’: array([ 3014656.]),
’quartile’: array([ 0.00254587]),
’rms’: array([ 0.00201818]),
’sigma’: array([ 0.00201811]),
’sum’: array([ 49.1322855]),
’sumsq’: array([ 12.27880404]),
’trc’: array([255, 255, 0, 45]),
’trcf’: ’15:19:52.390, +05.35.44.246, I, 1.41391e+09Hz’}
CASA <3>: myrms = xstat[’rms’][0]
CASA <4>: print 10.0*myrms
0.0201817648485

If you do not catch the return variable, it will be lost

imstat(’ngc5921.clean.image’)
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or

default(’imstat’)
imagename = ’ngc5921.clean.image’
imstat()

and spewed to terminal. Note that go will trap and lose the return value, e.g.

default(’imstat’)
imagename = ’ngc5921.clean.image’
go

will not dump the return to the terminal either.

NOTE: You cannot currently catch a return value from a task run asynchronously (§ 1.3.4).

1.3.4 Running Tasks Asynchronously

By default, most tasks run synchronously in the foreground. Many tasks, particularly those that
can take a long time to execute, have the async parameter. This allows the user to send the task
to the background for execution.

ALERT: A few tasks, such as the exportuvfits and exportfits tasks, have async=True by
default. This is a workaround for a known problem where they can trample on other tasks and
tools if they use the default global tools underneath.

1.3.4.1 Monitoring Asynchronous Tasks

ALERT:
You should not use the go command
to run a task asynchronously, as the
“handle” will be swallowed by the
Python task wrapper and you will
not be able to access it with tm. This
is also true if you run in a Python
script.

There is a “taskmanager” tool tm that allows the user to
retrieve the status of, and to abort the execution of, tasks
running with async=True in the background. There are
two methods of interest for the user, tm.retrieve and
tm.abort.

If you run a task with async=True then several things will
happen. First of all, the task returns a “handle” that is a
number used to identify the process. This is printed to the
screen, e.g.

CASA <5>: inp()
# mosaic :: Calculate a multi-field deconvolved image with selected clean algorithm:
...
async = True # if True run in the background, prompt is freed

CASA <6>: mosaic()
Connecting to controller: (’127.0.0.1’, 60775)
Out[6]: 0
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where the output value 0 is the handle id.

You can also catch the return value in a variable, e.g.

CASA <7>: handle = mosaic()
...
CASA <8>: print handle
1

You should also see the usual messages from the task in the logger, with some extra lines of
information

###############################################
### Begin Task: mosaic ###
Tue Oct 2 17:58:16 2007 NORMAL ::mosaic:
""
"Use: "
tm.abort(return_value) # to abort the asynchronous task
tm.retrieve(return_value) # to retrieve the status
""
... usual messages here ...

### End Task: mosaic ###
###############################################
""

for the example above.

To show the current state of an asynchronous task, use the tm.retrieve method using the handle
id as the argument. For example,

CASA <9>: tm.retrieve(handle)
Out[9]: {’result’: None, ’state’: ’pending’}

or

CASA <10>: tm.retrieve(1)
Out[10]: {’result’: None, ’state’: ’pending’}

which means its still running. You should be seeing output in the logger also while the task is
running.

When a task is finished, you will see:

CASA <11>: tm.retrieve(1)
Out[11]: {’result’: None, ’state’: ’done’}

which indicates completion.
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1.3.4.2 Aborting Asynchronous Tasks

To abort a task while it is running in the background, use the tm.abort method, again with the
task handle id as the argument. For example,

CASA <12>: handle = mosaic()
...
CASA <13>: tm.abort(handle)

will abort the task if it is running.

If this does not work, try CNTL-Z followed by a kill -9 <PID> for the appropriate process ID. See
§ 1.2.5 for more on these methods to abort CASA execution.

ALERT: Currently, this is only available with the tm tool. We are working on a taskmanager
task.

1.3.5 Setting Parameters and Invoking Tasks

Inside the Toolkit:
In the current version of CASA,
you cannot use the task parameter
setting features, such as the inp,
default, or go commands, for the
tools.

One can set parameters for tasks (but not for tools) by
performing the assignment within the CASA shell and then
inspecting them using the inp command:

CASA <30>: default(bandpass)
CASA <31>: vis = ’ngc5921.demo.ms’
CASA <32>: caltable = ’ngc5921.demo.bcal’
CASA <33>: field = ’0’
CASA <34>: refant = ’15’
CASA <35>: inp(’bandpass’)
# bandpass :: Calculates a bandpass calibration solution
vis = ’ngc5921.demo.ms’ # Nome of input visibility file
caltable = ’ngc5921.demo.bcal’ # Name of output gain calibration table
field = ’0’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
selectdata = False # Other data selection parameters
solint = ’inf’ # Solution interval
combine = ’scan’ # Data axes which to combine for solve (scan, spw, field)
refant = ’15’ # Reference antenna name
minblperant = 4 # Minimum baselines _per antenna_ required for solve
solnorm = False # Normalize average solution amplitudes to 1.0 (G, T only)
bandtype = ’B’ # Type of bandpass solution (B or BPOLY)
fillgaps = 0 # Fill flagged solution channels by interpolation

append = False # Append solutions to the (existing) table
gaintable = ’’ # Gain calibration table(s) to apply on the fly
gainfield = ’’ # Select a subset of calibrators from gaintable(s)
interp = ’’ # Interpolation mode (in time) to use for each gaintable
spwmap = [] # Spectral windows combinations to form for gaintables(s)
gaincurve = False # Apply internal VLA antenna gain curve correction
opacity = 0.0 # Opacity correction to apply (nepers)
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parang = False # Apply parallactic angle correction
async = False #

See § 1.3.5.4 below for more details on the use of the inputs
command.

All task parameters have global scope within CASA: the
parameter values are common to all tasks and also at the
CASA command line. This allows the convenience of not
changing parameters that are shared between tasks but does require care when chaining together
sequences of task invocations (to ensure proper values are provided).

If you want to reset the input keywords for a single task, use the default command (§ 1.3.5.2).
For example, to set the defaults for the bandpass task, type:

CASA <30>: default(’bandpass’)

as we did above.

To inspect a single parameter value just type it at the command line. Continuing the above example:

CASA <36>: combine
Out[14]: ’scan’

CASA parameters are just Python variables.

Parameters for a given task can be saved by using the saveinputs command (see § 1.3.5.5) and
restored using the execfile ’<filename>’ command. Note that if the task is successfully exe-
cuted, then a <taskname>.last file is created in the working directory containing the parameter
values (see § 1.3.5.8).

We now describe the individual CASA task parameter interface commands and features in more
detail.

1.3.5.1 The scope of parameters in CASA

Advanced Tip
By default, the scope of CASA
parameters is global, as stated
here. However, if you call a
task as a function with one or
more arguments specified, e.g.
task(arg1=val1,...), then
non-specified parameters will be
defaulted and no globals used.
This makes scripting more robust.
Tasks DO NOT change the value of
globals.

All task parameters have global scope within CASA: the
parameter values are common to all tasks and also at the
CASA command line. This allows the convenience of not
changing parameters that are shared between tasks but
does require care when chaining together sequences of task
invocations (to ensure proper values are provided). Tasks
DO NOT change the values of the global parameters, nor
does the invocation of tasks using the functional call with
arguments change the globals.

This does mean that unless you do an explict default of
the task (§ 1.3.5.2), previously set values may be unex-
pectedly used if you do not inspect the inp carefully. For
example, good practice is:
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default(’imhead’)
imagename = ’ngc5921.demo.cleanimg.image’
mode = ’list’
imhead()

If you supply the task call with arguments, then these will
be used for the values of those parameters (see above). However, if some but not all arguments
are supplied, then those parameters not given as arguments will default and NOT use the current
global values. Thus,

imhead(’ngc5921.demo.cleanimg.image’,mode=’list’)

will reproduce the above.

1.3.5.2 The default Command

Each task has a special set of default parameters defined for its parameters. You can use the
default command to reset the parameters for a specified task (or the current task as defined by
the taskname variable) to their default.

Important Note: The default command resets the values of the task parameters to a set of
“defaults” as specified in the task code. Some defaults are blank strings ’’ or empty lists [],
others are specific numerical values, strings, or lists. It is important to understand that just setting
a string parameter to an empty string ’’ is not setting it to its default! Some parameters do not
have a blank as an allowed value. See the help for a particular task to find out its default. If ’’
is the default or an allowed value, it will say so explicitly.

For example, suppose we have been running CASA on a particular dataset, e.g.

CASA <40>: inp clean
---------> inp(’clean’)
# clean :: Deconvolve an image with selected algorithm
vis = ’ngc5921.demo.src.split.ms.contsub’ # name of input visibility file
imagename = ’ngc5921.demo.cleanimg’ # Pre-name of output images
field = ’0’ # Field Name
spw = ’’ # Spectral windows:channels: ’’ is all
selectdata = False # Other data selection parameters
mode = ’channel’ # Type of selection (mfs, channel, velocity, frequency)

nchan = 46 # Number of channels (planes) in output image
start = 5 # first input channel to use
width = 1 # Number of input channels to average
interpolation = ’nearest’ # Spectral interpolation (nearest, linear, cubic)

niter = 6000 # Maximum number of iterations
...

and now we wish to switch to a different one. We can reset the parameter values using default:
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CASA <41>: default
---------> default()

CASA <42>: inp
---------> inp()
# clean :: Deconvolve an image with selected algorithm
vis = ’’ # name of input visibility file
imagename = ’’ # Pre-name of output images
field = ’’ # Field Name
spw = ’’ # Spectral windows:channels: ’’ is all
selectdata = False # Other data selection parameters
mode = ’mfs’ # Type of selection (mfs, channel, velocity, frequency)
niter = 500 # Maximum number of iterations
...

It is good practice to use default before running a task if you are unsure what state the CASA
global variables are in.

ALERT: You currently can only reset ALL of the parameters for a given task to their defaults. In
an upcoming update we will allow the default command to take a second argument with a specific
parameter to default its value.

1.3.5.3 The go Command

You can execute a task using the go command, either explicitly

CASA <44>: go listobs
---------> go(listobs)
Executing: listobs()
...

or implicitly if taskname is defined (e.g. by previous use of default or inp)

CASA <45>: taskname = ’clean’
CASA <46>: go
---------> go()
Executing: clean()
...

You can also execute a task simply by typing the taskname.

CASA <46>: clean
---------> clean()
Executing: clean()
...

The go command can also be used to launch a different task without changing the current taskname,
without disrupting the inp process on the current task you are working on. For example
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default ’gaincal’ # set current task to gaincal and default
vis = ’n5921.ms’ # set the working ms
... # set some more parameters
go listobs # launch listobs w/o chaning current task
inp # see the inputs for gaincal (not listobs!)

ALERT: Doing go listobs(vis=’foo.ms’) will currently change the taskname, and will change
vis, which might not be what is desired.

1.3.5.4 The inp Command

You can set the values for the parameters for tasks (but currently not for tools) by performing the as-
signment within the CASA shell and then inspecting them using the inp command. This command
can be invoked in any of three ways: via function call inp(’<taskname>’) or inp(<taskname>),
without parentheses inp ’<taskname>’ or inp <taskname>, or using the current taskname vari-
able setting with inp. For example,

CASA <1>: inp(’clean’)
...
CASA <2>: inp ’clean’
----------> inp(’clean’)
...
CASA <3>: inp(clean)
...
CASA <4>: inp clean
----------> inp(clean)
...
CASA <5>: taskname = ’clean’
CASA <6>: inp
----------> inp()

all do the same thing.

When you invoke the task inputs via inp, you see a list of the parameters, their current values, and
a short description of what that parameters does. For example, starting from the default values,

CASA <18>: inp(’clean’)
# clean :: Deconvolve an image with selected algorithm
vis = ’’ # name of input visibility file
imagename = ’’ # Pre-name of output images
field = ’’ # Field Name
spw = ’’ # Spectral windows:channels: ’’ is all
selectdata = False # Other data selection parameters
mode = ’mfs’ # Type of selection (mfs, channel, velocity, frequency)
niter = 500 # Maximum number of iterations
gain = 0.1 # Loop gain for cleaning
threshold = ’0.0mJy’ # Flux level to stop cleaning. Must include units
psfmode = ’clark’ # method of PSF calculation to use during minor cycles
imagermode = ’’ # Use csclean or mosaic. If ’’, use psfmode
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multiscale = [] # multi-scale deconvolution scales (pixels)
interactive = False # use interactive clean (with GUI viewer)
mask = [] # cleanbox(es), mask image(s), and/or region(s)
imsize = [256, 256] # x and y image size in pixels
cell = [’1.0arcsec’, ’1.0arcsec’] # x and y cell size. default unit arcsec
phasecenter = ’’ # Image phase center: position or field index
restfreq = ’’ # rest frequency to assign to image (see help)
stokes = ’I’ # Stokes params to image (eg I,IV, QU,IQUV)
weighting = ’natural’ # Weighting of uv (natural, uniform, briggs, ...)
uvtaper = False # Apply additional uv tapering of visibilities.
modelimage = ’’ # Name of model image(s) to initialize cleaning
restoringbeam = [’’] # Output Gaussian restoring beam for CLEAN image
pbcor = False # Output primary beam-corrected image
minpb = 0.1 # Minimum PB level to use
async = False # If true the taskname must be started using clean(...)

Figure 1.1 shows how this will look to you on your terminal. Note that some parameters are in
boldface with a gray background. This means that some values for this parameter will cause it to
expand, revealing new sub-parameters to be set.

Figure 1.1: Screen shot of the default CASA inputs for task clean.

CASA uses color and font to indicate different properties of parameters and their values:

Parameter and Values in CASA inp
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Text Font Text Color Highlight Indentation Meaning
Parameters:

plain black none none standard parameter
bold black grey none expandable parameter
plain green none yes sub-parameter

Values:
plain black none none default value
plain blue none none non-default value
plain red none none invalid value

Figure 1.2 shows what happens when you set some of the clean parameters to non-default values.
Some have opened up sub-parameters, which can now be seen and set. Figure 1.3 shows what
happens when you set a parameter, in this case vis and mode, to an invalid value. Its value
now appears in red. Reasons for invalidation include incorrect type, an invalid menu choice, or a
filename that does not exist. For example, since vis expects a filename, it will be invalidated (red)
if it is set to a non-string value, or a string that is not the name of a file that can be found. The
mode=’happy’ is invalid because its not a supported choice (’mfs’, ’channel’, ’velocity’, or
’frequency’).

Figure 1.2: The clean inputs after setting values away from their defaults (blue text). Note that
some of the boldface ones have opened up new dependent sub-parameters (indented and green).
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Figure 1.3: The clean inputs where one parameter has been set to an invalid value. This is drawn
in red to draw attention to the problem. This hapless user probably confused the ’hogbom’ clean
algorithm with Harry Potter.

1.3.5.5 The saveinputs Command

The saveinputs command will save the current values of a given task parameters to a Python
(plain ascii) file. It can take up to two arguments, e.g.

saveinputs(taskname, outfile)

The first is the usual taskname parameter. The second is the name for the output Python file. If
there is no second argument, for example,

saveinputs(’clean’)

a file with name <taskname>.saved (in this case ’clean.saved’ will be created or overwritten if
extant. If invoked with no arguments, e.g.

saveinputs

it will use the current values of the taskname variable (as set using inp <taskname> or default
<taskname>). You can also use the taskname global parameter explicitly,

saveinputs(taskname, taskname+’_1.save’)
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For example, starting from default values

CASA <1>: default(’listobs’)
CASA <2>: vis=’ngc5921.demo.ms’
CASA <3>: saveinputs
CASA <4>: !more ’listobs.saved’
IPython system call: more ’listobs.saved’
taskname = "listobs"
vis = "ngc5921.demo.ms"
verbose = True
#listobs(vis="ngc5921.ms",verbose=False)

To read these back in, use the Python execfile command. For example,

CASA <5>: execfile(’listobs.saved’)

and we are back.

An example save to a custom named file:

CASA <6>: saveinputs(’listobs’,’ngc5921_listobs.par’)

You can also use the CASA tget command (see § 1.3.5.6 below) instead of the Python execfile
to restore your inputs.

1.3.5.6 The tget Command

The tget command will recover saved values of the inputs of tasks. This is a convenient alternative
to using the Python execfile command (see above).

Typing tget without a taskname will recover the saved values of the inputs for the current task as
given in the current value of the taskname parameter.

Adding a task name, e.g. tget <taskname> will recover values for the specified task. This is done
by searching for 1) a <taskname>.last file (see § 1.3.5.8 below), then for 2) a <taskname>.saved
file (see § 1.3.5.5 above), and then executing the Python in these files.

For example,

default(’gaincal’) # set current task to gaincal and default
tget # read saved inputs from gaincal.last (or gaincal.saved)
inp # see these inputs!
tget bandpass # now get from bandpass.last (or bandpass.saved)
inp # task is now bandpass, with recovered inputs
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1.3.5.7 The tput Command

The tput command will save the current parameter values of a task to its <taskname>.last file.
This is a shorthand to saveinputs and is a counterpart to tget.

Typing tput without a taskname will save the values of the inputs for the current task as given in
the current value of the taskname parameter.

Adding a task name, e.g. tget <taskname> will save the values for the specified task.

For example,

default(’gaincal’) # set current task to gaincal and default
tget # read saved inputs from gaincal.last (or gaincal.saved)
inp # see these inputs!
vis = ’new.ms’ # change the vis parameter
tput # save back to the gaincal.last file for later use

1.3.5.8 The .last file

Whenever you successfully execute a CASA task, a Python script file called <taskname>.last will
be written (or over-written) into the current working directory. For example, if you ran the listobs
task as detailed above, then

CASA <14>: vis = ’ngc5921.ms’

CASA <15>: verbose = True

CASA <16>: listobs()

CASA <17>: !more ’listobs.last’
IPython system call: more listobs.last
taskname = "listobs"
vis = "ngc5921.ms"
verbose = True
#listobs(vis="ngc5921.ms",verbose=False)

You can restore the parameter values from the save file using

CASA <18>: execfile(’listobs.last’)

or

CASA <19>: run listobs.last

Note that the .last file in generally not created until the task actually finished (successfully), so
it is often best to manually create a save file beforehand using the saveinputs command if you are
running a critical task that you strongly desire to have the inputs saved for.
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1.3.6 Tools in CASA

The CASA toolkit is the foundation of the functionality in the package, and consists of a suite of
functions that are callable from Python. The tools are used by the tasks, and can be used by
advanced users to perform operations that are not available through the tasks.

It is beyond the scope of this reference to describe the toolkit in detail. Occasionally, examples will
be given that utilize the tools (e.g. § 6.12). In short, tools are always called as functions, with any
parmeters that are not to be defaulted given as arguments. For example:

ia.open(’ngc5921.chan21.clean.cleanbox.mask’)
ia.calcmask(’"ngc5921.chan21.clean.cleanbox.mask">0.5’,’mymask’)
ia.summary()
ia.close()

uses the image tool (ia) to turn a clean mask image into an image mask. Tools never use the
CASA global parameters.

To find what tools are available, use the toolhelp command:

CASA <1>: toolhelp()

Available tools:

at : Juan Pardo ATM library
cb : Calibration utilities
cp : Cal solution plotting utilities
fg : Flagging/Flag management utilities
ia : Image analysis utilities
im : Imaging utilities
me : Measures utilities
ms : MeasurementSet (MS) utilties
mp : MS plotting (data (amp/phase) versus other quantities)
tb : Table utilities (selection, extraction, etc)
tp : Table plotting utilities
qa : Quanta utilities
sm : Simulation utilities
vp : Voltage pattern/primary beam utilties
---
pl : pylab functions (e.g., pl.title, etc)
---

You can find much more information about the toolkit in the CASA User Reference Manual:

http://casa.nrao.edu/docs/casaref/CasaRef.html

1.4 Getting the most out of CASA

There are some other general things you should know about using CASA in order to make things
go smoothly during your data reduction.

http://casa.nrao.edu/docs/casaref/CasaRef.html
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1.4.1 Your command line history

Your command line history is automatically maintained and stored as ipython.log in your local di-
rectory . This file can be edited and re-executed as appropriate using the execfile ’<filename>’
feature.

You can also use the “up-arrow” and “down-arrow” keys for command line recall in the casapy
interface. If you start typing text, and then use “up-arrow”, you will navigate back through
commands matching what you typed.

1.4.2 Logging your session

The output from CASA commands is sent to the file casapy.log, also in your local directory.
Whenever you start up casapy, the previous casapy.log is renamed (based on the date and time)
and a new log file is started.

Figure 1.4: The CASA Logger GUI window under Linux. Note that under MacOSX a stripped
down logger will instead appear as a Console.

The output contained in casapy.log is also displayed in a separate window using the casalogger.
Generally, the logger window will be brought up when casapy is started. If you do not want the
logger GUI to appear, then start casapy using the --nologger option,

casapy --nologger

which will run CASA in the terminal window. See § 1.4.2.1 for more startup options.

ALERT: Due to problems with Qt under MacOSX, we had to replace the GUI qtcasalogger with
a special stripped down one that uses the Mac Console. This still has the important capabilties
such as showing the messages and cut/paste. The following description is for the Linux version
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Figure 1.5: Using the Search facility in the casalogger. Here we have specified the string
’plotted’ and it has highlighted all instances in green.

and thus should mostly be disregarded on OSX. On the Mac, you treat this as just another console
window and use the usual mouse and hot-key actions to do what is needed.

The CASA logger window for Linux is shown in Figure 1.4. The main feature is the display area
for the log text, which is divided into columns. The columns are:

• Time — the time that the message was generated. Note that this will be in local computer
time (usually UT) for casapy generated messages, and may be different for user generated
messages;

• Priority — the Priority Level (see below) of the message;

• Origin — where within CASA the message came from. This is in the format Task::Tool::Method
(one or more of the fields may be missing depending upon the message);

• Message — the actual text.

The casalogger GUI has a range of features, which include:

• Search — search messages by entering text in the Search window and clicking the search
icon. The search currently just matches the exact text you type anywhere in the message.
See Figure 1.5 for an example.

• Filter — a filter to sort by message priority, time, task/tool of origin, and message contents.
Enter text in the Filter window and click the filter icon to the right of the window. Use the
pull-down at the left of the Filter window to choose what to filter. The matching is for the
exact text currently (no regular expressions). See Figure 1.6 for an example.
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Figure 1.6: Using the casalogger Filter facility. The log output can be sorted by Priority, Time,
Origin, and Message. In this example we are filtering by Origin using ’clean’, and it now shows
all the log output from the clean task.

• View — show and hide columns (Time, Priority, Origin, Message) by checking boxes under
the View menu pull-down. You can also change the font here.

• Insert Message — insert additional comments as “notes” in the log. Enter the text into
the “Insert Message” box at the bottom of the logger, and click on the Add (+) button, or
choose to enter a longer message. The entered message will appear with a priority of “NOTE”
with the Origin as your username. See Figure 1.7 for an example. ALERT: This message
currently will not be inserted into the correct (or user controllable) order into the log.

• Copy — left-click on a row, or click-drag a range of rows, or click at the start and shift click
at the end to select. Use the Copy button or Edit menu Copy to put the selected rows into
the clipboard. You can then (usually) paste this where you wish. ALERT: this does not
work routinely in the current version. You are best off going to the casapy.log file if you
want to grab text.

• Open — There is an Open function in the File menu, and an Open button, that will allow you
to load old casalogger files. ALERT: You cannot see the old casapy.log files with timestamps
(e.g. names like casapy.log-2009-05-26T22:24:31) currently in the file browser, but you
can type the name in explicitly and hit <return> to view them.

Other operations are also possible from the menu or buttons. Mouse “flyover” will reveal the
operation of buttons, for example.

1.4.2.1 Starup options for the logger

One can specify logger options at the startup of casapy on the command line:
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Figure 1.7: CASA Logger - Insert facility: The log output can be augmented by adding notes or
comments during the reduction. The file should then be saved to disk to retain these changes.

casapy <logger option>

These options are:

--log2term == logging message go to terminal
--nologfile == no casapy.log logfile is produced
--logfile <filename> == use specified name for logfile instead of casapy.log
--nologger == do not bring up GUI logger (see above)
--nolog (is deprecated use --nologger)

For example, to not bring up a GUI but send the message to your terminal, do

casapy --nologger --log2term

while

casapy --logfile mynewlogfile.log

will start casapy with logger messages going to the file mynewlogfile.log.

1.4.2.2 Setting priority levels in the logger

Logger messages are assigned a Priority Level when generated within CASA. The current levels of
Priority are:

1. SEVERE — errors;
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2. WARN — warnings;

3. INFO — basic information every user should be aware of or has requested;

4. INFO1 — information possibly helpful to the user;

5. INFO2 — details the power user might want to see;

6. INFO3 — even more details;

7. INFO4 — lowest level of non-debugging information;

8. DEBUGGING — most “important” debugging messages;

9. DEBUG1 — more details;

10. DEBUG2 — lowest level of debugging messages.

The “debugging” levels are intended for the developers use.

Inside the Toolkit:
The casalog tool can be used to con-
trol the logging. In particular, the
casalog.filter method sets the
priority threshold. This tool can also
be used to change the output log file,
and to post messages into the logger.

There is a threshold for which these messages are writ-
ten to the casapy.log file and are thus visible in the
logger. By default, only messages at level INFO and
above are logged. The user can change the threshold using
the casalog.filter method. This takes a single string
argument of the level for the threshold. The level sets
the lowest priority that will be generated, and all messages
of this level or higher will go into the casapy.log file.

Some examples:

casalog.filter(’INFO’) # the default
casalog.filter(’INFO2’) # should satisfy even advanced users
casalog.filter(’INFO4’) # all INFOx messages
casalog.filter(’DEBUG2’) # all messages including debugging

WARNING: Setting the threshold to DEBUG2 will put lots of messages in the log!

1.4.3 Where are my data in CASA?

Interferometric data are filled into a so-called Measurement Set (or MS). In its logical structure,
the MS looks like a generalized description of data from any interferometric or single dish telescope.
Physically, the MS consists of several tables in a directory on disk.

Tables in CASA are actually directories containing files that are the sub-tables. For example, when
you create a MS called AM675.ms, then the name of the directory where all the tables are stored will
be called AM675.ms/. See Chapter 2 for more information on Measurement Set and Data Handling
in CASA.
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The data that you originally get from a telescope can be put in any directory that is convenient to
you. Once you ”fill” the data into a measurement set that can be accessed by CASA, it is generally
best to keep that MS in the same directory where you started CASA so you can get access to it
easily (rather than constantly having to specify a full path name).

When you generate calibration solutions or images (again these are in table format), these will also
be written to disk. It is a good idea to keep them in the directory in which you started CASA.

1.4.3.1 How do I get rid of my data in CASA?

Note that when you delete a measurement set, calibration table, or image, which are in fact direc-
tories, you must delete this and all underlying directories and files. If you are not running casapy,
this is most simply done by using the file delete method of the operating system you started CASA
from. For example, when running CASA on a Linux system, in order to delete the measurement
set named AM675.ms type:

CASA <5>: !rm -r AM675.ms

from within CASA. The ! tells CASA that a system command follows (see § 1.2.7.5), and the -r
makes sure that all subdirectories are deleted recursively.

It is convenient to prefix all MS, calibration tables, and output files produced in a run with a
common string. For example, one might prefix all files from VLA project AM675 with AM675, e.g.
AM675.ms, AM675.cal, AM675.clean. Then,

CASA <6>: !rm -r AM675*

will clean up all of these.

In scripts, the ! escape to the OS will not work. Instead, use the os.system() function (Ap-
pendix D.6.1) to do the same thing:

os.system(’rm -r AM675*’)

If you are within casapy, then the CASA system is keeping a cache of tables that you have been
using and using the OS to delete them will confuse things. For example, running a script that
contains rm commands multiple times will often not run or crash the second time as the cache gets
confused. The clean way of removing CASA tables (MS, caltables, images) inside casapy is to use
the rmtables task:

rmtables(’AM675.ms’)

and this can also be wildcarded

rmtables(’AM675*’)
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(though you may get warnings if it tries to delete files or directories that fit the name wildcard that
are not CASA tables).

ALERT: Some CASA processes lock the file and forget to give it up when they are done (plotxy
is usually the culprit). You will get WARNING messages from rmtables and your script will
probably crash second time around as the file isnt removed. The safest thing is still to exit casapy
and start a new session for multiple runs.

1.4.4 What’s in my data?

The actual data is in a large MAIN table that is organized in such a way that you can access
different parts of the data easily. This table contains a number of “rows”, which are effectively a
single timestamp for a single spectral window (like an IF from the VLA) and a single baseline (for
an interferometer).

There are a number of “columns” in the MS, the most important of which for our purposes is the
DATA column — this contains the original visibility data from when the MS was created or filled.
There are other helpful “scratch” columns which hold useful versions of the data or weights for fur-
ther processing: the CORRECTED DATA column, which is used to hold calibrated data; the MODEL DATA
column, which holds the Fourier inversion of a particular model image; and the IMAGING WEIGHT
column which can hold the weights to be used in imaging. The creation and use of the scratch
columns is generally done behind the scenes, but you should be aware that they are there (and
when they are used). We will occasionally refer to the rows and columns in the MS.

More on the contents of the MS can be found in § 2.1.

1.4.5 Data Selection in CASA

We have tried to make the CASA task interface as uniform as possible. If a given parameter appears
in multiple tasks, it should, as far as is possible, mean the same thing and be used in the same way
in each. There are groups of parameters that appear in a number of tasks to do the same thing,
such as for data selection.

The parameters field, spw, and selectdata (which if True expands to a number of sub-parameters)
are commonly used in tasks to select data on which to work. These common data selection param-
eters are described in § 2.3.

1.5 From Loading Data to Images

The subsections below provide a brief overview of the steps you will need to load data into CASA
and obtain a final, calibrated image. Each subject is covered in more detail in Chapters 2 through
6.
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An end-to-end workflow diagram for CASA data reduction for interferometry data is shown in
Figure 1.8. This might help you chart your course through the package. In the following sub-
sections, we will chart a rough course through this process, with the later chapters filling in the
individual boxes.

Figure 1.8: Flow chart of the data processing operations that a general user will carry out in an
end-to-end CASA reduction session.

Note that single-dish data reduction (for example with the ALMA single-dish system) follows a
similar course. This is detailed in Chapter A.

1.5.1 Loading Data into CASA

The key data and image import tasks are:
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• importuvfits — import visibility data in UVFITS format (§ 2.2.3);

• importvla — import data from VLA that is in export format (§ 2.2.2);

• importasdm — import ALMA or EVLA data in ASDM format (§ 2.2.1);

• importfits — import a FITS image into a CASA image format table (§ 6.11).

These are used to bring in your interferometer data, to be stored as a CASA Measurement set
(MS), and any previously made images or models (to be stored as CASA image tables).

The data import tasks will create a MS with a path and name specified by the vis parameter. See
§ 1.4.3 for more information on MS in CASA. The measurement set is the internal data format used
by CASA, and conversion from any other native format is necessary for most of the data reduction
tasks.

Once data is imported, there are other operations you can use to manipulate the datasets:

• concat — concatenate a second MS into a given MS (§ 2.2.9)

Data import, export, concatenation, and selection detailed in Chapter 2.

1.5.1.1 VLA: Filling data from VLA archive format

VLA data in “archive” format are read into CASA from disk using the importvla task (see § 2.2.2).
This filler supports the new naming conventions of EVLA antennas when incorporated into the old
VLA system.

Note that future data from the EVLA in ASDM format will use a different filler. This will be made
available in a later release.

1.5.1.2 Filling data from UVFITS format

For UVFITS format, use the importuvfits task. A subset of popular flavors of UVFITS (in
particular UVFITS as written by AIPS) is supported by the CASA filler. See § 2.2.3 for details.

1.5.1.3 Loading FITS images

For FITS format images, such as those to be used as calibration models, use the importfits task.
Most, though not all, types of FITS images written by astronomical software packages can be read
in.

See § 6.11 for more information.
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1.5.1.4 Concatenation of multiple MS

Once you have loaded data into measurement sets on disk, you can use the concat task to combine
them. Currently, concat will add a second MS to an existing MS (not producing a new one). This
would be run multiple times if you had more than two sets to combine.

See § 2.2.9 for details.

1.5.2 Data Examination, Editing, and Flagging

The main data examination and flagging tasks are:

• listobs — summarize the contents of a MS (§ 2.2.5);

• flagmanager — save and manage versions of the flagging entries in the measurement set
(§ 3.2);

• flagautocorr — non-interactive flagging of auto-correlations (§ 3.3);

• plotxy — interactive X-Y plotting and flagging of visibility data (§ 3.4.2);

• flagdata — non-interactive flagging (and unflagging) of specified data (§ 3.5);

• viewer — the CASA viewer can display (as a raster image) MS data, with some editing
capabilities (§ 7);

• casaplotms — a prototype experimental next-generation interactive MS X-Y plotting and
flagging tool, that will eventually replace plotxy (new in Version 2.4.0) (§ 3.4.1).

These tasks allow you to list, plot, and/or flag data in a CASA MS.

There will eventually be tasks for “automatic” flagging to data based upon statistical criteria. Stay
tuned.

Examination and editing of synthesis data is described in Chapter 3.

Visualization and editing of an MS using the casaviewer is described in Chapter 7.

1.5.2.1 Interactive X-Y Plotting and Flagging

The principal tool for making X-Y plots of visibility data is plotxy (see § 3.4.2). Amplitudes and
phases (among other things) can be plotted against several x-axis options.

Interactive flagging (i.e., “see it – flag it”) is possible on the plotxy X-Y displays of the data
(§ 3.4.2.10). Since flags are inserted into the measurement set, it is useful to backup (or make a
copy) of the current flags before further flagging is done, using flagmanager (§ 3.2). Copies of the
flag table can also be restored to the MS in this way.
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1.5.2.2 Flag the Data Non-interactively

The flagdata task (§ 3.5) will flag the visibility data set based on the specified data selections. The
listobs task (§ 2.2.5) may be run (e.g. with verbose=True) to provide some of the information
needed to specify the flagging scope.

1.5.2.3 Viewing and Flagging the MS

The CASA viewer can be used to display the data in the MS as a (grayscale or color) raster image.
The MS can also be edited. Use of the viewer on an MS is detailed in § 7.4.

1.5.3 Calibration

The major calibration tasks are:

• setjy — Computes the model visibilities for a specified source given a flux density or model
image, knows about standard calibrator sources (§ 4.3.4);

• gencal — Creates a calibration table for known delay and antenna position offsets (§ 4.3.5);

• bandpass — Solves for frequency-dependent (bandpass) complex gains (§ 4.4.2);

• gaincal — Solves for time-dependent (frequency-independent) complex gains (§ 4.4.3);

• fluxscale — Bootstraps the flux density scale from standard calibrators (§ 4.4.4);

• polcal — polarization calibration (§ 4.4.5);

• applycal — Applies calculated calibration solutions (§ 4.6.1);

• clearcal — Re-initializes calibrated visibility data in a given measurement set (§ 4.6.3);

• listcal — Lists calibration solutions (§ 4.5.2);

• plotcal — Plots (and optionally flags) calibration solutions (§ 4.5.1);

• uvcontsub — carry out uv-plane continuum subtraction for spectral-line data (§ 4.7.4);

• split — write out a new (calibrated) MS for specified sources (§ 4.7.1);

• cvel — Regrid a spectral MS onto a new frequency channel system (§ 4.7.5).

During the course of calibration, the user will specify a set of calibrations to pre-apply before
solving for a particular type of effect, for example gain or bandpass or polarization. The solutions
are stored in a calibration table (subdirectory) which is specified by the user, not by the task: care
must be taken in naming the table for future use. The user then has the option, as the calibration
process proceeds, to accumulate the current state of calibration in a new cumulative table. Finally,
the calibration can be applied to the dataset.

Synthesis data calibration is described in detail in Chapter 4.
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1.5.3.1 Prior Calibration

The setjy task places the Fourier transform of a standard calibration source model in the MODEL DATA
column of the measurement set. This can then be used in later calibration tasks. Currently, setjy
knows the flux density as a function of frequency for several standard VLA flux calibrators, and
the value of the flux density can be manually inserted for any other source. If the source is not
well-modeled as a point source, then a model image of that source structure can be used (with the
total flux density scaled by the values given or calculated above for the flux density). Models are
provided for the standard VLA calibrators.

Antenna gain-elevation curves (e.g. for the VLA antennas) and atmospheric optical depth cor-
rections (applied as an elevation-dependent function) may be pre-applied before solving for the
bandpass and gains. This is currently done by setting the gaincurve and opacity parameters in
the various calibration solving tasks.

There is now a gencal task to create calibration tables for known delay and antenna position
offsets.

See § 4.3 for more details.

1.5.3.2 Bandpass Calibration

The bandpass task calculates a bandpass calibration solution: that is, it solves for gain variations
in frequency as well as in time. Since the bandpass (relative gain as a function of frequency)
generally varies much more slowly than the changes in overall (mean) gain solved for by gaincal,
one generally uses a long time scale when solving for the bandpass. The default ’B’ solution mode
solves for the gains in frequency slots consisting of channels or averages of channels.

A polynomial fit for the solution (solution type ’BPOLY’) may be carried out instead of the default
frequency-slot based ’B’ solutions. This single solution will span (combine) multiple spectral
windows.

Bandpass calibration is discussed in detail in § 4.4.2.

If the gains of the system are changing over the time that the bandpass calibrator is observed, then
you may need to do an initial gain calibration (see next step).

1.5.3.3 Gain Calibration

The gaincal task determines solutions for the time-based complex antenna gains, for each spectral
window, from the specified calibration sources. A solution interval may be specified. The default
’G’ solution mode solved for gains in specified time solution invervals.

A spline fit for the solution (solution type ’GSPLINE’) may be carried out instead of the default
time-slot based ’G’ solutions. This single solution will span (combine) multiple spectral windows.

See § 4.4.3 for more on gain calibration.
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1.5.3.4 Polarization Calibration

The polcal task will solve for any unknown polarization leakage and cross-hand phase terms (’D’
and ’X’ solutions). The ’D’ leakage solutions will work on sources with no polarization, sources
with known (and supplied) polarization, and sources with unknown polarization tracked through a
range in parallactic angle on the sky.

The solution for the unknown cross-hand polarization phase difference ’X’ term requires a polarized
source with known linear polarization (Q,U).

See § 4.4.5 for more on polarization calibration.

1.5.3.5 Examining Calibration Solutions

The plotcal task (§ 4.5.1) will plot the solutions in a calibration table. The xaxis choices include
time (for gaincal solutions) and channel (e.g. for bandpass calibration). The plotcal interface
and plotting surface is similar to that in plotxy. Eventually, plotcal will allow you to flag and
unflag calibration solutions in the same way that data can be edited in plotxy.

The listcal task (§ 4.5.2) will print out the calibration solutions in a specified table.

1.5.3.6 Bootstrapping Flux Calibration

The fluxscale task bootstraps the flux density scale from “primary” standard calibrators to
the “secondary” calibration sources. Note that the flux density scale must have been previously
established on the “primary” calibrator(s), typically using setjy, and of course a calibration table
containing valid solutions for all calibrators must be available.

See § 4.4.4 for more.

1.5.3.7 Correcting the Data

The final step in the calibration process, applycal may be used to apply several calibration tables
(e.g., from gaincal or bandpass). The corrections are applied to the DATA column of the visibility,
writing the CORRECTED DATA column which can then be plotted (e.g. in plotxy), split out as
the DATA column of a new MS, or imaged (e.g. using clean). Any existing corrected data are
overwritten.

See § 4.6.1 for details.

1.5.3.8 Splitting the Data

After a suitable calibration is achieved, it may be desirable to create one or more new measurement
sets containing the data for selected sources. This can be done using the split task (§ 4.7.1).
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Further imaging and calibration (e.g. self-calibration) can be carried out on these split Measurement
Sets.

1.5.3.9 Transforming the Data to a new frame

If you want to transform your dataset to a different frequency and velocity frame than the one it
was observed in, then you can use the cvel task (§ 4.7.5).

ALERT: The cvel task is under development and is in an experimental prototype version in this
release. It will work for the simplest modes, but is inferior to the regridding in clean (see below)
for most cases.

1.5.4 Synthesis Imaging

The key synthesis imaging tasks are:

• clean — Calculates a deconvolved image based on the visibility data, using one of several
clean algorithms (§ 5.3);

• feather — Combines a single dish and synthesis image in the Fourier plane (§ 5.4).

Most of these tasks are used to take calibrated interferometer data, with the possible addition of a
single-dish image, and reconstruct a model image of the sky.

See Chapter 5 for more on synthesis imaging.

1.5.4.1 Cleaning a single-field image or a mosaic

The CLEAN algorithm is the most popular and widely-studied method for reconstructing a model
image based on interferometer data. It iteratively removes at each step a fraction of the flux in the
brightest pixel in a defined region of the current “dirty” image, and places this in the model image.
The clean task implements the CLEAN algorithm for single-field data. The user can choose from
a number of options for the particular flavor of CLEAN to use.

Often, the first step in imaging is to make a simple gridded Fourier inversion of the calibrated data
to make a “dirty” image. This can then be examined to look for the presence of noticeable emission
above the noise, and to assess the quality of the calibration by searching for artifacts in the image.
This is done using clean with niter=0.

The clean task can jointly deconvolve mosaics as well as single fields, and also has options to do
wide-field and wide-band multi-frequency synthesis imaging.

See § 5.3 for an in-depth discussion of the clean task.
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1.5.4.2 Feathering in a Single-Dish image

If you have a single-dish image of the large-scale emission in the field, this can be “feathered” in
to the image obtained from the interferometer data. This is carried out using the feather tasks
as the weighted sum in the uv-plane of the gridded transforms of these two images. While not as
accurate as a true joint reconstruction of an image from the synthesis and single-dish data together,
it is sufficient for most purposes.

See § 5.4 for details on the use of the feather task.

1.5.5 Self Calibration

Once a calibrated dataset is obtained, and a first deconvolved model image is computed, a “self-
calibration” loop can be performed. Effectively, the model (not restored) image is passed back to
another calibration process (on the target data). This refines the calibration of the target source,
which up to this point has had (usually) only external calibration applied. This process follows the
regular calibration procedure outlined above.

Any number of self-calibration loops can be performed. As long as the images are improving, it is
usually prudent to continue the self-calibration iterations.

This process is described in § 5.8.

1.5.6 Data and Image Analysis

The key data and image analysis tasks are:

• imhead — summarize and manipulate the “header” information in a CASA image (§ 6.2);

• imcontsub — perform continuum subtraction on a spectral-line image cube (§ 6.3);

• immath — perform mathematical operations on or between images (§ 6.5);

• immoments — compute the moments of an image cube (§ 6.6);

• imstat — calculate statistics on an image or part of an image (§ 6.7);

• imval — extract values of one or more pixels, as a spectrum for cubes, from an image (§ 6.8);

• imfit — simple 2D Gaussian fitting of single components to a region of an image (§ 6.4);

• imregrid — regrid an image onto the coordinate system of another image (§ 6.9);

• viewer — there are useful region statistics and image cube plotting capabilities in the viewer
(§ 7).
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1.5.6.1 What’s in an image?

The imhead task will print out a summary of image “header” keywords and values. This task can
also be used to retrieve and change the header values.

See § 6.2 for more.

1.5.6.2 Image statistics

The imstat task will print image statistics. There are options to restrict this to a box region,
and to specified channels and Stokes of the cube. This task will return the statistics in a Python
dictionary return variable.

See § 6.7 for more.

1.5.6.3 Image values

The imval task will values from an image. There are options to restrict this to a box region, and to
return specified channels and Stokes of the cube as a spectrum. This task will return these values
in a Python dictionary return variable which can then be operated on in the casapy environment.

See § 6.7 for more.

1.5.6.4 Moments of an image cube

The immoments task will compute a “moments” image of an input image cube. A number of options
are available, from the traditional true moments (zero, first, second) and variations thereof, to other
images such as median, minimum, or maximum along the moment axis.

See § 6.6 for details.

1.5.6.5 Image math

The immath task will allow you to form a new image by mathematical combinations of other images
(or parts of images). This is a powerful, but tricky, task to use.

See § 6.5 for more.

1.5.6.6 Regridding an Image

It is occasionally necessary to regrid an image onto a new coordinate system. The imregrid task
can be used to regrid an input image onto the coordinate system of an existing template image,
creating a new output image.

See § 6.9 for a description of this task.
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1.5.6.7 Displaying Images

To display an image use the viewer task. The viewer will display images in raster, contour, or
vector form. Blinking and movies are available for spectral-line image cubes. To start the viewer,
type:

viewer

Executing the viewer task will bring up two windows: a viewer screen showing the data or image,
and a file catalog list. Click on an image or ms from the file catalog list, choose the proper display,
and the image should pop up on the screen. Clicking on the wrench tool (second from left on upper
left) will obtain the data display options. Most functions are self-documenting.

The viewer can be run outside of casapy by typing casaviewer.

See § 7 for more on viewing images.

1.5.7 Getting data and images out of CASA

The key data and image export tasks are:

• exportuvfits — export a CASA MS in UVFITS format (§ 2.2.3);

• exportfits — export a CASA image table as FITS (§ 6.11).

These tasks can be used to export a CASA MS or image to UVFITS or FITS respectively. See the
individual sections referred to above for more on each.



Chapter 2

Visibility Data Import, Export, and
Selection

To use CASA to process your data, you first will need to get it into a form that is understood
by the package. These are “measurement sets” for synthesis (and single dish) data, and “image
tables” for images.

There are a number of tasks used to fill telescope-specific data, to import/export standard formats,
to list data contents, and to concatenate multiple datasets. These are:

• importasdm — import ALMA or EVLA data in ASDM format (§ 2.2.1)

• importuvfits — import visibility data in UVFITS format (§ 2.2.3.1)

• importvla — import data from VLA that is in export format (§ 2.2.2)

• exportuvfits — export a CASA MS in UVFITS format (§ 2.2.3.2)

• listobs — summarize the contents of a MS (§ 2.2.5)

• listvis — list the data in a MS (§ 2.2.6)

• vishead — list and change the metadata contents of a MS (§ 2.2.7)

• visstat — statistics on data in a MS (§ 2.2.8)

• concat — concatenate two or more MS into a new MS (§ 2.2.9)

In CASA, there is a standard syntax for selection of data that is employed by multiple tasks. This
is described in § 2.3.

There are also tasks for the import and export of image data using FITS:

• importfits — import a FITS image into a CASA image format table (§ 6.11)

• exportfits — export a CASA image table as FITS (§ 6.11)

72
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2.1 CASA Measurement Sets

Data is handled in CASA via the table system. In particular, visibility data are stored in a CASA
table known as a Measurement Set (MS). Details of the physical and logical MS structure are given
below, but for our purposes here an MS is just a construct that contains the data. An MS can also
store single dish data (essentially a set of auto-correlations of a 1-element interferometer), though
there are also data formats more suitable for single-dish spectra (see § A).

Inside the Toolkit:
Measurement sets are handled in
the ms tool. Import and export
methods include ms.fromfits and
ms.tofits.

Note that images are handled through special image tables,
although standard FITS I/O is also supported. Images and
image data are described in a separate chapter.

Unless your data was previously processed by CASA or
software based upon its predecessor aips++, you will need
to import it into CASA as an MS. Supported formats in-
clude some “standard” flavors of UVFITS, the VLA “Ex-
port” archive format, and most recently, the ALMA Science Data Model (ASDM) format. These
are described below in § 2.2.

Once in Measurement Set form, your data can be accessed through various tools and tasks with a
common interface. The most important of these is the data selection interface (§ 2.3) which allows
you to specify the subset of the data on which the tasks and tools will operate.

2.1.1 Under the Hood: Structure of the Measurement Set

Inside the Toolkit:
Generic CASA tables are handled in
the tb tool. You have direct access
to keywords, rows and columns of the
tables with the methods of this tool.

It is not necessary that a casual CASA user know the spe-
cific details on how the data in the MS is stored and the
contents of all the sub-tables. However, we will occasion-
ally refer to specific “columns” of the MS when describing
the actions of various tasks, and thus we provide the fol-
lowing synopsis to familiarize the user with the necessary
nomenclature. You may skip ahead to subsequent sections
if you like!

All CASA data files, including Measurement Sets, are written into the current working directory by
default, with each CASA table represented as a separate sub-directory. MS names therefore need
only comply with UNIX file or directory naming conventions, and can be referred to from within
CASA directly, or via full path names.

An MS consists of a MAIN table containing the visibility data. and associated sub-tables containing
auxiliary or secondary information. The tables are logical constructs, with contents located in the
physical table.* files on disk. The MAIN table consists of the table.* files in the main directory of
the ms-file itself, and the other tables are in the respective subdirectories. The various MS tables
and sub-tables can be seen by listing the contents of the MS directory itself (e.g. using Unix ls),
or via the browsetable task (§ 3.6).

See Fig 2.1 for an example of the contents of a MS directory. Or, from the casapy prompt,
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CASA <1>: ls ngc5921.ms
IPython system call: ls -F ngc5921.ms
ANTENNA POLARIZATION table.f1 table.f3_TSM1 table.f8
DATA_DESCRIPTION PROCESSOR table.f10 table.f4 table.f8_TSM1
FEED SORTED_TABLE table.f10_TSM1 table.f5 table.f9
FIELD SOURCE table.f11 table.f5_TSM1 table.f9_TSM1
FLAG_CMD SPECTRAL_WINDOW table.f11_TSM1 table.f6 table.info
HISTORY STATE table.f2 table.f6_TSM0 table.lock
OBSERVATION table.dat table.f2_TSM1 table.f7
POINTING table.f0 table.f3 table.f7_TSM1

Note that the MAIN table information is contained in the table.* files in this directory. Each of
the sub-table sub-directories contain their own table.dat and other files, e.g.

CASA <2>: ls ngc5921.ms/SOURCE
IPython system call: ls -F ngc5921.ms/SOURCE
table.dat table.f0 table.f0i table.info table.lock

Figure 2.1: The contents of a Measurement Set. These tables compose a Measurement Set named
ngc5921.demo.ms on disk. This display is obtained by using the File:Open menu in browsetable
and left double-clicking on the ngc5921.demo.ms directory.
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Each “row” in a table contains entries for a number of specified “columns”. For example, in the
MAIN table of the MS, the original visibility data is contained in the DATA column — each “cell”
contains a matrix of observed complex visibilities for that row at a single time stamp, for a single
baseline in a single spectral window. The shape of the data matrix is given by the number of
channels and the number of correlations (voltage-products) formed by the correlator for an array.

Table 2.1 lists the non-data columns of the MAIN table that are most important during a typical
data reduction session. Table 2.2 lists the key data columns of the MAIN table of an interferome-
ter MS. The MS produced by fillers for specific instruments may insert special columns, such as
ALMA PHASE CORR, ALMA NO PHAS CORR and ALMA PHAS CORR FLAG ROW for ALMA data filled using
the importasdm filler (§ 2.2.1). These columns are visible in browsetable and are accessible from
the toolkit in the ms tool (e.g. the ms.getdata method) and from the tb “table” tool (e.g. using
tb.getcol).

Note that when you examine table entries for IDs such as FIELD ID or DATA DESC ID, you will see
0-based numbers.

Table 2.1: Common columns in the MAIN table of the MS.

Parameter Contents
ANTENNA1 First antenna in baseline
ANTENNA2 Second antenna in baseline
FIELD ID Field (source no.) identification
DATA DESC ID Spectral window number, polarization identifier pair (IF no.)
ARRAY ID Subarray number
OBSERVATION ID Observation identification
POLARIZATION ID Polarization identification
SCAN NUMBER Scan number
TIME Integration midpoint time
UVW UVW coordinates

The MS can contain a number of “scratch” columns, which are used to hold useful versions of other
columns such as the data or weights for further processing. The most common scratch columns
are:

• CORRECTED DATA — used to hold calibrated data for imaging or display;

• MODEL DATA — holds the Fourier inversion of a particular model image for calibration or
imaging;

• IMAGING WEIGHT —holds the gridding weights to be used in imaging.

The creation and use of the scratch columns is generally done behind the scenes, but you should
be aware that they are there (and when they are used).
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Table 2.2: Commonly accessed MAIN Table data-related columns. Note that the columns
ALMA PHASE CORR, ALMA NO PHAS CORR and ALMA PHAS CORR FLAG ROW are specific to ALMA data
filled using the importasdm filler.

Column Format Contents
DATA Complex(Nc, Nf ) complex visibility data matrix (=

ALMA PHASE CORR by default)
FLAG Bool(Nc, Nf ) cumulative data flags
WEIGHT Float(Nc) weight for a row
WEIGHT SPECTRUM Float(Nc, Nf ) individual weights for a data matrix
ALMA PHASE CORR Complex(Nc, Nf ) on-line phase corrected data (Not in

VLA data)
ALMA NO PHAS CORR Bool(Nc, Nf ) data that has not been phase corrected

(Not in VLA data)
ALMA PHAS CORR FLAG ROW Bool(Nc, Nf ) flag to use phase-corrected data or not

(not in VLA data)
MODEL DATA Complex(Nc, Nf ) Scratch: created by calibrater or im-

ager tools
CORRECTED DATA Complex(Nc, Nf ) Scratch: created by calibrater or im-

ager tools
IMAGING WEIGHT Float(Nc) Scratch: created by calibrater or im-

ager tools

The most recent specification for the MS is Aips++ MeasurementSet definition version 2.0
(http://casa.nrao.edu/Memos/229.html).

2.2 Data Import and Export

There are a number of tasks available to bring data in various forms into CASA as a Measurement
Set:

• ALMA and EVLA Science Data Model format data can be imported into CASA (importasdm)

• VLA Archive format data can be imported into CASA (importvla)

• UVFITS format can be imported into and exported from CASA (importuvfits and exportuvfits)

2.2.1 ALMA & EVLA: Filling Science Data Model (ASDM) data

Under the Hood:
The importasdm task is just an inter-
face to the stand-alone asdm2MS ap-
plication. To find out the command-
line arguments to this application,
do asdm2MS --help.

The ALMA and EVLA projects have agreed upon a com-
mon archival science data model (ASDM) format, and have
jointly developed the software to fill this data into CASA.

http://casa.nrao.edu/Memos/229.html


CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 77

In the ASDM format, the bulk of the data is contained in
large binary data format (BDF) tables, with the meta-data
and ancillary information in XML tables. This is struc-
tured as a directory, like the MS, and was designed to be
similar to the MS to facilitate conversion.

The importasdm task will fill SDM1 format data (Oct
2009 or later) into a CASA visibility data set (MS). The default inputs are:

# importasdm :: Convert an Science Data Model observation into a CASA visibility file
asdm = ’’ # Name of input asdm directory (on disk)
vis = ’’ # Root name of the ms to be created. Note the .ms is added
corr_mode = ’all’ # correlation mode to be input (ao, co, ac, all)
srt = ’all’ # spectral resolution type (fr, ca, bw, or all)
time_sampling = ’all’ # time sampling (INTEGRATION and/or SUBINTEGRATION) (i, si, or all)
ocorr_mode = ’ca’ # output correlation mode AUTO_ONLY (ao), CROSS_ONLY (co), CROSS_AND_AUTO (ca)
compression = False # Flag for turning on data compression
asis = ’’ # string of table names separated by spaces to be passed verbatim (* allowed)
wvr_corrected_data = ’no’ # ’no’ (default), ’yes’= WVR corrected, ’both’= output separate MS
verbose = False # Output lots of information while the filler is working
overwrite = False # Overwrite an existing MS
showversion = False # Report the version of asdm2MS being used
async = False # If true the taskname must be started using importasdm(...)

ALERT: Currently there are no options for filling selected data (you get the whole data set).

2.2.1.1 Filling SDM v0 data using importoldasdm

If you are filling old test data taken before October 2009 in the SDM0 format, then you should use
the importoldasdm task to fill this.

# importoldasdm :: Convert a Science Data Model v0 observation into a CASA visibility file
asdm = ’’ # Name of input asdm directory (on disk)
corr_mode = ’all’ # correlation mode to be considered on input
srt = ’all’ # specifies the spectral resolution type to be considered on input
time_sampling = ’all’ # time sampling (INTEGRATION and/or SUBINTEGRATION)
ocorr_mode = ’co’ # AUTO_ONLY (ao) or CROSS_ONLY (co) or CROSS_AND_AUTO (ca)
compression = False # Flag for turning on data compression
async = False # If true the taskname must be started using importoldasdm(...)

2.2.2 VLA: Filling data from archive format (importvla)

VLA data in archive format (i.e., as downloaded from the VLA data archive) are read into CASA
from disk using the importvla task. The inputs are:

# importvla :: import VLA archive file(s) to a measurement set:
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archivefiles = ’’ # Name of input VLA archive file(s)
vis = ’’ # Name of output visibility file
bandname = ’’ # VLA frequency band name:’’=>obtain all bands in archive files
frequencytol = 150000.0 # Frequency shift to define a unique spectral window (Hz)
project = ’’ # Project name: ’’ => all projects in file
starttime = ’’ # start time to search for data
stoptime = ’’ # end time to search for data
applytsys = True # apply nominal sensitivity scaling to data & weights
autocorr = False # import autocorrelations to ms, if set to True
antnamescheme = ’new’ # ’old’ or ’new’; ’VA04’ or ’4’ for ant 4
keepblanks = False # Fill scans with empty source names (e.g. tipping scans)?
evlabands = False # Use updated eVLA frequencies and bandwidths
async = False

The main parameters are archivefiles to specify the input VLA Archive format file names, and
vis to specify the output MS name.

ALERT: The scaling of VLA data both before and after the June 2007 Modcomp-turnoff is fully
supported, based on the value of applytsys.

The NRAO Archive is located at:

• https://archive.nrao.edu

Note that archivefiles takes a string or list of strings, as there are often multiple files for a
project in the archive.

For example:

archivefiles = [’AP314_A950519.xp1’,’AP314_A950519.xp2’]
vis = ’NGC7538.ms’

The importvla task allows selection on the frequency band. Suppose that you have 1.3 cm line
observations in K-band and you have copied the archive data files AP314 A95019.xp* to your
working directory and started casapy. Then,

default(’importvla’)
archivefiles = [’AP314_A950519.xp1’,’AP314_A950519.xp2’,’AP314_A950519.xp3’]
vis = ’ngc7538.ms’
bandname = ’K’
frequencytol = 10e6
importvla()

If the data is located in a different directory on disk, then use the full path name to specify each
archive file, e.g.:

archivefiles=[’/home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp1’,\
’/home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp2’,\
’/home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp3’]

https://archive.nrao.edu
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Important Note: importvla will import the on-line flags (from the VLA system) along with the
data. These will be put in the MAIN table and thus available to subsequent tasks and tools. If you
wish to revert to unflagged data, use flagmanager (§ 3.2) to save the flags (if you wish), and then
use flagdata (§ 3.5) with mode=’manualflag’ and unflag=True to toggle off the flags.

The other parameters are:

2.2.2.1 Parameter applytsys

The applytys parameter controls whether the nominal sensitivity scaling (based on the measured
TSYS, with the weights scaled accordingly using the integration time) is applied to the visibility
amplitudes or not. If True, then it will be scaled so as to be the same as AIPS FILLM (ie. approx-
imately in deciJanskys). Note that post-Modcomp data is in raw correlation coefficient and will
be scaled using the TSYS values, while Modcomp-era data had this applied online. In all cases
importvla will do the correct thing to data and weights based on an internal flag in the VLA
Archive file, either scaling it or unscaling based on your choice for applytys.

If applytsys=True and you see strange behavior in data amplitudes, it may be due to erroneous
TSYS values from the online system. You might want to then fill with applytsys=False and look
at the correlation coefficients to see if the behavior is as expected.

2.2.2.2 Parameter bandname

The bandname indicates the VLA Frequency band(s) to load, using the traditional bandname codes.
These are:

• ’4’ = 48-96 MHz

• ’P’ = 298-345 MHz

• ’L’ = 1.15-1.75 GHz

• ’C’ = 4.2-5.1 GHz

• ’X’ = 6.8-9.6 GHz

• ’U’ = 13.5-16.3 GHz

• ’K’ = 20.8-25.8 GHz

• ’Q’ = 38-51 GHz

• ’’ = all bands (default)

Note that as the transition from the VLA to EVLA progresses, the actual frequency ranges covered
by the bands will expand, and additional bands will be added (namely ’S’ from 1-2 GHz and ’A’
from 26.4-40 GHz).



CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 80

2.2.2.3 Parameter frequencytol

The frequencytol parameter specifies the frequency separation tolerated when assigning data to
spectral windows. The default is frequencytol=150000 (Hz). For Doppler tracked data, where
the sky frequency changes with time, a frequencytol < 10000 Hz may may produce too many
unnecessary spectral windows.

2.2.2.4 Parameter project

You can specify a specific project name to import from archive files. The default ’’ will import
data from all projects in file(s) archivefiles.

For example for VLA Project AL519:

project = ’AL519’ # this will work
project = ’al519’ # this will also work

while project=’AL0519’ will NOT work (even though that is what queries to the VLA Archive
will print it as - sorry!).

2.2.2.5 Parameters starttime and stoptime

You can specify start and stop times for the data, e.g.:

starttime = ’1970/1/31/00:00:00’
stoptime = ’2199/1/31/23:59:59’

Note that the blank defaults will load all data fitting other criteria.

2.2.2.6 Parameter autocorr

Note that autocorrelations are filled into the data set if autocorr=True. Generally for the VLA,
autocorrelation data is not useful, and furthermore the imaging routine will try to image the
autocorrelation data (it assumes it is single dish data) which will swamp any real signal. Thus, if
you do fill the autocorrelations, you will have to flag them before imaging.

2.2.2.7 Parameter antnamescheme

The antnamescheme parameter controls whether importvla will try to use a naming scheme where
EVLA antennas are prefixed with EA (e.g. ’EA16’) and old VLA antennas have names prefixed
with VA (e.g. ’VA11’). Our method to detect whether an antenna is EVLA is not yet perfected,
and thus unless you require this feature, simply use antnamescheme=’old’.
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2.2.2.8 Parameter evlabands

The evlabands=True option is provided to allow users to access EVLA frequencies outside the
standard VLA tuninings (e.g. the extended C-band above 6 GHz). ALERT: use of this option for
standard VLA data will cause unexpected associations, such as X-band data below 8 GHz being
extracted to C-band (as the EVLA C-band is 4–8 GHz). Use with care.

2.2.3 UVFITS Import and Export

The UVFITS format is not exactly a standard, but is a popular archive and transport format
nonetheless. CASA supports UVFITS files written by the AIPS FITTP task, and others.

UVFITS is supported for both import and export.

2.2.3.1 Import using importuvfits

To import UVFITS format data into CASA, use the importuvfits task:

CASA <1>: inp(importuvfits)
fitsfile = ’’ # Name of input UVFITS file
vis = ’’ # Name of output visibility file (MS)
antnamescheme = ’old’ # For VLA only; ’new’ or ’old’; ’VA04’ or ’04’ for VLA ant 4
async = False # if True run in the background, prompt is freed

This is straightforward, since all it does is read in a UVFITS file and convert it as best it can into
a MS.

For example:

importuvfits(fitsfile=’NGC5921.fits’,vis=’ngc5921.ms’)

ALERT: We cannot currently fill CARMA data exported via Miriad UVFITS.

2.2.3.2 Export using exportuvfits

The exportuvfits task will take a MS and write it out in UVFITS format. The defaults are:

# exportuvfits :: Convert a CASA visibility data set (MS) to a UVFITS file

vis = ’’ # Name of input visibility file
fitsfile = ’’ # Name of output UVFITS file)
datacolumn = ’corrected’ # which data to write (data, corrected, model)
field = ’’ # Field name list
spw = ’’ # Spectral window and channel selection
antenna = ’’ # antenna list to select
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time = ’’ # time range selection
nchan = -1 # Number of channels to select
start = 0 # Start channel
width = 1 # Channel averaging width (value>1 indicates averaging)
writesyscal = False # Write GC and TY tables
multisource = True # Write in multi-source format
combinespw = True # Combine spectral windows (True for AIPS)
writestation = True # Write station name instead of antenna name
async = False # if True run in the background, prompt is freed

For example:

exportuvfits(vis=’ngc5921.split.ms’,
fitsfile=’NGC5921.split.fits’,
multisource=False)

The MS selection parameters field, spw, antenna, and timerange follow the standard selection
syntax described in § 2.3.

ALERT: The nchan, start, and width parameters will be superseded by channel selection in spw.
Currently, there is a time parameter rather than timerange.

The datacolumn parameter chooses which data-containing column of the MS (see § 2.1.1) is to be
written out to the UV FITS file. Choices are: ’data’, ’corrected’, and ’model’.

There are a number of special parameters that control what is written out. These are mostly here
for compatibility with AIPS.

The writesyscal parameter toggles whether GC and TY extension tables are written. These are
important for VLBA data, and for EVLA data. ALERT: Not yet available.

The multisource parameter determines whether the UV FITS file is a multi-source file or a single-
source file, if you have a single-source MS or choose only a single source. Note: the difference
between a single-source and multi-source UVFITS file here is whether it has a source (SU) table
and the source ID in the random parameters. If you select more than one source in fields, then
the multisource parameter will be overridden to be True regardless.

The combinespw parameter allows combination of all spectral windows at one time. If True, then
all spectral windows must have the same shape. For AIPS to read an exported file, then set
combinespw=True.

The writestation parameter toggles the writing of the station name instead of antenna name.

2.2.4 Handling Measurement Set metadata and data

There are tasks provided for basic listing and manipulation of Measurement Set data and metadata.
These include:

• listobs — summarize the contents of a MS (§ 2.2.5)
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• vishead — list and change the metadata contents of a MS (§ 2.2.7)

• visstat — statistics on data in a MS (§ 2.2.8)

• concat — concatenate two or more MS into a new MS (§ 2.2.9)

2.2.5 Summarizing your MS (listobs)

Once you import your data into a CASA Measurement Set, you can get a summary of the MS
contents with the listobs task.

The inputs are:

vis = ’’ # Name of input visibility file (MS)
verbose = True # Extended summary list of data set in logger

The summary will be written to the logger and to the casapy.log file. For example,

listobs(’n5921.ms’)

results in the logger messages:

================================================================================
MeasurementSet Name: /home/sandrock3/smyers/Testing3/Patch4/N5921/ngc5921.demo.ms
MS Version 2
================================================================================

Observer: TEST Project:
Observation: VLA
Data records: 22653 Total integration time = 5280 seconds

Observed from 13-Apr-1995/09:19:00.0 to 13-Apr-1995/10:47:00.0 (TAI)

ObservationID = 0 ArrayID = 0
Date Timerange (TAI) Scan FldId FieldName nVis Int(s) SpwIds
13-Apr-1995/09:19:00.0 - 09:24:30.0 1 0 1331+305000* 4509 30 [0]

09:27:30.0 - 09:29:30.0 2 1 1445+099000* 1890 30 [0]
09:33:00.0 - 09:48:00.0 3 2 N5921_2 6048 30 [0]
09:50:30.0 - 09:51:00.0 4 1 1445+099000* 756 30 [0]
10:22:00.0 - 10:23:00.0 5 1 1445+099000* 1134 30 [0]
10:26:00.0 - 10:43:00.0 6 2 N5921_2 6804 30 [0]
10:45:30.0 - 10:47:00.0 7 1 1445+099000* 1512 30 [0]

(nVis = Total number of time/baseline visibilities per scan)
Fields: 3
ID Code Name RA Decl Epoch SrcId nVis
0 C 1331+305000* 13:31:08.2873 +30.30.32.9590 J2000 0 4509
1 A 1445+099000* 14:45:16.4656 +09.58.36.0730 J2000 1 5292
2 N5921_2 15:22:00.0000 +05.04.00.0000 J2000 2 12852
(nVis = Total number of time/baseline visibilities per field)

Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)
SpwID #Chans Frame Ch1(MHz) ChanWid(kHz)TotBW(kHz) Ref(MHz) Corrs
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0 63 LSRK 1412.66507 24.4140625 1550.19688 1413.42801 RR LL
Sources: 3
ID Name SpwId RestFreq(MHz) SysVel(km/s)
0 1331+305000* 0 1420.405752 0
1 1445+099000* 0 1420.405752 0
2 N5921_2 0 1420.405752 0

Antennas: 27:
ID Name Station Diam. Long. Lat.
0 1 VLA:N7 25.0 m -107.37.07.2 +33.54.12.9
1 2 VLA:W1 25.0 m -107.37.05.9 +33.54.00.5
2 3 VLA:W2 25.0 m -107.37.07.4 +33.54.00.9
3 4 VLA:E1 25.0 m -107.37.05.7 +33.53.59.2
4 5 VLA:E3 25.0 m -107.37.02.8 +33.54.00.5
5 6 VLA:E9 25.0 m -107.36.45.1 +33.53.53.6
6 7 VLA:E6 25.0 m -107.36.55.6 +33.53.57.7
7 8 VLA:W8 25.0 m -107.37.21.6 +33.53.53.0
8 9 VLA:N5 25.0 m -107.37.06.7 +33.54.08.0
9 10 VLA:W3 25.0 m -107.37.08.9 +33.54.00.1
10 11 VLA:N4 25.0 m -107.37.06.5 +33.54.06.1
11 12 VLA:W5 25.0 m -107.37.13.0 +33.53.57.8
12 13 VLA:N3 25.0 m -107.37.06.3 +33.54.04.8
13 14 VLA:N1 25.0 m -107.37.06.0 +33.54.01.8
14 15 VLA:N2 25.0 m -107.37.06.2 +33.54.03.5
15 16 VLA:E7 25.0 m -107.36.52.4 +33.53.56.5
16 17 VLA:E8 25.0 m -107.36.48.9 +33.53.55.1
17 18 VLA:W4 25.0 m -107.37.10.8 +33.53.59.1
18 19 VLA:E5 25.0 m -107.36.58.4 +33.53.58.8
19 20 VLA:W9 25.0 m -107.37.25.1 +33.53.51.0
20 21 VLA:W6 25.0 m -107.37.15.6 +33.53.56.4
21 22 VLA:E4 25.0 m -107.37.00.8 +33.53.59.7
23 24 VLA:E2 25.0 m -107.37.04.4 +33.54.01.1
24 25 VLA:N6 25.0 m -107.37.06.9 +33.54.10.3
25 26 VLA:N9 25.0 m -107.37.07.8 +33.54.19.0
26 27 VLA:N8 25.0 m -107.37.07.5 +33.54.15.8
27 28 VLA:W7 25.0 m -107.37.18.4 +33.53.54.8

using the (default) verbose=True option. The most useful extra information that verbose=True
gives is the list of the scans in the dataset.

2.2.6 Listing MS data (listvis)

The listvis task will print to the terminal (or file) listing of the data in your MS. The inputs are:

# listvis :: List measurement set visibilities.
vis = ’’ # Name of input visibility file
options = ’ap’ # List options: ap only
datacolumn = ’data’ # Column to list: data, corrected, model, residual
field = ’’ # Field names or index to be listed: ’’==>all
spw = ’*’ # Spectral window:channels: ’\*’==>all, spw=’1:5~57’
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selectdata = False # Other data selection parameters
average = ’’ # Averaging mode: ==>none (Not yet implemented)
showflags = False # Show flagged data (Not yet implemented)
pagerows = 50 # Rows per page
listfile = ’’ # Output file
async = False # If true the taskname must be started using listvis(...)

For example:

CASA <2>: listvis(’ngc5921.demo.ms’,datacolumn=’corrected’,field=’0’,selectdata=T,antenna=’*&*’,pagerows=10)
All selected data has FIELD = 0
All selected data has SPW = 0
Date/Time: RR: LL:
1995/04/13/ Intrf UVDist Chn Amp Phs Wt F Amp Phs Wt F U V W
------------|---|------|---|--------------------|-------------------|----------|----------|----------|
09:19:00.0 1-2 1823 0: 7.388 17.4 100 3.518 131.9 81 386.69 130409.94 15.46
09:19:00.0 1-2 1823 1: 11.913 -6.0 100 10.945 12.7 81 386.69 130409.94 15.46
09:19:00.0 1-2 1823 2: 13.570 1.5 100 12.700 3.5 81 386.69 130409.94 15.46
09:19:00.0 1-2 1823 3: 13.829 -0.6 100 13.479 2.2 81 386.69 130409.94 15.46
09:19:00.0 1-2 1823 4: 14.082 1.1 100 14.201 -0.1 81 386.69 130409.94 15.46
09:19:00.0 1-2 1823 5: 14.436 3.2 100 14.886 0.3 81 386.69 130409.94 15.46
09:19:00.0 1-2 1823 6: 15.190 -1.2 100 14.977 -1.0 81 386.69 130409.94 15.46
09:19:00.0 1-2 1823 7: 14.823 2.6 100 14.475 0.9 81 386.69 130409.94 15.46
09:19:00.0 1-2 1823 8: 14.484 1.7 100 14.572 0.9 81 386.69 130409.94 15.46
09:19:00.0 1-2 1823 9: 14.393 1.3 100 14.675 1.8 81 386.69 130409.94 15.46

Type Q to quit, A to toggle long/short list, or RETURN to continue [continue]: Q

ALERT: We are working on improving the format of the listvis output.

2.2.7 Listing and manipulating MS metadata (vishead)

The vishead task is provided to access keyword information in the Measurement Set. The default
inputs are:

# vishead :: List, get, and put metadata in a measurement set
vis = ’’ # Name of input visibility file
mode = ’list’ # options: list, summary, get, put

listitems = [] # items to list ([] for all)
async = False #

The mode = ’summary’ option just gives the same output as listobs.

For mode = ’list’ the options are: ’telescope’, ’observer’, ’project’, ’field’, ’freq group name’,
’spw name’, ’schedule’, ’schedule type’, ’release date’.

CASA <29>: vishead(’ngc5921.demo.ms’,mode=’list’,listitems=[])
Out[29]:
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{’cal_grp’: (array([-1, -1, -1], dtype=int32), {}),
’field’: (array([’1331+30500002_0’, ’1445+09900002_0’, ’N5921_2’],

dtype=’|S16’),
{}),

’fld_code’: (array([’C’, ’A’, ’’],
dtype=’|S2’), {}),

’freq_group_name’: (array([’none’],
dtype=’|S5’), {}),

’log’: ({’r1’: False}, {}),
’observer’: (array([’TEST’],

dtype=’|S5’), {}),
’project’: (array([’’],

dtype=’|S1’), {}),
’ptcs’: ({’r1’: array([[[-2.74392758]],

[[ 0.53248521]]]),
’r2’: array([[[-2.42044692]],

[[ 0.17412604]]]),
’r3’: array([[[-2.26020138]],

[[ 0.08843002]]])},
{’MEASINFO’: {’Ref’: ’J2000’, ’type’: ’direction’},
’QuantumUnits’: array([’rad’, ’rad’],

dtype=’|S4’)}),
’release_date’: (array([ 4.30444800e+09]),

{’MEASINFO’: {’Ref’: ’TAI’, ’type’: ’epoch’},
’QuantumUnits’: array([’s’],

dtype=’|S2’)}),
’schedule’: ({’r1’: False}, {}),
’schedule_type’: (array([’’],

dtype=’|S1’), {}),
’source_name’: (array([’1331+30500002_0’, ’1445+09900002_0’, ’N5921_2’],

dtype=’|S16’),
{}),

’spw_name’: (array([’none’],
dtype=’|S5’), {}),

’telescope’: (array([’VLA’],
dtype=’|S4’), {})}

You can use mode=’get’ to retrieve the valuses of specific keywords, and likewise mode=’put’ to
change them. The inputs are:

mode = ’get’ # options: list, summary, get, put
hdkey = ’’ # keyword to get/put
hdindex = ’’ # keyword index to get/put, counting from zero. ==>all

and

# vishead :: List, summary, get, and put metadata in a measurement set
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mode = ’put’ # options: list, summary, get, put
hdkey = ’’ # keyword to get/put
hdindex = ’’ # keyword index to get/put, counting from zero. ==>all
hdvalue = ’’ # value of hdkey

For example, a common operation is to change the Telescope name (e.g. if it is unrecognized), e.g.

CASA <36>: vishead(’ngc5921.demo.ms’,mode=’get’,hdkey=’telescope’)
Out[36]:

(array([’VLA’],
dtype=’|S4’), {})

CASA <37>: vishead(’ngc5921.demo.ms’,mode=’put’,hdkey=’telescope’,hdvalue=’EVLA’)

CASA <38>: vishead(’ngc5921.demo.ms’,mode=’get’,hdkey=’telescope’)
Out[38]:

(array([’EVLA’],
dtype=’|S5’), {})

2.2.8 MS statistics (visstat)

ALERT: This is still a prototype task.

The visstat task is provided to obtain simple statistics for a Measurement Set, useful in regression
tests.

The inputs are:

# visstat :: Displays statistical information from a measurement set
vis = ’’ # Name of input visibility file
axis = ’amp’ # Which values to use

datacolumn = ’data’ # Which data column to use (data, corrected, model)

useflags = True # Take flagging into account?
spw = ’’ # spectral-window/frequency/channel
field = ’’ # Field names or field index numbers: ’’==>all, field=’0~2,3C286’
selectdata = True # More data selection parameters (antenna, timerange etc)

antenna = ’’ # antenna/baselines: ’’==>all, antenna = ’3,VA04’
timerange = ’’ # time range: ’’==>all, timerange=’09:14:0~09:54:0’
correlation = ’’ # Select data based on correlation
scan = ’’ # scan numbers: ’’==>all
array = ’’ # (sub)array numbers: ’’==>all
uvrange = ’’ # uv range: ’’==>all; uvrange = ’0~100klambda’, default units=meters

async = False # If true the taskname must be started using visstat(...)

Running this task returns a record (Python dictionary) with the statistics, which can be captured
in a Python variable. For example,
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CASA <42>: mystat = visstat(’ngc5921.demo.ms’,axis=’amp’,datacolumn=’corrected’,field=’0’)

CASA <43>: mystat
Out[43]:

{’CORRECTED’: {’max’: 51.938671112060547,
’mean’: 14.796444141750133,
’medabsdevmed’: 0.28020858764648438,
’median’: 14.764373779296875,
’min’: 0.81362706422805786,
’npts’: 514916.0,
’quartile’: 0.56053066253662109,
’rms’: 14.829294204711914,
’stddev’: 0.98650836609147285,
’sum’: 7618925.8316934109,
’sumsq’: 113234125.12642419,
’var’: 0.97319875636846753}}

CASA <44>: print mystat[’CORRECTED’][’stddev’]
0.986508366091

The options for axis are:

axis=’amplitude’ # or (’amp’)
axis=’phase’
axis=’imag’
axis=’scan_number’
axis=’flag’

The phase of a complex number is in radians with range (−π, π).

2.2.9 Concatenating multiple datasets (concat)

Once you have your data in the form of CASA Measurement Sets, you can go ahead and process
your data using the editing, calibration, and imaging tasks. In some cases, you will most efficiently
operate on single MS for a particular session (such as calibration). Other tasks will (eventually)
take multiple Measurement Sets as input. For others, it is easiest to combine your multiple data
files into one.

If you need to combine multiple datasets, you can use the concat task. The default inputs are:

# concat :: Concatenate two or more visibility data sets.
vis = [’’] # Name of input visibility files to be concatenated
concatvis = ’’ # Name of output visibility file
freqtol = ’’ # Frequency tolerance for considering data as the same spwid
dirtol = ’’ # Direction tolerance for considering data as the same field
timesort = False # If true, sort by TIME in ascending order
async = False # If true the taskname must be started using concat(...)
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The vis parameter will take a list of one or more MS. Usually, this will contain all the MS to
combine.

The concatvis parameter contains the name of the output MS. If this points to an existing file
on disk, then the MS in vis will appended to it, otherwise a new MS file is created to contain the
concatenated data. Be careful here!

The timesort parameter can be used to make sure the output MS is in time order (e.g. if your input
MS have concurrent times). This can possibly speed up some subsequent calibration operations.

The parameters freqtol and dirtol control how close together in frequency and angle on the sky
spectral windows or field locations need to be before calling them the same.

ALERT: Note that if multiple frequencies or pointings are combined using freqtol or dirtol,
then the data are not changed (ie. not rephased to the single phase center). Use of these parameters
is intended to be tolerant of small offsets (e.g. planets tracked which move slightly in J2000 over
the course of observations, or combining epochs observed with slightly different positions).

For example:

default(’concat’)
vis = [’n4826_16apr.split.ms’,’n4826_22apr.split.ms’]
concatvis = ’n4826_tboth.ms’
freqtol = ’50MHz’
concat()

combines the two days in ’n4826 16apr.split.ms’ and ’n4826 22apr.split.ms’ into a new
output MS called ’n4826 tboth.ms’.

ALERT: There are additional issues when concatenating individual MS files with different spectral
windows. In this case, the rest frequencies (if set) of these windows may be lost in subsequent
operations (e.g. split). If this occurs, then you can either set the restfreq explicitly in certain
tasks (plotxy and clean), or use the following snippet of code to fix this up after concat has run:

#
##########################################################################
#
# Fix up the MS after concat (NOTE: STILL NECESSARY IN 2.4 and 3.0)
# This ensures that the rest freq will be found for all spws.
# print ’--Fixing up spw rest frequencies in MS--’
vis=’ngc4826.tutorial.ms’ # Example vis name, put yours here!
tb.open(vis+’/SOURCE’,nomodify=false)
spwid=tb.getcol(’SPECTRAL_WINDOW_ID’)
# The following is for 64bit systems 08-Jul-2008. ok on 32bit also.
spwid.setfield(-1,’int32’)
tb.putcol(’SPECTRAL_WINDOW_ID’,spwid)
tb.close()

For example, this is used in the NGC4826 BIMA mosaic script (Appendix F.3).
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2.3 Data Selection

Once in MS form, subsets of the data can be operated on using the tasks and tools. In CASA,
there are three common data selection parameters used in the various tasks: field, spw, and
selectdata. In addition, the selectdata parameter, if set to True, will open up a number of
other sub-parameters for selection. The selection operation is unified across all the tasks. The
available selectdata parameters may not be the same in all tasks. But if present, the same
parameters mean the same thing and behave in the same manner when used in any task.

For example:

field = ’’ # field names or index of calibrators ’’==>all
spw = ’’ # spectral window:channels: ’’==>all
selectdata = False # Other data selection parameters

versus

field = ’’ # field names or index of calibrators ’’==>all
spw = ’’ # spectral window:channels: ’’==>all
selectdata = True # Other data selection parameters

timerange = ’’ # time range: ’’==>all
uvrange = ’’ # uv range’’=all
antenna = ’’ # antenna/baselines: ’’==>all
scan = ’’ # scan numbers: Not yet implemented
msselect = ’’ # Optional data selection (Specialized. but see help)

The following are the general syntax rules and descriptions of the individual selection parameters
of particular interest for the tasks:

2.3.1 General selection syntax

Most of the selections are effected through the use of selection strings. This sub-section describes
the general rules used in constructing and parsing these strings. Note that some selections are done
though the use of numbers or lists. There are also parameter-specific rules that are described under
each parameter.

All lists of basic selection specification-units are comma separated lists and can be of any length.
White-spaces before and after the commas (e.g. ’3C286, 3C48, 3C84’) are ignored, while white-
space within sub-strings is treated as part of the sub-string (e.g. ’3C286, VIRGO A, 3C84’).

All integers can be of any length (in terms of characters) composed of the characters 0–9. Floating
point numbers can be in the standard format (DIGIT.DIGIT, DIGIT., or .DIGIT) or in the mantissa-
exponent format (e.g. 1.4e9). Places where only integers make sense (e.g. IDs), if a floating point
number is given, only the integer part is used (it is truncated).

Range of numbers (integers or real numbers) can be given in the format ’N0~N1’. For integer
ranges, it is expanded into a list of integers starting from N0 (inclusive) to N1 (inclusive). For real
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numbers, it is used to select all values present for the appropriate parameter in the Measurement
Set between N0 and N1 (including the boundaries). Note that the ’~’ character is used rather than
the more obvious ’-’ in order to accommodate hyphens in strings and minus signs in numbers.

Wherever appropriate, units can be specified. The units are used to convert the values given to
the units used in the Measurement Set. For ranges, the unit is specified only once (at the end) and
applies to both the range boundaries.

2.3.1.1 String Matching

String matching can be done in three ways. Any component of a comma separated list that cannot
be parsed as a number, a number range, or a physical quantity is treated as a regular expression
or a literal string. If the string does not contain the characters ’*’, ’{’, ’}’ or ’?’, it is treated
as a literal string and used for exact matching. If any of the above mentioned characters are part
of the string, they are used as a regular expression. As a result, for most cases, the user does not
need to supply any special delimiters for literal strings and/or regular expressions. For example:

field = ’3’ # match field ID 3 and not select field named "3C286".

field = ’3*’ # used as a pattern and matched against field names. If
# names like "3C84", "3C286", "3020+2207" are found,
# all will match. Field ID 3 will not be selected
# (unless of course one of the above mentioned field
# names also correspond to field ID 3!).

field = ’30*’ # will match only with "3020+2207" in above set.

However if it is required that the string be matched exclusively as a regular expression, it can be
supplied within a pair of ’/’ as delimiters (e.g. ’/.+BAND.+/’). A string enclosed within double
quotes (’"’) is used exclusively for pattern matching (patterns are a simplified form of regular
expressions - used in most UNIX commands for string matching). Patterns are internally converted
to equivalent regular expressions before matching. See the Unix command "info regex", or visit
http://www.regular-expressions.info, for details of regular expressions and patterns.

Strings can include any character except the following:

’,’ ’;’ ’"’ ’/’ NEWLINE

(since these are part of the selection syntax). Strings that do not contain any of the characters
used to construct regular expressions or patterns are used for exact matches. Although it is highly
discouraged to have name in the MS containing the above mentioned reserved characters, if one
does choose to include the reserved characters as parts of names etc., those names can only be
matched against quoted strings (since regular expression and patterns are a super-set of literal
strings – i.e., a literal string is also a valid regular expression).

This leaves ’"’, ’*’, ’{’, ’}’ or ’?’ as the list of printable character that cannot be part of a
name (i.e., a name containing this character can never be matched in a MSSelection expression).

http://www.regular-expressions.info
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These will be treated as pattern-matching even inside double double quotes (’" "’). There is
currently no escape mechanism (e.g. via a backslash).

Some examples of strings, regular expressions, and patterns:

• The string ’LBAND’ will be used as a literal string for exact match. It will match only the
exact string LBAND.

• The wildcarded string ’*BAND*’ will be used as a string pattern for matching. This will
match any string which has the sub-string BAND in it.

• The string ’"*BAND*"’ will also be used as a string pattern, matching any string which has
the sub-string BAND in it.

• The string ’/.+BAND.+/’ will be used as a regular expression. This will also match any string
which as the sub-string BAND in it. (the .+ regex operator has the same meaning as the *
wildcard operator of patterns).

2.3.2 The field Parameter

The field parameter is a string that specifies which field names or ids will be processed in the
task or tool. The field selection expression consists of comma separated list of field specifications
inside the string.

Field specifications can be literal field names, regular expressions or patterns (see § 2.3.1.1). Those
fields for which the entry in the NAME column of the FIELD MS sub-table match the literal field
name/regular expression/pattern are selected. If a field name/regular expression/pattern fails to
match any field name, the given name/regular expression/pattern are matched against the field
code. If still no field is selected, an exception is thrown.

Field specifications can also be given by their integer IDs. IDs can be a single or a range of IDs.
Field ID selection can also be done as a boolean expression. For a field specification of the form
’>ID’, all field IDs greater than ID are selected. Similarly for ’<ID’ all field IDs less than the ID
are selected.

For example, if the MS has the following observations:

MS summary:
==========
FIELDID SPWID NChan Pol NRows Source Name
---------------------------------------------------------------
0 0 127 RR 10260 0530+135
1 0 127 RR 779139 05582+16320
2 0 127 RR 296190 05309+13319
3 0 127 RR 58266 0319+415
4 0 127 RR 32994 1331+305
5 1 1 RR,RL,LL,RR 23166 KTIP

one might select
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field = ’0~2,KTIP’ # FIELDID 0,1,2 and field name KTIP
field = ’0530+135’ # field 0530+135
field = ’05*’ # fields 0530+135,05582+16320,05309+13319

2.3.3 The spw Parameter

The spw parameter is a string that indicates the specific spectral windows and the channels within
them to be used in subsequent processing. Spectral window selection (’SPWSEL’) can be given as
a spectral window integer ID, a list of integer IDs, a spectral window name specified as a literal
string (for exact match) or a regular expression or pattern.

The specification can be via frequency ranges or by indexes. A range of frequencies are used to
select all spectral windows which contain channels within the given range. Frequencies can be
specified with an optional unit — the default unit being Hz. Other common choices for radio and
mm/sub-mm data are kHz, MHz, and GHz. You will get the entire spectral windows, not just the
channels in the specified range. You will need to do channel selection (see below) to do that.

The spw can also be selected via comparison for integer IDs. For example, ’>ID’ will select all
spectral windows with ID greater than the specified value, while ’<ID’ will select those with ID
lesser than the specified value.

ALERT: In the current release, ’<ID’ and ’>ID’ are inclusive with the ID specified included in
the selection, e.g. spw=’<2’ is equivalent to spw=’0,1,2’ and not spw=’0,1’ as was intended.
This will be fixed in an upcoming release.

Spectral window selection using strings follows the standard rules:

spw = ’1’ # SPWID 1
spw = ’1,3,5’ # SPWID 1,3,5
spw = ’0~3’ # SPWID 0,1,2,3
spw = ’0~3,5’ # SPWID 0,1,2,3 and 5
spw = ’<3,5’ # SPWID 0,1,2,3 and 5
spw = ’*’ # All spectral windows
spw = ’1412~1415MHz’ # Spectral windows containing 1412-1415MHz

In some cases, the spectral windows may allow specification by name. For example,

spw = ’3mmUSB, 3mmLSB’ # choose by names (if available)

might be meaningful for the dataset in question.

Note that the order in which multiple spws are given may be important for other parameters. For
example, the mode = ’channel’ in clean uses the first spw as the origin for the channelization of
the resulting image cube.

2.3.3.1 Channel selection in the spw parameter
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ALERT!
Not all options are available yet, such
as percentages or velocities. Stay
tuned!

Channel selection can be included in the spw string in the
form ’SPWSEL:CHANSEL’ where CHANSEL is the channel se-
lector. In the end, the spectral selection within a given
spectral window comes down to the selection of specific
channels. We provide a number of shorthand selection op-
tions for this. These CHANSEL options include:

• Channel ranges: ’START~STOP’

• Frequency ranges: ’FSTART~FSTOP’

• Velocity ranges: ’VSTART~VSTOP’ (not yet available)

• Bandwidth percentages: ’PSTART~PSTOP’ or ’PWIDTH’ (not yet available)

• Channel striding/stepping: ’START~STOP^STEP’ or ’FSTART~FSTOP^FSTEP’

The most common selection is via channel ranges ’START~STOP’ or frequency ranges ’FSTART~FSTOP’:

spw = ’0:13~53’ # spw 0, channels 13-53, inclusive
spw = ’0:1413~1414MHz’ # spw 0, 1413-1414MHz section only

All ranges are inclusive, with the channel given by, or containing the frequency or velocity given
by, START and STOP plus all channels between included in the selection. You can also select the
spectral window via frequency ranges ’FSTART~FSTOP’, as described above:

spw = ’1413~1414MHz:1413~1414MHz’ # channels falling within 1413~1414MHz
spw = ’*:1413~1414MHz’ # does the same thing

You can also specify multiple spectral window or channel ranges, e.g.

spw = ’2:16, 3:32~34’ # spw 2, channel 16 plus spw 3 channels 32-34
spw = ’2:1~3;57~63’ # spw 2, channels 1-3 and 57-63
spw = ’1~3:10~20’ # spw 1-3, channels 10-20
spw = ’*:4~56’ # all spw, channels 4-56

Note the use of the wildcard in the last example.

A step can be also be included using ’^STEP’ as a postfix:

spw = ’0:10~100^2’ # chans 10,12,14,...,100 of spw 0
spw = ’:^4’ # chans 0,4,8,... of all spw
spw = ’:100~150GHz^10GHz’ # closest chans to 100,110,...,150GHz

A step in frequency or velocity will pick the channel in which that frequency or velocity falls, or
the nearest channel.



CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 95

2.3.4 The selectdata Parameters

The selectdata parameter, if set to True, will expand the inputs to include a number of sub-
parameters, given below and in the individual task descriptions (if different). If selectdata =
False, then the sub-parameters are treated as blank for selection by the task. The default for
selectdata is False.

The common selectdata expanded sub-parameters are:

2.3.4.1 The antenna Parameter

The antenna selection string is a semi-colon (’;’) separated list of baseline specifications. A
baseline specification is of the form:

• ’ANT1’ — Select all baselines including the antenna(s) specified by the selector ANT1.

• ’ANT1&’ — Select only baselines between the antennas specified by the selector ANT1.

• ’ANT1&ANT2’ — Select only the cross-correlation baselines between the antennas specified by
selector ANT1 and antennas specified by selector ANT2. Thus ’ANT1&’ is an abbreviation for
’ANT1&ANT1’.

• ’ANT1&&ANT2’ — Select only auto-correlation and cross-correlation baselines between anten-
nas specified by the selectors ANT1 and ANT2. Note that this is what the default antenna=’’
gives you.

• ’ANT1&&&’ — Select only autocorrelations specified by the selector ANT1.

The selectors ANT1 and ANT2 are comma-separated lists of antenna integer-IDs or literal antenna
names, patterns, or regular expressions. The ANT strings are parsed and converted to a list of
antenna integer-IDs or IDs of antennas whose name match the given names/pattern/regular ex-
pression. Baselines corresponding to all combinations of the elements in lists on either side of
ampersand are selected.

Integer IDs can be specified as single values or a range of integers. When items of the list are parsed
as literal strings or regular expressions or patterns (see § 2.3.1 for more details on strings). All
antenna names that match the given string (exact match)/regular expression/pattern are selected.

ALERT: Just for antenna selection, a user supplied integer (or integer list) is converted to a string
and matched against the antenna name. If that fails, the normal logic of using an integer as an
integer and matching it with antenna index is done. Note that currently there is no method for
specifying a pure index (e.g. a number that will not first be checked against the name).

The comma is used only as a separator for the list of antenna specifications. The list of baselines
specifications is a semi-colon separated list, e.g.

antenna = ’1~3 & 4~6 ; 10&11’
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will select baselines between antennas 1,2,3 and 4,5,6 (’1&4’, ’1&5’, . . . , ’3&6’) plus baseline
’10&11’.

The wildcard operator (’*’) will be the most often used pattern. To make it easy to use, the
wildcard (and only this operator) can be used without enclosing it in quotes. For example, the
selection

antenna = ’VA*’

will match all antenna names which have ’VA’ as the first 2 characters in the name (irrespective
of what follows after these characters).

There is also a negation operator “!” that can be used to de-select antennas or baselines.

Some examples:

antenna=’’ # shows blank autocorr pages
antenna=’*&*’ # does not show the autocorrs
antenna=’*&&*’ # show both auto and cross-cor (default)
antenna=’*&&&’ # shows only autocorrs

antenna=’5&*’ # shows non-auto baselines with AN 5

antenna=’5,6&&&’ # AN 5 and 6 autocor
antenna=’5&&&;6&*’ # AN 5 autocor plus cross-cors to AN 6

antenna=’!5’ # baselines not involving AN 5

Antenna numbers as names: Needless to say, naming antennas such that the names can also
be parsed as a valid token of the syntax is a bad idea. Nevertheless, antenna names that contain
any of the reserved characters and/or can be parsed as integers or integer ranges can still be used
by enclosing the antenna names in double quotes (’ "ANT" ’). E.g. the string

antenna = ’10~15,21,VA22’

will expand into an antenna ID list 10,11,12,13,14,15,21,22 (assuming the index of the antenna
named ’VA22’ is 22). If, however, the antenna with ID index 50 is named ’21’, then the string

antenna = ’10~15,21,VA22’

will expand into an antenna ID list of 10,11,12,13,14,15,50,22. Keep in mind that numbers are
FIRST matched against names, and only against indices if that matching fails. There is currently
no way to force a selection to use the index, and if there an antenna with that name it will select
that.

Read elsewhere (e.g. info regex under Unix) for details of regular expression and patterns.
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2.3.4.2 The scan Parameter

The scan parameter selects the scan ID numbers of the data. There is currently no naming
convention for scans. The scan ID is filled into the MS depending on how the data was obtained,
so use this with care.

Examples:

scan = ’3’ # scan number 3.
scan = ’1~8’ # scan numbers 1 through 8, inclusive
scan = ’1,2,4,6’ # scans 1,2,4,6
scan = ’<9’ # scans <9 (1-8)

NOTE: ALMA and VLA/EVLA number scans starting with 1 and not 0. You can see what the
numbering is in your MS using the listobs task with verbose=True (see § 2.2.5).

2.3.4.3 The timerange Parameter

The time strings in the following (T0, T1 and dT) can be specified as YYYY/MM/DD/HH:MM:SS.FF.
The time fields (i.e., YYYY, MM, DD, HH, MM, SS and FF), starting from left to right, may be omitted
and they will be replaced by context sensitive defaults as explained below.

Some examples:

1. timerange=’T0~T1’: Select all time stamps from T0 to T1. For example:

timerange = ’2007/10/09/00:40:00 ~ 2007/10/09/03:30:00’

Note that fields missing in T0 are replaced by the fields in the time stamp of the first valid
row in the MS. For example,

timerange = ’09/00:40:00 ~ 09/03:30:00’

where the YY/MM/ part of the selection has been defaulted to the start of the MS.
Fields missing in T1, such as the date part of the string, are replaced by the corresponding
fields of T0 (after its defaults are set). For example:

timerange = ’2007/10/09/22:40:00 ~ 03:30:00’

does the same thing as above.

2. timerange=’T0’: Select all time stamps that are within an integration time of T0. For
example,

timerange = ’2007/10/09/23:41:00’

Integration time is determined from the first valid row (more rigorously, an average integration
time should be computed). Default settings for the missing fields of T0 are as in (1).
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3. timerange=’T0+dT’: Select all time stamps starting from T0 and ending with time stamp
T0+dT. For example,

timerange = ’23:41:00+01:00:00’

picks an hour-long chunk of time.

Defaults of T0 are set as usual. Defaults for dT are set from the time corresponding to MJD=0.
Thus, dT is a specification of length of time from the assumed nominal ”start of time”.

4. timerange=’>T0’: Select all times greater than T0. For example,

timerange = ’>2007/10/09/23:41:00’
timerange = ’>23:41:00’ # Same thing without day specification

Default settings for T0 are as above.

5. timerange=’<T1’: Select all times less than T1. For example,

timerange = ’<2007/10/09/23:41:00’

Default settings for T1 are as above.

An ultra-conservative selection might be:

timerange = ’1960/01/01/00:00:00~2020/12/31/23:59:59’

which would choose all possible data!

2.3.4.4 The uvrange Parameter

Rows in the MS can also be selected based on the uv-distance or physical baseline length that the
visibilities in each row correspond to. This uvrange can be specified in various formats.

The basic building block of uv-distance specification is a valid number with optional units in the
format N[UNIT] (the unit in square brackets is optional). We refer to this basic building block
as UVDIST. The default unit is meter. Units of length (such as ’m’ and ’km’) select physical
baseline distances (independent of wavelength). The other allowed units are in wavelengths (such
as ’lambda’, ’klambda’ and ’Mlambda’ and are true uv-plane radii

ruv =
√

u2 + v2. (2.1)

If only a single UVDIST is specified, all rows, the uv-distance of which exactly matches the given
UVDIST, are selected.

UVDIST can be specified as a range in the format ’N0~N1[UNIT]’ (where N0 and N1 are valid
numbers). All rows corresponding to uv-distance between N0 and N1 (inclusive) when converted
the specified units are selected.
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UVDIST can also be selected via comparison operators. When specified in the format ’>UVDIST’, all
visibilities with uv-distances greater than the given UVDIST are selected. Likewise, when specified
in the format ’<UVDIST’, all rows with uv-distances less than the given UVDIST are selected.

Any number of above mentioned uv-distance specifications can be given as a comma-separated list.

Examples:

uvrange = ’100~200km’ # an annulus in physical baseline length
uvrange = ’24~35Mlambda, 40~45Mlambda’ # two annuli in units of mega-wavelengths
uvrange = ’< 45klambda’ # less than 45 kilolambda
uvrange = ’> 0lambda’ # greater than zero length (no auto-corrs)
uvrange = ’100km’ # baselines of length 100km
uvrange = ’100klambda’ # uv-radius 100 kilolambda

2.3.4.5 The msselect Parameter

More complicated selections within the MS structure are possible using the Table Query Language
(TaQL). This is accessed through the msselect parameter.

Note that the TaQL syntax does not follow the rules given in § 2.3.1 for our other selection strings.
TaQL is explained in more detail in Aips++ NOTE 199 — Table Query Language (http:
//aips2.nrao.edu/docs/notes/199/199.html). This will eventually become a CASA document.
The specific columns of the MS are given in the most recent MS specification document: Aips++
NOTE 229 — MeasurementSet definition version 2.0 (http://aips2.nrao.edu/docs/
notes/229/229.html). This documentation will eventually be updated to the CASA document
system.

Most selection can be carried out using the other selection parameters. However, these are merely
shortcuts to the underlying TaQL selection. For example, field and spectral window selection can
be done using msselect rather than through field or spw:

msselect=’FIELD_ID == 0’ # Field id 0 only
msselect=’FIELD_ID <= 1’ # Field id 0 and 1
msselect=’FIELD_ID IN [1,2]’ # Field id 1 and 2
msselect=’FIELD_ID==0 && DATA_DESC_ID==3’ # Field id 0 in spw id 3 only

ALERT: The msselect style parameters will be phased out of the tasks. TaQL selection will still
be available in the Toolkit.

http://aips2.nrao.edu/docs/notes/199/199.html
http://aips2.nrao.edu/docs/notes/199/199.html
http://aips2.nrao.edu/docs/notes/229/229.html
http://aips2.nrao.edu/docs/notes/229/229.html


Chapter 3

Data Examination and Editing

3.1 Plotting and Flagging Visibility Data in CASA

The tasks available for plotting and flagging of data are:

• flagmanager — manage versions of data flags (§ 3.2)

• flagautocorr — non-interactive flagging of auto-correlations (§ 3.3)

• plotms — prototype next-generation X-Y MS plotter (§ 3.4.1)

• plotxy — create X-Y plots of data in MS, flag data (§ 3.4.2)

• flagdata — non-interactive flagging of data (§ 3.5)

• browsetable — browse data in any CASA table (including a MS) (§ 3.6)

• plotants — create simple plots of antenna positions (§ 3.4.3)

The following sections describe the use of these tasks.

Information on other related operations can be found in:

• listobs — list summary of a MS (§ 2.2.5)

• listvis — list data in a MS (§ 2.2.6)

• selectdata — general data selection syntax (§ 2.3)

• viewer — use the casaviewer to display the MS as a raster image, and flag it (§ 7)

100
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3.2 Managing flag versions with flagmanager

The flagmanager task will allow you to manage different versions of flags in your data. These are
stored inside a CASA flagversions table, under the name of the MS <msname>.flagversions. For
example, for the MS jupiter6cm.usecase.ms, there will need to be jupiter6cm.usecase.ms.flagversions
on disk. This is created on import (by importvla or importuvfits) or when flagging is first done
on an MS without a .flagversions (e.g. with plotxy).

By default, when the .flagversions is created, this directory will contain a flags.Original in
it containing a copy of the original flags in the MAIN table of the MS so that you have a backup.
It will also contain a file called FLAG VERSION LIST that has the information on the various flag
versions there.

The inputs for flagmanager are:

vis = ’’ # Name of input visibility file (MS)
mode = ’list’ # Flag management operation (list,save,restore,delete)

The mode=’list’ option will list the available flagversions from the <msname>.flagversions file.
For example:

CASA <102>: default(’flagmanager’)
CASA <103>: vis = ’jupiter6cm.usecase.ms’
CASA <104>: mode = ’list’
CASA <105>: flagmanager()
MS : /home/imager-b/smyers/Oct07/jupiter6cm.usecase.ms

main : working copy in main table
Original : Original flags at import into CASA
flagautocorr : flagged autocorr
xyflags : Plotxy flags

The mode parameter expands the options. For example, if you wish to save the current flagging
state of vis=<msname>,

mode = ’save’ # Flag management operation (list,save,restore,delete)
versionname = ’’ # Name of flag version (no spaces)
comment = ’’ # Short description of flag version
merge = ’replace’ # Merge option (replace, and, or)

with the output version name specified by versionname. For example, the above xyflags version
was written using:

default(’flagmanager’)
vis = ’jupiter6cm.usecase.ms’
mode = ’save’
versionname = ’xyflags’
comment = ’Plotxy flags’
flagmanager()
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and you can see that there is now a sub-table in the flagversions directory

CASA <106>: ls jupiter6cm.usecase.ms.flagversions/
IPython system call: ls -F jupiter6cm.usecase.ms.flagversions/
flags.flagautocorr flags.Original flags.xyflags FLAG_VERSION_LIST

It is recommended that you use this facility regularly to save versions during flagging.

You can restore a previously saved set of flags using the mode=’restore’ option:

mode = ’restore’ # Flag management operation (list,save,restore,delete)
versionname = ’’ # Name of flag version (no spaces)
merge = ’replace’ # Merge option (replace, and, or)

The merge sub-parameter will control the action. For merge=’replace’, the flags in versionname
will replace those in the MAIN table of the MS. For merge=’and’, only data that is flagged in
BOTH the current MAIN table and in versionname will be flagged. For merge=’or’, data flagged
in EITHER the MAIN or in versionname will be flagged.

The mode=’delete’ option can be used to remove versionname from the flagversions:

mode = ’delete’ # Flag management operation (list,save,restore,delete)
versionname = ’’ # Name of flag version (no spaces)

3.3 Flagging auto-correlations with flagautocorr

The flagautocorr task can be used if all you want to do is to flag the auto-correlations out of the
MS. Nominally, this can be done upon filling from the VLA for example, but you may be working
from a dataset that still has them.

This task has a single input, the MS file name:

vis = ’’ # Name of input visibility file (MS)

To use it, just set and go:

CASA <90>: vis = ’jupiter6cm.usecase.ms’
CASA <91>: flagautocorr()

Note that the auto-correlations can also be flagged using flagdata (§ 3.5) but the flagautocorr
task is an handy shortcut for this common operation.
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3.4 X-Y Plotting and Editing of the Data

There are three main X-Y plotting tasks in CASA:

• plotms — prototype next-generation X-Y MS plotter (§ 3.4.1)

• plotxy — create X-Y plots of data in MS, flag data (§ 3.4.2)

• plotants — create simple plots of antenna positions (§ 3.4.3)

3.4.1 MS Plotting and Editing using casaplotms

ALERT: The casaplotms tool is a standalone plotter application based on Qt. It is intended to
replace plotxy and will be more fully functional in the next release.

You can also start the application outside CASA (e.g. by typing casaplotms) or from inside the
shell using the OS command syntax, either !casaplotms from IPython, or os.system(’casaplotms’)
from IPython or script.

The current inputs to the plotms task are:

# plotms :: A plotter/interactive flagger for visibility data.
vis = ’’ # input visibility dataset (blank for none)
xaxis = ’’ # plot x-axis (blank for default/current)
yaxis = ’’ # plot y-axis (blank for default/current)
selectdata = True # data selection parameters

field = ’’ # field names or field index numbers (blank for all)
spw = ’’ # spectral windows:channels (blank for all)
timerange = ’’ # time range (blank for all)
uvrange = ’’ # uv range (blank for all)
antenna = ’’ # antenna/baselines (blank for all)
scan = ’’ # scan numbers (blank for all)
correlation = ’’ # correlations (blank for all)
array = ’’ # (sub)array numbers (blank for all)
msselect = ’’ # MS selection (blank for all)

averagedata = True # data averaging parameters
avgchannel = ’’ # average over channel? (blank = False, otherwise value in channels)
avgtime = ’’ # average over time? (blank = False, other value in seconds)
avgscan = False # only valid if time averaging is turned on. average over scans?
avgfield = False # only valid if time averaging is turned on. average over fields?
avgbaseline = False # average over all baselines? (mutually exclusive with avgantenna)
avgantenna = False # average by per-antenna? (mutually exclusive with avgbaseline)
avgspw = False # average over all spectral windows?

extendflag = False # have flagging extend to other data points?
plotxycomp = False # use plotxy compliance parameters?
async = False # If true the taskname must be started using plotms(...)
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You can find a short example of using casaplotms on the CASAGuides Wiki:

http://casaguides.nrao.edu/index.php?title=Data_flagging_with_casaplotms

3.4.2 Plotting and Editing using plotxy

ALERT: The plotxy code is fragile and slow, and is being replaced by the plotms (§ 3.4.1). We
retain plotxy in this release as not all functionality is available yet in plotms.

Inside the Toolkit:
Access to matplotlib is also pro-
vided through the pl tool. See be-
low for a description of the pl tool
functions.

The principal way to get X-Y plots of visibility data is using
the plotxy task. This task also provides editing capability.
CASA uses the matplotlib plotting library to display its
plots. You can find information on matplotlib at http:
//matplotlib.sourceforge.net/.

To bring up this plotter use the plotxy task. The inputs
are:

# plotxy :: X-Y plotter/interactive flagger for visibility data

vis = ’’ # Name of input visibility
xaxis = ’time’ # X-axis: def = ’time’: see help for options
yaxis = ’amp’ # Y-axis: def = ’amp’: see help for options

datacolumn = ’data’ # data (raw), corrected, model, residual (corrected - model)

selectdata = False # Other data selection parameters
spw = ’’ # spectral window:channels: ’’==>all, spw=’1:5~57’
field = ’’ # field names or index of calibrators: ’’==>all
averagemode = ’’ # Select averaging type: ’vector’, ’scalar’
restfreq = ’’ # a frequency quanta or transition name. see help for options
extendflag = False # Have flagging extend to other data points?
subplot = 111 # Panel number on display screen (yxn)
plotsymbol = ’.’ # Options include . : , o ^ v > < s + x D d 2 3 4 h H | _
plotcolor = ’darkcyn’ # Plot color
plotrange = [-1, -1, -1, -1] # The range of data to be plotted (see help)
multicolor = ’corr’ # Plot in different colors: Options: none, both, chan, corr
selectplot = False # Select additional plotting options (e.g, fontsize, title,etc)
overplot = False # Overplot on current plot (if possible)
showflags = False # Show flagged data?
interactive = True # Show plot on gui?
figfile = ’’ # ’’= no plot hardcopy, otherwise supply name
async = False # If true the taskname must be started using plotxy(...)

ALERT: The plotxy task expects all of the scratch columns to be present in the MS, even if it
is not asked to plot the contents. If you get an error to the effect "Invalid Table operation:
Table: cannot add a column" then use clearcal() to force these columns to be made in the
MS. Note that this will clear anything in all scratch columns (in case some were actually there and
being used).

Setting selectdata=True opens up the selection sub-parameters:

http://casaguides.nrao.edu/index.php?title=Data_flagging_with_casaplotms
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
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Figure 3.1: The plotxy plotter, showing the Jupiter data versus uv-distance. You can see bad
data in this plot. The bottom set of buttons on the lower left are: 1,2,3) Home, Back, and
Forward. Click to navigate between previously defined views (akin to web navigation). 4) Pan.
Click and drag to pan to a new position. 5) Zoom. Click to define a rectangular region for zooming.
6) Subplot Configuration. Click to configure the parameters of the subplot and spaces for the
figures. 7) Save. Click to launch a file save dialog box. The upper set of buttons in the lower
left are: 1) Mark Region. Press this to begin marking regions (rather than zooming or panning).
2,3,4) Flag, Unflag, Locate. Click on these to flag, unflag, or list the data within the marked
regions. 5) Next. Click to move to the next in a series of iterated plots. Finally, the cursor
readout is on the bottom right.

selectdata = True # Other data selection parameters
antenna = ’’ # antenna/baselines: ’’==>all, antenna = ’3,VA04’
timerange = ’’ # time range: ’’==>all
correlation = ’’ # correlations: default = ’’
scan = ’’ # scan numbers: Not yet implemented
feed = ’’ # multi-feed numbers: Not yet implemented
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array = ’’ # array numbers: Not yet implemented
uvrange = ’’ # uv range’’==>all; uvrange = ’0~100kl’ (default unit=meters)

These are described in § 2.3.

Averaging is controlled with the set of parameters

averagemode = ’vector’ # Select averaging type: vector, scalar
timebin = ’0’ # Length of time-interval in seconds to average
crossscans = False # Have time averaging cross scan boundaries?
crossbls = False # have averaging cross over baselines?
crossarrays = False # have averaging cross over arrays?
stackspw = False # stack multiple spw on top of each other?
width = ’1’ # Number of channels to average

See § 3.4.2.9 below for more on averaging.

You can extend the flagging beyond the data cell plotted:

extendflag = True # Have flagging extend to other data points?
extendcorr = ’’ # flagging correlation extension type
extendchan = ’’ # flagging channel extension type
extendspw = ’’ # flagging spectral window extension type
extendant = ’’ # flagging antenna extension type
extendtime = ’’ # flagging time extension type

See § 3.4.2.11 below for more on flag extension.

The restfreq parameter can be set to a transition or frequency:

restfreq = ’HI’ # a frequency quanta or transition name. see help for options
frame = ’LSRK’ # frequency frame for spectral axis. see help for options
doppler = ’RADIO’ # doppler mode. see help for options

See § 3.4.2.12 below for more on setting rest frequencies and frames.

Setting selectplot=True will open up a set of plotting control sub-parameters. These are described
in § 3.4.2.2 below.

The interactive and figfile parameters allow non-interactive production of hardcopy plots. See
§ 3.4.2.13 for more details on saving plots to disk.

The iteration, overplot, plotrange, plotsymbol, showflags and subplot parameters deserve
extra explanation, and are described below.

For example:

plotxy(vis=’jupiter6cm.ms’, # jupiter 6cm dataset
xaxis=’uvdist’, # plot uv-distance on x-axis
yaxis=’amp’, # plot amplitude on y-axis



CHAPTER 3. DATA EXAMINATION AND EDITING 107

field=’JUPITER’, # plot only JUPITER
selectdata=True, # open data selection
correlation=’RR,LL’, # plot RR and LL correlations
selectplot=True, # open plot controls
title = ’Jupiter 6cm uncalibrated’) # give it a title

The plotter resulting from these settings is shown in figure 3.1.

ALERT: The plotxy task still has a number of issues. The averaging has been greatly speeded up
in this release, but there are cases where the plots will be made incorrectly. In particular, there are
problems plotting multiple spw at the same time. There are sometimes also cases where data that
you have flagged in plotxy from averaged data is done so incorrectly. This task is under active
developement for the next cycle to fix these remaining problems, so users should be aware of this.

ALERT: Another know problem with (plotxy) is that it fails if the path to your working directory
contains spaces in its name, e.g. /users/smyers/MyTest/ is fine, but /users/smyers/My Test/
is not!

3.4.2.1 GUI Plot Control

You can use the various buttons on the plotxy GUI to control its operation – in particular, to
determine flagging and unflagging behaviors.

There is a standard row of buttons at the bottom. These include (left to right):

• Home — The “house” button (1st on left) returns to the original zoom level.

• Step — The left and right arrow buttons (2nd and 3rd from left) step through the zoom
settings you’ve visited.

• Pan — The “four-arrow button” (4th from left) lets you pan in zoomed plot.

• Zoom — The most useful is the “magnifying glass” (5th from the left) which lets you draw
a box and zoom in on the plot.

• Panels — The “window-thingy” button (second from right) brings up a menu to adjust the
panel placement in the plot.

• Save – The “disk” button (last on right) saves a .png copy of the plot to a generically named
file on disk.

In a row above these, there are a set of other buttons (left to right):

• Mark Region — If depressed lets you draw rectangles to mark points in the panels. This
is done by left-clicking and dragging the mouse. You can Mark multiple boxes before doing
something. Clicking the button again will un-depress it and forget the regions. ESC will
remove the last region marked.
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• Flag — Click this to Flag the points in a marked region.

• Unflag — Click this to Unflag any flagged point that would be in that region (even if
invisible).

• Locate — Print out some information to the logger on points in the marked regions.

• Next — Step to the next plot in an iteration.

• Quit — Exit plotcal, clear the window and detach from the MS.

These buttons are shared with the plotcal tool.

3.4.2.2 The selectplot Parameters

These parameters work in concert with the native matplotlib functionality to enable flexible repre-
sentations of data displays.

Setting selectplot=True will open up a set of plotting control sub-parameters:

selectplot = True # Select additional plotting options (e.g, fontsize, title,etc)
markersize = 5.0 # Size of plotted marks
linewidth = 1.0 # Width of plotted lines
skipnrows = 1 # Plot every nth point
newplot = False # Replace the last plot or not when overplotting
clearpanel = ’Auto’ # Specify if old plots are cleared or not
title = ’’ # Plot title (above plot)
xlabels = ’’ # Label for x-axis
ylabels = ’’ # Label for y-axis
fontsize = 10.0 # Font size for labels
windowsize = 5.0 # Window size: not yet implemented

Inside the Toolkit:
For even more functionality, you can
access the pl tool directly using Py-
lab functions that allow one to an-
notate, alter, or add to any plot
displayed in the matplotlib plotter
(e.g. plotxy).

The markersize parameter will change the size of the plot
symbols. Increasing it will help legibility when doing screen
shots. Decreasing it can help in congested plots. The
linewidth parameter will do similar things to the lines.

The skipnrows parameter, if set to an integer n greater
than 1, will allow only every nth point to be plotted. It does
this, as the name suggests, by skipping over whole rows of
the MS, so beware (channels are all within the same row for
a given spw). Be careful flagging on data where you have
skipped points! Note that you can also reduce the number
of points plotted via averaging (§ 3.4.2.9) or channel striding in the spw specification (§ 2.3.3).

The newplot toggle lets you choose whether or not the last layer plotted is replaced when overplot=True,
or whether a new layer is added.
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The clearpanel parameter turns on/off the clearing of plot panels that lie under the current
panel layer being plotted. The options are: ’none’ (clear nothing), ’auto’ (automatically clear
the plotting area), ’current’ (clear the current plot area only), and ’all’ (clear the whole plot
panel).

The title, xlabels, and ylabels parameters can be used to change the plot title and axes labels.

The fontsize parameter is useful in order to enlarge the label fonts so as to be visible when making
plots for screen capture, or just to improve legibility. Shrinking can help if you have lots of panels
on the plot also.

The windowsize parameter is supposed to allow adjustments on the window size. ALERT: This
currently does nothing, unless you set it below 1.0, in which case it will produce an error.

3.4.2.3 The iteration parameter

There are currently four iteration options available: ’field’, ’antenna’, and ’baseline’. If
one of these options is chosen, the data will be split into separate plot displays for each value of
the iteration axis (e.g., for the VLA, the ’antenna’ option will get you 27 displays, one for each
antenna).

An example use of iteration:

# choose channel averaging, every 5 channels
plotxy(’n5921.ms’,’channel’,subplot=221,iteration=’antenna’,width=’5’)

The results of this are shown in Figure 3.2. Note that this example combines the use of width,
iteration and subplot.

NOTE: If you use iteration=’antenna’ or ’baseline’, be aware if you have set antenna selec-
tion. You can also control whether you see auto-correlations or not using the appropriate syntax,
e.g. antenna=’*&&*’ or antenna=’*&&&’ (§ 2.3.4.1).

3.4.2.4 The overplot parameter

The overplot parameter toggles whether the current plot will be overlaid on the previous plot
or subpanel (via the subplot setting, § section:edit.plot.plotxy.subplot) or will overwrite it. The
default is False and the new plot will replace the old.

The overplot parameter interacts with the newplot sub-parameter (see § 3.4.2.2).

See § 3.4.2.7 for an example using overplot.

3.4.2.5 The plotrange parameter

The plotrange parameter can be used to specify the size of the plot. The format is [xmin, xmax,
ymin, ymax]. The units are those on the plot. For example,
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Figure 3.2: The plotxy iteration plot. The first set of plots from the example in § 3.4.2.3 with
iteration=’antenna’. Each time you press the Next button, you get the next series of plots.

plotrange = [-20,100,15,30]

Note that if xmin=xmax and/or ymin=ymax, then the values will be ignored and a best guess will be
made to auto-range that axis. ALERT: Unfortunately, the units for the time axis must be in Julian
Days, which are the plotted values.

3.4.2.6 The plotsymbol parameter

The plotsymbol parameter defines both the line or symbol for the data being drawn as well as the
color; from the matplotlib online documentation (e.g., type pl.plot? for help):
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The following line styles are supported:
- : solid line
-- : dashed line
-. : dash-dot line
: : dotted line
. : points
, : pixels
o : circle symbols
^ : triangle up symbols
v : triangle down symbols
< : triangle left symbols
> : triangle right symbols
s : square symbols
+ : plus symbols
x : cross symbols
D : diamond symbols
d : thin diamond symbols
1 : tripod down symbols
2 : tripod up symbols
3 : tripod left symbols
4 : tripod right symbols
h : hexagon symbols
H : rotated hexagon symbols
p : pentagon symbols
| : vertical line symbols
_ : horizontal line symbols
steps : use gnuplot style ’steps’ # kwarg only

The following color abbreviations are supported
b : blue
g : green
r : red
c : cyan
m : magenta
y : yellow
k : black
w : white

In addition, you can specify colors in many weird and
wonderful ways, including full names ’green’, hex strings
’#008000’, RGB or RGBA tuples (0,1,0,1) or grayscale
intensities as a string ’0.8’.
Line styles and colors are combined in a single format string, as in
’bo’ for blue circles.

3.4.2.7 The showflags parameter

The showflags parameter determines whether only unflagged data (showflags=False) or flagged
(showflags=True) data is plotted by this execution. The default is False and will show only
unflagged “good” data.

Note that if you want to plot both unflagged and flagged data, in different colors, then you need
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to run plotxy twice using overplot (see § 3.4.2.4) the second time, e.g.

> plotxy(vis="myfile", xaxis=’uvdist’, yaxis=’amp’ )
> plotxy(vis="myfile", xaxis=’uvdist’, yaxis=’amp’, overplot=True, showflags=True )

3.4.2.8 The subplot parameter

The subplot parameter takes three numbers. The first is the number of y panels (stacking ver-
tically), the second is the number of xpanels (stacking horizontally) and the third is the number
of the panel you want to draw into. For example, subplot=212 would draw into the lower of two
panels stacked vertically in the figure.

An example use of subplot capability is shown in Fig 3.3. These were drawn with the commands
(for the top, bottom left, and bottom right panels respectively):

plotxy(’n5921.ms’,’channel’, # plot channels for the n5921.ms data set
field=’0’, # plot only first field
datacolumn=’corrected’, # plot corrected data
plotcolor=’’, # over-ride default plot color
plotsymbol=’go’, # use green circles
subplot=211) # plot to the top of two panels

plotxy(’n5921.ms’,’x’, # plot antennas for n5921.ms data set
field=’0’, # plot only first field
datacolumn=’corrected’, # plot corrected data
subplot=223, # plot to 3rd panel (lower left) in 2x2 grid
plotcolor=’’, # over-ride default plot color
plotsymbol=’r.’) # red dots

plotxy(’n5921.ms’,’u’,’v’, # plot uv-coverage for n5921.ms data set
field=’0’, # plot only first field
datacolumn=’corrected’, # plot corrected data
subplot=224, # plot to the lower right in a 2x2 grid
plotcolor=’’, # over-ride default plot color
plotsymbol=’b,’) # blue, somewhat larger dots

# NOTE: You can change the gridding
# and panel size by manipulating
# the ny x nx grid.

See also § 3.4.2.3 above, and Figure 3.2 for an example of channel averaging using iteration and
subplot.

3.4.2.9 Averaging in plotxy

The averaging parameters and sub-parameters are:
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Figure 3.3: Multi-panel display of visibility versus channel (top), antenna array
configuration (bottom left) and the resulting uv coverage (bottom right). The
commands to make these three panels respectively are: 1) plotxy(’ngc5921.ms’,
xaxis=’channel’, datacolumn=’data’, field=’0’, subplot=211, plotcolor=’’,
plotsymbol=’go’) 2) plotxy(’ngc5921.ms’, xaxis=’x’, field=’0’, subplot=223,
plotsymbol=’r.’), 3) plotxy(’ngc5921.ms’, xaxis=’u’, yaxis=’v’, field=’0’,
subplot=224, plotsymbol=’b,’,figfile=’ngc5921 multiplot.png’).

averagemode = ’vector’ # Select averaging type: vector, scalar
timebin = ’0’ # length of time in seconds to average, default=’0’, or: ’all’
crossscans = False # have time averaging cross over scans?
crossbls = False # have averaging cross over baselines?
crossarrays = False # have averaging cross over arrays?
stackspw = False # stack multiple spw on top of each other?
width = ’1’ # number of channels to average, default: ’1’, or: ’all’, ’allspw’
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The choice of averagemode controls how the amplitudes are calculated in the average. The default
mode is ’vector’, where the complex average is formed by averaging the real and imaginary parts
of the relevant visibilities. If ’scalar’ is chosen, then the amplitude of the average is formed by a
scalar average of the individual visibility amplitudes.

Time averaging is effected by setting the timebin parameter to a value larger than the integration
time. Currently, timebin takes a string containing the averaging time in seconds, e.g.

timebin = ’60.0’

to plot one-minute averages.

Channel averaging is invoked by setting width to a value greater than 1. Currently, the averaging
width is given as a number of channels.

By default, the averaging will not cross scan boundaries (as set in the import process). However,
if crossscans=True, then averaging will cross scans.

Note that data taken in different sub-arrays are never averaged together. Likewise, there is no way
to plot data averaged over field.

3.4.2.10 Interactive Flagging in plotxy

Hint!
In the plotting environments such as
plotxy, the ESC key can be used to
remove the last region box drawn.

Interactive flagging, on the principle of “see it — flag it”, is
possible on the X-Y display of the data plotted by plotxy.
The user can use the cursor to mark one or more regions,
and then flag, unflag, or list the data that falls in these
zones of the display.

There is a row of buttons below the plot in the window. You
can punch the Mark Region button (which will appear
to depress), then mark a region by left-clicking and dragging the mouse (each click and drag will
mark an additional region). You can get rid of all your regions by clicking again on the Mark
Region button (which will appear to un-depress), or you can use the ESC key to remove the last
box you drew. Once regions are marked, you can then click on one of the other buttons to take
action:

1. Flag — flag the points in the region(s),

2. Unflag — unflag flagged points in the region(s),

3. Locate — spew out a list of the points in the region(s) to the logger (Warning: this could
be a long list!).

Whenever you click on a button, that action occurs without forcing a disk-write (unlike previous
versions). If you quit plotxy and re-enter, you will see your previous edits.

A table with the name <msname>.flagversions (where vis=<msname>) will be created in the same
directory if it does not exist already.

It is recommended that you save important flagging stages using the flagmanager task (§ 3.2).
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Figure 3.4: Plot of amplitude versus uv distance, before (left) and after (right) flagging two marked
regions. The call was: plotxy(vis=’ngc5921.ms’,xaxis=’uvdist’, field=’1445*’).

3.4.2.11 Flag extension in plotxy

Flag extension is controlled using extendflag=T and its sub-parameters:

extendflag = True # Have flagging extend to other data points?
extendcorr = ’’ # flagging correlation extension type
extendchan = ’’ # flagging channel extension type
extendspw = ’’ # flagging spectral window extension type
extendant = ’’ # flagging antenna extension type
extendtime = ’’ # flagging time extension type

The use of extendflag enables the user to plot a subset of the data and extend the flagging to a
wider set.

ALERT: Using the extendflag options will greatly slow down the flagging in plotxy. You will see
a long delay after hitting the Flag button, with lots of logger messages as it goes through each flag.
Fixing this requires a refactoring of plotxy which is underway starting in Patch 4 development.

Setting extendchan=’all’ will extend the flagging to other channels in the same spw as the dis-
played point. For example, if spw=’0:0’ and channel 0 is displayed, then flagging will extend to
all channels in spw 0.

The extendcorr sub-parameter will extend the flagging beyond the correlations displayed. If
extendcorr=’all’, then all correlations will be flagged, e.g. with RR displayed RR,RL,LR,LL will
be flagged. If extendcorr=’half’, then the extension will be to those correlations in common with
that show, e.g. with RR displayed then RR,RL,LR will be flagged.
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Setting extendspw=’all’ will extend the flagging to all other spw for the selection. Using the
same example as above, with spw=’0:0’ displayed, then channel 0 in ALL spw will be flagged.
Note that use of extendspw could result in unintended behavior if the spw have different numbers
of channels, or if it is used in conjunction with extendchan.

WARNING: use of the following options, particularly in conjunction with other flag extensions,
may lead to deletion of much more data than desired. Be careful!

Setting extendant=’all’ will extend the flagging to all baselines that have antennas in common
with those displayed and marked. For example, if antenna=’1&2’ is shown, then ALL baselines to
BOTH antennas 1 and 2 will be flagged. Currently, there is no option to extend the flag to ONLY
baselines to the first (or second) antenna in a displayed pair, so it is better to use flagdata to
remove specific antennas.

Setting extendtime=’all’ will extend the flagging to all times matching the other selection or
extension for the data in the marked region.

3.4.2.12 Setting rest frequencies in plotxy

The restfreq parameter can be set to a transition or frequency and expands to allow setting of
frame information. For example,

restfreq = ’HI’ # a frequency quanta or transition name. see help for options
frame = ’LSRK’ # frequency frame for spectral axis. see help for options
doppler = ’RADIO’ # doppler mode. see help for options

Examples of transitions include:

restfreq=’1420405751.786Hz’ # 21cm HI frequency
restfreq=’HI’ # 21cm HI transition name
restfreq=’115.2712GHz’ # CO 1-0 line frequency

For a list of known lines in the CASA measures system, use the toolkit command me.linelist().
For example:

CASA <14>: me.linelist()
Out[14]: ’C109A CI CII166A DI H107A H110A H138B H166A H240A H272A H2CO HE110A HE138B HI OH1612 OH1665 OH1667 OH1720’

ALERT: The list of known lines in CASA is currently very restricted, and will be increased in
upcoming releases (to include lines in ALMA bands for example).

You can use the me.spectralline tool method to turn transition names into frequencies

CASA <16>: me.spectralline(’HI’)
Out[17]:

{’m0’: {’unit’: ’Hz’, ’value’: 1420405751.786},
’refer’: ’REST’,
’type’: ’frequency’}
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(not necessary for this task, but possibly useful).

The frame sub-parameter sets the frequency frame. The allowed options can be listed using the
me.listcodes method on the me.frequency() method, e.g.

CASA <17>: me.listcodes(me.frequency())
Out[17]:

{’extra’: array([],
dtype=’|S1’),

’normal’: array([’REST’, ’LSRK’, ’LSRD’, ’BARY’, ’GEO’, ’TOPO’, ’GALACTO’, ’LGROUP’,
’CMB’],
dtype=’|S8’)}

The doppler sub-parameter likewise sets the Doppler system. The allowed codes can be listed
using the me.listcodes method on the me.doppler() method,

CASA <18>: me.listcodes(me.doppler())
Out[18]:

{’extra’: array([],
dtype=’|S1’),

’normal’: array([’RADIO’, ’Z’, ’RATIO’, ’BETA’, ’GAMMA’, ’OPTICAL’, ’TRUE’,
’RELATIVISTIC’],
dtype=’|S13’)}

For most cases the ’RADIO’’ Doppler system is appropriate, but be aware of differences.

For more information on frequency frames and spectral coordinate systems, see the paper by Greisen
et al. (A&A, 446, 747, 2006) 1.

3.4.2.13 Printing from plotxy

There are two ways to get hardcopy plots in plotxy.

The first is to use the “disk save” icon from the interactive plot GUI to print the current plot. This
will bring up a sub-menu GUI that will allow you to choose the filename and format. The allowed
formats are .png (PNG), .eps (EPS), and svg (SVG). If you give the filename with a suffix (.png,
.eps, or svg) it will make a plot of that type. Otherwise it will put a suffix on depending on the
format chosen from the menu.

ALERT: The plot files produced by the EPS option can be large, and the SVG files can be very
large. The PNG is the smallest.

The second is to specify a figfile. You probably want to disable the GUI using interactive=False
in this case. The type of plot file that is made will depend upon the filename suffix. The allowed
choices are .png (PNG), .eps (EPS), and svg (SVG).

This latter option is most useful from scripts. For example,
1Also at http://www.aoc.nrao.edu/~egreisen/scs.ps

http://www.aoc.nrao.edu/~egreisen/scs.ps
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default(’plotxy’)
vis = ’ngc5921.ms’
field = ’2’
spw = ’’
xaxis = ’uvdist’
yaxis = ’amp’
interactive=False
figfile = ’ngc5921.uvplot.amp.png’
plotxy()

will plot amplitude versus uv-distance in PNG format. No plotxy GUI will appear.

ALERT: if you use this option to print to figfile with an iteration set, you will only get the
first plot.

3.4.2.14 Exiting plotxy

You can use the Quit button to clear the plot from the window and detach from the MS. You can
also dismiss the window by killing it with the X on the frame, which will also detach the MS.

You can also just leave it alone. The plotter pretty much keeps running in the background even
when it looks like it’s done! You can keep doing stuff in the plotter window, which is where the
overplot parameter comes in. Note that the plotcal task (§ 4.5.1) will use the same window, and
can also overplot on the same panel.

If you leave plotxy running, beware of (for instance) deleting or writing over the MS without
stopping. It may work from a memory version of the MS or crash.

3.4.2.15 Example session using plotxy

The following is an example of interactive plotting and flagging using plotxy on the Jupiter 6cm
continuum VLA dataset. This is extracted from the script jupiter6cm usecase.py available in
the script area.

This assumes that the MS jupiter6cm.usecase.ms is on disk with flagautocorr already run.

default(’plotxy’)

vis = ’jupiter6cm.usecase.ms’

# The fields we are interested in: 1331+305,JUPITER,0137+331
selectdata = True

# First we do the primary calibrator
field = ’1331+305’

# Plot only the RR and LL for now
correlation = ’RR LL’
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# Plot amplitude vs. uvdist
xaxis = ’uvdist’
yaxis = ’amp’
multicolor = ’both’

# The easiest thing is to iterate over antennas
iteration = ’antenna’

plotxy()

# You’ll see lots of low points as you step through RR LL RL LR
# A basic clip at 0.75 for RR LL and 0.055 for RL LR will work
# If you want to do this interactively, set
iteration = ’’

plotxy()

# You can also use flagdata to do this non-interactively
# (see below)

# Now look at the cross-polar products
correlation = ’RL LR’

plotxy()

#---------------------------------------------------------------------
# Now do calibrater 0137+331
field = ’0137+331’
correlation = ’RR LL’
xaxis = ’uvdist’
spw = ’’
iteration = ’’
antenna = ’’

plotxy()

# You’ll see a bunch of bad data along the bottom near zero amp
# Draw a box around some of it and use Locate
# Looks like much of it is Antenna 9 (ID=8) in spw=1

xaxis = ’time’
spw = ’1’
correlation = ’’

# Note that the strings like antenna=’9’ first try to match the
# NAME which we see in listobs was the number ’9’ for ID=8.
# So be careful here (why naming antennas as numbers is bad).
antenna = ’9’

plotxy()
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# YES! the last 4 scans are bad. Box ’em and flag.

# Go back and clean up
xaxis = ’uvdist’
spw = ’’
antenna = ’’
correlation = ’RR LL’

plotxy()

# Box up the bad low points (basically a clip below 0.52) and flag

# Note that RL,LR are too weak to clip on.

#---------------------------------------------------------------------
# Finally, do JUPITER
field = ’JUPITER’
correlation = ’’
iteration = ’’
xaxis = ’time’

plotxy()

# Here you will see that the final scan at 22:00:00 UT is bad
# Draw a box around it and flag it!

# Now look at whats left
correlation = ’RR LL’
xaxis = ’uvdist’
spw = ’1’
antenna = ’’
iteration = ’antenna’

plotxy()

# As you step through, you will see that Antenna 9 (ID=8) is often
# bad in this spw. If you box and do Locate (or remember from
# 0137+331) its probably a bad time.

# The easiset way to kill it:

antenna = ’9’
iteration = ’’
xaxis = ’time’
correlation = ’’

plotxy()

# Draw a box around all points in the last bad scans and flag ’em!
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# Now clean up the rest
xaxis = ’uvdist’
correlation = ’RR LL’
antenna = ’’
spw = ’’

# You will be drawing many tiny boxes, so remember you can
# use the ESC key to get rid of the most recent box if you
# make a mistake.

plotxy()

# Note that the end result is we’ve flagged lots of points
# in RR and LL. We will rely upon imager to ignore the
# RL LR for points with RR LL flagged!

3.4.3 Plotting antenna positions using plotants

This task is a simple plotting interface (to the plotxy functionality) to produce plots of the antenna
positions (taken from the ANTENNA sub-table of the MS).

The inputs to plotants are:

# plotants :: Plot the antenna distribution in the local reference frame:
vis = ’’ # Name of input visibility file (MS)
figfile = ’’ # Save the plotted figure to this file
async = False #

3.5 Non-Interactive Flagging using flagdata

Task flagdata will flag the visibility data set based on the specified data selections, most of the
information coming from a run of the listobs task (with/without verbose=True). Currently you
can select based on any combination of:

• antennas (antenna)

• baselines (antenna)

• spectral windows and channels (spw)

• correlation types (correlation)

• field ids or names (field)

• uv-ranges (uvrange)

• times (timerange) or scan numbers (scan)
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• antenna arrays (array)

and choose to flag, unflag, clip (setclip and sub-parameters), and remove the first part of each
scan (setquack) and/or the autocorrelations (autocorr).

The inputs to flagdata are:

# flagdata :: Flag/Clip data based on selections:

vis = ’’ # Name of input visibility file
mode = ’manualflag’ # Mode (manualflag,shadow,quack,summary,autoflag,rfi)

autocorr = False # Flag autocorrelations
unflag = False # Unflag the data specified
clipexpr = ’ABS RR’ # Expression to clip on
clipminmax = [] # Range to use for clipping
clipcolumn = ’DATA’ # Data column to use for clipping
clipoutside = True # Clip outside the range, or within it
channelavg = False # Average over channels

spw = ’’ # spectral-window/frequency/channel
field = ’’ # Field names or field index numbers: ’’==>all, field=’0~2,3C286’
selectdata = True # More data selection parameters (antenna, timerange etc)

antenna = ’’ # antenna/baselines: ’’==>all, antenna = ’3,VA04’
timerange = ’’ # time range: ’’==>all, timerange=’09:14:0~09:54:0’
correlation = ’’ # Select data based on correlation
scan = ’’ # scan numbers: ’’==>all
feed = ’’ # multi-feed numbers: Not yet implemented
array = ’’ # (sub)array numbers: ’’==>all
uvrange = ’’ # uv range: ’’==>all; uvrange = ’0~100klambda’, default units=meters

async = False # If true the taskname must be started using flagdata(...)

The default flagging mode is ’manualflag’. See § 3.5.1.1 more more on this option.

The mode=’summary’ will print out a summary of the current state of flagging into the logger.

The mode=’quack’ will allow dropping of integrations from the beginning of scans. See § 3.5.1.2
for details.

The mode=’shadow’ option will allow shadowed data to be flagged, e.g. if it has not already during
filling (§ 3.5.1.3).

There are also “autoflagging” modes ’autoflag’ and ’rfi’ available for testing (§ 3.5.1.4).

Note that often you want to apply many different flagging operations in a single pass through the
data. For this, we have implemented a “list” mode for the ’manualflag’ selections where several
flagdata task invocations can be combined into a single flagdata run by giving lists of parameters.
This is possible for the modes ’manualflag’ and ’quack’, only.

For example, the following three flagdata runs:
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flagdata(vis=’my.ms’, mode=’manualflag’, selectdata=True, field=’3’, autocorr=True)
flagdata(vis=’my.ms’, mode=’manualflag’, selectdata=True, field=’3’, timerange = ’6:0:0~6:23:00’)
flagdata(vis=’my.ms’, mode=’manualflag’, selectdata=True, field=’3’, scan=’0’, spw=’0:60;62;64’)

can be combined into a single run by:

vis = ’my.ms’
mode = ’manualflag’
selectdata = True

field = ’3’
spw = [ ’’ , ’’ , ’0:60;62:64’ ]
autocorr = [ True , False , False ]
timerange = [ ’’ , ’6:0:0~6:23:0’, ’’ ]
scan = [ ’’ , ’’ , ’0’ ]

flagdata()

Note that field=’3’ is equivalent to field=[’3’,’3’,’3’].

————————-

3.5.1 Flag Antenna/Channels

The following commands give the results shown in Figure 3.5:

default{’plotxy’)
plotxy(’ngc5921.ms’,’channel’,iteration=’antenna’,subplot=311)
default(’flagdata’)
flagdata(vis=’ngc5921.ms’,antenna=’0’,spw=’0:10~15’)
default plotxy
plotxy(’ngc5921.ms’,’channel’,iteration=’antenna’,subplot=311)

3.5.1.1 Manual flagging and clipping in flagdata

For mode=’manualflag’’, manual flagging and clipping is controlled by the sub-parameters:

mode = ’manualflag’ # Mode (manualflag,shadow,quack,summary,autoflag,rfi)
autocorr = False # Flag autocorrelations
unflag = False # Unflag the data specified
clipexpr = ’ABS RR’ # Expression to clip on
clipminmax = [] # Range to use for clipping
clipcolumn = ’DATA’ # Data column to use for clipping
clipoutside = True # Clip outside the range, or within it
channelavg = False # Average over channels

The following commands give the results shown in Figure 3.6:
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Figure 3.5: flagdata: Example showing before and after displays using a selection of one antenna
and a range of channels. Note that each invocation of the flagdata task represents a cumulative se-
lection, i.e., running antenna=’0’ will flag all data with antenna 0, while antenna=’0’, spw=’0:10 15’
will flag only those channels on antenna 0.

plotxy(’ngc5921.ms’,’uvdist’)
flagdata(vis=’ngc5921.ms’,clipexpr=’LL’,clipminmax=[0.0,1.6],clipoutside=True)
plotxy(’ngc5921.ms’,’uvdist’)

Figure 3.6: flagdata: Flagging example using the clip facility.
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The channelavg toggle (new in Version 3.0.0) is now available to (vector) average the data over
all channels before doing the clipping test. This is most useful when flagging on phase stable or
corrected data (e.g. after applycal and split to a new dataset).

3.5.1.2 Flagging the beginning of scans

You can use the mode=’quack’ option to drop integrations from the beginning of scans (as in the
AIPS task QUACK):

mode = ’quack’ # Mode (manualflag,shadow,quack,summary,autoflag,rfi)
autocorr = False # Flag autocorrelations
unflag = False # Unflag the data specified
quackinterval = 0.0 # Quack n seconds from quackmode scan boundary
quackmode = ’beg’ # ’beg’ (start), ’endb’ (end), ’end’ (all but end), ’tail’ (all but start)
quackincrement = False # Flag incrementally in time?

Note that the time is measured from the first integration in the MS for a given scan, and this is
often already flagged by the online system.

For example, assuming the integration time is 3.3 seconds (e.g. for VLA), then

mode = ’quack’
quackinterval = 14.0

will flag the first 4 integrations in every scan.

3.5.1.3 Flagging shadowed data with mode ’shadow’

Visibilities where one antenna is obscured by another antenna (typically at low elevations) can be
flagged with the ’shadow’ mode:

mode = ’shadow’ # Mode (manualflag,shadow,quack,summary,autoflag,rfi)
diameter = -1.0 # Effective diameter (m) to use. -1 ==>antenna diameter

Note that this can only flag data shadowed by antennas known in the MS (in the same subarray
for example), not by antennas not in the dataset.

3.5.1.4 Autoflagging using modes ’autoflag’ and ’rfi’

There are two “autoflagging” modes currently available in flagdata. ALERT: These are still
experimental and under development for ALMA and EVLA commissioning.

The mode=’autoflag’ option uses an older autoflagging algorithm developed for aips++:
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mode = ’autoflag’ # Mode (manualflag,shadow,quack,summary,autoflag,rfi)
algorithm = ’timemed’ # Autoflag algorithm (timemed,freqmed)
column = ’DATA’ # Data column to operate on.
expr = ’ABS RR’ # Expression to flag on
thr = 5.0 # Flagging threshold (n sigma)
window = 10 # Sliding median filter width

This algorithm passes median filters of a given width (window) in time (timemed’) or frequency
(freqmed’) over the data and flagging outliers above a threshold (’thr’).

The mode=’rfi’ option uses an newer autoflagging algorithm:

mode = ’rfi’ # Mode (manualflag,shadow,quack,summary,autoflag,rfi)
clipcolumn = ’DATA’ # Data column to use for clipping
clipexpr = ’ABS RR’ # Expression to clip on
time_amp_cutoff = 4.0 # Flagging thresholds in units of sigma
freq_amp_cutoff = 3.0 # Flagging thresholds in units of sigma
freqlinefit = False # Fit bandpass with a straight line (True), else piecewise polynomial
auto_cross = 1 # Flag on cross and auto-correlations (0=autocor only)
num_time = 400 # Number of time-steps in each chunk
start_chan = 1 # Channel range start (1 based)
end_chan = 2048 # Channel range end (1 based)
bs_cutoff = 0.0 # Baseline tolerance
ant_cutoff = 0.0 # Total autocorrelation amplitude threshold for a functional antenna
flag_level = 1 # 0=no extend; 1=also one timestep before+after; 2= also one channel

3.6 Browse the Data

The browsetable task is available for viewing data directly (and handles all CASA tables, including
Measurement Sets, calibration tables, and images). This task brings up the CASA Qt casabrowser,
which is a separate program. You can launch this from outside casapy.

The default inputs are:

# browsetable :: Browse a table (MS, calibration table, image)

tablename = ’’ # Name of input table
async = False # If true the taskname must be started using browsetable(...)

Currently, its single input is the tablename, so an example would be:

browsetable(’ngc5921.ms’)

For an MS such as this, it will come up with a browser of the MAIN table (see Fig 3.7). If you want
to look at sub-tables, use the tab table keywords along the left side to bring up a panel with
the sub-tables listed (Fig 3.8), then choose (left-click) a table and View:Details to bring it up
(Fig 3.9). You can left-click on a cell in a table to view the contents.
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Figure 3.7: browsetable: The browser displays the main table within a frame. You can scroll
through the data (x=columns of the MAIN table, and y=the rows) or select a specific page or row
as desired. By default, 1000 rows of the table are loaded at a time, but you can step through the
MS in batches.

Note that one useful feature is that you can Edit the table and its contents. Use the Edit table
choice from the Edit menu, or click on the Edit button. Be careful with this, and make a backup
copy of the table before editing!

Use the Close Tables and Exit option from the Files menu to quit the casabrowser.

There are alot of features in the casabrowser that are not fully documented here. Feel free to
explore the capabilities such as plotting and sorting!

ALERT: You are likely to find that the casabrowser needs to get a table lock before proceeding.
Use the clearstat command to clear the lock status in this case.

3.7 Examples of Data Display and Flagging

See the scripts provied in Appendix F for examples of data examination and flagging. In particular,
we refer the interested user to the demonstrations for:

• NGC5921 (VLA HI) — a quick demo of basic CASA capabilities (F.1)
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Figure 3.8: browsetable: You can use the tab for Table Keywords to look at other tables within
an MS. You can then double-click on a table to view its contents.

• Jupiter (VLA 6cm continuum polarimetry) — more extensive editing (F.2)



CHAPTER 3. DATA EXAMINATION AND EDITING 129

Figure 3.9: browsetable: Viewing the SOURCE table of the MS.



Chapter 4

Synthesis Calibration

Inside the Toolkit:
The workhorse for synthesis calibra-
tion is the cb tool.

This chapter explains how to calibrate interferometer data
within the CASA task system. Calibration is the process
of determining the complex correction factors that must be
applied to each visibility in order to make them as close as
possible to what an idealized interferometer would measure,
such that when the data is imaged an accurate picture of the sky is obtained. This is not an arbitrary
process, and there is a philosophy behind the CASA calibration methodology (see § 4.2.1 for more
on this). For the most part, calibration in CASA using the tasks is not too different than calibration
in other packages such as AIPS or Miriad, so the user should not be alarmed by cosmetic differences
such as task and parameter names!

4.1 Calibration Tasks

The standard set of calibration solving tasks (to produce calibration tables) are:

• bandpass — complex bandpass (B) calibration solving, including options for channel-binned
or polynomial solutions (§ 4.4.2),

• gaincal — complex gain (G,T) calibration solving, including options for time-binned or
spline solutions (§ 4.4.3),

• polcal — polarization calibration including leakage and angle (§ 4.4.5),

• blcal — baseline-based complex gain or bandpass calibration (§ 4.4.6).

There are helper tasks to create, manipulate, and explore calibration tables:

• accum — Accumulate incremental calibration solutions into a cumulative cal table (§ 4.5.5),

• applycal — Apply calculated calibration solutions (§ 4.6.1),

130
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• clearcal — Re-initialize visibility data set calibration data (§ 4.6.3),

• fluxscale — Bootstrap the flux density scale from standard calibration sources (§ 4.4.4),

• listcal — List calibration solutions (§ 4.5.2),

• plotcal — Plot calibration solutions (§ 4.5.1),

• setjy — Compute the model visibility for a specified source flux density (§ 4.3.4),

• smoothcal — Smooth calibration solutions derived from one or more sources (§ 4.5.4),

• split — Write out new MS containing calibrated data from a subset of the original MS
(§ 4.7.1).

There are some development versions of calibration and utility tasks that are recently added to the
suite:

• calstat — Statistics of calibration solutions (§ 4.5.3),

• cvel — Regrid a spectral MS onto a new frequency channel system (§ 4.7.5),

• gencal — Create a calibration table from lists, including options for delays, antenna position
errors, and amplitude and phase adjustment (§ 4.3.5),

• hanningsmooth — Apply a Hanning smoothing filter to spectral-line uv data (§ 4.7.2),

• uvcontsub — Carry out uv-plane continuum fitting and subtraction (§ 4.7.4),

• uvmodelfit — Fit a component source model to the uv data (§ 4.7.6),

• uvsub — Subtract the transform of a model image from the uv data (§ 4.7.3).

These are not yet full-featured, and may have only rudimentary controls and options.

The following sections outline the use of these tasks in standard calibration processes.

Information on other useful tasks and parameter setting can be found in:

• listobs — summary of a MS (§ 2.2.5),

• listvis — list data in a MS (§ 2.2.6),

• plotms — prototype next-generation X-Y plotting and editing (§ 3.4.1),

• plotxy — previous generation X-Y plotting and editing (§ 3.4.2),

• flagdata — non-interactive data flagging (§ 3.5),

• data selection — general data selection syntax (§ 2.3).
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4.2 The Calibration Process — Outline and Philosophy

A work-flow diagram for CASA calibration of interferometry data is shown in Figure 4.1. This
should help you chart your course through the complex set of calibration steps. In the following
sections, we will detail the steps themselves and explain how to run the necessary tasks and tools.

This can be broken down into a number of discrete phases:

• Prior Calibration — set up previously known calibration quantities that need to be pre-
applied, such as the flux density of calibrators, antenna gain-elevation curves, atmospheric
models, delays, and antenna position offsets. Use the setjy task (§ 4.3.4) for flux densities
and models, set the gaincurve (§ 4.3.2) and opacity (§ 4.3.3) parameters in subsequent
tasks, and use gencal (§ 4.3.5) for delay and antenna position offsets;

• Bandpass Calibration — solve for the relative gain of the system over the frequency chan-
nels in the dataset (if needed), having pre-applied the prior calibration. Use the bandpass
task (§ 4.4.2);

• Gain Calibration — solve for the gain variations of the system as a function of time, having
pre-applied the bandpass (if needed) and prior calibration. Use the gaincal task (§ 4.4.3);

• Polarization Calibration — solve for any unknown polarization leakage terms (§ 4.4.5);

• Establish Flux Density Scale — if only some of the calibrators have known flux densi-
ties, then rescale gain solutions and derive flux densities of secondary calibrators. Use the
fluxscale task (§ 4.4.4);

• Manipulate, Accumulate, and Iterate — if necessary, accumulate different calibration
solutions (tables), smooth, and interpolate/extrapolate onto different sources, bands, and
times. Use the accum (§ 4.5.5) and smoothcal (§ 4.5.4) tasks;

• Examine Calibration — at any point, you can (and should) use plotcal (§ 4.5.1) and/or
listcal (§ 4.5.2) to look at the calibration tables that you have created;

• Apply Calibration to the Data — this can be forced explicitly by using the applycal
task (§ 4.6.1), and can be undone using clearcal (§ 4.6.3);

• Post-Calibration Activities — this includes the determination and subtraction of contin-
uum signal from line data, the splitting of data-sets into subsets (usually single-source), and
other operations (such as model-fitting). Use the uvcontsub (§ 4.7.4), split (§ 4.7.1), and
uvmodelfit (§ 4.7.6) tasks.

The flow chart and the above list are in a suggested order. However, the actual order in which
you will carry out these operations is somewhat fluid, and will be determined by the specific
data-reduction use cases you are following. For example, you may need to do an initial Gain
Calibration on your bandpass calibrator before moving to the Bandpass Calibration stage. Or
perhaps the polarization leakage calibration will be known from prior service observations, and can
be applied as a constituent of Prior Calibration.
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Figure 4.1: Flow chart of synthesis calibration operations. Not shown are use of table manipulation
and plotting tasks accum, plotcal, and smoothcal (see Figure 4.2).
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4.2.1 The Philosophy of Calibration in CASA

Calibration is not an arbitrary process, and there is a methodology that has been developed to
carry out synthesis calibration and an algebra to describe the various corruptions that data might
be subject to: the Hamaker-Bregman-Sault Measurement Equation (ME), described in Appendix E.
The user need not worry about the details of this mathematics as the CASA software does that for
you. Anyway, its just matrix algebra, and your familiar scalar methods of calibration (such as in
AIPS) are encompassed in this more general approach.

There are a number of “physical” components to calibration in CASA:

• data — in the form of the Measurement Set (§ 2.1). The MS includes a number of columns
that can hold calibrated data, model information, and weights;

• calibration tables — these are in the form of standard CASA tables, and hold the calibration
solutions (or parameterizations thereof);

• task parameters — sometimes the calibration information is in the form of CASA task
parameters that tell the calibration tasks to turn on or off various features, contain important
values (such as flux densities), or list what should be done to the data.

At its most basic level, Calibration in CASA is the process of taking “uncalibrated” data, setting
up the operation of calibration tasks using parameters, solving for new calibration tables, and
then applying the calibration tables to form “calibrated” data. Iteration can occur as necessary,
with the insertion of other non-calibration steps (e.g. “self-calibration” via imaging).

4.2.2 Keeping Track of Calibration Tables

The calibration tables are the currency that is exchanged between the calibration tasks. The
“solver” tasks (gaincal, bandpass, blcal, fringecal) take in the MS (which may have a cali-
bration model in the MODEL DATA column from setjy or ft) and previous calibration tables, and
will output an “incremental” calibration table (it increments the previous calibration, if any). This
table can then be smoothed using smoothcal if desired.

You can accumulate the incremental calibration onto previous calibration tables with accum, which
will then output a cumulative calibration table. This task will also interpolate onto a different time
scale. See § 4.5.5 for more on accumulation and interpolation.

Figure 4.2 graphs the flow of these tables through the sequence

solve => smooth => accumulate

Note that this sequence applied to separate types of tables (e.g. ’B’, ’G’) although tables of other
types can be previous calibration input to the solver.

The final set of cumulative calibration tables is what is applied to the data using applycal. You
will have to keep track of which tables are the intermediate incremental tables, and which are
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Figure 4.2: Chart of the table flow during calibration. The parameter names for input or output of
the tasks are shown on the connectors. Note that from the output solver through the accumulator
only a single calibration type (e.g. ’B’, ’G’) can be smoothed, interpolated or accumulated at
a time. The final set of cumulative calibration tables of all types are then input to applycal as
shown in Figure 4.1.

cumulative, and which were previous to certain steps so that they can also be previous to later
steps until accumulation. This can be a confusing business, and it will help if you adopt a consistent
table naming scheme (see Figure 4.2) for an example naming scheme).

4.2.3 The Calibration of VLA data in CASA

CASA supports the calibration of VLA data that is imported from the Archive through the
importvla task. See § 2.2.2 for more information.

ALERT: Data taken both before and after the Modcomp turn-off in late June 2007 will be handled
automatically by importvla. You do not need to set special parameters to do so, and it will obey
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the scaling specified by applytsys.

You can also import VLA data in UVFITS format with the importuvfits task (§ 2.2.3.1). However,
in this case, you must be careful during calibration in that some prior or previous calibrations (see
below) may or may not have been done in AIPS and applied (or not) before export.

For example, the default settings of AIPS FILLM will apply VLA gaincurve and approximate
(weather-based) atmospheric optical depth corrections when it generates the extension table CL
1. If the data is exported immediately using FITTP, then this table is included in the UVFITS
file. However, CASA is not able to read or use the AIPS SN or CL tables, so that prior calibration
information is lost and must be applied during calibration here (ie. using gaincurve=True and
setting the opacity parameter).

On the other hand, if you apply calibration in AIPS by using the SPLIT or SPLAT tasks to apply
the CL tables before exporting with FITTP, then this calibration will be in the data itself. In this
case, you do not want to re-apply these calibrations when processing in CASA.

4.3 Preparing for Calibration

There are a number of “a priori” calibration quantities that may need to be applied to the data
before further calibration is carried out. These include

• system temperature correction — turn correlation coefficient into correlated flux density
(necessary for some telescopes),

• gain curves — antenna gain-elevation dependence,

• atmospheric optical depth — attenuation of the signal by the atmosphere, correcting for
its elevation dependence.

• flux density models — establish the flux density scale using “standard” calibrator sources,
with models for resolved calibrators,

• delays — antenna-based delay offsets,

• antenna position errors — offsets in the positions of antennas assumed during correlation.

These are pre-determined effects and should be applied (if known) before solving for other calibra-
tion terms. If unknown, then they will need to be solved for (or subsumed in other calibration such
as bandpass or gains).

We now deal with these in turn.
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4.3.1 System Temperature Correction

Some telescopes, including the EVLA and the VLBA, record the visibilities in the form of raw
correlation coefficient with weights proportional to the number of bits correlated. The correlation
coefficient is the fraction of the total signal that is correlated, and thus multiplication by the system
temperature and the antenna gain (in Jy/K) will produce visibilities with units of correlated flux
density. Note that the old VLA system did this initial calibration on-line, and ALMA will also
provide some level of on-line calibration (TBD).

ALERT: There is as yet no mechanism available in importvla or in the calibration tasks to use the
system temperature information provided by the VLA/EVLA on-line system to calibrate EVLA or
VLBA data in raw form. This includes VLA data taken after the Modcomp turn-over in late June
2007. You may pass the data through AIPS first. You can also just forge ahead with standard
calibration. The drawback to this is that short-term changes in Tsys which are not tracked by
calibrator observations or self-calibration will remain in the data.

4.3.2 Antenna Gain-Elevation Curve Calibration

Large antennas (such as the 25-meter antennas used in the VLA and VLBA) have a forward gain
and efficiency that changes with elevation. Gain curve calibration involves compensating for the
effects of elevation on the amplitude of the received signals at each antenna. Antennas are not
absolutely rigid, and so their effective collecting area and net surface accuracy vary with elevation
as gravity deforms the surface. This calibration is especially important at higher frequencies where
the deformations represent a greater fraction of the observing wavelength. By design, this effect is
usually minimized (i.e., gain maximized) for elevations between 45 and 60 degrees, with the gain
decreasing at higher and lower elevations. Gain curves are most often described as 2nd- or 3rd-order
polynomials in zenith angle.

Gain curve calibration has been implemented in CASA for the VLA (only), with gain curve polyno-
mial coefficients available directly from the CASA data repository. To make gain curve corrections
for VLA data, set gaincurve=True for any of the calibration tasks.

ALERT: The gaincurve parameter must be supplied to any calibration task that allows pre-
application of the prior calibration (e.g. bandpass, gaincal, applycal). This should be done
consistently through the calibration process. In future updates we will add the capability to gencal
(§ 4.3.5) to create a calibration table for this.

For example, to pre-apply the gaincurve during gain calibration:

gaincal(’data.ms’,’cal.G0’,gaincuve=True, solint=0.,refant=11)

NOTE: Set gaincurve=False if you are not using VLA data.

The gain curve will be calculated per timestamp. Upon execution of a calibration task (e.g.,
gaincal, bandpass, applycal, etc.), the gain curve data appropriate to the observing frequencies
will be automatically retrieved from the data repository and applied.
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ALERT: Currently, gain-curves for VLA are built into the CASA system and this is what is
applied when gaincurve=True. Therefore, the application of the gain-curves, if gaincurve=True,
is allowed only if the VLA is set as the telescope of observation in the MS, otherwise an error
will be generated. Set gaincurve=False if you are not using VLA data. A general mechanism
for incorporating gaincurve information for other arrays will be made available in future releases.
The gain-curve information available for the VLA is time-dependent (on timescales of months to
years, at least for the higher frequencies), and CASA will automatically select the date-appropriate
gain curve information. Note, however, that the time-dependence was poorly sampled prior to
2001, and so gain curve corrections prior to this time should be considered with caution. Similarly,
gain curves have not yet been measured for antennas that have been physically modified to meet
EVLA specifications. We will include gain curves for EVLA antennas when those are measured
and become available.

4.3.3 Atmospheric Optical Depth Correction

The troposphere is not completely transparent. At high radio frequencies (>15 GHz), water vapor
and molecular oxygen begin to have a substantial effect on radio observations. According to the
physics of radiative transmission, the effect is threefold. First, radio waves from astronomical
sources are absorbed (and therefore attenuated) before reaching the antenna. Second, since a good
absorber is also a good emitter, significant noise-like power will be added to the overall system noise.
Finally, the optical path length through the troposphere introduces a time-dependent phase error.
In all cases, the effects become worse at lower elevations due to the increased air mass through
which the antenna is looking. In CASA, the opacity correction described here compensates only
for the first of these effects, tropospheric attenuation, using a plane-parallel approximation for the
troposphere to estimate the elevation dependence.

Opacity corrections are a component of calibration type ’T’. To make opacity corrections in CASA,
an estimate of the zenith opacity is required (see observatory-specific chapters for how to measure
zenith opacity). This is then supplied to the opacity parameter in the calibration tasks.

ALERT: The opacity parameter must be supplied to any calibration task that allows pre-
application of the prior calibration (e.g. bandpass, gaincal, applycal). This should be done
consistently through the calibration process. In future updates we will add the capability to gencal
(§ 4.3.5) to create a calibration table for this. Furthermore, you currently can only supply a sin-
gle value of opacity, which will then be pre-applied to whatever calibration task that you set it
in. Generalizations to antenna- and time-dependent opacities, including derivation (from weather
information) and solving (directly from the visibility data) capabilities, will be made available in
the future.

For example, if the zenith optical depth is 0.1 nepers, then use the following parameters:

gaincal(’data.ms’, ’cal.G0’, solint=’inf’, combine=’’,refant=11, opacity=0.1)

The calibration task in this example will apply an elevation-dependent opacity correction (scaled
to 0.1 nepers at the zenith for all antennas for this example) calculated at each data sample before
solving for gains on an “infinite” (up to scan boundaries) timescale.
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If you do not have an externally supplied value for opacity, for example from a VLA tip procedure,
then you should either use an average value for the telescope, or leave it at zero and let your gain
calibration compensate as best it can (e.g. that your calibrator is at the same elevation as your
target at approximately the same time. As noted above, there are no facilities yet to estimate this
from the data (e.g. by plotting Tsys vs. elevation).

Below, we give instructions for determining opacity for VLA observations where tip-curve data is
available. It is beyond the scope of this cookbook to provide information for other telescopes.

4.3.3.1 Determining opacity corrections for VLA data

For VLA data, zenith opacity can be measured at the frequency and during the time observations
are made using a VLA tipping scan in the observe file. Historical tipping data are available at:

http://www.vla.nrao.edu/astro/calib/tipper

Choose a year, and click Go to get a list of all tipping scans that have been made for that year.

If a tipping scan was made for your observation, then select the appropriate file. Go to the bottom
of the page and click on the button that says Press here to continue.. The results of the tipping
scan will be displayed. Go to the section called ’Overall Fit Summary’ to find the fit quality and
the fitted zenith opacity in percent. If the zenith opacity is reported as 6%, then the actual zenith
optical depth value is opacity=0.060 for gaincal and other calibration tasks.

If there were no tipping scans made for your observation, then look for others made in the same
band around the same time and weather conditions. If nothing is available here, then at K and Q
bands you might consider using an average value (e.g. 6% in reasonable weather). See the VLA
memo

http://www.vla.nrao.edu/memos/test/232/232.pdf

for more on the atmospheric optical depth correction at the VLA, including plots of the seasonal
variations.

4.3.4 Setting the Flux Density Scale using (setjy)

When solving for visibility-plane calibration, CASA calibration applications compare the observed
DATA column with the MODEL DATA column. The first time that an imaging or calibration task is
executed for a given MS, the MODEL DATA column is created and initialized with unit point source
flux density visibilities (unpolarized) for all sources (e.g. AMP=1, phase=0◦). The setjy task is
then used to set the proper flux density for flux calibrators. For sources that are recognized flux
calibrators (listed in Table 4.1), setjy will calculate the flux densities, Fourier transform them and
write the results to the MODEL DATA column. For the VLA, the default source models are customarily
point sources defined by the Baars or Perley-Taylor flux density scales, or point sources of unit flux
density if the flux density is unknown. The MODEL DATA column can also be filled with a model

http://www.vla.nrao.edu/astro/calib/tipper
http://www.vla.nrao.edu/memos/test/232/232.pdf
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generated from an image of the source (e.g. the Fourier transform of an image generated after
initial calibration of the data).

Table 4.1:

3C Name B1950 Name J2000 Name
3C286 1328+307 1331+305
3C48 0134+329 0137+331
3C147 0538+498 0542+498
3C138 0518+165 0521+166

– 1934-638 –
3C295 1409+524 1411+522

The inputs for setjy are:

# setjy :: Place flux density of sources in the measurement set:

vis = ’’ # Name of input visibility file
field = ’’ # Field name list or field ids list
spw = ’’ # Spectral window identifier (list)
modimage = ’’ # Model image name
fluxdensity = -1 # Specified flux density [I,Q,U,V]
standard = ’Perley-Taylor 99’ # Flux density standard

By default the setjy task will cycle through all fields and spectral windows, setting the flux density
either to 1 Jy (unpolarized), or if the source is recognized as one of the calibrators in the above table,
to the flux density (assumed unpolarized) appropriate to the observing frequency. For example, to
run setjy on a measurement set called data.ms:

setjy(vis=’data.ms’) # This will set all fields and spectral windows

ALERT: At this time, all that setjy does is to fill the MODEL DATA column of the MS with the
Fourier transform of a source model. The ft task (§ 5.6) will do the same thing, although it does
not offer the options for flux rescaling that setjy does. Note also that currently setjy will not
transform a full-Stokes model image such that all polarizations are filled correct. You need to use
ft for this.

To limit this operation to certain fields and spectral windows, use the field and/or spw parameters,
which take the usual data selection strings (§ 2.3). For example, to set the flux density of the first
field (all spectral windows)

setjy(vis=’data.ms’,field=’0’)

or to set the flux density of the second field in spectral window 17

setjy(vis=’data.ms’,field=’1’,spw=’17’)
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The full-polarization flux density (I,Q,U,V) may also be explicitly provided:

setjy(vis=’data.ms’,
field=’1’,spw=’16’, # Run setjy on field id 1, spw id 17
fluxdensity=[3.5,0.2,0.13,0.0]) # and set I,Q,U,V explicitly

Note: The setjy (or ft) operation is different than the antenna gain-elevation and atmospheric
opacity Prior Calibrations (§ 4.3.2–4.3.3) in that it is applied to (and carried with) the MS itself,
rather than via other tables or parameters to the subsequent tasks. It is more like the Tsys
correction (§ 4.3.1) in this regard.

4.3.4.1 Using Calibration Models for Resolved Sources

If the flux density calibrator is resolved at the observing frequency, the point source model generated
by setjy will not be appropriate. If available, a model image of the resolved source at the observing
frequency may be used to generate the appropriate visibilities using the modimage parameter (or
in older versions explicitly with the ft task). To use this, provide modimage with the path to the
model image. Remember, if you just give the file name, it will assume that it is in the current
working directory. Note also that setjy using a model image will only operate on that single
source, thus you would run it multiple times (with different field settings) for different sources.

Otherwise, you may need to use the uvrange selection (§ 4.4.1.2) in the calibration solving tasks to
exclude the baselines where the resolution effect is significant. There is not hard and fast rule for
this, though you should consider this if your calibrator is shows a drop of more than 10% on the
longest baselines (use plotxy, § 3.4.2, to look at this). You may need to do antenna selection also,
if it is heavily resolved and there are few good baselines to the outer antennas. Note that uvrange
may also be needed to exclude the short baselines on some calibrators that have extended flux not
accounted for in the model. Note: the calibrator guides for the specific telescopes usually indicate
appropriate min and max for uvrange. For example, see the VLA Calibration Manual at:

http://www.vla.nrao.edu/astro/calib/manual/

for details on the use of standard calibrators for the VLA.

Model images for some flux density calibrators are provided with CASA:

• Red Hat Linux RPMs (RHE4, Fedora 6): located in /usr/lib/casapy/data/nrao/VLA/CalModels

• MAC OSX .dmg: located in /opt/casa/data/nrao/VLA/CalModels

• NRAO-AOC stable: /home/casa/data/nrao/VLA/CalModels

• NRAO-AOC daily: /home/ballista/casa/daily/data/nrao/VLA/CalModels

e.g., these are found in the data/nrao/VLA/CalModels sub-directory of the CASA installation. For
example, just point to the repository copy, e.g.

http://www.vla.nrao.edu/astro/calib/manual/
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modimage = ’/usr/lib/casapy/data/nrao/VLA/CalModels/3C48_C.im’

or if you like, you can copy the ones you wish to use to your working directory.

The models available are:

3C138_C.im 3C147_C.im 3C286_C.im 3C48_C.im
3C138_K.im 3C147_K.im 3C286_K.im 3C48_K.im
3C138_L.im 3C286_L.im 3C48_L.im
3C138_Q.im 3C147_Q.im 3C286_Q.im 3C48_Q.im
3C138_U.im 3C147_U.im 3C286_U.im 3C48_U.im
3C138_X.im 3C147_X.im 3C286_X.im 3C48_X.im

These are all un-reconvolved images of AIPS CC lists, properly scaled to the Perley-Taylor 1999
flux density for the frequencies at which they were observed.

It is important that the model image not be one convolved with a finite beam; it must have units
of Jy/pixel (not Jy/beam).

Note that setjy will rescale the flux in the models for known sources (e.g. those in Table 4.1) to
match those it would have calculated. It will thus extrapolated the flux out of the frequency band
of the model image to whatever spectral windows in the MS are specified (but will use the structure
of the source in the model image).

ALERT: The reference position in the modimage is currently used by setjy when it does the
Fourier transform, thus differences from the positions for the calibrator in the MS will show up
as phase gradients in the uv-plane. If your model image position is significantly different but you
don’t want this to affect your calibration, then you can doctor either the image header using imhead
(§ 6.2) or in the MS (using the ms tool) as appropriate. In an upcoming release we will put in a
toggle to use or ignore the position of the modimage. Note that this will not affect the flux scaling
(only put in erroneous model phases); in any event small position differences, such as those arising
by changing epoch from B1950 to J2000 using regridimage (§ 6.9), will be inconseqential to the
calibration.

This illustrates the use of uvrange for a slightly resolved calibrator:

# Import the data
importvla(archivefiles=’AS776_A031015.xp2’, vis=’ngc7538_XBAND.ms’,

freqtol=10000000.0, bandname=’X’)

# Flag the ACs
flagautocorr(’ngc7538_XBAND.ms’)

# METHOD 1: Use point source model for 3C48, plus uvrange in solve

# Use point source model for 3C48
setjy(vis=’ngc7538_XBAND.ms’,field=’0’);

# Limit 3C48 (fieldid=0) solutions to uvrange = 0-40 klambda
gaincal(vis=’ngc7538_XBAND.ms’, caltable=’cal.G’, field=’0’,
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solint=60.0, refant=’10’, selectdata=True, uvrange=’0~40klambda’,
append=False, gaincurve=False, opacity=0.0)

# Append phase-calibrator’s solutions (no uvrange) to the same table
gaincal(vis=’ngc7538_XBAND.ms’, caltable=’cal.G’, field=’2’,

solint=60.0, refant=’10’, selectdata=True, uvrange=’’,
append=True, gaincurve=False, opacity=0.0)

# Fluxscale
fluxscale(vis=’ngc7538_XBAND.ms’, caltable=’cal.G’, reference=[’0137+331’],

transfer=[’2230+697’], fluxtable=’cal.Gflx’, append=False)

while the following illustrates the use of of a model:

# METHOD 2: use a resolved model copied from the data respository
# for 3C48, and no uvrange
# (NB: detailed freq-dep flux scaling TBD)

# Copy the model image 3C48_X.im to the working directory first!

setjy(vis=’ngc7538_XBAND.ms’, field=’0’, modimage=’3C48_X.im’)

# Solutions on both calibrators with no uvrange
gaincal(vis=’ngc7538_XBAND.ms’, caltable=’cal.G2’, field=’0,2’,

solint=60.0, refant=’10’,
append=False, gaincurve=False, opacity=0.0)

# Fluxscale
fluxscale(vis=’ngc7538_XBAND.ms’, caltable=’cal.G2’, reference=[’0137+331’],

transfer=[’2230+697’], fluxtable=’cal.G2flx’, append=False)

# Both methods give 2230 flux densities ~0.7 Jy, in good agreement with
# AIPS

4.3.5 Correction for delay and antenna position offsets using gencal

The gencal task provides a means of specifying antenna-based calibration values manually. The
values are put in designated tables and can be applied to the data on-the-fly in solving tasks and
using applycal.

The gencal task has the inputs:

# gencal :: Externally specify calibration solutions of varous types
vis = ’’ # Name of input visibility file
caltable = ’’ # The input/output calibration table
caltype = ’’ # The calibration type
spw = ’’ # Calibration spw(s) selection
antenna = ’’ # Calibraiton antenna(s) selection
pol = ’’ # Calibration polarizations(s) selection
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parameter = [] # The calibration values
async = False # If true the taskname must be started using gencal(...)

Current antenna-based gencal options (caltype) are:

• ’amp’ — amplitude correction

• ’ph’ — phase correction

• ’sbd’ — single-band delay (phase-frequency slope for each spw)

• ’mbd’ — multi-band delay (phase-frequency slope over all spw)

• ’antpos’ — ITRF antenna position corrections

• ’antposvla’ — VLA-centric antenna position corrections

The calibration specifications cannot be time-variable in the present implementation. Calibration
values can be assigned to each spw, antenna and pol selection, where applicable. The list of
calibration values specified in parameter must conform to the range of spectral windows, antennas,
and polarizations specified in spw, antenna and pol, with the values specified in order of the
specified polarizations (fastest), antennas, and spectral windows (slowest). If any of spw, antenna,
or pol are left unspecified (empty strings), the values specified in parameter will be assumed
applicable to all values of the unspecified data axes. The output caltable will otherwise assume
nominal calibration values for unspecified spectral windows, antennas, and polarizations. Note that
antenna position corrections formally do not have spectral-window or polarization dependence; such
specifications should not be used with ’antpos’.

The same caltable can be specified for multiple runs of gencal, in which case the specified param-
eters will be incorporated cumulatively. E.g., amplitude parameters (caltype=’amp’) multiply
and phase-like parameters (’ph’, ’sbd’,’mbd’,’antpos’) add. Parameters for ’amp’ and ’ph’
corrections can be incorporated into the same caltable (in separate runs), but each of the other
types require their own unique caltable. A mechanism for specifying manual corrections via a text
file will be provided in the future.

Two kinds of delay corrections are supported. For caltype=’sbd’, the specified delays (in nanosec-
onds) will be applied locally to each spectral window, referring the derived phase corrections to
each spectral window’s reference frequency (where the phase correction will be zero). The phases in
each spectral window will nominally be flattened, but any phase offsets between spectral windows
will remain. (These can be corrected using caltype=’phase’, or via ordinary spectral-window-
dependent phase calibration.) For caltype=’mbd’, the derived phase corrections are referred to
zero frequency. This causes a correction that is coherent over many spectral windows. If the data
are already coherent over many spectral windows and share a common multi-band delay (e.g.,
EVLA data), caltype=’mbd’ corrections will maintain this coherence and flatten the frequency-
dependent phase. Using caltype=’sbd’ in this instance will introduce phase offsets among spectral
windows that reflect the multi-band delay.
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For antenna position corrections (caltype=’antpos’), the antenna position offsets are specified in
the ITRF frame. For VLA position corrections in the VLA-centric frame, use caltype=’antposvla’,
and gencal will rotate them to ITRF before storing them in the output caltable.

The sign and scale convention for gencal corrections (indeed for all CASA caltables) is such that
the specified parameters (and as stored in caltables) are the factors that corrupt ideal data to yield
the observed data. Thus, when applied to correct the data, their effective inverse will automatically
be taken. I.e., amplitude factors will be divided into the data on correction. Phase-like parameters
adopt the convention that the complex factor for the second antenna in the baseline is conjugated,
and then both antenna factors are divided into the data on correction. (These conventions differ
from AIPS in that multiplying correction factors are stored in AIPS calibration tables; however,
the phase convention ends up being the same since AIPS conjugates the complex factor for the first
antenna in the baseline.)

The following series of examples illustrate the use of gencal.

For the dataset ’data.ms’, the following sequence of gencal runs introduces, into a single caltable
(’test.G’), (1) an antenna-based amplitude scale correction of 3.0 for all polarizations, antennas,
and spectral windows, (2) phase corrections for all spectral windows and polarizations of 45 and
120 degrees to antennas EA03 and EA04, repectively, (3) phase corrections for all spectral windows
of 63 and -34 in R (only) for antennas EA05 and EA06, respectively, and (4) phase corrections for
all spectral windows of 14, -23, -130, and 145 degrees for antenna/polarizations EA09/R, EA09/L,
EA10/R, and EA10/L, respectively:

gencal(vis=’data.ms’,caltable=’test.G’,caltype=’amp’, \
spw=’’,antenna=’’,pol=’’, \
parameter=[3])

gencal(vis=’data.ms’,caltable=’test.G’,caltype=’ph’, \
spw=’’,antenna=’EA03,EA04’,pol=’’, \
parameter=[45,120])

gencal(vis=’data.ms’,caltable=’test.G’,caltype=’ph’, \
spw=’’,antenna=’EA05,EA06’,pol=’R’, \
parameter=[63,-34])

gencal(vis=’data.ms’,caltable=’test.G’,caltype=’ph’, \
spw=’’,antenna=’EA09,EA10’,pol=’R,L’, \
parameter=[14,-23,-130,145])

In the following example, delay corrections in both polarizations will be adjusted for antenna EA09
by 14 nsec in spw 2 and -130 nsec in spw 3, and for antenna EA10 by -23 nsec in spw 2 and 145
nsec in spw 3:

gencal(vis=’test.ms’,caltable=’test.sbd’,caltype=’sbd’, \
spw=’2,3’,antenna=’EA09,EA10’,pol=’’, \
parameter=[14,-23,-130,145])
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In the following example, antenna position corrections in meters (in ITRF) for antenna EA09
(dBx=0.01, dBy=0.02, dBz=0.03) and for antenna EA10 (dBx=-0.03, dBy=-0.01, dBz=-0.02) are
introduced. Note that three parameters are required for each antenna.

gencal(vis=’test.ms’,caltable=’test.antpos’,caltype=’antpos’, \
antenna=’EA09,EA10’, \
parameter=[0.01,0.02,0.03, -0.03,-0.01,-0.02])

In the following example, antenna position corrections (in the traditional VLA-centric frame) will
be introduced in meters for antenna EA09 (dBx=0.01, dBy=0.02, dBz=0.03) and for antenna EA10
(dBx=-0.03, dBy=-0.01, dBz=-0.02) These offsets will be rotated to the ITRF frame before storing
them in the caltable.

gencal(vis=’test.ms’,caltable=’test.antposvla’,caltype=’antposvla’, \
antenna=’EA09,EA10’, \
parameter=[0.01,0.02,0.03, -0.03,-0.01,-0.02])

4.3.6 Other a priori Calibrations and Corrections

Other a priori calibrations will be added to the calibrater (cb) tool in the near future. These will
include system temperature normalization (amplitude) corrections, tropospheric phase corrections
derived from Water Vapor Radiometry (WVR) measurements, instrumental line-length corrections,
etc. Where appropriate, solving capabilities for these effects will also be added.

4.4 Solving for Calibration — Bandpass, Gain, Polarization

These tasks actually solve for the unknown calibration parameters, placing the results in a cal-
ibration table. They take as input an MS, and a number of parameters that specify any prior
calibration or previous calibration tables to pre-apply before computing the solution. These are
placed in the proper sequence of the Measurement Equation automatically.

We first discuss the parameters that are in common between many of the calibration tasks. Then
we describe each solver in turn.

4.4.1 Common Calibration Solver Parameters

There are a number of parameters that are in common between the calibration “solver” tasks.
These also appear in some of the other calibration manipulation and application tasks.



CHAPTER 4. SYNTHESIS CALIBRATION 147

4.4.1.1 Parameters for Specification : vis and caltable

The input measurement set and output table are controlled by the following parameters:

vis = ’’ # Name of input visibility file
caltable = ’’ # Name of output calibration table

The MS name is input in vis. If it is highlighted red in the inputs (§ 1.3.5.4) then it does not exist,
and the task will not execute. Check the name and path in this case.

The output table name is placed in caltable. Be sure to give a unique name to the output table,
or be careful. If the table exists, then what happens next will depend on the task and the values of
other parameters (e.g. § 4.4.1.6). The task may not execute giving a warning that the table already
exists, or will go ahead and overwrite the solutions in that table, or append them. Be careful.

4.4.1.2 Selection: field, spw, and selectdata

Selection is controlled by the parameters:

field = ’’ # field names or index of calibrators: ’’==>all
spw = ’’ # spectral window:channels: ’’==>all
selectdata = False # Other data selection parameters

Field and spectral window selection are so often used, that we have made these standard parameters
field and spw respectively.

The selectdata parameter expands as usual, uncovering other selection sub-parameters:

selectdata = True # Other data selection parameters
timerange = ’’ # time range: ’’==>all
uvrange = ’’ # uv range’’==>all
antenna = ’’ # antenna/baselines: ’’==>all
scan = ’’ # scan numbers: Not yet implemented
msselect = ’’ # Optional data selection (Specialized. but see help)

Note that if selectdata=False these parameters are not used when the task is executed, even if
set underneath.

The most common selectdata parameter to use is uvrange, which can be used to exclude longer
baselines if the calibrator is resolved, or short baselines of the calibrator contains extended flux not
accounted for in the model (e.g. § 4.3.4.1).

See § 2.3 for more on the selection parameters.



CHAPTER 4. SYNTHESIS CALIBRATION 148

4.4.1.3 Prior Calibration and Correction: parang, gaincurve and opacity

These parameters control the on-the-fly application of various calibration or effect-based corrections
prior to the solving process.

The parang parameter turns on the application of the antenna-based parallactic angle correction
(’P’) in the measurement equation. This is necessary for polarization calibration and imaging,
or for cases where the parallactic angles are different for geographically spaced antennas (e.g.
VLBI). For dealing with only the parallel-hand corrections (e.g. RR, LL, XX, YY) for a co-located
array (e.g. the VLA or ALMA), you can set parang=False and save some computational effort.
Otherwise, set parang=True to apply this correction.

There are two control parameters for applying Prior Calibration:

gaincurve = False # Apply VLA antenna gain curve correction
opacity = 0.0 # Opacity correction to apply (nepers)

See § 4.3 for more on Prior Calibration.

4.4.1.4 Previous Calibration: gaintable, gainfield, interp and spwmap

Calibration tables that have already been determined can also be applied before solving for the
new table:

gaintable = ’’ # Prior gain calibration table(s) to apply
gainfield = ’’ # Field selection on prior gaintable(s)
interp = ’’ # Interpolation mode (in time) for prior gaintable(s)
spwmap = [] # Spectral window mapping for each gaintable (see help)

This is controlled by the gaintable parameter, which takes a string or list of strings giving one or
more calibration tables to pre-apply. For example,

gaintable = [’ngc5921.bcal’,’ngc5921.gcal’]

specifies two tables, in this case bandpass and gain calibration tables respectively.

The other parameters key off gaintable, taking single values or lists, with an entry for each table
in gaintable. The order is given by that in gaintable.

The gainfield parameter specifies which fields from the respective gaintable to use to apply.
This is a list, with each entry a string or list of strings. The default ’’ for an entry means to use
all in that table. For example,

gaintable = [’ngc5921.bcal’,’ngc5921.gcal’]
gainfield = [ ’1331+305’, [’1331+305’,’1445+099’] ]

or using indices
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gainfield = [ ’0’, [’0’,’1’] ]

to specify the field ’1331+305’ from the table ’ngc5921.bcal’ and fields ’1331+305’ and ’1445+099’
from the second table ’ngc5921.gcal’. We could also have wildcarded the selection, e.g.

gainfield = [ ’0’, ’*’ ]

taking all fields from the second table. And of course we could have used the default

gainfield = [ ’0’, ’’ ]

or even

gainfield = [ ’0’ ]

which is to take all.

The interp parameter chooses the interpolation scheme to be used when pre-applying the solution
in the tables. This interpolation is (currently) only in time. The choices are currently ’nearest’,
’linear’, and ’aipslin’:

• ’nearest’ just picks the entry nearest in time to the visibility in question;

• ’linear’ interpolation calibrates each datum with calibration phases and amplitudes linearly
interpolated from neighboring time values. In the case of phase, this mode will assume that
phase jumps greater than 180◦ between neighboring points indicate a cycle slip, and the
interpolated value will follow this change in cycle accordingly;

• ’aipslin’ emulates the classic AIPS interpolation mode with linearly interpolated ampli-
tudes and phases derived from interpolation of the complex calibration values. While this
method avoids having to track cycle slips (which is unstable for solutions with very low SNR),
it will yield a phase interpolation which becomes increasingly non-linear as the spanned phase
difference increases. The non-linearity mimics the behavior of interp=’nearest’ as the
spanned phase difference approaches 180◦ (the phase of the interpolated complex calibration
value initially changes very slowly, then rapidly jumps to the second value at the midpoint of
the interval).

If the uncalibrated phase is changing rapidly, a ’nearest’ interpolation is not desirable. Usually,
interp=’linear’ is the best choice. For example,

interp = [ ’nearest’, ’linear’ ]

uses nearest “interpolation” on the first table, and linear on the second.

The spwmap parameter sets the spectral window combinations to form for the gaintable(s). This
is a list, or a list of lists, of integers giving the spw IDs to map. There is one list for each table in
gaintable, with an entry for each ID in the MS. For example,
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spwmap=[0,0,1,1] # apply from spw=0 to 0,1 and 1 to 2,3

for an MS with spw=0,1,2,3. For multiple gaintable, use lists of lists, e.g.

spwmap=[ [0,0,1,1], [0,1,0,1] ] # 2nd table spw=0 to 0,2 and 1 to 1,3

4.4.1.5 Solving: solint, combine, preavg, refant, minblperant, minsnr

The parameters controlling common aspects of the solution are:

solint = ’inf’ # Solution interval: egs. ’inf’, ’60s’ (see help)
combine = ’’ # Data axes which to combine for solve (scan, spw, and/or field)
preavg = -1.0 # Pre-averaging interval (sec) (rarely needed)
refant = ’’ # Reference antenna name:’’=no explicit reference
minblperant = 4 # Minimum baselines _per antenna_ required for solve
minsnr = 0.0 # Reject solutions below this SNR: 0==>no rejection

The solution interval is given by solint. If given a number without a unit, this is in seconds. The
special values ’inf’ and -1 specify an “infinite” solution interval encompassing the entire dataset,
while ’int’ or zero specify a solution every integration. aYou can use time quanta in the string,
e.g. solint=’1m’ and solint=’60s’ both specify solution intervals of one minute. Note that
solint interacts with combine to determine whether the solutions cross scan or field boundaries.

The parameter controlling the scope of the solution is combine. For the default combine=’’
solutions will break at scan, field, and spw boundaries. Specification of any of these in combine
will extend the solutions over the boundaries (up to the solint). For example, combine=’spw’
will combine spectral windows together for solving, while combine=’scan’ will cross scans. Thus,
to do scan-based solutions (single solution for each scan), set

solint = ’inf’
combine = ’’

while

solint = ’inf’
combine = ’scan’

will make a single solution for the entire dataset (for a given field and spw). You can specify
multiple choices for combination:

combine = ’scan,spw’

for example.

The reference antenna is specified by the refant parameter. This useful to “lock” the solutions
with time, effectively rotating (after solving) the phase of the gain solution for the reference antenna
to be zero (the exact effect depends on the type of solution). You can also run without a reference
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antenna, but in this case the solutions will float with time, with a phase that rotates around with
the relative weights of the antennas in the solution (its more or less like setting the weighted sum
of the antenna phases to zero). It is usually prudent to select an antenna in the center of the
array that is known to be particularly stable, as any gain jumps or wanders in the refant will be
transferred to the other antenna solutions.

Although rarely needed, setting a preavg time will let you average data over periods shorter than
the solution interval first before solving on longer timescales.

The minimum signal-to-noise ratio allowed for an acceptable solution is specified in the minsnr
parameter.

The minblperant parameter sets the minimum number of baselines to other antennas that must
be preset for a given antenna to get a solution.

4.4.1.6 Action: append and solnorm

The following parameters control some things that happen after solutions are obtained:

solnorm = False # Normalize solution amplitudes post-solve.
append = False # Append solutions to (existing) table. False will overwrite.

The solnorm parameter toggles on the option to normalize the solution amplitudes after the solu-
tions are obtained. The exact effect of this depends upon the type of solution. Not all tasks include
this parameter.

One should be aware when using solnorm that if this is done in the last stage of a chain of
calibration, then the part of the calibration that is “normalized” away will be lost. It is best to
use this in early stages (for example in a first bandpass calibration) so that later stages (such as
final gain calibration) can absorb the lost normalization scaling. It is not strictly necessary to
use solnorm=True at all, but is sometimes helpful if you want to have a normalized bandpass for
example.

The append parameter, if set to True, will append the solutions from this run to existing solutions in
caltable. Of course, this only matters if the table already exists. If append=False and caltable
exists, it will overwrite.

4.4.2 Spectral Bandpass Calibration (bandpass)

For channelized data, it is often desirable to solve for the gain variations in frequency as well as in
time. Variation in frequency arises as a result of non-uniform filter passbands or other dispersive
effects in signal transmission. It is usually the case that these frequency-dependent effects vary
on timescales much longer than the time-dependent effects handled by the gain types ’G’ and ’T’.
Thus, it makes sense to solve for them as a separate term: ’B’, using the bandpass task.

The inputs to bandpass are:
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# bandpass :: Calculate a bandpass solution

vis = ’’ # Nome of input visibility file
caltable = ’’ # Name of output gain calibration table
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
selectdata = False # Other data selection parameters
solint = ’inf’ # Solution interval
combine = ’scan’ # Data axes which to combine for solve (scan, spw, and/or field)
refant = ’’ # Reference antenna name
minblperant = 4 # Minimum baselines _per antenna_ required for solve
solnorm = False # Normalize average solution amplitudes to 1.0
bandtype = ’B’ # Type of bandpass solution (B or BPOLY)

fillgaps = 0 # Fill flagged solution channels by interpolation
append = False # Append solutions to the (existing) table
gaintable = [’’] # Gain calibration table(s) to apply on the fly
gainfield = [’’] # Select a subset of calibrators from gaintable(s)
interp = [’’] # Interpolation mode (in time) to use for each gaintable
spwmap = [] # Spectral windows combinations to form for gaintables(s)
gaincurve = False # Apply internal VLA antenna gain curve correction
opacity = 0.0 # Opacity correction to apply (nepers)
parang = False # Apply parallactic angle correction
async = False # if True run in the background, prompt is freed

Many of these parameters are in common with the other calibration tasks and are described above
in § 4.4.1.

The bandtype parameter selects the type of solution used for the bandpass. The choices are ’B’
and ’BPOLY’. The former solves for a complex gain in each channel in the selected part of the
MS. See § 4.4.2.2 for more on ’B’. The latter uses a polynomial as a function of channel to fit
the bandpass, and expands further to reveal a number of sub-parameters See § 4.4.2.3 for more on
’BPOLY’.

It is usually best to solve for the bandpass in channel data before solving for the gain as a function
of time. However, if the gains of the bandpass calibrator observations are fluctuating over the
timerange of those observations, then it can be helpful to first solve for the gains of that source
with gaincal , and input these to bandpass via gaintable. See more below on this strategy.

We now describe the issue of bandpass normalization, followed by a description of the options
bandtype=’B’ and bandtype=’BPOLY’.

4.4.2.1 Bandpass Normalization

The solnorm parameter (§ 4.4.1.6) deserves more explanation in the context of the bandpass. Most
users are used to seeing a normalized bandpass, where the vector sum of the antenna-based channel
gains sums to unity amplitude and zero phase. The toggle solnorm=True allows this. However, the
parts of the bandpass solution normalized away will be still left in the data, and thus you should
not use solnorm=True if the bandpass calibration is the end of your calibration sequence (e.g. you
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have already done all the gain calibration you want to). Note that setting solnorm=True will NOT
rescale any previous calibration tables that the user may have supplied in gaintable.

You can safely use solnorm=True if you do the bandpass first (perhaps after a throw-away initial
gain calibration) as we suggest above in § 4.2, as later gain calibration stages will deal with this
remaining calibration term. This does have the benefit of isolating the overall (channel independent)
gains to the following gaincal stage. It is also recommended for the case where you have multiple
scans on possibly different bandpass calibrators. It may also be preferred when applying the
bandpass before doing gaincal and then fluxscale (§ 4.4.4), as significant variation of bandpass
among antennas could otherwise enter the gain solution and make (probably subtle) adjustments
to the flux scale.

We finally note that solnorm=False at the bandpass step in the calibration chain will in the end
produce the correct results. It only means that there will be a part of what we usually think of the
gain calibration inside the bandpass solution, particularly if bandpass is run as the first step.

4.4.2.2 B solutions

Calibration type ’B’ differs from ’G’ only in that it is determined for each channel in each spectral
window. It is possible to solve for it as a function of time, but it is most efficient to keep the ’B’
solving timescale as long as possible, and use ’G’ or ’T’ for rapid frequency-independent time-scale
variations.

The ’B’ solutions are limited by the signal-to-noise ratio available per channel, which may be quite
small. It is therefore important that the data be coherent over the time-range of the ’B’ solutions.
As a result, ’B’ solutions are almost always preceded by an initial ’G’ or ’T’ solve using gaincal
(§ 4.4.3). In turn, if the ’B’ solution improves the frequency domain coherence significantly, a ’G’
or ’T’ solution following it will be better than the original.

For example, to solve for a ’B’ bandpass using a single short scan on the calibrator, then

default(’bandpass’)

vis = ’n5921.ms’
caltable = ’n5921.bcal’
gaintable = ’’ # No gain tables yet
gainfield = ’’
interp = ’’
field = ’0’ # Calibrator 1331+305 = 3C286 (FIELD_ID 0)
spw = ’’ # all channels
selectdata = False # No other selection
gaincurve = False # No gaincurve at L-band
opacity = 0.0 # No troposphere
bandtype = ’B’ # standard time-binned B (rather than BPOLY)
solint = ’inf’ # set solution interval arbitrarily long
refant = ’15’ # ref antenna 15 (=VLA:N2) (ID 14)

bandpass()
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On the other hand, we might have a number of scans on the bandpass calibrator spread over time,
but we want a single bandpass solution. In this case, we could solve for and then pre-apply an
initial gain calibration, and let the bandpass solution cross scans:

gaintable = ’n5921.init.gcal’ # Our previously determined G table
gainfield = ’0’
interp = ’linear’ # Do linear interpolation
solint = ’inf’ # One interval over dataset
combine = ’scan’ # Solution crosses scans

Note that we obtained a bandpass solution for all channels in the MS. If explicit channel selection
is desired, for example some channels are useless and can be avoided entirely (e.g. edge channels
or those dominated by Gibbs ringing), then spw can be set to select only these channels, e.g.

spw = ’0:4~59’ # channels 4-59 of spw 0

This is not so critical for ’B’ solutions as for ’BPOLY’, as each channel is solved for independently,
and poor solutions can be dropped.

If you have multiple time solutions, then these will be applied using whatever interpolation scheme
is specified in later tasks.

The combine parameter (§ 4.4.1.5) can be used to combine data across spectral windows, scans,
and fields.

4.4.2.3 BPOLY solutions

For some observations, it may be the case that the SNR per channel is insufficient to obtain a
usable per-channel ’B’ solution. In this case it is desirable to solve instead for a best-fit functional
form for each antenna using the bandtype=’BPOLY’ solver. The ’BPOLY’ solver naturally enough
fits (Chebychev) polynomials to the amplitude and phase of the calibrator visibilities as a function
of frequency. Unlike ordinary ’B’, a single common ’BPOLY’ solution will be determined for all
spectral windows specified (or implicit) in the selection. As such, it is usually most meaningful to
select individual spectral windows for ’BPOLY’ solves, unless groups of adjacent spectral windows
are known a priori to share a single continuous bandpass response over their combined frequency
range (e.g., PdBI data).

The ’BPOLY’ solver requires a number of unique sub-parameters:

bandtype = ’BPOLY’ # Type of bandpass solution (B or BPOLY)
degamp = 3 # Polynomial degree for BPOLY amplitude solution
degphase = 3 # Polynomial degree for BPOLY phase solution
visnorm = False # Normalize data prior to BPOLY solution
maskcenter = 0 # Number of channels in BPOLY to avoid in center of band
maskedge = 0 # Percent of channels in BPOLY to avoid at each band edge
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The degamp and degphase parameters indicate the polynomial degree desired for the amplitude
and phase solutions. The maskcenter parameter is used to indicate the number of channels in the
center of the band to avoid passing to the solution (e.g., to avoid Gibbs ringing in central channels
for PdBI data). The maskedge drops beginning and end channels. The visnorm parameter turns
on normalization before the solution is obtained (rather than after for solnorm).

The combine parameter (§ 4.4.1.5) can be used to combine data across spectral windows, scans,
and fields.

Note that bandpass will allow you to use multiple fields, and can determine a single solution for
all specified fields using combine=’field’. If you want to use more than one field in the solution
it is prudent to use an initial gaincal using proper flux densities for all sources (not just 1Jy) and
use this table as an input to bandpass because in general the phase towards two (widely separated)
sources will not be sufficiently similar to combine them, and you want the same amplitude scale.
If you do not include amplitude in the initial gaincal, you probably want to set visnorm=True
also to take out the amplitude normalization change. Note also in the case of multiple fields,
that the ’BPOLY’ solution will be labeled with the field ID of the first field used in the ’BPOLY’
solution, so if for example you point plotcal at the name or ID of one of the other fields used in
the solution, plotcal does not plot.

For example, to solve for a ’BPOLY’ (5th order in amplitude, 7th order in phase), using data from
field 2, with G corrections pre-applied:

bandpass(vis=’data.ms’, # input data set
caltable=’cal.BPOLY’, #
spw=’0:2~56’, # Use channels 3-57 (avoid end channels)
field=’0’, # Select bandpass calibrater (field 0)
bandtype=’BPOLY’, # Select bandpass polynomials
degamp=5, # 5th order amp
degphase=7, # 7th order phase

gaintable=’cal.G’, # Pre-apply gain solutions derived previously
refant=’14’) #

4.4.3 Complex Gain Calibration (gaincal)

The fundamental calibration to be done on your interferometer data is to calibrate the antenna-
based gains as a function of time in the various frequency channels and polarizations. Some of these
calibrations are known beforehand (“a priori”) and others must be determined from observations
of calibrators, or from observations of the target itself (“self-calibration”).

It is best to have removed a (slowly-varying) “bandpass” from the frequency channels by solving
for the bandpass (see above). Thus, the bandpass calibration table would be input to gaincal via
the gaintable parameter (see below).

The gaincal task has the following inputs:

# gaincal :: Determine temporal gains from calibrator observations:
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vis = ’’ # Nome of input visibility file
caltable = ’’ # Name of output gain calibration table
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
selectdata = False # Other data selection parameters
solint = ’inf’ # Solution interval (see help)
combine = ’’ # Data axes which to combine for solve (scan, spw, and/or field)
preavg = -1.0 # Pre-averaging interval (sec)
refant = ’’ # Reference antenna name
minblperant = 4 # Minimum baselines _per antenna_ required for solve
minsnr = 0.0 # Reject solutions below this SNR
solnorm = False # Normalize average solution amplitudes to 1.0 (G, T only)
gaintype = ’G’ # Type of gain solution (G, T, or GSPLINE)
calmode = ’ap’ # Type of solution" (’ap’, ’p’, ’a’)
append = False # Append solutions to the (existing) table
gaintable = [’’] # Gain calibration table(s) to apply on the fly
gainfield = [’’] # Select a subset of calibrators from gaintable(s)
interp = [’’] # Interpolation mode (in time) to use for each gaintable
spwmap = [] # Spectral windows combinations to form for gaintables(s)
gaincurve = False # Apply internal VLA antenna gain curve correction
opacity = 0.0 # Opacity correction to apply (nepers)
parang = False # Apply parallactic angle correction
async = False

Data selection is done through the standard field, spw and selectdata expandable sub-parameters
(see § 2.3). The bulk of the other parameters are the standard solver parameters. See § 4.4.1 above
for a description of these.

The gaintype parameter selects the type of gain solution to compute. The choices are ’T’, ’G’,
and ’GSPLINE’. The ’G’ and ’T’ options solve for independent complex gains in each solution
interval (classic AIPS style), with ’T’ enforcing a single polarization-independent gain for each
co-polar correlation (e.g. RR and LL, or XX and YY) and ’G’ having independent gains for these.
See § 4.4.3.1 for a more detailed description of ’G’ solutions, and § 4.4.3.2 for more on ’T’. The
’GSPLINE’ fits cubic splines to the gain as a function of time. See § 4.4.3.3 for more on this option.

4.4.3.1 Polarization-dependent Gain (G)

Systematic time-dependent complex gain errors are almost always the dominant calibration effect,
and a solution for them is almost always necessary before proceeding with any other calibration.
Traditionally, this calibration type has been a catch-all for a variety of similar effects, including: the
relative amplitude and phase gain for each antenna, phase and amplitude drifts in the electronics
of each antenna, amplitude response as a function of elevation (gain curve), and tropospheric
amplitude and phase effects. In CASA, it is possible to handle many of these effects separately, as
available information and circumstances warrant, but it is still possible to solve for the net effect
using calibration type G.

Generally speaking, type G can represent any per-spectral window multiplicative polarization- and
time-dependent complex gain effect downstream of the polarizers. (Polarization independent effects
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upstream of the polarizers may also be treated with G.) Multi-channel data (per spectral window)
will be averaged in frequency before solving (use calibration type B to solve for frequency-dependent
effects within each spectral window).

To solve for G on, say, fields 1 & 2, on a 90s timescale, and apply, e.g., gain curve corrections:

gaincal(’data.ms’,
caltable=’cal.G’, # Write solutions to disk file ’cal.G’
field=’0,1’, # Restrict field selection
solint=90.0, # Solve for phase and amp on a 90s timescale
gaincurve=True # Note: gaincurve=False by default
refant=3) #

plotcal(’cal.G’,’amp’) # Inspect solutions

These G solution will be referenced to antenna 4. Choose a well-behaved antenna that is located
near the center of the array for the reference antenna. For non-polarization datasets, reference
antennas need not be specified although you can if you want. If no reference antenna is specified,
an effective phase reference that is an average over the data will be calculated and used. For data
that requires polarization calibration, you must choose a reference antenna that has a constant
phase difference between the right and left polarizations (e.g. no phase jumps or drifts). If no
reference antenna (or a poor one) is specified, the phase reference may have jumps in the R–L phase,
and the resulting polarization angle response will vary during the observation, thus corrupting the
polarization imaging.

To apply this solution to the calibrators and the target source (field 2, say):

applycal(’data.ms’,
field=’0,1,2’, # Restrict field selection (cals + src)
opacity=0.0, # Don’t apply opacity correction
gaintable=’cal.G’) # Apply G solutions and correct data

plotxy(’data.ms’,xaxis=’channel’,datacolum=’data’,subplot=211)
plotxy(’data.ms’,xaxis=’channel’,datacolumn=’corrected’,subplot=212)

The calibrated data is written to the CORRECTED DATA column, with calwt=True by default.

4.4.3.2 Polarization-independent Gain (T)

At high frequencies, it is often the case that the most rapid time-dependent gain errors are intro-
duced by the troposphere, and are polarization-independent. It is therefore unnecessary to solve for
separate time-dependent solutions for both polarizations, as is the case for ’G’. Calibration type
’T’ is available to calibrate such tropospheric effects, differing from ’G’ only in that a single com-
mon solution for both polarizations is determined. In cases where only one polarization is observed,
type ’T’ is adequate to describe the time-dependent complex multiplicative gain calibration.

In the following example, we assume we have a ’G’ solution obtained on a longish timescale (longer
than a few minutes, say), and we want a residual ’T’ solution to track the polarization-independent
variations on a very short timescale:
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gaincal(’data.ms’, # Visibility dataset
caltable=’cal.T’, # Specify output table name
gaintype=’T’, # Solve for T
field=’0,1’, # Restrict data selection to calibrators
solint=3.0, # Obtain solutions on a 3s timescale
gaintable=’cal120.G’) # Pre-apply prior G solution

For dual-polarization observations, it will always be necessary to obtain a ’G’ solution to account for
differences and drifts between the polarizations (which traverse different electronics), but solutions
for rapidly varying polarization-independent effects such as those introduced by the troposphere
will be optimized by using ’T’. Note that ’T’ can be used in this way for self-calibration purposes,
too.

4.4.3.3 GSPLINE solutions

At high radio frequencies, where tropospheric phase fluctuates rapidly, it is often the case that
there is insufficient signal-to-noise ratio to obtain robust ’G’ or ’T’ solutions on timescales short
enough to track the variation. In this case it is desirable to solve for a best-fit functional form for
each antenna using the ’GSPLINE’ solver. This fits a time-series of cubic B-splines to the phase
and/or amplitude of the calibrator visibilities.

The combine parameter (§ 4.4.1.5) can be used to combine data across spectral windows, scans, and
fields. Note that if you want to use combine=’field’, then all fields used to obtain a ’GSPLINE’
amplitude solution must have models with accurate relative flux densities. Use of incorrect relative
flux densities will introduce spurious variations in the ’GSPLINE’ amplitude solution.

The ’GSPLINE’ solver requires a number of unique additional parameters, compared to ordinary
’G’ and ’T’ solving. The sub-parameters are:

gaintype = ’GSPLINE’ # Type of solution (G, T, or GSPLINE)
splinetime = 3600.0 # Spline (smooth) timescale (sec), default=1 hours
npointaver = 3 # Points to average for phase wrap (okay)
phasewrap = 180 # Wrap phase when greater than this (okay)

The duration of each spline segment is controlled by splinetime. The actual splinetime will be
adjusted such that an integral number of equal-length spline segments will fit within the overall
range of data.

Phase splines require that cycle ambiguities be resolved prior to the fit; this operation is controlled
by npointaver and phasewrap. The npointaver parameter controls how many contiguous points
in the time-series are used to predict the cycle ambiguity of the next point in the time-series, and
phasewrap sets the threshold phase jump (in degrees) that would indicate a cycle slip. Large values
of npointaver improve the SNR of the cycle estimate, but tend to frustrate ambiguity detection if
the phase rates are large. The phasewrap parameter may be adjusted to influence when cycles are
detected. Generally speaking, large values (> 180◦) are useful when SNR is high and phase rates
are low. Smaller values for phasewrap can force cycle slip detection when low SNR conspires to
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obscure the jump, but the algorithm becomes significantly less robust. More robust algorithms for
phase-tracking are under development (including fringe-fitting).

For example, to solve for ’GSPLINE’ phase and amplitudes, with splines of duration 600 seconds,

gaincal(’data.ms’,
caltable=’cal.spline.ap’,
gaintype=’GSPLINE’ # Solve for GSPLINE
calmode=’ap’ # Solve for amp & phase
field=’0,1’, # Restrict data selection to calibrators
splinetime=600.) # Set spline timescale to 10min

ALERT’: The ’GSPLINE’ solutions can not yet be used in fluxscale. You should do at least
some ’G’ amplitude solutions to establish the flux scale, then do ’GSPLINE’ in phase before or after
to fix up the short timescale variations. Note that the “phase tracking” algorithm in ’GSPLINE’
needs some improvement.

4.4.4 Establishing the Flux Density Scale (fluxscale)

The ’G’ or ’T’ solutions obtained from calibrators for which the flux density was unknown and
assumed to be 1 Jansky are correct in a time- and antenna- relative sense, but are mis-scaled by a
factor equal to the inverse of the square root of the true flux density. This scaling can be corrected
by enforcing the constraint that mean gain amplitudes determined from calibrators of unknown flux
density should be the same as determined from those with known flux densities. The fluxscale
task exists for this purpose.

The inputs for fluxscale are:

# fluxscale :: Bootstrap the flux density scale from standard calibrators
vis = ’’ # Name of input visibility file
caltable = ’’ # Name of input calibration table
fluxtable = ’’ # Name of output, flux-scaled calibration table
reference = ’’ # Reference field name(s) (transfer flux scale FROM)
transfer = ’’ # Transfer field name(s) (transfer flux scale TO), ’’ -> all
append = False # Append solutions?
refspwmap = [-1] # Scale across spectral window boundaries. See help fluxscale
async = False # If true the taskname must be started using fluxscale(...)

Before running fluxscale, one must have first run setjy for the reference sources and run a
gaincal on both reference and transfer fields. After running fluxscale the output fluxtable
caltable will have been scaled such that the correct scaling will be applied to the transfer sources.

For example, given a ’G’ table, e.g. ’cal.G’, containing solutions for a flux density calibrator (in
this case ’3C286’) and for one or more gain calibrator sources with unknown flux densities (in this
example ’0234+285’ and ’0323+022’):

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Select input table
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fluxtable= ’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # 3C286 = flux calibrator
transfer=’0234+258, 0323+022’) # Select calibrators to scale

The output table, ’cal.Gflx’, contains solutions that are properly scaled for all calibrators.

Note that the assertion that the gain solutions are independent of the calibrator includes the as-
sumption that the gain amplitudes are strictly not systematically time dependent. While synthesis
antennas are designed as much as possible to achieve this goal, in practice, a number of effects
conspire to frustrate it. When relevant, it is advisable to pre-apply gaincurve and opacity cor-
rections when solving for the ’G’ solutions that will be flux-scaled (see § 4.3 and § 4.4.1.3). When
the ’G’ solutions are essentially constant for each calibrator separately, the fluxscale operation is
likely to be robust.

The fluxscale task can be executed on either ’G’ or ’T’ solutions, but it should only be used on
one of these types if solutions exist for both and one was solved relative to the other (use fluxscale
only on the first of the two).

ALERT: The ’GSPLINE’ option is not yet supported in fluxscale (see § 4.4.3.3).

If the reference and transfer fields were observed in different spectral windows, the refspwmap
parameter may be used to achieve the scaling calculation across spectral window boundaries.

The refspwmap parameter functions similarly to the standard spwmap parameter (§ 4.4.1.4), and
takes a list of indices indicating the spectral window mapping for the reference fields, such that
refspwmap[i]=j means that reference field amplitudes from spectral window j will be used for
spectral window i.

Note: You should be careful when you have a dataset with spectral windows with different band-
widths, and you have observed the calibrators differently in the different spw. The flux-scaling will
probably be different in windows with different bandwidths.

For example,

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Select input table
fluxtable= ’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # 3C286 = flux calibrator
transfer=’0234+258,0323+022’ # Select calibrators to scale
refspwmap=[0,0,0]) # Use spwid 0 scaling for spwids 1 & 2

will use spw=0 to scale the others, while in

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Select input table
fluxtable=’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # 3C286 = flux calibrator,
transfer=’0234+285, 0323+022’, # select calibrators to scale,
refspwmap=[0,0,1,1]) # select spwids for scaling,

the reference amplitudes from spectral window 0 will be used for spectral windows 0 and 1 and
reference amplitudes from spectral window 2 will be used for spectral windows 2 and 3.
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4.4.4.1 Using Resolved Calibrators

If the flux density calibrator is resolved, the assumption that it is a point source will cause solutions
on outlying antennas to be biased in amplitude. In turn, the fluxscale step will be biased on
these antennas as well. In general, it is best to use model for the calibrator, but if such a model is
not available, it is important to limit the solution on the flux density calibrator to only the subset
of antennas that have baselines short enough that the point-source assumption is valid. This can
be done by using antenna and uvrange selection when solving for the flux density calibrator. For
example, if antennas 1 through 8 are the antennas among which the baselines are short enough
that the point-source assumption is valid, and we want to be sure to limit the solutions to the use
of baselines shorter than 15000 wavelengths, then we can assemble properly scaled solutions for the
other calibrator as follows (note: specifying both an antenna and a uvrange constraint prevents
inclusion of antennas with only a small number of baselines within the specified uvrange from being
included in the solution; such antennas will have poorly constrained solutions):

As an example, we first solve for gain solutions for the flux density calibrator (3C286 observed in
field 0) using a subset of antennas

gaincal(vis=’data.ms’,
caltable=’cal.G’, # write solutions to cal.G
field=’0’ # Select the flux density calibrator
selectdata=True, # Expand other selectors
antenna=’0~7’, # antennas 0-7,
uvrange=’0~15klambda’, # limit uvrange to 0-15klambda
solint=90) # on 90s timescales, write solutions

# to table called cal.G

Now solve for other calibrator (0234+285 in field 1) using all antennas (implicitly) and append
these solutions to the same table

gaincal(vis=’data.ms’,
caltable=’cal.G’, # write solutions to cal.G
field=’1’,
solint=90,
append=T) # Set up to write to the same table

Finally, run fluxscale to adjust scaling

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Input table with unscaled cal solutions
fluxtable=’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # Use 3c286 as ref with limited uvrange
transfer=’0234+285’) # Transfer scaling to 0234+285

The fluxscale calculation will be performed using only the antennas common to both fields, but
the result will be applied to all antennas on the transfer field. Note that one can nominally get by
only with the uvrange selection, but you may find that you get strange effects from some antennas
only having visibilities to a subset of the baselines and thus causing problems in the solving.
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4.4.5 Instrumental Polarization Calibration (D,X)

The inputs to polcal are:

# polcal :: Determine instrumental polarization from calibrator observations
vis = ’’ # Nome of input visibility file
caltable = ’’ # Name of output gain calibration table
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
selectdata = False # Other data selection parameters
solint = ’inf’ # Solution interval
combine = ’scan’ # Data axes which to combine for solve (scan, spw, and/or field)
preavg = 300.0 # Pre-averaging interval (sec)
refant = ’’ # Reference antenna name
minblperant = 4 # Minimum baselines _per antenna_ required for solve
minsnr = 0.0 # Reject solutions below this SNR
poltype = ’D+QU’ # Type of instrumental polarization solution (see help)
append = False # Append solutions to the (existing) table
gaintable = [’’] # Gain calibration table(s) to apply
gainfield = [’’] # Select a subset of calibrators from gaintable(s)
interp = [’’] # Interpolation mode (in time) to use for each gaintable
spwmap = [] # Spectral windows combinations to form for gaintables(s)
gaincurve = False # Apply internal VLA antenna gain curve correction
opacity = 0.0 # Opacity correction to apply (nepers)
async = False

The polcal task uses many of the standard calibration parameters as described above in § 4.4.1.

The key parameter controlling polcal is poltype. The choices are:

’D’ — Solve for instrumental polarization (leakage D-terms), using the transform of an IQU
model in MODEL DATA; requires no parallactic angle coverage, but if the source polarization is
non-zero, the gain calibration must have the correct R-L phase registration. (Note: this is
unlikely, so just use ’D+X’ to let the position angle registration float.) This will produce a
calibration table of type D.

’D+X’ — Solve for instrumental polarization D-terms and the polarization position angle cor-
rection, using the transform of an IQU model in MODEL DATA; this mode requires at least 2
distinct parallactic angles to separate the net instrumental polarization and the PA. This will
produce a calibration table of type ’D’. ALERT: no table of type ’X’ will be produced, so
you must follow this by a run of polcal with polmode=’X’ (see below).

’D+QU’ — Solve for instrumental polarization and source Q + iU ; requires at least 3 distinct
parallactic angles to separate the net instrumental polarization from the source Q and U.
Effectively sets the polarization PA to the value if the R-L phase difference were 0◦. This will
produce a calibration table of type ’D’.

’X’ — Solve only for the position angle correction; best to use this after getting the D-terms from
one of the above modes. Requires the observation of a calibrator with known Q + iU (or at
least known U/Q). This will produce a calibration table of type ’X’.
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There are channelized solution modes for the above options. For example, substitute ’Df’ for ’D’
in the ’D*’ modes described above to get a channelized D-term solution. ALERT: ’X’ solutions
are currently always frequency-independent.

ALERT: polcal will obtain a separate D-term solution for each field supplied to it. This
limitation will be relaxed in the future, enabling more sensitive solutions, as well as flexibilities like
solving for ’D+X’ using a single scan each of two or more position angle calibrators.

4.4.5.1 Heuristics and Strategies for Polarization Calibration

Fundamentally, with good ordinary gain (and bandpass, if relevant) calibration already in hand,
good polarization calibration must deliver both the instrumental polarization and position angle
calibration. An unpolarized source can deliver only the first of these, but does not require paral-
lactic angle coverage. A polarized source can only deliver the position angle calibration also if its
polarization is known a priori. Sources that are polarized, but with unknown polarization, must
always be observed with sufficient parallactic angle coverage, where ”sufficient” is determined by
SNR and the details of the solving mode.

These principles are stated assuming the instrumental polarization solution is solved using the
”linear approximation” where cross-terms in more than a single product of the instrumental or
source polarizations are ignored in the Measurement Equation (see § E). A general non-linearized
solution, with sufficient SNR, may enable some relaxation of the requirements indicated here.

For instrumental polarization calibration, there are 3 types of calibrator choice:

CASA Polarization Calibration Modes

Cal Polarization Parallactic Angles MODEL DATA polmode Result
unpolarized any set Q = U = 0 ’D’ or ’Df’ D-terms only
known non-zero 2+ scans set Q,U ’D+X’ or ’Df+X’ D-terms and PA
unknown 3+ scans ignored ’D+QU’ or ’Df+QU’ D-terms and source

Note that the parallactic angle ranges spanned by the scans in the modes that require this should
be large enough to give good separation between the components of the solution. In practice, 60◦

is a good target.

Each of these solutions should be followed with a ’X’ solution on a source with known polarization
position angle (and correct Q+ iU in MODEL DATA). ALERT: polmode=’D+X’ will soon deliver this
automatically.

The polcal task will solve for the ’D’ or ’X’ terms using the model visibilities that are in the
MODEL DATA column of the MS. Calibration of the parallel hands must have already been carried
out using gaincal and/or bandpass in order to align the phases over time and frequency. This
calibration need not have been applied and can be supplied through the gaintable parameters,
but any cal-tables to be used in polcal must agree (e.g. have been derived from) the data in the
DATA column and the model visibilities in the MODEL DATA column of the MS. Thus, for example,
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one would not use the cal-table produced by fluxscale as the rescaled amplitudes would no longer
agree with the contents of MODEL DATA.

Be careful when using resolved calibrators for polarization calibration. A particular problem is if
the structure in Q and U is offset from that in I. Use of a point model, or a resolved model for I
but point models for Q and U, can lead to errors in the ’X’ calibration. Use of a uvrange will
help here. The use of a full-Stokes model with the correct polarization is the only way to ensure a
correct calibration if these offsets are large.

4.4.5.2 A Polarization Calibration Example

In the following example, we do a standard ’D+QU’ solution on the bright source BLLac (2202+422)
which has been tracked through a range in parallactic angle:

default(’polcal’)
vis = ’polcal_20080224.cband.all.ms’
caltable = ’polcal_20080224.cband.all.pcal’
field = ’2202+422’
spw = ’’
solint = ’inf’
combine = ’scan’
preavg = 300.0
refant = ’VA15’
minsnr = 3
poltype = ’D+QU’
gaintable = ’polcal_20080224.cband.all.gcal’
gainfield = [’’]
polcal()

This assumes setjy and gaincal have already been run. Note that the original gain-calibration
table is used in gaintable so that what is in the MODEL DATA column is in agreement with what is
in the gaintable, rather than using the table resulting from fluxscale.

A bit later on, we need to set the R-L phase using a scan on 3C48 (0137+331):

default(’polcal’)
vis = ’polcal_20080224.cband.all.ms’
caltable = ’polcal_20080224.cband.all.polx’
field = ’0137+331’
refant = ’VA15’
minsnr = 3
poltype = ’X’
gaintable = [’polcal_20080224.cband.all.gcal’, ’polcal_20080224.cband.all.pcal’]
polcal()

If, on the other hand, we had a scan on an unpolarized bright source, for example 3C84 (0319+415),
we could use this to calibrate the leakages:
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default(’polcal’)
vis = ’polcal_20080224.cband.all.ms’
caltable = ’polcal_20080224.cband.all_3c84.pcal’
field = ’0319+415’
refant = ’VA15’
poltype = ’D’
gaintable = ’polcal_20080224.cband.all.gcal’
polcal()

We would then do the ’X’ calibration as before (but using this D-table in gaintable).

A full processing example for continuum polarimetry can be found in § F.2.

4.4.6 Baseline-based Calibration (blcal)

You can use the blcal task to solve for baseline-dependent (non-closing) errors. WARNING:
this is in general a very dangerous thing to do, since baseline-dependent errors once introduced are
difficult to remove. You must be sure you have an excellent model for the source (better than the
magnitude of the baseline-dependent errors).

The inputs are:

# blcal :: Calculate a baseline-based calibration solution (gain or bandpass)
vis = ’’ # Nome of input visibility file
caltable = ’’ # Name of output gain calibration table
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
selectdata = False # Other data selection parameters
solint = ’inf’ # Solution interval
combine = ’’ # Data axes which to combine for solve (scan, spw, and/or field)
freqdep = False # Solve for frequency dependent solutions
calmode = ’ap’ # Type of solution" (’ap’, ’p’, ’a’)
solnorm = False # Normalize average solution amplitudes to 1.0
gaintable = [’’] # Gain calibration table(s) to apply on the fly
gainfield = [’’] # Select a subset of calibrators from gaintable(s)
interp = [’’] # Interpolation mode (in time) to use for each gaintable
spwmap = [] # Spectral windows combinations to form for gaintables(s)
gaincurve = False # Apply internal VLA antenna gain curve correction
opacity = 0.0 # Opacity correction to apply (nepers)
parang = False # Apply parallactic angle correction
async = False # If true the taskname must be started using blcal(...)

The freqdep parameter controls whether blcal solves for “gain” (freqdep=True) or “bandpass”
(freqdep=False) style calibration.

Other parameters are the same as in other calibration tasks. These common calibration parameters
are described in § 4.4.1.
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4.5 Plotting and Manipulating Calibration Tables

At some point, the user should examine (plotting or listing) the calibration solutions. Calibra-
tion tables can also be manipulated in various ways, such as by interpolating between times (and
sources), smoothing of solutions, and accumulating various separate calibrations into a single table.

4.5.1 Plotting Calibration Solutions (plotcal)

The plotcal task is available for examining solutions of all of the basic solvable types (G, T, B,
D, M, MF, K). The inputs are:

# plotcal :: An all-purpose plotter for calibration results:

caltable = ’’ # Name of input calibration table
xaxis = ’’ # Value to plot along x axis (time,chan,amp,phase,real,imag,snr)
yaxis = ’’ # Value to plot along y axis (amp,phase,real,imag,snr)
poln = ’’ # Polarization to plot (RL,R,L,XY,X,Y,/)
field = ’’ # Field names or index: ’’=all, ’3C286,P1321*’, ’0~3’
antenna = ’’ # Antenna selection. E.g., antenna=’3~5’
spw = ’’ # Spectral window: ’’=all, ’0,1’ means spw 0 and 1
timerange = ’’ # Time selection ’’=all
subplot = 111 # Panel number on display screen (yxn)
overplot = False # Overplot solutions on existing display
clearpanel = ’Auto’ # Specify if old plots are cleared or not
iteration = ’’ # Iterate on antenna,time,spw,field
plotrange = [] # plot axes ranges: [xmin,xmax,ymin,ymax]
showflags = False # If true, show flags
plotsymbol = ’.’ # pylab plot symbol
plotcolor = ’blue’ # initial plotting color
markersize = 5.0 # size of plot symbols
fontsize = 10.0 # size of label font
showgui = True # Show plot on gui
figfile = ’’ # ’’= no plot hardcopy, otherwise supply name

ALERT: Currently, plotcal needs to know the MS from which caltable was derived to get
indexing information. It does this using the name stored inside the table, which does not include
the full path, but assumes the MS is in the cwd. Thus if you are using a MS in a directory other
than the current one, it will not find it. You need to change directories using cd in IPython (or
os.chdir() inside a script) to the MS location.

The controls for the plotcal window are the same as for plotxy (see § 3.4.2.1).

The xaxis and yaxis plot options available are:

• ’amp’ — amplitude,

• ’phase’ — phase,



CHAPTER 4. SYNTHESIS CALIBRATION 167

• ’real’ – the real part,

• ’imag’ — the imaginary part,

• ’snr’ – the signal-to-noise ratio,

of the calibration solutions that are in the caltable. The xaxis choices also include ’time’ and
’channel’ which will be used as the sensible defaults (if xaxis=’’) for gain and bandpass solutions
respectively.

The poln parameter determines what polarization or combination of polarization is being plotted.
The poln=’RL’ plots both R and L polarizations on the same plot. The respective XY options
do equivalent things. The poln=’/’ option plots amplitude ratios or phase differences between
whatever polarizations are in the MS (R and L. or X and Y).

The field, spw, and antenna selection parameters are available to obtain plots of subsets of
solutions. The syntax for selection is given in § 2.3.

The subplot parameter is particularly helpful in making multi-panel plots. The format is subplot=yxn
where yxn is an integer with digit y representing the number of plots in the y-axis, digit x the num-
ber of panels along the x-axis, and digit n giving the location of the plot in the panel array (where
n = 1, ..., xy, in order upper left to right, then down). See § 3.4.2.8 for more details on this
option.

The iteration parameter allows you to select an identifier to iterate over when producing multi-
panel plots. The choices for iteration are: ’antenna’, ’time’, ’spw’, ’field’. For example, if
per-antenna solution plots are desired, use iteration=’antenna’. You can then use subplot to
specify the number of plots to appear on each page. In this case, set the n to 1 for subplot=yxn.
Use the Next button on the plotcal window to advance to the next set of plots. Note that if
there is more than one timestamp in a ’B’ table, the user will be queried to interactively advance
the plot to each timestamp, or if multiplot=True, the antennas plots will be cycled through for
each timestamp in turn. Note that iteration can take more than one iteration choice (as a single
string containing a comma-separated list of the options). ALERT: the iteration order is fixed
(independent of the order specified in the iteration string), for example:

iteration = ’antenna, time, field’
iteration = ’time, antenna, field’

will both iterate over each field (fastest) then time (next) and antenna (slowest). The order is:

iteration = ’antenna, time, field, spw’

from the slowest (outer loop) to fastest (inner loop).

The markersize and fontsize parameters are especially helpful in making the dot and label sizes
appropriate for the plot being made. The screen shots in this section used this feature to make the
plots more readable in the cookbook. Adjusting the fontsize can be tricky on multi-panel plots,
as the labels can run together if too large. You can also help yourself by manually resizing the
Plotter window to get better aspect ratios on the plots.

ALERT: Unfortunately, plotcal has many of the same problems that plotxy does, as they use
similar code underneath. An overhaul is underway, so stay tuned.
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4.5.1.1 Examples for plotcal

For example, to plot amplitude or phase as a function of time for ’G’ solutions (after rescaling by
fluxscale for the NGC5921 “demo” data (see Appendix F.1),

default(’plotcal’)
fontsize = 14.0 # Make labels larger
markersize = 10.0 # Make dots bigger

caltable = ’ngc5921.usecase.fluxscale’
yaxis = ’amp’
subplot = 211
plotcal()

yaxis = ’phase’
subplot = 212
plotcal()

The results are shown in Figure 4.3. This makes use of the subplot option to make multi-panel
displays.

Similarly, to plot amplitude or phase as a function of channel for ’B’ solutions for NGC5921:

default(’plotcal’)
fontsize = 14.0 # Make labels larger
markersize = 10.0 # Make dots bigger

caltable = ’ngc5921.usecase.bcal’
antenna = ’1’
yaxis = ’amp’
subplot = 311
plotcal()

yaxis = ’phase’
subplot = 312
plotcal()

yaxis = ’snr’
subplot = 313
plotcal()

The results are shown in Figure 4.4. This stacks three panels with amplitude, phase, and signal-
to-noise ratio. We have picked antenna=’1’ to show.

For example, to show 6 plots per page of ’B’ amplitudes on a 3× 2 grid:

default(’plotcal’)
fontsize = 12.0 # Make labels just large enough
markersize = 10.0 # Make dots bigger
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Figure 4.3: Display of the amplitude (upper) and phase (lower) gain solutions for all antennas and
polarizations in the ngc5921 post-fluxscale table.

caltable = ’ngc5921.usecase.bcal’
yaxis = ’amp’
subplot = 231
iteration = ’antenna’

plotcal()

See Figure 4.5 for this example. This uses the iteration parameter.

4.5.2 Listing calibration solutions with (listcal)

The listcal task will list the solutions in a specified calibration table.

The inputs are:
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Figure 4.4: Display of the amplitude (upper), phase (middle), and signal-to-noise ratio (lower) of
the bandpass ’B’ solutions for antenna=’0’ and both polarizations for ngc5921. Note the falloff
of the SNR at the band edges in the lower panel.

# listcal :: List data set summary in the logger:

vis = ’’ # Name of input visibility file (MS)
caltable = ’’ # Input calibration table to list
field = ’’ # Select data based on field name or index
antenna = ’’ # Select data based on antenna name or index
spw = ’’ # Spectral window, channel to list
listfile = ’’ # Disk file to write, else to terminal
pagerows = 50 # Rows listed per page
async = False

An example listing is:

Listing CalTable: jupiter6cm.usecase.split.ms.smoothcal2 (G Jones)
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Figure 4.5: Display of the amplitude of the bandpass ’B’ solutions. Iteration over antennas was
turned on using iteration=’antenna’. The first page is shown. The user would use the Next
button to advance to the next set of antennas.

---------------------------------------------------------------

SpwId = 0, channel = 0.
Time Field Ant : Amp Phase Amp Phase
--------------------- ---------- -------- --------------- ---------------
1999/04/16/14:10:43.5 ’JUPITER’ ’1’ : 1.016 -11.5 1.016 -9.2

’2’ : 1.013 -5.3 0.993 -3.1
’3’ : 0.993 -0.8 0.990 -5.1
’4’ : 0.997 -10.7 0.999 -8.3
’5’ : 0.985 -2.7 0.988 -4.0
’6’ : 1.005 -8.4 1.009 -5.3
’7’ : 0.894 -8.7 0.897 -6.8
’8’ : 1.001 -0.1 0.992 -0.7
’9’ : 0.989 -12.4 0.992 -13.5
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’10’ : 1.000F -4.2F 1.000F -3.2F
’11’ : 0.896 -0.0 0.890 -0.0
’12’ : 0.996 -10.6 0.996 -4.2
’13’ : 1.009 -8.4 1.011 -6.1
’14’ : 0.993 -17.6 0.994 -16.1
’15’ : 1.002 -0.8 1.002 -1.1
’16’ : 1.010 -9.9 1.012 -8.6
’17’ : 1.014 -8.0 1.017 -7.1
’18’ : 0.998 -3.0 1.005 -1.0
’19’ : 0.997 -39.1 0.994 -38.9
’20’ : 0.984 -5.7 0.986 3.0
’21’ : 1.000F -4.2F 1.000F -3.2F
’22’ : 1.003 -11.8 1.004 -10.4
’23’ : 1.007 -13.8 1.009 -11.7
’24’ : 1.000F -4.2F 1.000F -3.2F
’25’ : 1.000F -4.2F 1.000F -3.2F
’26’ : 0.992 3.7 1.000 -0.2
’27’ : 0.994 -5.6 0.991 -4.3
’28’ : 0.993 -10.7 0.997 -3.8

4.5.3 Calibration table statistics (calstat)

The calstat task will will print the statistics of solutions in a specified calibration table.

The inputs are:

# calstat :: Displays statistical information on a calibration table
caltable = ’’ # Name of input calibration table
axis = ’amp’ # Which values to use

datacolumn = ’gain’ # Which data column to use

useflags = True # Take flagging into account? (not implemented)
async = False # If true the taskname must be started using calstat(...)

For example:

CASA <3>: calstat(’ngc5921.demo.gcal’,axis=’amp’,datacolumn=’gain’)
Out[3]:

{’GAIN’: {’max’: 1.6031942367553711,
’mean’: 1.4448433067117419,
’medabsdevmed’: 0.0086394548416137695,
’median’: 1.5732669830322266,
’min’: 0.99916577339172363,
’npts’: 280.0,
’quartile’: 0.020265340805053711,
’rms’: 1.4650156497955322,
’stddev’: 0.24271160321065546,
’sum’: 404.55612587928772,
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’sumsq’: 600.95579999685287,
’var’: 0.058908922333086665}}

CASA <4>: calstat(’ngc5921.demo.gcal’,axis=’phase’,datacolumn=’gain’)
Out[4]:

{’GAIN’: {’max’: 0.091214209794998169,
’mean’: -0.015221830284565011,
’medabsdevmed’: 0.012778861448168755,
’median’: -0.012778861448168755,
’min’: -0.15903720259666443,
’npts’: 280.0,
’quartile’: 0.02537553571164608,
’rms’: 0.031241731718182564,
’stddev’: 0.027331476552707856,
’sum’: -4.2621124796782031,
’sumsq’: 0.27329283416317834,
’var’: 0.00074700961055121926}}

The statistics can be captured as return variables from the task:

CASA <7>: mystat = calstat(’ngc5921.demo.gcal’,axis=’amp’,datacolumn=’gain’)

CASA <8>: print ’Gain Amp = ’,mystat[’GAIN’][’mean’],’+/-’,mystat[’GAIN’][’stddev’]
Gain Amp = 1.44484330671 +/- 0.242711603211

ALERT: This task is still under development and currently offers no selection (e.g. by antenna)
for the statistics.

4.5.4 Calibration Smoothing (smoothcal)

The smoothcal task will smooth calibration solutions (most usefully G or T ) over a longer time
interval to reduce noise and outliers. The inputs are:

# smoothcal :: Smooth calibration solution(s) derived from one or more sources:

vis = ’’ # Name of input visibility file
tablein = ’’ # Input calibration table
caltable = ’’ # Output calibration table
field = ’’ # Field name list
smoothtype = ’median’ # Smoothing filter to use
smoothtime = 60.0 # Smoothing time (sec)
async = False # if True run in the background, prompt is freed

The smoothing will use the smoothtime and smoothtype parameters to determine the new data
points which will replace the previous points on the same time sampling grid as for the tablein
solutions. The currently supported smoothtype options:
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• ’mean’ — use the mean of the points within the window defined by smoothtime (a “boxcar”
average),

• ’median’ — use the median of the points within the window defined by smoothtime (most
useful when many points lie in the interval).

Note that smoothtime defines the width of the time window that is used for the smoothing.

ALERT: Note that smoothcal currently smooths by field and spw, and thus you cannot smooth
solutions from different sources or bands together into one solution.

Figure 4.6: The ’amp’ of gain solutions for NGC4826 before (top) and after (bottom) smoothing
with a 7200 sec smoothtime and smoothtype=’mean’. Note that the first solution is in a different
spw and on a different source, and is not smoothed together with the subsequent solutions.

An example using the smoothcal task to smooth an existing table:

smoothcal(’n4826_16apr.ms’,
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tablein=’n4826_16apr.gcal’,
caltable=’n4826_16apr.smoothcal’,
smoothtime=7200.,
smoothtype=’mean’)

# Plot up before and after tables
plotcal(’n4826_16apr.gcal’,’’,’amp’,antenna=’1’,subplot=211)
plotcal(’n4826_16apr.smoothcal’,’’,’amp’,antenna=’1’,subplot=212)

This example uses 2 hours (7200 sec) for the smoothing time and smoothtype=’mean’. The plotcal
results are shown in Figure 4.6.

4.5.5 Calibration Interpolation and Accumulation (accum)

The accum task is used to interpolate calibration solutions onto a different time grid, and to
accumulate incremental calibrations into a cumulative calibration table.

Its inputs are:

# accum :: Accumulate incremental calibration solutions

vis = ’’ # Name of input visibility file
tablein = ’’ # Input (cumulative) calibration table; use ’’ on first run

accumtime = 1.0 # Timescale on which to create cumulative table

incrtable = ’’ # Input incremental calibration table to add
caltable = ’’ # Output (cumulative) calibration table
field = ’’ # List of field names to process from tablein.
calfield = ’’ # List of field names to use from incrtable.
interp = ’linear’ # Interpolation mode to use for resampling incrtable solutions
spwmap = [-1] # Spectral window combinations to apply

The mapping implied here is

tablein + incrtable => caltable

(mathematically the cal solutions are multiplied as complex numbers as per the Measurement
Equation). The tablein is optional (see below). You must specify an incrtable and a caltable.

The tablein parameter is used to specify the existing cumulative calibration table to which an
incremental table is to be applied. Initially, no such table exists, and if tablein=’’ then accu-
mulate will generate one from scratch (on-the-fly), using the timescale (in seconds) specified by
the sub-parameter accumtime. These nominal solutions will be unit-amplitude, zero-phase calibra-
tion, ready to be adjusted by accumulation according to the settings of other parameters. When
accumtime is negative (the default), the table name specified in tablein must exist and will be
used. If tablein is specified, then the entries in that table will be used.
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The incrtable parameter is used to specify the incremental table that should be applied to
tablein. The calibration type of incrtable sets the type assumed in the operation, so tablein
(if specified) must be of the same type. If it is not, accum will exit with an error message. (Certain
combinations of types and subtypes will be supported by accum in the future.)

The caltable parameter is used to specify the name of the output table to write. If un-specified
(’’), then tablein will be overwritten. Use this feature with care, since an error here will require
building up the cumulative table from the most recent distinct version (if any).

The field parameter specifies those field names in tablein to which the incremental solution
should be applied. The solutions for other fields will be passed to caltable unaltered. If the
cumulative table was created from scratch in this run of accumulate, then the solutions for these
other fields will be unit-amplitude, zero-phase, as described above.

The calfield parameter is used to specify the fields to select from incrtable to use when applying
to tablein. Together, use of field and calfield permit completely flexible combinations of
calibration accumulation with respect to fields. Multiple runs of accum can be used to generate a
single table with many combinations. In future, a ’self’ mode will be enabled that will simplify
the accumulation of field-specific solutions.

The spwmap parameter gives the mapping of the spectral windows in the incrtable onto those in
tablein and caltable. The syntax is described in § 4.4.1.4.

The interp parameter controls the method used for interpolation. The options are (currently):
’nearest’, ’linear’, and ’aipslin’. These are described in § 4.4.1.4. For most purposes, the
’linear’ option should suffice.

We now describe the two uses of accum.

4.5.5.1 Interpolation using (accum)

Calibration solutions (most notably G or T ) can be interpolated onto the timestamps of the science
target observations using accum.

The following example uses accum to interpolate an existing table onto a new time grid:

accum(vis=’n4826_16apr.ms’,
tablein=’’,
accumtime=20.0,
incrtable=’n4826_16apr.gcal’,
caltable=’n4826_16apr.20s.gcal’,
interp=’linear’,
spwmap=[0,1,1,1,1,1])

plotcal(’n4826_16apr.gcal’,’’,’phase’,antenna=’1’,subplot=211)
plotcal(’n4826_16apr.20s.gcal’,’’,’phase’,antenna=’1’,subplot=212)

See Figure 4.7 for the plotcal results. The data used in this example is BIMA data (single polar-
ization YY) where the calibrators were observed in single continuum spectral windows (spw=’0,1’)
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and the target NGC4826 was observed in 64-channel line windows (spw=’2,3,4,5’). Thus, it is
necessary to use spwmap=[0,1,1,1,1,1] to map the bandpass calibrator in spw=’0’ onto itself,
and the phase calibrator in spw=’1’ onto the target source in spw=’2,3,4,5’.

Figure 4.7: The ’phase’ of gain solutions for NGC4826 before (top) and after (bottom) ’linear’
interpolation onto a 20 sec accumtime grid. The first scan was 3C273 in spw=’0’ while the calibrator
scans on 1331+305 were in spw=’1’. The use of spwmap was necessary to transfer the interpolation
correctly onto the NGC4826 scans.

4.5.5.2 Incremental Calibration using (accum)

It is occasionally desirable to solve for and apply calibration incrementally. This is the case when
a calibration table of a certain type already exists (from a previous solve), a solution of the same
type and incremental relative to the first is required, and it is not possible or convenient to recover
the cumulative solution by a single solve.

Much of the time, it is, in fact, possible to recover the cumulative solution. This is because the
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equation describing the solution for the incremental solution (using the original solution), and that
describing the solution for their product are fundamentally the same equation—the cumulative
solution, if unique, must always be the same no matter what initial solution is. One circumstance
where an incremental solution is necessary is the case of phase-only self-calibration relative to a full
amplitude and phase calibration already obtained (from a different field).

For example, a phase-only ’G’ self-calibration on a target source may be desired to tweak the full
amplitude and phase ’G’ calibration already obtained from a calibrator. The initial calibration
(from the calibrator) contains amplitude information, and so must be carried forward, yet the
phase-only solution itself cannot (by definition) recover this information, as a full amplitude and
phase self-calibration would. In this case, the initial solution must be applied while solving for the
phase-only solution, then the two solutions combined to form a cumulative calibration embodying
the net effect of both. In terms of the Measurement Equation, the net calibration is the product
of the initial and incremental solutions.

Cumulative calibration tables also provide a means of generating carefully interpolated calibration,
on variable user-defined timescales, that can be examined prior to application to the data with
applycal. The solutions for different fields and/or spectral windows can be interpolated in different
ways, with all solutions stored in the same table.

Other Packages:
The analog of accum in classic AIPS
is the use of CLCAL to combine a se-
ries of (incremental) SN calibration
tables to form successive (cumula-
tive) CL calibration tables. AIPS
SN/CL tables are the analog of ’G’
tables in CASA.

The only difference between incremental and cumulative
calibration tables is that incremental tables are gener-
ated directly from the calibration solving tasks (gaincal,
bandpass, etc), and cumulative tables are generated from
other cumulative and incremental tables via accum. In all
other respects (internal format, application to data with
applycal, plotting with plotcal, etc.), they are the same,
and therefore interchangeable. Thus, accumulate and cu-
mulative calibration tables need only be used when circum-
stances require it.

The accum task represents a generalization on the classic AIPS CLCAL (see sidebox) model of
cumulative calibration in that its application is not limited to accumulation of ’G’ solutions. In
principle, any basic calibration type can be accumulated (onto itself), as long as the result of the
accumulation (matrix product) is of the same type. This is true of all the basic types, except
’D’. Accumulation is currently supported for ’B’, ’G’, and ’T’, and, in future, ’F’ (ionospheric
Faraday rotation), delay-rate, and perhaps others. Accumulation of certain specialized types (e.g.,
’GSPLINE’, ’TOPAC’, etc.) onto the basic types will be supported in the near future. The treatment
of various calibration from ancillary data (e.g., system temperatures, weather data, WVR, etc.), as
they become available, will also make use of accumulate to achieve the net calibration.

Note that accumulation only makes sense if treatment of a uniquely incremental solution is required
(as described above), or if a careful interpolation or sampling of a solution is desired. In all other
cases, re-solving for the type in question will suffice to form the net calibration of that type. For
example, the product of an existing ’G’ solution and an amplitude and phase ’G’ self-cal (solved
with the existing solution applied), is equivalent to full amplitude and phase ’G’ self-cal (with no
prior solution applied), as long as the timescale of this solution is at least as short as that of the
existing solution.
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One obvious application is to calibrate the amplitudes and phases on different timescales during
self-calibration. Here is an example, using the Jupiter VLA 6m continuum imaging example (see
Appendix F.2):

# Put clean model into MODEL_DATA column
ft(vis=’jupiter6cm.usecase.split.ms’,

model=’jupiter6cm.usecase.clean1.model’)

# Phase only self-cal on 10s timescales
gaincal(vis=’jupiter6cm.usecase.split.ms’,

caltable=’jupiter6cm.usecase.phasecal1’,
gaintype=’G’,
calmode=’p’,
refant=’6’,
solint=10.0,
minsnr=1.0)

# Plot up solution phase and SNR
plotcal(’jupiter6cm.usecase.phasecal1’,’’,’phase’,antenna=’1’,subplot=211)
plotcal(’jupiter6cm.usecase.phasecal1’,’’,’snr’,antenna=’1’,subplot=212)

# Amplitude and phase self-cal on scans
gaincal(vis=’jupiter6cm.usecase.split.ms’,

caltable=’jupiter6cm.usecase.scancal1’,
gaintable=’jupiter6cm.usecase.phasecal1’,
gaintype=’G’,
calmode=’ap’,
refant=’6’,
solint=’inf’,
minsnr=1.0)

# Plot up solution amp and SNR
plotcal(’jupiter6cm.usecase.scancal1’,’’,’amp’,antenna=’1’,subplot=211)
plotcal(’jupiter6cm.usecase.scancal1’,’’,’snr’,antenna=’1’,subplot=212)

# Now accumulate these - they will be on the 10s grid
accum(vis=’jupiter6cm.usecase.split.ms’,

tablein=’jupiter6cm.usecase.phasecal1’,
incrtable=’jupiter6cm.usecase.scancal1’,
caltable=’jupiter6cm.usecase.selfcal1’,
interp=’linear’)

# Plot this up
plotcal(’jupiter6cm.usecase.selfcal1’,’’,’amp’,antenna=’1’,subplot=211)
plotcal(’jupiter6cm.usecase.selfcal1’,’’,’phase’,antenna=’1’,subplot=212)

The final plot is shown in Figure 4.8

ALERT: Only interpolation is offered in accum, no smoothing (as in smoothcal).
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Figure 4.8: The final ’amp’ (top) and ’phase’ (bottom) of the self-calibration gain solutions for
Jupiter. An initial phase calibration on 10s solint was followed by an incremental gain solution
on each scan. These were accumulated into the cumulative solution shown here.

4.6 Application of Calibration to the Data

After the calibration solutions are computed and written to one or more calibration tables, one
then needs to apply them to the data.

4.6.1 Application of Calibration (applycal)

After all relevant calibration types have been determined, they must be applied to the target
source(s) before splitting off to a new MS or before imaging. This is currently done by explicitly
taking the data in the DATA column in the MAIN table of the MS, applying the relevant calibration
tables, and creating the CORRECTED DATA scratch column. The original DATA column is untouched.
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The applycal task does this. The inputs are:

# applycal :: Apply calibration solution(s) to data

vis = ’’ # Name of input visibility file
field = ’’ # Names or indices of data fields to apply calibration ’’==>all
spw = ’’ # spectral window:channels: ’’==>all
selectdata = False # Other data selection parameters
gaintable = ’’ # List of calibration table(s) to apply
gainfield = ’’ # Field selection for each gaintable
interp = ’’ # Interpolation mode (in time) for each gaintable
spwmap = [] # Spectral window mapping for each gaintable (see help)
gaincurve = False # Apply VLA antenna gain curve correction
opacity = 0.0 # Opacity correction to apply (nepers)
parang = False # Apply the parallactic angle correction
calwt = True # Apply calibration also to the WEIGHTS
async = False # if True run in the background, prompt is freed

As in other tasks, setting selectdata=True will open up the other selection sub-parameters (see
§ 2.3). Many of the other parameters are the common calibration parameters that are described in
§ 4.4.1.

The single non-standard parameter is the calwt option to toggle the ability to scale the visibility
weights by the inverse of the products of the scale factors applied to the amplitude of the antenna
gains (for the pair of antennas of a given visibility). This should in almost all cases be set to its
default (True). The weights should reflect the inverse noise variance of the visibility, and errors in
amplitude are usually also in the weights.

For applycal, the list of final cumulative tables is given in gaintable. In this case you will have
run accum if you have done incremental calibration for any of the types, such as ’G’. You can also
feed gaintable the full sets and rely on use of gainfield, interp and spwmap to do the correct
interpolation and transfer. It is often more convenient to go through accumulation of each type
with accum as described above (see § 4.5.5.2), as this makes it easier to keep track of the sequence
of incremental calibration as it is solved and applied. You can also do any required smoothing of
tables using smoothcal (§ 4.5.4), as this is not yet available in accum or applycal.

If you are not doing polarization calibration or imaging, then you can set parang=False to make
the calculations faster. If you are applying polarization calibration, or wish to make polarization
images, then set parang=True so that the parallactic angle rotation is applied to the appropriate
correlations. Currently, you must do this in applycal as this cannot be done on-the-fly in clean
or mosaic. See § 4.4.1.3 for more on parang.

For example, to apply the final bandpass and flux-scaled gain calibration tables solutions to the
NGC5921 data:

default(’applycal’)

vis=’ngc5921.usecase.ms’
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# We want to correct the calibrators using themselves
# and transfer from 1445+099 to itself and the target N5921

# Start with the fluxscale/gain and bandpass tables
gaintable=[’ngc5921.usecase.fluxscale’,’ngc5921.usecase.bcal’]

# pick the 1445+099 (field 1) out of the gain table for transfer
# use all of the bandpass table
gainfield = [’1’,’*’]

# interpolation using linear for gain, nearest for bandpass
interp = [’linear’,’nearest’]

# only one spw, do not need mapping
spwmap = []

# all channels, no other selection
spw = ’’
selectdata = False

# no prior calibration
gaincurve = False
opacity = 0.0

# select the fields for 1445+099 and N5921 (fields 1 and 2)
field = ’1,2’

applycal()

# Now for completeness apply 1331+305 (field 0) to itself

field = ’0’
gainfield = [’0’,’*’]

applycal()

# The CORRECTED_DATA column now contains the calibrated visibilities

In another example, we apply the final cumulative self-calibration of the Jupiter continuum data
obtained in the example of § 4.5.5.2:

applycal(vis=’jupiter6cm.usecase.split.ms’,
gaintable=’jupiter6cm.usecase.selfcal1’,
selectdata=False)

Again, it is important to remember the relative nature of each calibration term. A term solved for
in the presence of others is, in effect, residual to the others, and so must be used in combination
with them (or new versions of them) in subsequent processing. At the same time, it is important
to avoid isolating the same calibration effects in more than one term, e.g., by solving for both ’G’
and ’T’ separately (without applying the other), and then using them together.
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It is always a good idea to examine the corrected data after calibration (using plotxy to compare
the raw (’data’) and corrected (’corrected’) visibilities), as we describe next.

4.6.2 Examine the Calibrated Data

Once the source data is calibrated using applycal, you should examine the uv data and flag
anything that looks bad. If you find source data that has not been flanked by calibration scans,
delete it (it will not be calibrated).

For example, to look at the calibrated Jupiter data in the last example given in the previous section:

plotxy(’jupiter6cm.usecase.split.ms’,’uvdist’,’amp’,’corrected’,
selectdata=True,correlation=’RR LL’,fontsize = 14.0)

will show the CORRECTED DATA column. See Figure 4.9.

See § 3.4 for a description of how to display and edit data using plotms or plotxy, and § 7.4 for
use of the viewer to visualize and edit a Measurement Set.

4.6.3 Resetting the Applied Calibration using (clearcal)

The applycal task will set the CORRECTED DATA column. The clearcal task will reset it to be the
same as the DATA column. This may or may not be what you really want to do — nominally you
will rerun applycal to get new calibration if you have changed the tables or want to apply them
differently.

There is only a single input to clearcal:

# clearcal :: Re-initializes calibration for an ms

vis = ’’ # Name of input visibility file

Note: clearcal also resets the MODEL DATA column to (1,0) for all fields and spectral windows.

4.7 Other Calibration and UV-Plane Analysis Options

4.7.1 Splitting out Calibrated uv data (split)

The split task will apply calibration and output a new sub-MS containing a specified list of sources
(usually a single source). The inputs are:



CHAPTER 4. SYNTHESIS CALIBRATION 184

Figure 4.9: The final ’amp’ versus ’uvdist’ plot of the self-calibrated Jupiter data, as shown in
plotxy. The ’RR LL’ correlations are selected. No outliers that need flagging are seen.

# split :: Create a visibility subset from an existing visibility set:
vis = ’’ # Name of input measurement set
outputvis = ’’ # Name of output measurement set
datacolumn = ’corrected’ # Which data column(s) to split out
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
width = 1 # Number of channels to average to form one output channel
antenna = ’’ # Select data based on antenna/baseline
timebin = ’0s’ # Value for timeaveraging
timerange = ’’ # Select data based on time range
scan = ’’ # Select data based on scan numbers
array = ’’ # Select (sub)array by array ID number(s)
uvrange = ’’ # Select data based on uv distance range
async = False # If true the taskname must be started using split(...)
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Usually you will run split with datacolumn=’corrected’ as previous operations (e.g. applycal)
will have placed the calibrated data in the CORRECTED DATA column of the MS. This will produce
a new MS with this corrected data in its DATA column. The modes available in datacolumn are:

’data’, ’model’, ’corrected’, # produce MS with single DATA column
’data,model’, ’data,corrected’, ’model,corrected’, # pairs of columns
’all’ # all columns ’data,model,corrected’

We recommend sticking to the simple single-column modes (e.g. ’data’ or ’corrected’) or ’all’
if all columns are in the MS. Further processing may get confused by mismatched pairs of columns.

For example, to split out 46 channels (5-50) from spw 1 of our NGC5921 calibrated dataset:

split(vis=’ngc5921.usecase.ms’,
outputvis=’ngc5921.split.ms’,
field=’2’, # Output NGC5921 data (field 2)
spw=’0:5~50’, # Select 46 chans from spw 0
datacolumn=’corrected’) # Take the calibrated data column

4.7.1.1 Averaging in split

Time and channel averaging are now available using the timebin and width parameters.

The timebin parameter give the averaging time. It takes a quantity, e.g.

timebin = ’30s’

The width parameter defines the number of channels to average to form a given output channel.
This can be specified globally for all spw, e.g.

width = 5

or specified per spw, e.g.

width = [2,3]

to average 2 channels of 1st spectral window selected and 3 in the second one.

ALERT: The ability to average channels in both time and channel simultaneously is not yet
available. Also, if you average time and channel through sequential runs of split, you must
average in time first.
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4.7.2 Hanning smoothing of uv data (hanningsmooth)

The hanningsmooth task will apply Hanning smoothing to a spectral line uv data set. It will be
applied to the data in the DATA column of the input MS and it writes the Hanning smoothed data
into the CORRECTED DATA column of that same MS.

Hanning smoothing replaces the contents of channel i with a weighted sum of the contents of
a number of channels surrounding channel i. In its current form, only channels i-1, i, and i+1
participate, with weights 0.25, 0.50, and 0.25 respectively, but we intend to extend the kernel size
in future releases. A typical use for Hanning smoothing is to remove Gibbs ringing.

The inputs are:

# hanningsmooth :: Hanning smooth frequency channel data
vis = ’ngc5921.split.ms’ # Name of input visibility file (MS)
async = False

In many cases the data to be smoothed are in the CORRECTED DATA column of the MS; in that case,
run split first to copy the contents of the CORRECTED DATA column of the input MS to the DATA
column of the output MS. Then run hanningsmooth on the newly created MS.

After hanning smoothing, the contents of the first and last channel of each visibility are undefined;
hanningsmooth will therefore flag the first and last channel.

ALERT: We intend to make the kernel size a user supplied parameter. In the longer term we
intend to offer other varieties of spectral smoothing as well.

4.7.3 Model subtraction from uv data (uvsub)

The uvsub task will subtract the value in the MODEL column from that in the CORRECTED DATA
column in the input MS and store the result in that same CORRECTED DATA column.

The reverse operation is achieved by specifying reverse = True: in that case uvsub will add the
value in the MODEL column to that in the CORRECTED DATA column in the input MS and store the
result in that same CORRECTED DATA column.

The inputs are:

# uvsub :: Subtract/add model from/to the corrected visibility data.

vis = ’’ # Name of input visibility file (MS)
reverse = False # reverse the operation (add rather than subtract)
async = False

For example:

uvsub(’ngc5921.split.ms’)

ALERT: Currently, uvsub operates on the scratch columns in the MS vis. Eventually we will
provide the option to handle these columns behind the scenes and to write out a new MS.
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4.7.4 UV-Plane Continuum Subtraction (uvcontsub)

At this point, consider whether you are likely to need continuum subtraction. If there is significant
continuum emission present in what is intended as a spectral line observation, continuum subtrac-
tion may be desirable. You can estimate and subtract continuum emission in the uv-plane prior
to imaging or wait and subtract an estimate of it in the image-plane. Note that neither method is
ideal, and the choice depends primarily upon the distribution and strength of the continuum emis-
sion. Subtraction in the uv-plane is desirable if continuum emission dominates the source, since
deconvolution of the line emission will be more robust if not subject to errors in deconvolution of
the brighter continuum. There is also a performance benefit since the continuum is probably the
same in each channel of the observation, and it is desirable to avoid duplication of effort. However,
the main drawback of subtraction in the uv-plane is that it is only strictly correct for the phase
center, since without the Fourier transform, the visibilities only describe the phase center. Thus,
uv-plane continuum subtraction will be increasingly poor for emission distributed further from the
phase center. If the continuum emission is relatively weak, it is usually adequate to subtract it in
the image plane; this is described in the Image Analysis section of this cookbook. Here, we describe
how to do continuum subtraction in the uv-plane.

The uv-plane continuum subtraction is performed by the uvcontsub task. First, determine which
channels in your data cube do not have line emission, perhaps by forming a preliminary image as
described in the next chapter. This image will also help you decide whether or not you need to
come back and do uv-plane continuum subtraction at all.

ALERT: Even when setting splitdata=True this task will overwrite what is in the CORRECTED DATA
column of the MS. We strongly urge you to make a copy of the MS using split (e.g. with
datacolumn=’corrected’) and then work on that in order to keep from altering the original
dataset.

The inputs to uvcontsub are:

# uvcontsub :: Continuum fitting and subtraction in the uv plane
vis = ’’ # Nome of input visibility file
field = ’’ # Select field using field id(s) or field name(s)
fitspw = ’’ # Spectral window/channel selection for fitting the continuum
spw = ’’ # Spectral window selection for subtraction/export
solint = ’int’ # Continuum fit timescale
fitorder = 0 # Polynomial order for the fit
fitmode = ’subtract’ # Use of continuum fit (subtract,replace,model)
splitdata = False # Split out continuum, continuum-subtracted data
async = False

For each baseline, and over the timescale specified in solint, uvcontsub will provide a simple linear
fit to the real and imaginary parts of the (continuum-only) channels specified in fitspw (using the
standard spw selection syntax), and then subtract this model from all channels specified in spw,
or from all channels in spectral windows of fitspw if spw=’’. ALERT: The fits are currently
done independently in the spectral windows specified in fitspw, and thus overlapping channels in
different spw will be corrected only with the fits from their respective fitspw.
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Usually, one would set solint=’int’ which does no averaging and fits each integration. However,
if the continuum emission comes from a small region around the phase center, then you can set
solint larger (as long as it is shorter than the timescale for changes in the visibility function of
the continuum). If your scans are short enough you can also use scan averaging solint=’inf’. Be
warned, setting solint too large will introduce “time smearing” in the estimated continuum and
thus not properly subtracting emission not at the phase center.

Running uvcontsub with fitmode=’subtract’ will replace the CORRECTED DATA column in the MS
with continuum-subtracted line data and the MODEL DATA column with the continuum model. You
can use fitmode=’replace’ to replace the CORRECTED DATA column with the continuum model;
however, it is probably better to use fitmode=’subtract’ and then use split to select the
MODEL DATA and form a dataset appropriate for forming an image of the estimated continuum.
Note that a continuum image formed from this model will only be strictly correct near the phase
center, for the reasons described above.

The splitdata parameter can be used to have uvcontsub write out split MS for both the continuum-
subtracted data and the continuum. It will leave the input MS in the state as if fitmode=’subtract’
was used. Note that the entire channel range of the MS will be written out (not just the channels
specified in spw that have had the subtraction), so follow up with a split if you want to further
restrict the output channel range. If splitdata=True, then uvcontsub will make two output MS
with names <input msname>.contsub and <input msname>.cont. ALERT: be sure to run with
fitmode=’subtract’ if setting splitdata=True.

As mentioned above, it is currently the case that uvcontsub will overwrite the CORRECTED DATA
column. Therefore, it is desirable to first split the relevant corrected data into a new Measurement
Set. If you run uvcontsub on the original dataset, you will have to re-apply the calibration as
described in the previous chapter.

So, the recommended procedure is as follows:

• Finish calibration as described in the previous chapter.

• Use split to form a separate dataset.

• Use the invert or clean task on the split result to form an exploratory image that is useful
for determining the line-free channels.

• Use uvcontsub with mode=’subtract’ to subtract the continuum from the CORRECTED DATA
in the MS, and write the continuum model in the MODEL DATA column. Set splitdata=True
to have it automatically split out continuum-subtracted and continuum datasets, else do this
manually.

• Image the line-only emission with the clean task.

• If an image of the estimated continuum is desired, and you did not use splitdata=True, then
run split again (on the uvcontsub’d dataset), and select the MODEL DATA; then run clean to
image it.

For example, we perform uv-plane continuum subtraction on our NGC5921 dataset:
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# Want to use channels 4-6 and 50-59 for continuum
uvcontsub(vis=’ngc5921.usecase.ms’,

field=’N5921*’,
spw=’’, # all spw (only 0 in this data)
fitspw=’0:4~7;50~59’ # channels 4-6 and 50-59
solint=’inf’, # scans are short enough
fitorder=0 # mean only
fitmode=’subtract’ # uv-plane subtraction
splitdata=True) # split the data for us

# You will see it made two new MS:
# ngc5921.usecase.ms.cont
# ngc5921.usecase.ms.contsub

4.7.5 Spectral regridding of the MS (cvel)

Although not strictly a calibration operation, spectral regridding of a MS is available to aid in
calibration operations (e.g. continuum subtraction) and preparation for imaging. For this purpose,
the cvel task has been developed.

ALERT: The cvel task is in the early development phase, and is provided in this release for
testing purposes. There are known efficiency issues and bugs. See the online Release Notes page
for up-to-date details.

The inputs are:

# cvel :: regrid an MS to a new spectral window / channel structure or frame
vis = ’’ # Name of input measurement set
outputvis = ’’ # Name of output measurement set
passall = False # Pass through (to output MS) non-selected data with no change
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
selectdata = False # Other data selection parameters
mode = ’channel’ # Regridding mode

nchan = -1 # Number of channels in output spw (-1=all)
start = 0 # first input channel to use
width = 1 # Number of input channels to average
interpolation = ’linear’ # Spectral interpolation method

phasecenter = ’’ # Image phase center: position or field index
restfreq = ’’ # rest frequency (see help)
outframe = ’’ # Output frame (’’=keep input frame)
veltype = ’radio’ # velocity definition
hanning = False # Turn on Hanning smoothing of spectral channels
async = False # If true the taskname must be started using cvel(...)

The key parameters for the operation of cvel are the regridding mode, the output reference
outframe and veltype, and the standard selection parameters (in particular spw and field).
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The syntax for mode options (’channel’,’velocity’,’frequency’,’channel b’) has been made
compatible with the respective modes of clean (§ 5.2.5). The combination of selected spw and
mode will determine the output channels and spw(s):

spw = ’0,1’; mode = ’channel’
# will produce a single spw containing all channels in spw 0 and 1

spw=’0:5~28^2’; mode = ’channel’
# will produce a single spw made with channels (5,7,9,...,25,27)

spw = ’0’; mode = ’channel’: nchan=3; start=5; width=4
# will produce an spw with 3 output channels
# new channel 1 contains data from channels (5+6+7+8)
# new channel 2 contains data from channels (9+10+11+12)
# new channel 3 contains data from channels (13+14+15+16)

spw = ’0:0~63^3’; mode=’channel’; nchan=21; start = 0; width = 1
# will produce an spw with 21 channels
# new channel 1 contains data from channel 0
# new channel 2 contains data from channel 2
# new channel 21 contains data from channel 61

spw = ’0:0~40^2’; mode = ’channel’; nchan = 3; start = 5; width = 4
# will produce an spw with three output channels
# new channel 1 contains channels (5,7)
# new channel 2 contains channels (13,15)
# new channel 3 contains channels (21,23)

The simplest use of cvel is to shift a single spectral window into an output frame without regridding.
This is done with mode=’channel’. For example:

cvel(vis=’test_w3oh_nohann.ms’,
outputvis =’test_w3oh_nohann_chanbary.ms’,
mode=’channel’,nchan=-1,start=0,width=1,
interpolation=’nearest’,
phasecenter=’’,
spw=’’,
restfreq=’1665.4018MHz’,
outframe=’BARY’)

does this for an observation of the OH line.

There is also a special mode=’channel b’ that does not force a linear output frequency grid, e.g. for
irregularly spaced/overlapping spectral windows), but is nominally faster. This is not equivalent
to a clean output gridding mode, although clean will work on this spectral lattice.

We recommend using the mode=’velocity’’ and mode=’frequency’ options, as it is easiest to
determine what the resulting channelization will be. For example:

cvel(vis=’test_w3oh_nohann.ms’,
outputvis =’test_w3oh_nohann_cvellsrk.ms’,
mode=’velocity’,nchan=45,start=’-35.0km/s’,width=’-0.55km/s’,
interpolation=’linear’,
phasecenter=’’,



CHAPTER 4. SYNTHESIS CALIBRATION 191

spw=’’,
restfreq=’1665.4018MHz’,
outframe=’LSRK’)

cvel(vis=’test_w3oh_nohann.ms’,
outputvis =’test_w3oh_nohann_cvelbary.ms’,
mode=’velocity’,nchan=45,start=’-35.0km/s’,width=’-0.55km/s’,
interpolation=’linear’,
phasecenter=’’,
spw=’’,
restfreq=’1665.4018MHz’,
outframe=’BARY’)

will transform a MS into the LSRK and BARYcenter frames respectively.

ALERT: The frequency regridding in the cvel task is not currently as good as that in clean, and
you may see some broadening of the line profile even with hanning=F. Use this mode with care.

4.7.6 UV-Plane Model Fitting (uvmodelfit)

It is often desirable to fit simple analytic source component models directly to visibility data. Such
fitting has its origins in early interferometry, especially VLBI, where arrays consisted of only a few
antennas and the calibration and deconvolution problems were poorly constrained. These methods
overcame the calibration uncertainties by fitting the models to calibration-independent closure
quantities and the deconvolution problem by drastically limiting the number of free parameters
required to describe the visibilities. Today, even with larger and better calibrated arrays, it is still
desirable to use visibility model fitting in order to extract geometric properties such as the positions
and sizes of discrete components in radio sources. Fits for physically meaningful component shapes
such as disks, rings, and optically thin spheres, though idealized, enable connecting source geometry
directly to the physics of the emission regions.

Visibility model fitting is carried out by the uvmodelfit task. The inputs are:

# uvmodelfit :: Fit a single component source model to the uv data:

vis = ’’ # Name of input visibility file
field = ’’ # field name or index
spw = ’’ # spectral window
selectdata = False # Activate data selection details
niter = 5 # Number of fitting iterations to execute
comptype = ’P’ # Component type (P=pt source,G=ell. gauss,D=ell. disk)
sourcepar = [1, 0, 0] # Starting guess (flux,xoff,yoff,bmajaxrat,bpa)
varypar = [] # Which parameters can vary in fit
outfile = ’’ # Optional output component list table
async = False # if True run in the background, prompt is freed

ALERT: This task currently only fits a single component.
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The user specifies the number of non-linear solution iterations (niter), the component type (comptype),
an initial guess for the component parameters (sourcepar), and optionally, a vector of Booleans se-
lecting which component parameters should be allowed to vary (fixpar), and a filename in which to
store a CASA componentlist for use in other applications (file). Allowed comptypes are currently
point ’P’ or Gaussian ’G’.

The function returns a vector containing the resulting parameter list. This vector can be edited at
the command line, and specified as input (sourcepar) for another round of fitting.

The sourcepar parameter is currently the only way to specify the starting parameters for the fit.
For points, there are three parameters: I (total flux density), and relative direction (RA, Dec)
offsets (in arcsec) from the observation’s phase center. For Gaussians, there are three additional
parameters: the Gaussian’s semi-major axis width (arcsec), the aspect ratio, and position angle
(degrees). It should be understood that the quality of the result is very sensitive to the starting
parameters provided by the user. If this first guess is not sufficiently close to the global χ2 mini-
mum, the algorithm will happily converge to an incorrect local minimum. In fact, the χ2 surface,
as a function of the component’s relative direction parameters, has a shape very much like the
inverse of the absolute value of the dirty image of the field. Any peak in this image (positive or
negative) corresponds to a local χ2 minimum that could conceivable capture the fit. It is the user’s
responsibility to ensure that the correct minimum does the capturing.

Currently, uvmodelfit relies on the likelihood that the source is very near the phase center (within
a beamwidth) and/or the user’s savvy in specifying the starting parameters. This fairly serious
constraint will soon be relieved somewhat by enabling a rudimentary form of uv-plane weighting
to increase the likelihood that the starting guess is on a slope in the correct χ2 valley.

Improvements in the works for visibility model fitting include:

• User-specifiable uv-plane weighting

• Additional component shapes, including elliptical disks, rings, and optically thin spheroids.

• Optional calibration pre-application

• Multiple components. The handling of more than one component depends mostly on efficient
means of managing the list itself (not easy in command line options), which are currently
under development.

• Combined component and calibration fitting.

Example (see Figure 4.10):

#
# Note: It’s best to channel average the data if many channels
# before running a modelfit
#
split(’ngc5921.ms’,’1445+099_avg.ms’,

datacolumn=’corrected’,field=’1445*’,width=’63’)
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# Initial guess is that it’s close to the phase center
# and has a flux of 2.0 (a priori we know it’s 2.47)
uvmodelfit(’1445+099_avg.ms’, # use averaged data

niter=5, # Do 5 iterations
comptype=’P’, # P=Point source, G=Gaussian, D=Disk
sourcepar=[2.0,.1,.1], # Source parameters for a point source
spw=’0’, #
outfile=’gcal.cl’) # Output component list file

# Output looks like:
There are 19656 - 3 = 19653 degrees of freedom.
iter=0: reduced chi2=0.0418509: I=2, dir=[0.1, 0.1] arcsec
iter=1: reduced chi2=0.003382: I=2.48562, dir=[-0.020069, -0.0268826] arcsec
iter=2: reduced chi2=0.00338012: I=2.48614, dir=[0.00323428, -0.00232235] arcsec
iter=3: reduced chi2=0.00338012: I=2.48614, dir=[0.00325324, -0.00228963] arcsec
iter=4: reduced chi2=0.00338012: I=2.48614, dir=[0.00325324, -0.00228963] arcsec
iter=5: reduced chi2=0.00338012: I=2.48614, dir=[0.00325324, -0.00228963] arcsec
If data weights are arbitrarily scaled, the following formal errors
will be underestimated by at least a factor sqrt(reduced chi2). If
the fit is systematically poor, the errors are much worse.
I = 2.48614 +/- 0.0176859
x = 0.00325324 +/- 0.163019 arcsec
y = -0.00228963 +/- 0.174458 arcsec
Writing componentlist to file: /home/sandrock/smyers/Testing/Patch2/N5921/gcal.cl

# Fourier transform the component list into MODEL_DATA column of the MS
ft(’1445+099_avg.ms’, complist=’gcal.cl’)

# Plot data versus uv distance
plotxy(’1445+099_avg.ms’, xaxis=’uvdist’, datacolumn=’corrected’)

# Specify green circles for model data (overplotted)
plotxy(’1445+099_avg.ms’, xaxis=’uvdist’, datacolumn=’model’,

overplot=True, plotsymbol=’go’)

4.8 Examples of Calibration

See the scripts provied in Appendix F for examples of calibration. In particular, we refer the
interested user to the demonstrations for:

• NGC5921 (VLA HI) — a quick demo of basic CASA spectral line calibration (F.1)

• Jupiter (VLA 6cm continuum polarimetry) — polarization calibration (F.2)
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Figure 4.10: Use of plotxy to display corrected data (red and blue points) and uv model fit data
(green circles).



Chapter 5

Synthesis Imaging

Inside the Toolkit:
The im tool handles synthesis imag-
ing operations.

This chapter describes how to make and deconvolve images
starting from calibrated interferometric data, possibly sup-
plemented with single-dish data or an image made from
single-dish data. This data must be available in CASA
(see § 2 on importing data). See § 4 for information on
calibrating synthesis data. In the following sections, the
user will learn how to make various types of images from synthesis data, reconstruct images of the
sky using the available deconvolution techniques, include single-dish information in the imaging
process, and to prepare to use the results of imaging for improvement of the calibration process
(“self-calibration”).

5.1 Imaging Tasks Overview

The current imaging and deconvolution tasks are:

• clean — calculate a deconvolved image with a selected clean algorithm, including mosaicing,
or make a dirty image (§ 5.3),

• feather — combine a single dish and synthesis image in the Fourier plane (§ 5.4),

• deconvolve — image-plane only deconvolution based on the dirty image and beam, using
one of several algorithms (§ 5.7),

• autoclean — an experimental prototype task to automatically clean a dataset (§ 5.9).

There are also tasks that help you set up the imaging or interface imaging with calibration:

• boxit - create “cleanbox” deconvolution regions automatically from an image (§ 5.5.1),

• makemask - create “cleanbox” deconvolution regions from a box specification or file (§ 5.5.2),

195
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• ft - Fourier transform the specified model (or component list) and insert the source model
into the MODEL column of a visibility set (§ 5.6).

The full “tool kit” that allows expert-level imaging must still be used if you do not find enough
functionality within the tasks above.

Information on other useful tasks and parameter setting can be found in:

• listobs — list whats in a MS (§ 2.2.5),

• split— Write out new MS containing calibrated data from a subset of the original MS
(§ section:cal.split),

• cvel — regrid a spectral MS onto a new frequency channel system (§ 4.7.5),

• data selection — general data selection syntax (§ 2.3),

• viewer — image display including region statistics and image cube slice and profile capabil-
ities (§ 7).

5.2 Common Imaging Task Parameters

Inside the Toolkit:
The im.setimage method is used to
set many of the common image pa-
rameters. The im.advise method
gives helpful advice for setting up for
imaging.

We now describe some parameters are are common to the
imaging tasks. These should behave the same way in any
imaging task that they are found in. These are in alpha-
betical order.

ALERT: There are still a subset of data selection parameters used in the imaging tasks: field,
spw, timerange. In a later patch, we will use the standard data selection set (§ 2.3).

5.2.1 Parameter cell

The cell parameter defines the pixel size in the x and y
axes for the output image. If given as floats or integers,
this is the cell size in arc seconds, e.g.

cell=[0.5,0.5]

make 0.5′′ pixels. You can also give the cell size in quantities, e.g.

cell=[’1arcmin’, ’1arcmin’]

If a single value is given, then square pixels of that size are assumed.
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5.2.2 Parameter field

The field parameter selects the field indexes or names to be used in imaging. Unless you are
making a mosaic, this is usually a single index or name:

field = ’0’ # First field (index 0)
field = ’1331+305’ # 3c286
field = ’*’ # all fields in dataset

The syntax for field selection is given in § 2.3.2.

5.2.3 Parameter imagename

The value of the imagename parameter is used as the root name of the output image. Depending
on the particular task and the options chosen, one or more images with names built from that root
will be created. For example, the clean task run with imagename=’ngc5921 a series of output
images will be created with the names ngc5921.clean, ngc5921.residual, ngc5921.model, etc.

If an image with that name already exists, it will in general be overwritten. Beware using names
of existing images however. If the clean is run using an imagename where <imagename>.residual
and <imagename>.model already exist then clean will continue starting from these (effectively
restarting from the end of the previous clean). Thus, if multiple runs of clean are run consecutively
with the same imagename, then the cleaning is incremental (as in the difmap package).

5.2.4 Parameter imsize

The image size in numbers of pixels on the x and y axes is set by imsize. For example,

imsize = [288, 288]

makes a square image 288 pixels on a side. If a single value is given, then a square image of that
dimension is made. This need not be a power of two, but for optimal performance should be a
“composite” number divisible only by 2 and also 3 and/or 5. Note that in the example above
288 = 25 · 32.

ALERT: You will be warned if you give a non-composite imsize and it will suggest the nearest
appropriate value. But it will continue cleaning so you may have to abort if you want to make use
of this suggestion. This restriction will be lifted in the future when we migrate to a better FFTW
engine.

5.2.5 Parameter mode

The mode parameter defines how the frequency channels in the synthesis MS are mapped onto
the image. The allowed values are: mfs, channel, velocity, frequency. The mode parameter is
expandable, with some options uncovering a number of sub-parameters, depending upon its value.
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5.2.5.1 Mode mfs

mode = ’mfs’ # Spectral image definition (mfs,channel,velocity,frequency)
nterms = 1 # Number of Taylor terms for modeling the sky frequency dependence
reffreq = ’’ # Reference frequency for MFS (relevant only if nterms > 1)

The default mode=’mfs’ emulates multi-frequency synthesis in that each visibility-channel datum
k with baseline vector Bk at wavelength λk is gridded into the uv-plane at uk = Bk/λk. The
result is one or more images (depending on nterms), regardless of how many channels are in the
input dataset. The first image plane is at the frequency given by the midpoint between the highest
and lowest frequency channels in the input spw(s). Currently, there is no way to choose the center
frequency of the output image plane independently.

Higher order MFS (using nterms>1) is now available in CASA imaging. This does a Taylor expan-
sion in frequency suitable for wide-band narrow-field imaging. The default nterms=1 is equivalent
to assuming no frequency dependence, while nterms=2 is equivalent to the Sault-Wieringa algo-
rithm 1 The reffreq parameter sets the reference frequency about which the Taylor expansion is
done.

5.2.5.2 Mode channel

ALERT: Note that mode=’channel’ is intended as a shortcut to produce a cube based on the
input MS channelization. It will be in the frame of the input MS. We recommend that users
instead use the ’velocity’ and ’frequency’ modes which will produce cubes in other frames
with more control of the cube spacing. These modes have defaults that will work from the MS
spacing, reproducing the action of mode=’channel’.

If mode=’channel’ is chosen, then an image cube will be created. This is an expandable parameter,
with dependent parameters:

mode = ’channel’ # Spectral image definition(mfs, channel, velocity,frequency)
nchan = -1 # Number of channels (planes) in output image
start = 0 # first input channel to use
width = 1 # Number of input channels to average
interpolation = ’nearest’ # Spectral interpolation(nearest, linear, cubic)

The default nchan=-1 will automatically produce a cube with the number of channels needed
to span the (regridded) spectral windows of the MS. ALERT: This often results in extra blank
channels at the beginning and end of the image cube, so it is usually more precise to specify nchan
and start to get what you want.

The channelization of the resulting image is determined by the channelization in the MS of vis
of the first spw specified (the “reference spw”). The actual channels to be gridded and used in
the clean are selected via the spw parameter as usual. The resulting image cube will have nchan
channels spaced evenly in frequency. The first output channel will be located at the frequency of

1R.J. Sault & M.H. Wieringa, Astron. Astrophys. Suppl., 108, 585–594 (1994).
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channel start in the (first) reference spw (independent of what channels are selected using spw).
If width> 1, then input MS channels with centers within a frequency range given by (width+1)/2
times the reference spw spacing will be gridded together (as in mode = ’mfs’ above) into the
channels of the output image cube. The output channel spacing is thus given by width channels
in the reference spw of the MS.

The interpolation sub-parameter (§ 5.2.5.5) sets how channels are gridded into the image cube
planes. For ’nearest’, the channels in spw beyond the first are mapped into the nearest output
image channel within half a channel (if any). Otherwise, the chosen interpolation scheme will be
used. Image channels that lie outside the MS frequency range or have no data mapped to them
will be blank in the output image, but will be in the cube.

See the example in § F.1 for using the ’channel’ mode to image a spectral-line cube. In this case,
we use:

mode = ’channel’
nchan = 46
start = 5
width = 1

which will produce a 46-channel cube starting with channel 5 of the MS with the same channel
width as the MS. Note: the start channel is in reference to the channels in the MS, not the subset
selected by spw.

5.2.5.3 Mode frequency

For mode=’frequency’, an output image cube is created with nchan channels spaced evenly in
frequency.

mode = ’frequency’ # Spectral image definition(mfs, channel, velocity,frequency)
nchan = -1 # Number of channels (planes) in output image
start = ’’ # Frequency of first image channel: e.q. ’1.4GHz’(’’=default)
width = ’’ # Image channel frequency width: e.g ’1.0kHz’(’’=default)
interpolation = ’nearest’ # Spectral interpolation(nearest, linear, cubic)
outframe = ’’ # velocity frame of output image

The frequency of the first output channel is given by start and spacing by width. Output channels
have width also given by width. The sign of width determines whether the output channels ascend
or descend in frequency. Data from the input MS with centers that lie within one-half an input
channel overlap of the frequency range of ±width/2 centered on the output channels are gridded
together.

The defaults are designed to safely choose output cube channels to span the input MS(s). The
default nchan=-1 will choose the number of channels needed to span the frequencies of the channels
in the MS. The defaults start=’’ and width=’’ will use the channel frequency and width of the
first channel of the first specified spectral window selected in spw. ALERT: As in “channel” mode,
this is currently the first channel of the first spw, not the first channel selected from that spw.
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The interpolation sub-parameter (§ 5.2.5.5) sets how channels are gridded into the image cube
planes.

Using the NGC5921 dataset as an example:

mode = ’frequency’
nchan = 21
start = ’1412.830MHz’
width = ’50kHz’
outframe = ’LSRK’

would produce a 21-channel output cube with 50 kHz wide channels rather than the default chan-
nelization of the MS (24.4 kHz).

5.2.5.4 Mode velocity

If mode=’velocity’ is chosen, then an output image cube with nchan channels will be created,
with channels spaced evenly in velocity. Parameters are:

mode = ’velocity’ # Spectral image definition(mfs, channel, velocity,frequency)
nchan = -1 # Number of channels (planes) in output image
start = ’’ # Velocity of first image channel: e.g ’0.0km/s’(’’=default)
width = ’’ # Image channel velocity width: e.g ’-1.0km/s’(’’=default)
interpolation = ’nearest’ # Spectral interpolation(nearest, linear, cubic)
outframe = ’’ # velocity reference frame of output image; ’’ =input
veltype = ’radio’ # velocity definition

Note that velocities are calculated with respect to the rest frequency in the MS or specified through
the restfreq parameter (§ 5.2.7).

The velocity of the first output channel is given by start and spacing by width. Averaging is as in
mode=’frequency’. The interpolation sub-parameter (§ 5.2.5.5) sets how channels are gridded
into the image cube planes.

The defaults are designed to safely choose output cube channels to span the input MS(s). The
default nchan=-1 will choose the number of channels needed to span the velocities of the channels
in the MS. The defaults start=’’ and width=’’ will use the channel velocity and width of the
first channel of the first specified spectral window selected in spw. ALERT: As in “channel” mode,
this is currently the first channel of the first spw, not the first channel selected from that spw.

Again, using the NGC5921 dataset as an example:

mode = ’velocity’
nchan = 21
start = ’1383.0km/s’
width = ’10km/s’
outframe = ’LSRK’

Note that in this case the velocity axis runs forward, as opposed to the default channelization for
’channel’ or ’frequency’.
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5.2.5.5 Sub-parameter interpolation

The interpolation sub-parameter controls how spectral channels in the MS are gridded into the
output image cube. This is available in all modes except ’mfs’. The options are: ’nearest’,
’linear’, ’cubic’.

For ’nearest’, the channels in spw beyond the first are mapped into the nearest output image
channel within half a channel (if any).

For ’linear’, the channels are gridded into the planes using weights given by a linear function of
the frequency of the MS channel versus the plane. Each input channel will be mapped to 1 or 2
output planes. For most users, this is the best choice.

For ’cubic’, the channels are gridded using a cubic interpolation function.

5.2.6 Parameter phasecenter

The phasecenter parameter indicates which of the field IDs should be used to define the phase
center of the mosaic image, or what that phase center is in RA and Dec. The default action is to
use the first one given in the field list.

For example:

phasecenter=’5’ # field 5 in multi-src ms
phasecenter=’J2000 19h30m00 -40d00m00’ # specify position

Note that the format for angles prefers to use hm for RA/time units and dm for Dec/Angle units as
separators. The colon :: separator is interpreted as RA/time even if its used for the Dec, so be
careful not to copy/paste from other sources.

5.2.7 Parameter restfreq

The value of the restfreq parameter, if set, will over-ride the rest frequency in the header of the
first input MS to define the velocity frame of the output image.

ALERT: The restfreq parameter takes the options of transitions and frequencies as in the cor-
responding plotxy parameter (§ 3.4.2.12), but the frame information is controlled under the mode
parameter (§ 5.2.5).

For example:

restfreq=’115.2712GHz’,

will set the rest frequency to that of the CO 1-0 line.

ALERT: Setting restfreq explicitly here in clean is good practice, and may be necessary if your
MS has been concatenated from different files for different spectral windows (§ 2.2.9).
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5.2.8 Parameter spw

The spw parameter selects the spectral windows that will be used to form the image, and possibly
a subset of channels within these windows.

The spw parameter is a string with an integer, list of integers, or a range, e.g.

spw = ’1’ # select spw 1
spw = ’0,1,2,3’ # select spw 0,1,2,3
spw = ’0~3’ # same thing using ranges

You can select channels in the same string with a : separator, for example

spw = ’1:10~30’ # select channels 10-30 of spw 1
spw = ’0:5~55,3:5;6;7’ # chans 5-55 of spw 0 and 5,6,7 of spw 3

This uses the standard syntax for spw selection is given in § 2.3.3. See that section for more options.

Note that the order in which multiple spws are given is important for mode = ’channel’, as this
defines the origin for the channelization of the resulting image.

5.2.9 Parameter stokes

The stokes parameter specifies the Stokes parameters for the resulting images. Note that forming
Stokes Q and U images requires the presence of cross-hand polarizations (e.g. RL and LR for circularly
polarized systems such as the VLA) in the data. Stokes V requires both parallel hands (RR and
:LL) for circularly polarized systems or the cross-hands (XY and YX) for linearly polarized systems
such as ALMA and ATCA.

This parameter is specified as a string of up to four letters (IQUV). For example,

stokes = ’I’ # Intensity only
stokes = ’IQU’ # Intensity and linear polarization
stokes = ’IV’ # Intensity and circular polarization
stokes = ’IQUV’ # All Stokes imaging

are common choices. () The output image will have planes (along the “polarization axis”) corre-
sponding to the chosen Stokes parameters.

If as input to deconvolution tasks such as clean, the stokes parameter includes polarization planes
other than I, then choosing psfmode=’hogbom’ (§ 5.3.1.2) or psfmode=’clarkstokes’ (§ 5.3.1.3)
will clean (search for components) each plane sequentially, while psfmode=’clark’ (§ 5.3.1.1) will
deconvolve jointly.
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5.2.10 Parameter uvtaper

This controls the radial weighting of visibilities in the uv-plane (see § 5.2.11 below) through the
multiplication of the visibilities by the Fourier transform of an elliptical Gaussian. This is itself a
Gaussian, and thus the visibilities are “tapered” with weights decreasing as a function of uv-radius.

The uvtaper parameter expands the menu upon setting uvtaper=True to reveal the following
sub-parameters:

uvtaper = True # Apply additional uv tapering of visibilities.
outertaper = [] # uv-taper on outer baselines in uv-plane
innertaper = [] # uv-taper in center of uv-plane (not implemented)

The sub-parameters specify the size and optionally shape and orientation of this Gaussian in the
uv-plane or optionally the sky plane. The outertaper refers to a Gaussian centered on the origin
of the uv-plane.

Some examples:

outertaper=[] # no outer taper applied
outertaper=[’5klambda’] # circular uv taper FWHM=5 kilo-lambda
outertaper=[’5klambda’,’3klambda’,’45.0deg’] # elliptical Gaussian
outertaper=[’10arcsec’] # on-sky FWHM 10"
outertaper=[’300.0’] # 300m in aperture plane

Note that if no units are given on the taper, then the default units are assumed to be meters in
aperture plane.

ALERT: The innertaper option is not yet implemented.

5.2.11 Parameter weighting

Inside the Toolkit:
The im.weight method has more
weighting options than available in
the imaging tasks. See the User
Reference Manual for more infor-
mation on imaging weights.

In order to image your data, we must have a map from
the visibilities to the image. Part of that map, which is
effectively a convolution, is the weights by which each vis-
ibility is multiplied before gridding. The first factor in the
weighting is the “noise” in that visibility, represented by
the data weights in the MS (which is calibrated along with
the visibility data). The weighting function can also de-
pend upon the uv locus of that visibility (e.g. a “taper”
to change resolution). This is actually controlled by the
uvtaper parameter (see § 5.2.10). The weighting matrix also includes the convolution kernel that
distributes that visibility onto the uv-plane during gridding before Fourier transforming to make
the image of the sky. This depends upon the density of visibilities in the uv-plane (e.g. “natural”,
“uniform”, “robust” weighting).

The user has control over all of these.
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ALERT: You can find a weighting description in the online User Reference Manual at:

http://casa.nrao.edu/docs/casaref/imager.weight.html

The weighting parameter expands the menu to include various sub-parameters depending upon
the mode chosen:

5.2.11.1 ’natural’ weighting

For weighting=’natural’, visibilities are weighted only by the data weights, which are calculated
during filling and calibration and should be equal to the inverse noise variance on that visibility.
Imaging weight wi of sample i is given by

wi = ωi =
1
σ2

k

(5.1)

where the data weight ωi is determined from σi is the rms noise on visibility i. When data is
gridded into the same uv-cell for imaging, the weights are summed, and thus a higher uv density
results in higher imaging weights. No sub-parameters are linked to this mode choice. It is the
default imaging weight mode, and it should produce “optimum” image with with the lowest noise
(highest signal-to-noise ratio). Note that this generally produces images with the poorest angular
resolution, since the density of visibilities falls radially in the uv-plane

5.2.11.2 ’uniform’ weighting

For weighting = ’uniform’, the data weights are calculated as in ’natural’ weighting. The
data is then gridded to a number of cells in the uv-plane, and after all data is gridded the uv-cells
are re-weighted to have “uniform” imaging weights. This pumps up the influence on the image of
data with low weights (they are multiplied up to be the same as for the highest weighted data),
which sharpens resolution and reduces the sidelobe level in the field-of-view, but increases the rms
image noise. No sub-parameters are linked to this mode choice.

For uniform weighting, we first grid the inverse variance ωi for all selected data onto a grid with
uv cell-size given by 2/FOV where FOV is the specified field of view (defaults to the image field
of view). This forms the gridded weights Wk. The weight of the i-th sample is then:

wi =
ωi

Wk
. (5.2)

5.2.11.3 ’superuniform’ weighting

The weighting = ’superuniform’ mode is similar to the ’uniform’ weighting mode but there is
now an additional npixels sub-parameter that specifies a change to the number of cells on a side
(with respect to uniform weighting) to define a uv-plane patch for the weighting renormalization.
If npixels=0 you get uniform weighting.

http://casa.nrao.edu/docs/casaref/imager.weight.html
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5.2.11.4 ’radial’ weighting

The weighting = ’radial’ mode is a seldom-used option that increases the weight by the radius
in the uv-plane, ie.

wi = ωi ·
√

u2
i + v2

i . (5.3)

Technically, I would call that an inverse uv-taper since it depends on uv-coordinates and not on the
data per-se. Its effect is to reduce the rms sidelobes for an east-west synthesis array. This option
has limited utility.

5.2.11.5 ’briggs’ weighting

The weighting = ’briggs’ mode is an implementation of the flexible weighting scheme developed
by Dan Briggs in his PhD thesis. See:

http://www.aoc.nrao.edu/dissertations/dbriggs/

This choice brings up the sub-parameters:

weighting = ’briggs’ # Weighting to apply to visibilities
robust = 0.0 # Briggs robustness parameter
npixels = 0 # number of pixels to determine uv-cell size 0=> field of view

The actual weighting scheme used is:

wi =
ωi

1 + Wkf2
(5.4)

where Wk is defined as in uniform and superuniform weighting, and

f2 =
(5 ∗ 10−R)2∑

k
W 2

k∑
i
ωi

(5.5)

and R is the robust parameter.

The key parameter is the robust parameter, which sets R in the Briggs equations. The scaling of
R is such that R = 0 gives a good trade-off between resolution and sensitivity. The robust R takes
value between −2.0 (close to uniform weighting) to 2.0 (close to natural).

Superuniform weighting can be combined with Briggs weighting using the npixels sub-parameter.
This works as in ’superuniform’ weighting (§ 5.2.11.3).

5.2.11.6 ’briggsabs’ weighting

For weighting=’briggsabs’, a slightly different Briggs weighting is used, with

wi =
ωi

WkR2 + 2σ2
R

(5.6)

where R is the robust parameter and σR is the noise parameter.

This choice brings up the sub-parameters:

http://www.aoc.nrao.edu/dissertations/dbriggs/
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weighting = ’briggsabs’ # Weighting to apply to visibilities
robust = 0.0 # Briggs robustness parameter
noise = ’0.0Jy’ # noise parameter for briggs weighting when rmode=’abs’
npixels = 0 # number of pixels to determine uv-cell size 0=> field of view

Otherwise, this works as weighting=’briggs’ above (§ 5.2.11.5).

5.2.12 Parameter vis

ALERT!
Multi-MS handling is not percolated
to the tasks yet, as we are still work-
ing on this. Use single MS only.

The value of the vis parameter is either the name of a sin-
gle MS, or a list of strings containing the names of multiple
MSs, that should be processed to produce the image. The
MS referred to by the first name in the list (if more than
one) is used to determine properties of the image such as
channelization and rest frequency.

For example,

vis = ’ngc5921.ms’

set a single input MS, while

vis = [’ngc5921_day1.ms’, ’ngc5921_day2.ms’, ’ngc5921_day3.ms’]

points to three separate measurement sets that will be gridded together to form the image. This
means that you do not have to concatenate datasets, for example from different configurations,
before imaging.

5.2.13 Primary beams in imaging

The CASA imaging task and tools use primary beams based on models for each observatory’s
antenna types. In addition to different antenna diameters, different functions may be used.

The voltage patterns are based on the following antenna primary beams, based on the TELESCOPE NAME
keyword in the OBSERVATION table:

VLA — Airy disk fitted to measurement. Note that a R/L beam squint is also included with feed
dependent angle;

ALMA — Airy disk for 12m dish with a blockage of 1m;

ATA — Airy disk for 6m dish;

ATCA — polynomial fitted to measurement of main lobe;

BIMA, HATCREEK — Gaussian with halfwidth of λ/2D;
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CARMA — Airy patterns for the BIMA or OVRO dish sizes as appropriate;

GBT — polynomial fitted to measurement of main lobe;

GMRT — VLA Airy disk scaled to 45.0m;

IRAMPDB — Airy disk for dish of 15m with a blockage of 1m;

NRAO12M — VLA beam scaled to 12m;

OVRO — VLA Airy disk scaled to 10.4m;

SMA — Spheroidal function fit to FWHM;

WSRT — polynomial fitted to measurement of main lobe;

If the telescope name is unknown, or is CARMA or ALMA, then the DISH DIAMETER in the ANTENNA
table is used with a scaled VLA pattern.

Note that for the purposes of mosaicing in clean, the primary beams that are Airy or spheroidal
are best-behaved (see § 5.3.15).

5.3 Deconvolution using CLEAN (clean)

To create an image and then deconvolve it with the CLEAN algorithm, use the clean task. This
task will work for single-field data, or for multi-field mosaics (§ 5.3.15), in both narrow and wide-
field imaging modes. ALERT: There is now an experimental feature to image data taken with
“heterogeneous” arrays with non-identical dish sizes (§ 5.3.16).

Toolkit Note: MEM is not included in clean, but is available in the toolkit.

The clean task uses many of the common imaging parameters. These are described above in § 5.2.
There are also a number of parameters specific to clean. These are listed and described below.

The default inputs to clean are:

# clean :: Deconvolve an image with selected algorithm
vis = ’’ # name of input visibility file
imagename = [’’] # Pre-name of output images
outlierfile = ’’ # Text file with image names, sizes, centers
field = ’’ # Field Name
spw = ’’ # Spectral windows:channels: ’’ is all
selectdata = False # Other data selection parameters
mode = ’mfs’ # Type of selection (mfs, channel, velocity,frequency)

nterms = 1 # Number of taylor terms to use for modeling the sky frequency dependence
reffreq = ’’ # Reference frequency for MFS (relevant only if nterms > 1)

gridmode = ’’ # The kind gridding kernel to be used for FFT-based transforms
niter = 500 # Maximum number of iterations
gain = 0.1 # Loop gain for cleaning
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threshold = ’0.0mJy’ # Flux level to stop cleaning. Must include units
psfmode = ’clark’ # method of PSF calculation to use during minor cycles
imagermode = ’’ # Use csclean or mosaic. If ’’, use psfmode
multiscale = [] # deconvolution scales (pixels); [] = default standard clean
interactive = False # use interactive clean (with GUI viewer)
mask = [] # cleanbox(es), mask image(s), and/or region(s) used in cleaning
imsize = [256, 256] # x and y image size in pixels, symmetric for single value
cell = [’1.0arcsec’, ’1.0arcsec’] # x and y cell size. default unit arcsec
phasecenter = ’’ # Image phase center: position or field index
restfreq = ’’ # rest frequency to assign to image (see help)
stokes = ’I’ # Stokes params to image (eg I,IV, QU,IQUV)
weighting = ’natural’ # Weighting of uv (natural, uniform, briggs, ...)
uvtaper = False # Apply additional uv tapering of visibilities.
modelimage = ’’ # Name of model image(s) to initialize cleaning
restoringbeam = [’’] # Output Gaussian restoring beam for CLEAN image
pbcor = False # Output primary beam-corrected image
minpb = 0.1 # Minimum PB level to use
calready = True # Create scratch columns and store model visibilities for selfcal
async = False # If true the taskname must be started using clean(...)

The clean task will produce a number of output images based on the root name given in imagename.
These include:

<imagename>.clean.image # the restored image
<imagename>.clean.flux # the effective response (e.g. for pbcor)
<imagename>.clean.flux.pbcoverage # the PB coverage (ftmachine=’mosaic’ only)
<imagename>.clean.model # the model image
<imagename>.clean.residual # the residual image
<imagename>.clean.psf # the synthesized (dirty) beam

ALERT: The <imagename>.clean.flux.pbcoverage image is new in Patch 4 version 2.4.0 and re-
flects the unweighted primary beam coverage (without weighting or gridding kernel factors) used for
the minpb cutoff (§ 5.3.7). This is produced only for imagermode=’mosaic’ with ftmachine=’mosaic’.

The mode, psfmode, imagermode, and weighting parameters open up other sub-parameters. These
are detailed in the common imaging task parameters section (§ 5.2). The gridmode parameter
(§ 5.3.13) is available to select more advanced imaging options such as widefield imaging and beam
squint correction.

A typical setup for clean on the NGC5921 dataset, after setting parameter values, might look like:

vis = ’ngc5921.usecase.ms.contsub’ # Name of input visibility file
imagename = ’ngc5921.usecase.clean’ # Pre-name of output images
field = ’0’ # Field Name
spw = ’’ # Spectral windows:channels: ’’ is all
selectdata = False # Other data selection parameters
mode = ’channel’ # Type of selection (mfs, channel, velocity, frequency)

nchan = 46 # Number of channels (planes) in output image
start = 5 # first input channel to use
width = 1 # Number of input channels to average



CHAPTER 5. SYNTHESIS IMAGING 209

interpolation = ’nearest’ # Spectral interpolation (nearest, linear, cubic)

gridmode = ’’ # The kind gridding kernel to be used for FFT-based transforms
niter = 6000 # Maximum number of iterations
gain = 0.1 # Loop gain for cleaning
threshold = 8.0 # Flux level to stop cleaning. Must include units
psfmode = ’clark’ # method of PSF calculation to use during minor cycles
imagermode = ’’ # Use csclean or mosaic, or image-plane only if ’’
multiscale = [] # set deconvolution scales (pixels)
interactive = False # use interactive clean (with GUI viewer)
mask = [108, 108, 148, 148] # cleanbox(es), mask image(s), and/or region(s)
imsize = [256, 256] # x and y image size in pixels
cell = [15.0, 15.0] # x and y cell size. default unit arcsec
phasecenter = ’’ # Image phase center: position or field index
restfreq = ’’ # rest frequency to assign to image (see help)
stokes = ’I’ # Stokes params to image (eg I,IV, QU,IQUV)
weighting = ’briggs’ # Weighting to apply to visibilities

robust = 0.5 # Briggs robustness parameter
npixels = 0 # uv-cell size in pixels 0=> field of view

uvtaper = False # Apply additional uv tapering of visibilities.
modelimage = ’’ # Name of model image(s) to initialize cleaning
restoringbeam = [’’] # Output Gaussian restoring beam for CLEAN image
pbcor = False # Output primary beam-corrected image
minpb = 0.1 # Minimum PB level to use
async = False

An example of the clean task to create a continuum image from many channels is given below:

clean(vis=’ggtau.1mm.split.ms’, # Use data in ggtau.1mm.split.ms
imagename=’ggtau.1mm’, # Name output images ’ggtau.1mm.*’ on disk
psfmode=’clark’, # Use the Clark CLEAN algorithm
imagermode=’’, # Do not mosaic or use csclean
mask=’’, # Do not use clean box or mask
niter=500, gain=0.1, # Iterate 500 times using gain of 0.1
mode=’mfs’, # multi-frequency synthesis (combine channels)
spw=’0~2:2~57’, # Combine channels from 3 spectral windows
field=’0’, #
stokes=’I’, # Image stokes I polarization
weighting=’briggs’, # Use Briggs robust weighting
rmode=’norm’,robust=0.5, # with robustness parameter of 0.5
cell=[0.1,0.1], # Using 0.1 arcsec pixels
imsize=[256,256]) # Set image size = 256x256 pixels

This example will clean the entire inner quarter of the primary beam. However, if you want to
limit the region over which you allow the algorithm to find clean components then you can make
a deconvolution region (or mask). To use a deconvolution region, box, or mask, set the mask
parameter (§ 5.3.6).
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Inside the Toolkit:
The im.clean method is used for
CLEANing data. There are a num-
ber of methods used to set up the
clean, including im.setoptions.

For example, you can set up a simple ’cleanbox’ region. To
do this, make a first cut at the image and clean the inner
quarter. Then use the viewer to look at the image and
get an idea of where the emission is located. You can use
the viewer adjustment panel to view the image in pixel
coordinates and read out the pixel locations of your cursor.

Then, you can use those pixel read-outs you just go to
define a clean box region where you specify the bottom-left-corner (blc) x & y and top-right-corner
x& y locations. For example, say you have a continuum source near the center of your image
between blcx, blcy, trcx, trcy = 80, 80, 120, 120. Then to use this region:

mask=[80,80,120,120] # Set the deconvolution region as a simple box in the center.

The following are the clean specific parameters and their allowed values, followed by a description
of carrying out interactive cleaning.

5.3.1 Parameter psfmode

The psfmode parameter chooses the “algorithm” that will be used to calculate the synthesized
beam for use during the minor cycles in the image plane. The value types are strings. Allowed
choices are ’clark’ (default) and ’hogbom’.

5.3.1.1 The clark algorithm

In the ’clark’ algorithm, the cleaning is split into minor and major cycles. In the minor cycles only
the brightest points are cleaned, using a subset of the point spread function. In the major cycle,
the points thus found are subtracted correctly by using an FFT-based convolution. This algorithm
is reasonably fast. Also, for polarization imaging, Clark searches for the peak in I2 +Q2 +U2 +V 2.

5.3.1.2 The hogbom algorithm

The hogbom algorithm is the “Classic” image-plane CLEAN, where model pixels are found itera-
tively by searching for the peak. Each point is subtracted from the full residual image using the
shifted and scaled point spread function. In general, this is not a good choice for most imaging
problems (clark or csclean are preferred) as it does not calculate the residuals accurately. But in
some cases, with poor uv-coverage and/or a PSF with bad sidelobes, the Hogbom algorithm will
do better as it uses a smaller beam patch. For polarization cleaning, Hogbom searches for clean
peak in I, Q, U , and V independently.

5.3.1.3 The clarkstokes algorithm

In the ’clarkstokes’ algorithm, the Clark psf (§ 5.3.1.1) is used, but for polarization imaging the
Stokes planes are cleaned sequentially for components instead of jointly as in ’clark’. This means
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that this is the same as ’clark’ for Stokes I imaging only. This option can also be combined with
imagermode=’csclean’ (§ 5.3.4).

5.3.2 The multiscale parameter

ALERT: The multiscale option is currently under development and should be used with caution
and be considered as an “experimental” algorithm. The multi-scale CLEAN method is known
to need careful tuning in order to properly converge. However, currently the only control for
multiscale in the clean task is the setting of the scales.

Inside the Toolkit:
The im.setscales method sets the
multi-scale Gaussian widths. In ad-
dition to choosing a list of sizes in
pixels, you can just pick a number of
scales and get a geometric series of
sizes.

To activate multi-scale mode, specify a non-blank list of
scales in the multiscale parameter. e.g.

multiscale = [0,3,10,30] # Four scales including point sources

These are given in numbers of pixels, and specify FWHM
of the Gaussians used to compute the filtered images.

Setting the multiscale parameter to a non-empty list
opens up the sub-parameter:

multiscale = [0, 3, 10, 30] # set deconvolution scales (pixels)
negcomponent = -1 # Stop if largest scale finds this many neg components

The negcomponent sub-parameter is here to set the point
at which the clean terminates because of negative com-
ponents. For negcomponent > 0, component search will
cease when this number of negative components are found at the largest scale. If negcomponent =
-1 then component search will continue even if the largest component is negative.

The CASA multi-scale algorithm uses “Multi-scale CLEAN” to deconvolve using delta-functions
and circular Gaussians as the basis functions for the model, instead of just delta-functions or pixels
as in the other clean algorithms. This algorithm is still in the experimental stage, mostly because
we are working on better algorithms for setting the scales for the Gaussians. The sizes of the
Gaussians are set using the scales sub-parameter.

We are working on defining a better algorithm for scale setting. In the toolkit, there is an nscale
argument which sets scales

θi = θbmin 10(i−N/2)/2 (5.7)

where N =nscales and θbmin is the fitted FWHM of the minor axis of the CLEAN beam.

5.3.3 Parameter gain

The gain parameter sets the fraction of the flux density in the residual image that is removed and
placed into the clean model at each minor cycle iteration. The default value is gain = 0.1 and is
suitable for a wide-range of imaging problems. Setting it to a smaller gain per cycle, such as gain
= 0.05, can sometimes help when cleaning images with lots of diffuse emission. Larger values, up
to gain=1, are probably too aggressive and are not recommended.
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Figure 5.1: Close-up of the top of the interactive clean window. Note the boxes at the left (where
the iterations, cycles, and threshold can be changed), the buttons that control add/erase, the
application of mask to channels, and whether to stop, complete, or continue cleaning, and the row
of Mouse-button tool assignment icons.

5.3.4 Parameter imagermode

This choose the mode of operation of clean, either as single-field deconvolution using image-plane
major and minor cycles only (imagermode=’’), single-field deconvolution using Cotton-Schwab
(CS) residual visibilities for major cycles (imagermode=’csclean’), or multi-field mosaics using
CS major cycles (imagermode=’mosaic’).

In the default mode (imagermode=’’), the major and minor clean cycles work off of the gridded
FFT dirty image, with residuals updated using the PSF calculation algorithm set by the psfmode
parameter (§ 5.3.1). This method is not recommended for high dynamic range or high fidelity
imaging applications, but can be significantly faster than CS clean. Note that for this option only,
if mask=’’ (no mask or box set) then it will clean the inner quarter of the image by default.

The csclean choice specifies the Cotton-Schwab algorithm. This opens up the sub-parameters

imagermode = ’csclean’ # Use csclean or mosaic. If ’’, use psfmode
cyclefactor = 1.5 # Change depth in between of csclean cycle
cyclespeedup = -1 # Cycle threshold doubles in this number of iterations

These options are explained below. In the CS mode, cleaning is split into minor and major cycles.
For each field, a minor cycle is performed using the PSF algorithm specified in psfmode (§ 5.3.1).
At major-cycle breakpoints, the points thus found are subtracted from the original visibilities. A
fast variant does a convolution using a FFT. This will be faster for large numbers of visibilities. If
you want to be extra careful, double the image size from that used for the Clark clean and set a
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mask to clean only the inner quarter or less (this is not done by default). This is probably the best
choice for high-fidelity deconvolution of images without lots of large-scale structure.

Note that when using the Cotton-Schwab algorithm with a threshold (§ 5.3.12), there may be
strange behavior when you hit the threshold with a major cycle. In particular, it may be above
threshold again at the start of the next major cycle. This is particularly noticeable when cleaning
a cube, where different channels will hit the threshold at different times.

ALERT: You will see a warning message in the logger, similar to this:

Zero Pixels selected with a Flux limit of 0.000551377 and a maximum Residual of 0.00751239

whenever it find 0 pixels above the threshold. This is normal, and not a problem, if you’ve specified
a non-zero threshold. On the other hand, if you get this warning with the threshold set to the default
of ’0Jy’, then you should look carefully at your inputs or your data, since this usually means that
the masking is bad.

The option imagermode=’mosaic’ is for multi-field mosaics. This choice opens up the sub-
parameters

imagermode = ’mosaic’ # Use csclean or mosaic. If ’’, use psfmode
mosweight = False # Individually weight the fields of the mosaic
ftmachine = ’mosaic’ # Gridding method for the image
scaletype = ’SAULT’ # Controls scaling of pixels in the image plane.
cyclefactor = 1.5 # change depth in between of csclean cycle
cyclespeedup = -1 # Cycle threshold doubles in this number of iteration

These options are explained below.

5.3.4.1 Sub-parameter cyclefactor

Inside the Toolkit:
The im.setmfcontrol method sets
the parameters that control the cy-
cles and primary beam used in mo-
saicing.

This sub-parameter is activated for imagermode=’csclean’
and ’mosaic’.

The cyclefactor parameter allows the user to change the
threshold at which the deconvolution cycle will stop and
then degrid and subtract the model from the visibilities
to form the residual. This is with respect to the breaks
between minor and major cycles that the clean part would
normally force. Larger values force a major cycle more
often.

This parameter in effect controls the threshold used by CLEAN to test whether a major cycle break
and reconciliation occurs:

cycle threshold = cyclefactor * max sidelobe * max residual
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If your uv-coverage results in a poor PSF, then you should reconcile often (a cyclefactor of 4 or
5); For reasonable PSFs, use cyclefactor in the range 1.5 to 2.0. For good PSFs, or for faster
cleaning at the expense of some fidelity, we recommend trying a lower value, e.g. cyclefactor =
0.25, which at least in some of our mosaicing tests led to a speedup of around a factor of two with
little change in residuals.

5.3.4.2 Sub-parameter cyclespeedup

This sub-parameter is activated for imagermode=’csclean’ and ’mosaic’.

The cyclespeedup parameter allows the user to let clean to raise the threshold at which a major
cycle is forced if it is not converging to that threshold. To do this, set cyclespeedup to an integer
number of iterations at which if the threshold is not reached, the threshold will be doubled. See
cyclefactor above for more details. By default this is turned off (cyclespeedup = -1). In our
tests, a value like cyclespeedup = 50 has been used successfully.

5.3.4.3 Sub-parameter ftmachine

This sub-parameter is activated for imagermode=’mosaic’. Note: The actual “ftmachine” used
may be overridden by choices made to other parameters, such as gridmode.

The ftmachine parameter controls the gridding method and kernel to be used to make the image.
A string value type is expected. Choices are: ’ft’, ’sd’, ’both’, or ’mosaic’ (the default).

The ’ft’ option uses the standard gridding kernel (as used in clean).

The ’sd’ option forces gridding as in single-dish data.

For combining single-dish and interferometer MS in the imaging, the ’both’ option will allow
clean to choose the ‘ft’ or ’sd’ machines as appropriate for the data.

Inside the Toolkit:
The im.setoptions method sets the
parameters relevant to mosaic imag-
ing, such as the ftmachine.

The ’mosaic’ option (the default) uses the Fourier trans-
form of the primary beam (the aperture cross-correlation
function in the uv-plane) as the gridding kernel. This al-
lows the data from the multiple fields to be gridded down
to a single uv-plane, with a significant speed-up in per-
formance in most (non-memory limited) cases. The effect
of this extra convolution is an additional multiplication
(apodization) by the primary beam in the image plane. This can be corrected for, but does result
in an image with optimal signal to noise ratio across it.

The primary beams used in CASA are described in § 5.2.13.

ALERT: Note that making a non-square image (e.g. using unequal values in imsize) for ftmachine=’mosaic’
will grid the data into a uv-plane with correspondingly non-square cells. This has not been ex-
tensively tested, and may results in undesired image artifacts. We recommend that the user make
square mosaic images when possible, but in principle non-square images should work.
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5.3.4.4 Sub-parameter mosweight

If mosweight=False (default) then the data will be weighted for optimal signal to noise ratio across
the mosaic image. This should be used for most cases.

If mosweight=True then individual mosaic field relative weights will be readjusted on a per visibility
basis (much like uniform gridding weights). This may give better performance in cases where one
or a few fields in the mosaic have drastically different weights and/or integration time, and it is
desired that the noise be more “uniform” across the mosaic image. Use this with care, we have not
explored its use fully.

5.3.4.5 Sub-parameter scaletype

Inside the Toolkit:
The im.setmfcontrol method gives
more options for controlling the pri-
mary beam and noise across the im-
age.

The scaletype parameter controls weighting of pixels in
the image plane. This sub-parameter is activated for
imagermode=’mosaic’.

The default scaletype=’PBCOR’ scales the image to have
the correct flux scale across it (out to the beam level cutoff
minpb). This means that the noise level will vary across
the image, being increased by the inverse of the weighted
primary beam responses that are used to rescale the fluxes.
This option should be used with care, particularly if your data has very different exposure times
(and hence intrinsic noise levels) between the mosaic fields.

If scaletype=’SAULT’ then the image will be scaled so as to have constant noise across it. This
means that the point source response function varies across the image attenuated by the weighted
primary beam(s). However, this response is output in the .flux image and can be later used to
correct this.

Note that this scaling as a function of position in the image occurs after the weighting of mosaic
fields specified by mosweight and implied by the gridding weights (ftmachine and weighting).

5.3.4.6 The threshold revisited

For mosaics, the specification of the threshold is not straightforward, as it is in the single field case.
This is because the different fields can be observed to different depths, and get different weights in
the mosaic. We now provide internal rescaling (based on scaletype) so clean does its component
search on a properly weighted and scaled version of the sky.

For ftmachine=’ft’, the minor cycles of the deconvolution are performed on an image that has
been weighted to have constant noise, as in ’SAULT’ weighting (see § 5.3.4.5). This is equivalent
to making a dirty mosaic by coadding dirty images made from the individual pointings with a
sum of the mosaic contributions to a given pixel weighted by so as to give constant noise across
the image. This means that the flux scale can vary across the mosaic depending on the effective
noise (higher weighted regions have lower noise, and thus will have higher “fluxes” in the ’SAULT’
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map). Effectively, the flux scale that threshold applies to is that at the center of the highest-
weighted mosaic field, with higher-noise regions down-scaled accordingly. Compared to the true
sky, this image has a factor of the PB, plus a scaling map (returned in the .flux image). You will
preferentially find components in the low-noise regions near mosaic centers.

When ftmachine=’mosaic’ and scaletype=’SAULT’, the deconvolution is also performed on a
“constant noise image”, as detailed above for ’ft’.

ALERT: The intrinsic image made using ftmachine=’mosaic’ is equivalent to a dirty mosaic that
is formed by coadding dirty images made from the individual fields after apodizing each by the
PB function. Thus compared to the true sky, this has a factor of the PB2 in it. You would thus
preferentially find components in the centers of the mosaic fields (even more so than in the ’ft’
mosaics). We now rescale this image internally at major-cycle (and interactive) boundaries based
on scaletype, and do not have a way to clean on the raw unscaled dirty image (as was done in
previous released versions).

5.3.5 Parameter interactive

If interactive=True is set, then an interactive window will appear at various “cycle” stages while
you clean, so you can set and change mask regions. These breakpoints are controlled by the
npercycle sub-parameter which sets the number of iterations of clean before stopping.

interactive = True # use interactive clean (with GUI viewer)
npercycle = 100 # Number of iterations before interactive prompt
chaniter = False # CLEAN spectral data cube per channel instead of jointly

Note that npercycle is currently the only way to control the breakpoints in interactive clean.

For spectral cube imaging, it is often easier to deal with each channel in turn, rather than cleaning
all channels in each cycle. We therefore provide the chaniter=True option, where it will clean
a channel fully before moving to the next one. You will set masks for each channel. ALERT: the
veltype=’optical’ option for mode=’velocity’’ (§ 5.2.5.4) is currently disabled for interactive
clean with chaniter=True due to technical issues.

See the example of interactive cleaning in § 5.3.14.

5.3.6 Parameter mask

The mask parameter takes a list of elements, each of which can be a list of coordinates specifying a
box, or a string pointing to the name of a cleanbox file, mask image, or region file. These are used
by CLEAN to define a region to search for components.

Note that for imagermode=’’ (§ 5.3.4) the default with mask=’’ is to restrict clean to the inner
quarter of the image.
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5.3.6.1 Setting clean boxes

If mask is given a list, these are taken to be pixel coordinates for the blc and trc (bottom-left and
top-right corners) of one or more rectangular boxes. Each box is a four element list. For example,

mask = [ [110,110,150,145], [180,70,190,80] ]

defines two boxes.

5.3.6.2 Using clean box files

You can provide mask a string with the name of an ASCII file containing the BLC, TRC of the
boxes with one box per line. Each line should contain five numbers

<fieldindex> <blc-x> <blc-y> <trc-x> <trc-y>

with whitespace separators. Currently the <fieldindex> is ignored.

Here is an example cleanbox file:

CASA <21>: !cat mycleanbox.txt
IPython system call: cat mycleanbox.txt
1 108 108 148 148
2 160 160 180 180

NOTE: In future patches we will include options for the specification of circular and polygonal
regions in the cleanbox file, as well as the use of world coordinates (not just pixel) and control
of plane ranges for the boxes. For now, use the mask mechanism for more complicated CLEAN
regions.

5.3.6.3 Using clean mask images

You can give the mask parameter a string containing the name of a mask image to be used for
CLEAN to search for components. You can use the makemask task (§ 5.5.2) to construct this mask,
or use one made using interactive=True (§ 5.3.5).

5.3.6.4 Using region files

You can give the mask parameter a string pointing to a file that describes a region. This region file
can be generated in the viewer (§ 7) or in the boxit task (§ 5.5.1) from an image.
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5.3.7 Parameter minpb

The minpb parameter sets the level down to which the primary beam (or more correctly the voltage
patterns in the array) can go and have a given pixel included in the image. This is important as
it defines where the edge of the visible image or mosaic is. The default is 0.1 or equivalent to the
10% response level. If there is alot of emission near the edge, then set this lower if you want to be
able to clean it out.

NOTE: The minpb parameter is the level in the “primary beam” (PB) at which the cut is made. If
you are using ftmachine=’mosaic’ (§ 5.3.4.3), this will show up in the .flux.pbcoverage image
(new in version 2.4.0). See the discussion of threshold (§ 5.3.4.6) for related issues.

5.3.8 Parameter modelimage

The modelimage parameter specifies the name(s) of one or more input starting image(s) to use to
calculate the first residual before cleaning. These are used in addition to any image with a name
defaulting from the imagename root (e.g. on a restart). The output model will contain this model
plus clean components found during deconvolution.

If the units of the image are Jy/pixel, then this is treated as a model image.

If the units of the image are Jy/beam or Jy per solid angle, then this is treated as a “single-dish”
image and rescaled by the resolution (in the ’beam’ image header keyword). Inclusion of the SD
image here is superior to feathering it in later. See § 5.4 for more information on feathering.

5.3.9 Parameter niter

The niter parameter sets the maximum total number of minor-cycle CLEAN iterations to be
performed during this run of clean. If restarting from a previous state, it will carry on from where
it was. Note that the threshold parameter can cause the CLEAN to be terminated before the
requested number of iterations is reached.

5.3.10 Parameter pbcor

The pbcor parameter controls whether the final .image is scaled to correct for the Primary Beam
of the array or not.

If pbcor=False (the default), then no such scaling is done and the image is in whatever “raw” scaling
used by the imagermode algorithm underneath. For single-field cleaning with imagermode=’’ or
’csclean’, this is the standard constant-noise image. If imagermode=’mosaic’, then this is the
’SAULT’ scaled image (regardless of what scaletype is set to).

If pbcor=True, the at the end of deconvolution and imaging the “raw” image is rescaled by dividing
by the noise and PB correction image. This is what is output by clean as the .flux image.

Note that regardless of what you set pbcor to, you can recover the other option using immath
(§ 6.5) to either multiply or divide by the .flux image.



CHAPTER 5. SYNTHESIS IMAGING 219

5.3.11 Parameter restoringbeam

The restoringbeam parameter allows the user to set a specific Gaussian restoring beam to make
the final restored .image from the final .model and residuals.

If restoringbeam=’’ (the default), then the restoring beam is calculated by fitting to the PSF
(e.g. the .psf image). For a mosaic, this is at the center of the field closest to the phasecenter.

To specify a restoring beam, provide restoringbeam a list of [bmaj, bmin, bpa] which are the pa-
rameters of an elliptical Gaussian. The default units are in arc-seconds for bmaj, bmin components
and degrees for the bpa component.

For example,

restoringbeam=[’10arcsec’] # circular Gaussian FWHM 10"
restoringbeam=[’10.0’,’5.0’,’45.0deg’] # 10"x5" at PA=45 degrees

5.3.12 Parameter threshold

The threshold parameter instructs clean to terminate when the maximum (absolute?) residual
reaches this level or below. Note that it may not reach this residual level due to the value of the
niter parameter which may cause it to terminate early.

If threshold is given a floating-point number, then this is the threshold in milli-Jansky.

You can also supply a flux density quanta to threshold, e.g.

threshold = ’8.0mJy’
threshold = ’0.008Jy’

(these do the same thing).

5.3.13 Parameter gridmode

The gridmode parameter is now provided to access more advanced deconvolution capabilities. The
default gridmode=’’ is recommended for most cases.

The gridmode=’widefield’ option allows imaging in the wide-field regime where the W-term is
not negligible. The CASA implementation allows both standard uv-plane faceting as well as the
W-Projection algorithm 2 or a combination of the two. Its sub-parameters are:

gridmode = ’widefield’ # Gridding kernel for FFT-based transforms, default=’’ None
wprojplanes = 1 # Number of w-projection planes for convolution
facets = 1 # Number of facets along each axis (main image only)

2Cornwell et al. IEEE JSTSP (2008).
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The wprojplanes parameter sets the number of pre-computed w-planes used for the W-Projection
algorithm (wprojplanes=1 disables w-projection). The facets parameter sets the number of facets
used. W-Projection, if used, is done for each facet. See § 5.3.18 below for more on wide-field imaging.

The gridmode=’aprojection’ option enables the gridding-based correction for RL beam-squint
in off-axis systems (such as the VLA). The sub-parameters are:

gridmode = ’aprojection’ # Gridding kernel for FFT-based transforms, default=’’ None
cfcache = ’cfcache.dir’ # Convolution function cache directory
painc = 360.0 # Parallactic angle increment (degrees) for convolution function

Higher dynamic range imaging applications will require a-projection with correspondingly small
(e.g. 10-degree) painc at the cost of speed. ALERT: This option is still under test and develop-
ment, so be careful in its use.

5.3.14 Interactive Cleaning — Example

If interactive=True is set, then an interactive window will appear at various “cycle” stages while
you clean, so you can set and change mask regions. These breakpoints are controlled by the
npercycle sub-parameter which sets the number of iterations of clean before stopping.

The window controls are fairly self-explanatory. It is basically a form of the viewer. A close-up of
the controls are shown in Figure 5.1, and an example can be found in Figures 5.2–5.4. You assign
one of the drawing functions (rectangle or polygon, default is rectangle) to the right-mouse button
(usually), then use it to mark out regions on the image. Zoom in if necessary (standard with the
left-mouse button assignment). Double-click inside the marked region to add it to the mask. If you
want to reduce the mask, click the Erase radio button (rather than Add), then mark and select as
normal. When finished setting or changing your mask, click the green clockwise arrow “Continue
Cleaning” Next Action button. If you want to finish your clean with no more changes to the mask,
hit the blue right arrow “Apply mask edits and proceed with non-interactive clean” button. If you
want to terminate the clean, click the red X “Stop deconvolving now” button.

While stopped in an interactive step, you can change a number of control parameters in the boxes
provided at the left of the menu bar. The main use of this is to control how many iterations
before the next breakpoint (initially set to npercycle), how many cycles before completion (initially
equal to niter/npercycle), and to change the threshold for ending cleaning. Typically, the user
would start with a relatively small number of iterations (50 or 100) to clean the bright emission
in tight mask regions, and then increase this as you get deeper and the masking covers more of
the emission region. For extended sources, you may end up needing to clean a large number of
components (10000 or more) and thus it is useful to set niter to a large number to begin with
— you can always terminate the clean interactively when you think it is done. Note that if you
change iterations you may also want to change cycles or your clean may terminate before you
expect it to.

For strangely shaped emission regions, you may find using the polygon region marking tool (the
second from the right in the button assignment toolbar) the most useful.
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Figure 5.2: Screen-shots of the interactive clean window during deconvolution of the VLA 6m
Jupiter dataset. We start from the calibrated data, but before any self-calibration. In the initial
stage (left), the window pops up and you can see it dominated by a bright source in the center.
Next (right), we zoom in and draw a box around this emission. We have also at this stage dismissed
the tape deck and Position Tracking parts of the display (§ 7.2.1) as they are not used here. We
have also changed the iterations to 30 for this boxed clean. We will now hit the Next Action
Continue Cleaning button (the green clockwise arrow) to start cleaning.

See the example of cleaning and self-calibrating the Jupiter 6cm continuum data given below in
Appendix F.2. The sequence of cleaning starting with the “raw” externally calibrated data is shown
in Figures 5.2 – 5.4.

The final result of all this cleaning for Jupiter is shown in Figure 5.5. The viewer (§ 7) was used
to overplot the polarized intensity contours and linear polarization vectors calculated using immath
(§ 6.5) on the total intensity. See the following chapters on how to make the most of your imaging
results.

For spectral cube images you can use the tapedeck to move through the channels. You also use the
panel with radio buttons for choosing whether the mask you draw applies to the Diplayed Plane
or to All Channels. See Figure 5.6 for an example. Note that currently the Displayed Plane
option is set by default. This toggle is unimportant for single-channel images or mode=’mfs’.

Advanced Tip: Note that while in interactive clean, you are using the viewer. Thus, you have
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Figure 5.3: We continue in our interactive cleaning of Jupiter from where Figure 5.2 left off. In the
first (left) panel, we have cleaned 30 iterations in the region previously marked, and are zoomed in
again ready to extend the mask to pick up the newly revealed emission. Next (right), we have used
the Polygon tool to redraw the mask around the emission, and are ready to Continue Cleaning
for another 100 iterations.

the ability to open and register other images in order to help you set up the clean mask. For
example, if you have a previously cleaned image of a complex source or mosaic that you wish to
use to guide the placement of boxes or polygons, just use the Open button or menu item to bring
in that image, which will be visible and registered on top of your dirty residual image that you are
cleaning on. You can then draw masks as usual, which will be stored in the mask layer as before.
Note you can blink between the new and dirty image, change the colormap and/or contrast, and
carry out other standard viewer operations. See § 7 for more on the use of the viewer.

ALERT: Currently, interactive spectral line cleaning is done globally over the cube, with halts
for interaction after searching all channels for the requested npercycle total iterations. It is more
convenient for the user to treat the channels in order, cleaning each in turn before moving on. This
will be implemented in an upcoming update.
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Figure 5.4: We continue in our interactive cleaning of Jupiter from where Figure 5.3 left off. In
the first (left) panel, it has cleaned deeper, and we come back and zoom in to see that our current
mask is good and we should clean further. We change npercycle to 500 (from 100) in the box
at upper right of the window. In the final panel (right), we see the results after this clean. The
residuals are such that we should terminate the clean using the red X button and use our model
for self-calibration.

5.3.15 Mosaic imaging

The clean task contains the capability to image multiple pointing centers together into a single
“mosaic” image. This ability is controlled by setting imagermode=’mosaic’ (§ 5.3.4).

The key parameter that controls how clean produces the mosaic is the ftmachine sub-parameter
(§ 5.3.4.3). For ftmachine=’ft’, clean will perform a weighted combination of the images pro-
duced by transforming each mosaic pointing separately. This can be slow, as the individual sub-
images must be recombined in the image plane. NOTE: this option is preferred for data taken
with sub-optimal mosaic sampling (e.g. fields too far apart, on a sparse irregular pattern, etc.).

The primary beams used in CASA are described in § 5.2.13.

If ftmachine=’mosaic’, then the data are gridded onto a single uv-plane which is then trans-
formed to produce the single output image. This is accomplished by using a gridding kernel
that approximates the transform of the primary beam pattern. Note that for this mode the
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Figure 5.5: After clean and self-calibration using the intensity image, we arrive at the final polar-
ization image of Jupiter. Shown in the viewer superimposed on the intensity raster is the linear
polarization intensity (green contours) and linear polarization B-vectors (vectors). The color of the
contours and the sampling and rotation by 90 degrees of the vectors was set in the Display Options
panel. A LEL expression was used in the Load Data panel to mask the vectors on the polarized
intensity.

<imagename>.flux image includes this convolution kernel in its effective weighted response pat-
tern (needed to “primary-beam correct” the output image). For this mode only, an additional
image <imagename>.flux.pbcoverage is produced that is the primary-beam coverage only used
to compute the minpb cutoff (§ 5.3.7).

ALERT: In order to avoid aliasing artifacts for ftmachine=’mosaic’ in the mosaic image, due
to the discrete sampling of the mosaic pattern on the sky, you should make an image in which the
desired unmasked part of the image (above minpb) lies within the inner quarter. In other words,
make an image twice as big as necessary to encompass the mosaic.

It is also important to choose an appropriate phasecenter for your output mosaic image (§ sec-
tion:im.pars.phasecenter).
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Figure 5.6: Screen-shot of the interactive clean window during deconvolution of the NGC5921
spectral line dataset. Note where we have selected the mask to apply to the Displayed Plane
rather than All Channels. We have just used the Polygon tool to draw a mask region around the
emission in this channel, which will apply to this channel only.

An example of a simple mosaic clean call is shown below:

clean(vis=’n4826_tboth.ms’,
imagename=’tmosaic’,
mode=’channel’,
nchan=30,start=46, # Make the output cube 30 chan
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width=4, # start with 46 of spw 0, avg by 4 chans
spw=’0~2’,
field=’0~6’,
cell=[1.,1.],
imsize=[256,256],
stokes=’I’,
psfmode=’clark’,
niter=500,
imagermode=’mosaic’,
scaletype=’SAULT’,
cyclefactor=0.1)

Another example of mosaic imaging, this time using 3mm BIMA data, is given in Appendix F.3.

5.3.16 Heterogeneous imaging

The clean task and underlying tools can now handle cases where there are multiple dish sizes,
and thus voltage patterns and primary beams, in the array. This is effected by using the dish sizes
stored in the ANTENNA sub-table of the MS. Depending on how the data was written and imported
into CASA, the user may have to manually edit this table to insert the correct dish sizes (e.g. using
browsetable or the tb table tool).

ALERT: This feature is new in Patch 3, and has not been extensively tested. Currently, this
works only for an MS where the OBSERVATORY keyword is CARMA, ALMA, or is unknown. You
must set imagermode=’mosaic’ with ftmachine=’mosaic’, even when imaging a single field, to
use this feature. This will be improved, and made easier to set and use, in future releases.

5.3.17 Polarization imaging

The clean task handles full and partial Stokes polarization imaging through the setting of the
stokes parameter (§ 5.2.9). The subsequent deconvolution of the polarization planes of the image
and the search for clean components is controlled by the psfmode parameter (§ 5.3.1). If the stokes
parameter includes polarization planes other than I, then choosing psfmode=’hogbom’ (§ 5.3.1.2)
or psfmode=’clarkstokes’ (§ 5.3.1.3) will clean (search for components) each plane sequentially,
while psfmode=’clark’ (§ 5.3.1.1) will deconvolve jointly.

The interactive clean example given above (§ 5.3.14) shows a case of polarization imaging. You
can also find the script for this example in Appendix F.2.

5.3.18 Wide-field imaging and deconvolution in clean

When imaging sufficiently large angular regions, the sky can no longer be treated as a two-
dimensional plane and the use of the standard clean task will produce distortions around sources
that become increasingly severe with increasing distance from the phase center. In this case, one
must use a “wide-field” imaging algorithm such as w-projection or faceting.
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When is wide-field imaging needed? It depends on the expected dynamic range the image. In order
to keep the phase error associated with the sky/array curvature less than about 5◦ (good to about
500:1 dynamic range), use the following table, suitably scaled, for guidance:

Maximum Radius of Image Before widefield is Needed
Assuming 5 deg phase error and 35-km Baseline

Wavelength Radius of image
6 cm 1.4 arcmin
20 cm 2.6 arcmin
90 cm 5.3 arcmin

Radius of image ~ SQRT (Wavelength * phase error / Maximum baseline)
(arcmin) (cm) (deg) (km)

If a relatively small image is being made, but there are outliers sources beyond the above limits,
then widefield should also be used.

The relevant inputs for clean for wide-field imaging are:

gridmode = ’widefield’ # The kind gridding kernel to be used for FFT-based transforms
wprojplanes = 1 # Number of w-projection planes for convolution
facets = 1 # Number of facets along each axis (main image only)

Most of the clean parameters behave as described previously.

Wide-field imaging can be carried out using two major modes: First, the w-projection mode as
chosen with ftmachine deals with the w-term (the phase associated with the sky/array curvature)
internally. Secondly, the image can be broken into many facets, each small enough so that the w-
term is not significant. These two basic methods can be combined, as discussed below in § 5.3.18.4.

5.3.18.1 Outlier fields

When using wide-field imaging, the position and image size of any independent images must be
specified. This can be done in two ways. The first method uses input from a text file outlierfile.
For example:

vis = ’wfield.ms’ # name of input visibility file
imagename = ’wf’ # Pre-name of output images
outlierfile = ’setup.txt’ # Text file with image names, sizes, centers
imsize = [256, 256] # Image size in pixels (nx,ny), symmetric for single value
cell = ’1.0arcsec’ # The image cell size in arcseconds [x,y].
phasecenter = ’’ # Field Identififier or direction of the image phase center

The cell is identical for all fields, and imsize and phasecenter are not used. The output image
names will be wf.main, wf.out1, etc.

The file outlierfile="setup.txt" is an AIPS-style field file used to locate outlier fields. For
example:
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C main 2048 2048 13 27 20.98 43 26 28.0 # Main field with image size and phase center
C out1 128 128 13 30 52.158 43 23 08.00 # First outlier field specification

etc

will make a big main image with outliers. The C in column 1 must be present, although it not
presently used.

The alternative input, needing no additional outlier file, versus imsize plus phasecenter: is:

vis = ’wfield.ms’ # name of input visibility file
imagename = ’wf’ # Pre-name of output images
outlierfile = ’image_setup.txt’ # Text file with image names, sizes, centers
imsize = [2048, 2048, 128, 128] # Image size in pixels (nx,ny)
cell = ’1.0arcsec’ # The image cell size in arcseconds [x,y].
phasecenter = [’J2000 13h27m20.98 43d26m28.0’, ’J2000 13h30m52.158 43d23m08.00’]

5.3.18.2 Setting up w-projection

The w-projection mode is controlled using wprojplanes sub-parameter, e.g.

gridmode = ’widefield’ # The kind gridding kernel to be used for FFT-based transforms
wprojplanes = 64 # Number of w-projection planes for convolution
facets = 1 # Number of facets along each axis (main image only)

will construct 64 w-projection planes.

A reasonable value for wprojplanes is equal to nw = Bmax(inkλ) × imagewidth(inarcmin2)/600,
with a minimum value of nw = 16. The w-projection algorithm is much faster than using faceting,
but it does consume a lot of memory. On most 32-bit machines with 1 or 2 Mbytes of memory,
images larger than about 4000× 4000 cannot be made.

5.3.18.3 Setting up faceting

Faceting will break the image into many small parts. This is invoked using facets:

gridmode = ’widefield’ # The kind gridding kernel to be used for FFT-based transforms
wprojplanes = 1 # Number of w-projection planes for convolution
facets = 7 # Number of facets along each axis (main image only)

In this example the image is broken into 49 (7× 7) facets.

A reasonable value of facets is such that the image width of each facet does not need the w-
term correction. The computation method with pure faceting is slow, so that w-projection is
recommended
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5.3.18.4 Combination of w-projection and faceting

You can also use a combination of w-projection and faceting:

gridmode = ’widefield’ # The kind gridding kernel to be used for FFT-based transforms
wprojplanes = 32 # Number of w-projection planes for convolution
facets = 3 # Number of facets along each axis (main image only)

This hybrid method allows for a smaller number of wprojplanes in order to try to conserve memory
if the image size approached the memory limit of the computer. However, there is a large penalty
in execution time.

5.4 Combined Single Dish and Interferometric Imaging (feather)

The term “feathering” is used in radio imaging to describe how to combine or “feather” two
images together by forming a weighted sum of their Fourier transforms in the (gridded) uv-plane.
Intermediate size scales are down-weighted to give interferometer resolution while preserving single-
dish total flux density.

The feathering technique does the following:

1. The single-dish and interferometer images are Fourier transformed.

2. The beam from the single-dish image is Fourier transformed (FTSDB(u, v)).

3. The Fourier transform of the interferometer image is multiplied by (1−FTSDB(u, v)). This
basically down weights the shorter spacing data from the interferometer image.

4. The Fourier transform of the single-dish image is scaled by the volume ratio of the interfer-
ometer restoring beam to the single dish beam.

5. The results from 3 and 4 are added and Fourier transformed back to the image plane.

Other Packages:
The feather task is analogous
to the AIPS IMERG task and the
MIRIAD immerge task with option
’feather’.

The term feathering derives from the tapering or down-
weighting of the data in this technique; the overlapping,
shorter spacing data from the deconvolved interferometer
image is weighted down compared to the single dish im-
age while the overlapping, longer spacing data from the
single-dish are weighted down compared to the interferom-
eter image.

The tapering uses the transform of the low resolution point spread function. This can be specified
as an input image or the appropriate telescope beam for the single-dish. The point spread function
for a single dish image may also be calculated using clean.

Advice: Note that if you are feathering large images, be advised to have the number of pixels along
the X and Y axes to be composite numbers and definitely not prime numbers. In general FFTs
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work much faster on even and composite numbers. You may use subimage function of the image
tool to trim the number of pixels to something desirable.

The inputs for feather are:

imagename = ’’ # Name of output feathered image
highres = ’’ # Name of high resolution (synthesis) image
lowres = ’’ # Name of low resolution (single dish) image
async = False # If true the taskname must be started using feather(...)

Note that the only inputs are for images. Note that feather does not do any deconvolution but
combines presumably deconvolved images after the fact.

Starting with a cleaned synthesis image and a low resolution image from a single dish telescope,
the following example shows how they can be feathered:

feather(imagename=’feather.im’, # Create an image called feather.im
highres=’synth.im’, # The synthesis image is called synth.im
owres=’single_dish.im’ # The SD image is called single_dish.im
)

Note that the single dish image must have a well-defined beam shape and the correct flux units for
a model image (Jy/beam instead of Jy/pixel) so use the tasks imhead and immath first to convert
if needed.

5.5 Making Deconvolution Masks or Box Regions

For most careful imaging, you will want to restrict the region over which you allow CLEAN com-
ponents to be found. To do this, you can create a ’deconvolution region’ or ’mask’ image using the
boxit or makemask tasks. Note that clean can take simple boxes or box files as direct input to
its mask parameter, so these tasks are most useful when direct input to clean (or use of interactive
clean) will not suffice.

There are two ways to construct region files or mask images for use in deconvolution. The boxit
task will find a set of box regions based upon an input image and control parameters. The makemask
task will construct a mask image from a box specfication or a box file.

5.5.1 Making Deconvolution Regions from an Image (boxit)

The boxit task creates “cleanbox” deconvolution regions automatically from an image. It searches
the image to find “islands”: all contiguous sets of pixels above the given threshold. The extreme
x- and y-pixels of the island are used to determine the corners of a rectangular box that covers
each island. The set of boxes are written out into a single region file with extension .rgn. Boxit
works on single-plane images as well as multi-channel images: in the latter case, the thresholding
and boxing is done separately in each plane of the image. The output region file from boxit can
be used as the mask input parameter for the clean task (§ 5.3).
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The parameter inputs for boxit are:

# boxit :: Box regions in image above given threshold value.
imagename = ’’ # Name of image to threshold
regionfile = ’’ # Output region file
threshold = ’0.0mJy’ # Threshold value. Must include units.
minsize = 2 # Minimum number of pixels for a boxable island
diag = False # Count diagonal connections?
boxstretch = 1 # Increase box sizes by this many pixels beyond thresholded pixels.
overwrite = False # Overwrite existing region file?
async = False # If true the taskname must be started using boxit(...)

The regionfile parameter specifies the root name of the region file. It will automatically be given
.rgn as the file extension. The minsize parameter specifies the smallest island that qualifies to be
boxed. It refers to the total number of pixels in the island. To include pixels connected only on
the diagonal as being part of the same island, set the diag parameter to True. The boxstretch
parameter increases the size of the boxes beyond the extent of the island, and can range from -1
to 5. For a value of 1 (the default), the box is stretched by one pixel in each outward direction;
therefore, each side of the box lengthens by two pixels. Finally, the parameter overwrite specifies
whether an existing region file can be overwritten.

ALERT: The boxit task is a prototype under active development and coded in Python. Eventually
we will add functionality to deal with the creation of non-rectangular regions and with multi-plane
masks, as well as efficiency improvements.

5.5.2 Making Deconvolution Masks from Boxes (makemask)

The parameter inputs for makemask are:

# makemask :: Derive a mask image from a cleanbox and set of imaging parameters:

cleanbox = [] # Clean box file or regions
vis = ’’ # Name of input visibility file (if no input image)
imagename = ’’ # Name of output mask images
mode = ’mfs’ # Type of selection (mfs, channel, velocity)
imsize = [256, 256] # Image size in spatial pixels [x,y]
cell = [1, 1] # Cell size in arcseconds
phasecenter = ’’ # Field identifier or direction of the phase center
stokes = ’I’ # Stokes parameter to image (I,IV,IQU,IQUV)
field = ’0’ # Field ids list to use in mosaic
spw = ’0’ # Spectral window identifier (0-based)

The majority of the parameters are the standard imaging parameters (§ 5.2). The cleanbox
parameter uses the syntax for cleanboxes as in the clean parameter mask (see § 5.3.6), with the
option for ’interactive’ also. The imagename parameter specifies the name for the output mask
image.
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You can use the viewer to figure out the cleanbox blc-trc x-y settings, make the mask image, and
then bring it into the viewer as a contour image over your deconvolved image to compare exactly
where your mask regions are relative to the actual emission. In this example, create a mask from
many cleanbox regions specified in a file on disk (cleanboxes.txt) containing

1 80 80 120 120
2 20 40 24 38
3 70 42 75 66

where each line specifies the field index and the blc x-y and trc x-y positions of that cleanbox. For
example, in casapy, you can do this easily:

CASA <29>: !cat > cleanboxes.txt
IPython system call: cat > cleanboxes.txt
1 80 80 120 120
2 20 40 24 38
3 70 42 75 66
<CNTL-D>
CASA <30>: !cat cleanboxes.txt
IPython system call: cat cleanboxes.txt
1 80 80 120 120
2 20 40 24 38
3 70 42 75 66

Then, in CASA,

makemask(vis=’source.ms’,
imagename=’source.mask’,

cleanbox=’cleanboxes.txt’,
mode=’mfs’, # make a multi-frequency synthesis map (combine channels)
imsize=[200,200]) # Set image size = 200x200 pixels
cell=[0.1,0.1], # Using 0.1 arcsec pixels
spw=’0,1,2’, # Combine channels from 3 spectral windows
field=’0’, # Use the first field in this split dataset
stokes=’I’) # Image stokes I polarization

This task will then create a mask image that has the 3 cleanboxes specified in the cleanboxes.txt
file.

You can also specify the cleanbox as a list (of lists) of blc,trc pairs (4 veritices), e.g.

cleanbox = [[80, 80, 120, 120], [20, 40, 24, 38], [70, 42, 75, 66]]

is equivalent to the cleanboxes.txt given above. Likewise,

cleanbox = [80, 80, 120, 120]
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puts in a single cleanbox.

Note that you must specify a visibility dataset and create the image properties so the mask image
will have the same dimensions as the image you want to actually clean.

ALERT: Eventually we will add functionality to deal with the creation of non-rectangular regions
and with multi-plane masks. There is also no cleanbox=’interactive’ version currently available.
You have to run clean with cleanbox=’interactive’ to generate a mask graphically.

5.6 Transforming an Image Model (ft)

Inside the Toolkit:
The im.ft method does what the ft
task does. Its main use is setting
the MODEL DATA column in the MS so
that the cb tool can use it for subse-
quent calibration.

The ft task will Fourier transform an image and insert the
resulting model into the MODEL DATA column of a Measure-
ment Set. You can also convert a CLEAN component list
to a model and insert that into the MODEL DATA column.
The MS MODEL DATA column is used, for example, to hold
the model for calibration purposes in the tasks and toolkit.
This is especially useful if you have a resolved calibrator
and you want to start with a model of the source before
you derive accurate gain solutions. This is also helpful for
self-calibration (see § 5.8 below).

The inputs for ft are:

vis = ’’ # Name of input visibility file
fieldid = 0 # Field index identifier
field = ’’ # Field name list
model = ’’ # Name of input model image
complist = ’’ # Name of component list
incremental = False # Add to the existing MODEL_DATA column?

An example of how to do this:

ft(vis=’n75.ms’, # Start with the visibility dataset n75.ms
field=’1328’, # Select field name ’1328+307’ (minimum match)
model=’1328.model.image’) # Name of the model image you have already

This task will Fourier transform the model image and insert the resulting model in the MODEL DATA
column of the rows of the MS corresponding to the source 1328+307.

Note that after clean, the transform of the final model is left in the MODEL DATA column so you
can go directly to a self-calibration step without explicitly using ft.
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5.7 Image-plane deconvolution (deconvolve)

If you have only an image (obtained from some telescope) and an image of its point spread function,
then you can attempt a simple image-plane deconvolution. Note that for interferometer data, full
uv-plane deconvolution using clean or similar algorithm is superior!

The default inputs for deconvolve are:

# deconvolve :: Deconvoving a point spread function from an image

imagename = ’’ # Name of image to decolvolve
model = ’’ # Name of output image to which deconvolved components are stored
psf = ’’ # Name of psf or gaussian parameters if psf is assumed gaussian
alg = ’clark’ # Deconvolution alorithm to use
niter = 10 # number of iteration to use in deconvolution process
gain = 0.1 # CLEAN gain parameter
threshold = ’0.0Jy’ # level below which sources will not be deconvolved
mask = ’’ # Name of image that has mask to limit region of deconvolution
async = False # if True run in the background, prompt is freed

The algorithm (alg) options are: ’clark’, ’hogbom’, ’multiscale’ or ’mem’. The ’multiscale’
and ’mem’ options will open the usual set of sub-parameters for these methods.

5.8 Self-Calibration

Once you have a model image or set of model components reconstructed from your data using one
of the deconvolution techniques described above, you can use it to refine your calibration. This is
called self-calibration as it uses the data to determine its own calibration (rather than observations
of special calibration sources).

In principle, self-calibration is no different than the calibration process we described earlier (§ 4).
In effect, you alternate between calibration and imaging cycles, refining the calibration and the
model as you go. The trick is you have to be careful, as defects in early stages of the calibration
can get into the model, and thus prevent the calibration from improving. In practice, it is best to
not clean very deeply early on, so that the CLEAN model contains correct components only.

One important thing to keep in mind is that the self-calibration relies upon having the most recent
Fourier transform of the model in the MODEL DATA column of the MS. This is indeed the case if
you follow the imaging (using clean) directly by the self-calibration. If you have done something
strange in between and have lost or overwritten the MODEL DATA column (for example done some
extra cleaning that you do not want to keep), then use the ft task (see § 5.6 above), which fills the
MODEL DATA column with the Fourier transform of the specified model or model image.

Likewise, during self-calibration (once you have a new calibration solution) the imaging part relies
upon having the CORRECTED DATA column contain the self-calibrated data. This is done with the
applycal task (§ 4.6.1).
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The clearcal command can be used during the self-calibration if you need to clear the CORRECTED DATA
column and revert to the original DATA. If you need to restore the CORRECTED DATA to any previous
stage in the self-calibration, use applycal again with the appropriate calibration tables.

ALERT: In later patches we will change the tasks so that users need not worry what is contained
in the MS scratch columns and how to fill them. CASA will handle that underneath for you!

For now, we refer the user back to the calibration chapter for a reminder on how to run the
calibration tasks.

See the example of cleaning and self-calibrating the Jupiter 6cm continuum data given below in
Appendix F.2.

5.9 Automatic Cleaning

Autoclean is a task to automatically clean a dataset and create an output image by automating
the “cleanbox” selection procedure. The cleaning and boxing progresses iteratively. The majority
of the parameters are standard imaging parameters, with many added parameters that specify the
boxing process and the stop conditions. Note that, like clean (§ 5.3), autoclean has the option
to run interactively. In this case, the clean regions are still determined automatically, but they can
be examined (and modified if necessary) in the viewer after each stage of boxing.

The parameter inputs for autoclean are:

# autoclean :: CLEAN an image with automatically-chosen clean regions.
vis = ’’ # name of input visibility file
imagename = ’’ # Pre-name of output images
field = ’’ # Field Name
spw = ’’ # Spectral windows:channels: ’’ is all
selectdata = False # Other data selection parameters
mode = ’mfs’ # Type of selection (mfs, channel, velocity, frequency)
psfmode = ’clark’ # method of PSF calculation to use during minor cycles
imagermode = ’’ # Use csclean or mosaic. If ’’, use psfmode
imsize = [256, 256] # x and y image size in pixels, symmetric for single value
cell = [’1.0arcsec’, ’1.0arcsec’] # x and y cell size. default unit arcsec
phasecenter = ’’ # Image phase center: position or field index
restfreq = ’’ # rest frequency to assign to image (see help)
stokes = ’I’ # Stokes params to image (currently requires Stokes="I")
weighting = ’natural’ # Weighting of uv (natural, uniform, briggs, ...)
interactive = False # use interactive clean (with GUI viewer)
mask = [] # Initial cleanbox(es), mask image(s), and/or region(s) used in cleaning
modelimage = ’’ # Name of model image(s) to initialize cleaning
uvtaper = False # Apply additional uv tapering of visibilities.
niter = 500 # Max number of total clean cycles per channel
npercycle = 100 # Clean iterations before adding new clean boxes
npercycle_speedup = 1.5 # Increase npercycle by this factor if no new regions found.
gain = 0.1 # Loop gain for cleaning
pbcor = False # Output primary beam-corrected image
minpb = 0.1 # Minimum PB level to use
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clean_threshold = ’0.0mJy’ # Flux level to stop cleaning. Must include units.
Nrms = 6 # Threshold to stop cleaning: current rms * Nrms
eps_maxres = 0.01 # Stop cleaning if max abs(residual) changes by less than this factor
useabsresid = False # If True, use absolute value of residual to test for clean convergence.
allow_maxres_inc = 3 # Stop cleaning if max abs(residual) increases this many times (set to -1 to ignore)
island_rms = 4 # Threshold for islands when finding clean regions: current rms * island_rms
diag = False # Count diagonal connection as same island?
peak_rms = 6 # Threshold for island peak current rms * peak_rms
gain_threshold = 0.1 # Threshold for island peak current max residual * gain_threshold
Npeak = 3 # Max number of new clean regions to add in each iteration.
shape = 1 # Shape of clean regions: 0 for circles, 1 for boxes, 2 for both.
boxstretch = 1 # Increase clean region size by this many pixels beyond island size.
irregsize = 100 # For regions this large (in pixels), use irregular clean region.
async = False # If true the taskname must be started using autoclean(...)

Many of the parameters are the standard imaging parameters (§ 5.2). The new additions in general
fall into three categories: clean cycle parameters, stopping parameters, and boxing parameters.

The new or modified clean cycle parameters are niter, npercycle, and npercycle speedup. The
niter parameter specifies the total number of clean minor cycles per image channel; Autoclean
always cleans on a channel by channel basis. Npercycle specifies the initial number of minor
clean cycles before the next stage of clean boxing. The npercycle speedup parameter is a way
to increase the value of npercycle if the cleaning is not deep enough. If no new clean regions are
found, the value of npercycle increases by a factor of npercycle speedup. Set this parameter to
1 to always keep the value of npercycle constant.

Clean threshold, Nrms, eps maxres, useabsresid, and allow maxres inc are parameters which
determine the stopping conditions for cleaning in each image channel. Any single one of the follow-
ing conditions is sufficient to discontinue cleaning the current image channel. The clean threshold
parameter is the flux level at which to stop cleaning. (It is equivalent to the threshold parameter
for the Clean task.) The Nrms parameter is used to stop cleaning when the maximum residual is
less than Nrms times the rms of the image. The maximum residual of the image is checked between
each automated clean boxing cycle, and cleaning stops if the it has changed by a factor of less than
eps maxres from one cycle to the next. The maximum residual is allowed to increase between clean
boxing cycles, but cleaning stops if it increases more than allow maxres inc times. And finally,
the parameter useabsresid, primarily available for testing purposes, is set to False to use the
(positive) maximum residual for these stopping conditions; set it to True to use the absolute value
of the image residuals.

The parameters which determine the progression of the automated clean boxing are island rms,
diag, peak rms, gain threshold, Npeak, shape, boxstretch, and irregsize. The diag and
boxstretch parameters are equivalent to those used in the boxit task (§ 5.5.1). Island rms
determines the threshold level for clean regions; the threshold (equivalent to boxit parameter
threshold) is island rms times the rms in the current residual image. A thresholded island only
qualifies for a clean region if its largest pixel value is at least peak rms times the image rms; this
parameter should be larger than island rms. The following two parameters are intended to avoid
placing a clean region over a sidelobe of a bright source. Npeak strictly limits the number of new
clean regions added in each automated boxing cycle, while the gain threshold parameter ensures
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that a thresholded island qualifies for a new clean region only if its maximum pixel is greater than
gain threshold times the current maximum residual.

The parameters shape and irregsize determine the shape of the clean regions that go into the
mask. Set shape to 0 to make only circular regions, to 1 for only rectangular regions, and to 2
for either. If shape = 2, clean regions will be circular for islands whose extent in the x and y
directions are within one pixel of each other, and will be rectangular for all others. Clean regions
will have the exact (irregular) shape of the island for all islands which are larger than irregsize
pixels in extent in either the x or y direction. To ignore this option, set irregsize to -1 (or to
the image size). Note that Autoclean will produce a .mask image as well as a .rgn region file.
The mask image will contain the full set of clean regions. The region file, owing to current CASA
functionality, will contain only the rectangular regions. Eventually we will add functionality to deal
with the creation of non-rectangular regions.

ALERT: The autoclean task is a prototype under active development and coded in Python.
Eventually we will integrate this better with the clean task to improve efficiency. This task is
provided for users who wish to experiment with this functionality, e.g. for pipeline development.
We welcome feedback on the use of this tasks, in particular on heuristics used to set the control
parameters.

5.10 Examples of Imaging

See the scripts provied in Appendix F for examples of imaging. In particular, we refer the interested
user to the demonstrations for:

• NGC5921 (VLA HI) — a quick demo of basic CASA spectral line cube imaging and analysis
(F.1)

• Jupiter (VLA 6cm continuum polarimetry) — polarization imaging and analysis (F.2)

• NGC4826 (BIMA 3mm CO) — mosaic imaging of spectral line data (F.3)
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Image Analysis

Inside the Toolkit:
Image analysis is handled in the ia
tool. Many options exist there, in-
cluding region statistics and image
math. See § 6.12 below for more in-
formation.

Once data has been calibrated (and imaged in the case of
synthesis data), the resulting image or image cube must be
displayed or analyzed in order to extract quantitative infor-
mation, such as statistics or moment images. In addition,
there need to be facilities for the coordinate conversion of
images for direct comparison. We have assembled a skele-
ton of image analysis tasks for this release. Many more are
still under development.

The image analysis tasks are:

• imhead — summarize and manipulate the “header” information in a CASA image (§ 6.2)

• imcontsub — perform continuum subtraction on a spectral-line image cube (§ 6.3)

• imfit — image plane Gaussian component fitting (§ 6.4)

• immath — perform mathematical operations on or between images (§ 6.5)

• immoments — compute the moments of an image cube (§ 6.6)

• imstat — calculate statistics on an image or part of an image (§ 6.7)

• imval — extract the data and mask values from a pixel or region of an image (§ 6.8)

• imregrid — regrid an image onto the coordinate system of another image (§ 6.9)

• imsmooth — smooth images in the spectral and angular directions (§ 6.10)

• importfits — import a FITS image into a CASA image format table (§ 6.11.2)

• exportfits — write out an image in FITS format (§ 6.11.1)

There are other tasks which are useful during image analysis. These include:

238
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• viewer — there are useful region statistics and image cube slice and profile capabilities in
the viewer (§ 7)

We also give some examples of using the CASA Toolkit to aid in image analysis (§ 6.12).

6.1 Common Image Analysis Task Parameters

We now describe some sets of parameters are are common to the image analysis. These should
behave the same way in any of the tasks described in this section that they are found in.

6.1.1 Region Selection (box)

Area selection in the image analysis tasks is controlled by the box parameter or through the regions
parameter (§ 6.1.5).

The box parameter selects rectangular areas:

box = ’’ # Select one or more box regions

# string containing blcx,blcy,trcx,trcy

# A box selection in the directional portion of an image.
# The directional portion of an image are the axes for right
# ascension and declination, for example. Boxes are specified
# by there bottom-left corner (blc) and top-right corner (trc)
# as follows: blcx, blcy, trcx, trcy;
# ONLY pixel values acceptable at this time.
# Default: none (all);
# Example: box=’0,0,50,50’
# Example: box=’[10,20,30,40];[100,100,150,150]’

To get help on box, see the in-line help

help(par.box)

6.1.2 Plane Selection (chans, stokes)

The channel, frequency, or velocity plane(s) of the image is chosen using the chans parameter:

chans = ’’ # Select the channel(spectral) range

# string containing channel range

# immath, imstat, and imcontsub - takes a string listing
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# of channel numbers, velocity, and/or frequency
# numbers, much like the spw paramter
# Only channel numbers acceptable at this time.
# Default: none (all);
# Example: chans=’3~20’
# chans="0,3,4,8"
# chans="3~20,50,51"

The polarization plane(s) of the image is chosen with the stokes parameter:

stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV)

# string containing Stokes selections

# Stokes parameters to image, may or may not be separated
# by commas but best if you use commas.
# Default: none (all); Example: stokes=’IQUV’;
# Example:stokes=’I,Q’
# Options: ’I’,’Q’,’U’,’V’,
# ’RR’,’RL’,’LR’,’LL’,
# ’XX’,’YX’,’XY’,’YY’,...

To get help on these parameters, see the in-line help

help(par.chans)
help(par.stokes)

Sometimes, as in the immoments task, the channel/plane selection is generalized to work on more
than one axis type. In this case, the planes parameter is used. This behaves like chans in syntax.

6.1.3 Lattice Expressions (expr)

Lattice expressions are strings that describe operations on a set of input images to form an output
image. These strings use the Lattice Expression Language (LEL). LEL syntax is described in detail
in AIPS++ Note 223

http://aips2.nrao.edu/docs/notes/223/223.html

ALERT: This document was written in the context of glish-based AIPS++ and is not yet updated
to CASA syntax (see below).

The expr string contains the LEL expression:

expr = ’’ # Mathematical expression using images

# string containing LEL expression

http://aips2.nrao.edu/docs/notes/223/223.html
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# A mathematical expression, with image file names.
# image file names must be enclosed in double quotes (")
# Default: none
# Example: expr=’min("image2.im")+(2*max("image1.im"))’
#
# Available functions in the expr and mask paramters:
# pi(), e(), sin(), sinh(), asinh(), cos(), cosh(), tan(), tanh(),
# atan(), exp(), log(), log10(), pow(), sqrt(), complex(), conj()
# real(), imag(), abs(), arg(), phase(), aplitude(), min(), max()
# round(), isgn(), floor(), ceil(), rebin(), spectralindex(), pa(),
# iif(), indexin(), replace(), ...

For examples using LEL expr, see § 6.5.1 below. Note that in immath, shortcut names have been
given to the images provided by the user in imagename that can be used in the LEL expression, for
the above example:

imagename=[’image2.im’,’image1.im’]
expr=’min(IM0)+(2*max(IM1))’

ALERT: As of Patch 2, LEL expressions use 0-based indices. Also, the functions must be lowercase
(in almost all cases we know about).

6.1.4 Masks (mask)

The mask string contains a LEL expression (see § 6.1.3 above). This string can be an on-the-fly
(OTF) mask expression or refer to an image pixel mask.

mask = ’’ # Mask to be applied to the images

# string containing LEL expression

# Name of mask applied to each image in the calculation
# Default ’’ means no mask;
# Example: mask=’"ngc5921.clean.cleanbox.mask">0.5’
# mask=’mask(ngc5921.clean.cleanbox.mask)’

Note that the mask file supplied in the mask parameter must have the same shape, same number
of axes and same axes length, as the images supplied in the expr parameter, with one exception.
The mask may be missing some of the axes — if this is the case then the mask will be expanded
along these axes to become the same shape.

For examples using mask, see § 6.5.2 below.

6.1.5 Regions (region)

The region parameter points to an ImageRegion file. An ImageRegion file can be created with the
CASA viewer’s region manager (§ 7.3.5). Typically ImageRegion files will have the suffix ’.rgn’.
If a region file is given then the box, chans, and stokes parameters will be ignored.
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For example:

region=’myimage.im.rgn’

6.2 Image Header Manipulation (imhead)

To summarize and change keywords and values in the “header” of your image, use the imhead task.
Its inputs are:

# imhead :: Lists, gets and puts image header parameters
imagename = ’’ # Name of input image file
mode = ’summary’ # Options: get, put, summary, list, stats
async = False

The mode parameter controls the operation of imhead.

Setting mode=’summary’ will print out a summary of the image properties and the header to the
logger.

Setting mode=’list’ prints out a list of the header keywords and values to the terminal.

The mode=’get’ allows the user to retrieve the current value for a specified keyword hdkey:

mode = ’get’ # imhead options: list, summary, get, put
hdkey = ’’ # The FITS keyword

Note that to catch this value, you need to assign it to a Python variable. See § 1.3.3 for more on
return values.

The mode=’put’ allows the user to replace the current value for a given keyword hditem with that
specified in hdvalue. There are two sub-parameters that are opened by this option:

mode = ’put’ # imhead options: list, summary, get, put
hdkey = ’’ # The FITS keyword
hdvalue = ’’ # Value of hdkey
hdtype = ’’ # Data type of the header keyword.
hdcomment = ’’ # Comment associated with the header keyword

WARNING: Be careful when using mode=’put’. This task does no checking on whether the
values you specify (e.g. for the axes types) are valid, and you can render your image invalid. Make
sure you know what you are doing when using this option!
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6.2.1 Examples for imhead

The following uses the example images from NGC5921 (§ F.1).

We can print the summary to the logger:

CASA <51>: imhead(’ngc5921.demo.cleanimg.image’,mode=’summary’)

prints in the logger:

##### Begin Task: imhead #####
Image name : ngc5921.demo.cleanimg.image
Object name : N5921_2
Image type : PagedImage
Image quantity : Intensity
Pixel mask(s) : None
Region(s) : None
Image units : Jy/beam
Restoring Beam : 52.3782 arcsec, 45.7319 arcsec, -165.572 deg

Direction reference : J2000
Spectral reference : LSRK
Velocity type : RADIO
Rest frequency : 1.42041e+09 Hz
Pointing center : 15:22:00.000000 +05.04.00.000000
Telescope : VLA
Observer : TEST
Date observation : 1995/04/13/00:00:00
Telescope position: [-1.60119e+06m, -5.04198e+06m, 3.55488e+06m] (ITRF)

Axis Coord Type Name Proj Shape Tile Coord value at pixel Coord incr Units
------------------------------------------------------------------------------------------------
0 0 Direction Right Ascension SIN 256 64 15:22:00.000 128.00 -1.500000e+01 arcsec
1 0 Direction Declination SIN 256 64 +05.04.00.000 128.00 1.500000e+01 arcsec
2 1 Stokes Stokes 1 1 I
3 2 Spectral Frequency 46 8 1.41279e+09 0.00 2.4414062e+04 Hz

Velocity 1607.99 0.00 -5.152860e+00 km/s
##### End Task: imhead

If you choose mode=’list’, you get the summary in the logger and a listing of keywords and values
to the terminal:

CASA <52>: imhead(’ngc5921.demo.cleanimg.image’,mode=’list’)
Out[52]:

{’beammajor’: 52.378242492675781,
’beamminor’: 45.731891632080078,
’beampa’: -165.5721435546875,
’bunit’: ’Jy/beam’,
’cdelt1’: ’-7.27220521664e-05’,
’cdelt2’: ’7.27220521664e-05’,
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’cdelt3’: ’1.0’,
’cdelt4’: ’24414.0625’,
’crpix1’: 128.0,
’crpix2’: 128.0,
’crpix3’: 0.0,
’crpix4’: 0.0,
’crval1’: ’4.02298392585’,
’crval2’: ’0.0884300154344’,
’crval3’: ’I’,
’crval4’: ’1412787144.08’,
’ctype1’: ’Right Ascension’,
’ctype2’: ’Declination’,
’ctype3’: ’Stokes’,
’ctype4’: ’Frequency’,
’cunit1’: ’rad’,
’cunit2’: ’rad’,
’cunit3’: ’’,
’cunit4’: ’Hz’,
’datamax’: ’ Not Known ’,
’datamin’: -0.010392956435680389,
’date-obs’: ’1995/04/13/00:00:00’,
’equinox’: ’J2000’,
’imtype’: ’Intensity’,
’masks’: ’ Not Known ’,
’maxpixpos’: array([134, 134, 0, 38], dtype=int32),
’maxpos’: ’15:21:53.976, +05.05.29.998, I, 1.41371e+09Hz’,
’minpixpos’: array([117, 0, 0, 21], dtype=int32),
’minpos’: ’15:22:11.035, +04.31.59.966, I, 1.4133e+09Hz’,
’object’: ’N5921_2’,
’observer’: ’TEST’,
’projection’: ’SIN’,
’reffreqtype’: ’LSRK’,
’restfreq’: [1420405752.0],
’telescope’: ’VLA’}

Note that this list is a return value and can be captured in a variable:

mylist = imhead(’ngc5921.demo.cleanimg.image’,mode=’list’)

The values for these keywords can be queried using mode=’get’. At this point you should capture
the return value:

CASA <53>: mybmaj = imhead(’ngc5921.demo.cleanimg.image’,mode=’get’,hdkey=’beammajor’)

CASA <54>: mybmaj
Out[54]: {’unit’: ’arcsec’, ’value’: 52.378242492699997}

CASA <55>: myobserver = imhead(’ngc5921.demo.cleanimg.image’,mode=’get’,hdkey=’observer’)

CASA <56>: print myobserver
{’value’: ’TEST’, ’unit’: ’’}
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You can set the values for these keywords using mode=’put’. For example:

CASA <57>: imhead(’ngc5921.demo.cleanimg.image’,mode=’put’,hdkey=’observer’,hdvalue=’CASA’)
Out[57]: ’CASA’

CASA <58>: imhead(’ngc5921.demo.cleanimg.image’,mode=’get’,hdkey=’observer’)
Out[58]: {’unit’: ’’, ’value’: ’CASA’}

6.3 Continuum Subtraction on an Image Cube (imcontsub)

One method to separate line and continuum emission in an image cube is to specify a number of
line-free channels in that cube, make a linear fit to the visibilities in those channels, and subtract
the fit from the whole cube. Note that the task uvcontsub serves a similar purpose; see § 4.7.4 for
a synopsis of the pros and cons of either method.

The imcontsub task will subtract a polynomial baseline fit to the specified channels from an image
cube.

The default inputs are:

# imcontsub :: Continuum subtraction on images
imagename = ’’ # Name of the input image
linefile = ’’ # Output line image file name
contfile = ’’ # Output continuum image file name
fitorder = 0 # Polynomial order for the continuum estimation
region = ’’ # Image region or name to process see viewer
box = ’’ # Select one or more box regions
chans = ’’ # Select the channel(spectral) range
stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV)
async = False

Area selection using box and region is detailed in § 6.1.1 and § 6.1.5 respectively.

Image cube plane selection using chans and stokes are described in § 6.1.2.

ALERT: imcontsub has issues when the image does not contain a spectral or stokes axis. Errors
are generated when run on an image missing one or both of these axes. You will need to use the
Toolkit (e.g. the ia.adddegaxes method) to add degenerate missing axes to the image.

6.3.1 Examples for imcontsub)

The following uses the example images from NGC5921 (§ F.1).

First, we make a clean image without the uv-plane continuum subtraction:

# First, run clearcal to clear the uvcontsub results from the
# corrected column
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clearcal(’ngc5921.demo.src.split.ms’)

# Now clean, keeping all the channels except first and last
default(’clean’)
vis = ’ngc5921.demo.src.split.ms’
imagename = ’ngc5921.demo.nouvcontsub’
mode = ’channel’
nchan = 61
start = 1
width = 1
imsize = [256,256]
psfmode = ’clark’
imagermode = ’’
cell = [15.,15.]
niter = 6000
threshold=’8.0mJy’
weighting = ’briggs’
robust = 0.5
mask = [108,108,148,148]
interactive=False
clean()

# It will have made the image:
# -----------------------------
# ngc5921.demo.nouvcontsub.image

# You can view this image
viewer(’ngc5921.demo.nouvcontsub.image’)

You can clearly see continuum sources in the image which were removed previously in the script
by the use of uvcontsub. Lets see if imcontsub can work as well.

Using the viewer, it looks like channels 0 through 4 and 50 through 60 are line-free. Then:

default(’imcontsub’)
imagename = ’ngc5921.demo.nouvcontsub.image’
linefile = ’ngc5921.demo.nouvcontsub.lineimage’
contfile = ’ngc5921.demo.nouvcontsub.contimage’
fitorder = 1
chans = ’0~4,50~60’
stokes = ’I’
imcontsub()

This did not do too badly!

6.4 Image-plane Component Fitting (imfit)

The inputs are:
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# imfit :: Fit one or more elliptical Gaussian components on an image region(s)
imagename = ’’ # Name of the input image
box = ’’ # Specify one or more box regions for the fit.
region = ’’ # Region name or region specified using rg tool.
chan = 0 # Spectral channel on which to perform fit (only one may be specified).
stokes = ’I’ # Stokes parameter to fit.
mask = ’’ # Mask to be applied to the image
includepix = [] # Range of pixel values to include for fitting.
excludepix = [] # Range of pixel values to exclude for fitting.
residual = ’’ # Name of output residual image.
model = ’’ # Name of output model image.
estimates = ’’ # Name of file containing initial estimates of component parameters.
logfile = ’’ # Name of file to write fit results.
newestimates = ’’ # File to write fit results
async = False # If true the taskname must be started using imfit(...)

This task will return (as a Python dictionary) the results of the fit.

Note that to fit more than a single component, you must provide starting estimates for each
component via the estimates file. See ‘‘help imfit’’ for more details on this.

6.4.1 Examples for imfit)

The following are some examples using the B1608+656 Tutorial

http://casa.nrao.edu/Doc/Scripts/b1608_demo.py

as an example.

# First fit only a single component at a time
# This is OK since the components are well-separated and not blended
# Box around component A
xfit_A_res = imfit(’b1608.demo.clean2.image’,box=’121,121,136,136’,

newestimates=’b1608.demo.clean2.newestimate’)

# Now extract the fit part of the return value
xfit_A = xfit_A_res[’results’][’component0’]
#xfit_A
# Out[7]:
#{’flux’: {’error’: array([ 6.73398035e-05, 0.00000000e+00, 0.00000000e+00,
# 0.00000000e+00]),
# ’polarisation’: ’Stokes’,
# ’unit’: ’Jy’,
# ’value’: array([ 0.01753742, 0. , 0. , 0. ])},
# ’label’: ’’,
# ’shape’: {’direction’: {’error’: {’latitude’: {’unit’: ’arcsec’,
# ’value’: 0.00041154866279462775},
# ’longitude’: {’unit’: ’arcsec’,

http://casa.nrao.edu/Doc/Scripts/b1608_demo.py
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# ’value’: 0.00046695916589535109}},
# ’m0’: {’unit’: ’rad’, ’value’: -2.0541102061078207},
# ’m1’: {’unit’: ’rad’, ’value’: 1.1439131060384089},
# ’refer’: ’J2000’,
# ’type’: ’direction’},
# ’majoraxis’: {’unit’: ’arcsec’, ’value’: 0.29100166137741568},
# ’majoraxiserror’: {’unit’: ’arcsec’,
# ’value’: 0.0011186420613222663},
# ’minoraxis’: {’unit’: ’arcsec’, ’value’: 0.24738110059830495},
# ’minoraxiserror’: {’unit’: ’arcsec’,
# ’value’: 0.0013431999725066338},
# ’positionangle’: {’unit’: ’deg’, ’value’: 19.369249322401796},
# ’positionangleerror’: {’unit’: ’rad’,
# ’value’: 0.016663189295782171},
# ’type’: ’Gaussian’},
# ’spectrum’: {’frequency’: {’m0’: {’unit’: ’GHz’, ’value’: 1.0},
# ’refer’: ’LSRK’,
# ’type’: ’frequency’},
# ’type’: ’Constant’}}

# Now the other components
xfit_B_res = imfit(’b1608.demo.clean2.image’,box=’108,114,120,126’,

newestimates=’b1608.demo.clean2.newestimate’,append=True)
xfit_B = xfit_B_res[’results’][’component0’]

xfit_C_res= imfit(’b1608.demo.clean2.image’,box=’108,84,120,96’)
xfit_C = xfit_C_res[’results’][’component0’]

xfit_D_res = imfit(’b1608.demo.clean2.image’,box=’144,98,157,110’)
xfit_D = xfit_D_res[’results’][’component0’]

print ""
print "Imfit Results:"
print "--------------"
print "A Flux = %6.4f Bmaj = %6.4f" % (xfit_A[’flux’][’value’][0],xfit_A[’shape’][’majoraxis’][’value’])
print "B Flux = %6.4f Bmaj = %6.4f" % (xfit_B[’flux’][’value’][0],xfit_B[’shape’][’majoraxis’][’value’])
print "C Flux = %6.4f Bmaj = %6.4f" % (xfit_C[’flux’][’value’][0],xfit_C[’shape’][’majoraxis’][’value’])
print "D Flux = %6.4f Bmaj = %6.4f" % (xfit_D[’flux’][’value’][0],xfit_D[’shape’][’majoraxis’][’value’])
print ""

Now try fitting four components together. For this we will have to provide an estimage file. We
will use the clean beam for the estimate of the component sizes:

estfile=open(’b1608.demo.clean2.estimate’,’w’)
print >>estfile,’# peak, x, y, bmaj, bmin, bpa’
print >>estfile,’0.017, 128, 129, 0.293arcsec, 0.238arcsec, 21.7deg’
print >>estfile,’0.008, 113, 120, 0.293arcsec, 0.238arcsec, 21.7deg’
print >>estfile,’0.008, 113, 90, 0.293arcsec, 0.238arcsec, 21.7deg’
print >>estfile,’0.002, 151, 104, 0.293arcsec, 0.238arcsec, 21.7deg’
estfile.close()
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Then, this can be used in imfit:

xfit_all_res = imfit(’b1608.demo.clean2.image’,
estimates=’b1608.demo.clean2.estimate’,
logfile=’b1608.demo.clean2.imfitall.log’,
newestimates=’b1608.demo.clean2.newestimate’,
box=’121,121,136,136,108,114,120,126,108,84,120,96,144,98,157,110’)

# Now extract the fit part of the return values
xfit_allA = xfit_all_res[’results’][’component0’]
xfit_allB = xfit_all_res[’results’][’component1’]
xfit_allC = xfit_all_res[’results’][’component2’]
xfit_allD = xfit_all_res[’results’][’component3’]

These results are almost identical to those from the individual fits. You can see a nicer printout of
the fit results in the logfile.

6.5 Mathematical Operations on an Image (immath)

The inputs are:

# immath :: Perform math operations on images
imagename = ’’ # a list of input images
mode = ’evalexpr’ # mode for math operation (evalexpr, spix, pola, poli)

expr = ’’ # Mathematical expression using images
varnames = ’’ # a list of variable names to use with the image files

outfile = ’immath_results.im’ # File where the output is saved
mask = ’’ # Mask to be applied to the images
region = ’’ # File path which contains an Image Region
box = ’’ # Select one or more box regions in the input images
chans = ’’ # Select the channel(spectral) range
stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV)
async = False # If true the taskname must be started using immath(...)

In all cases, outfile must be supplied with the name of the new output file to create.

The mode parameter selects what immath is to do.

The default mode=’evalexpr’ lets the user specify a mathematical operation to carry out on one
or more input images. The sub-parameter expr contains the Lattice Expression Language (LEL)
string describing the image operations based on the images in the imagename parameter. See § 6.1.3
for more on LEL strings and the expr parameter.

Mask specification is done using the mask parameter. This can optionally contain an on-the-fly
mask expression (in LEL) or point to an image with a pixel mask. See § 6.1.4 for more on the use
of the mask parameter. See also § 6.1.3 for more on LEL strings.

Region selection is carried out through the region and box parameters. See § 6.1.1 and § 6.1.5 for
more on area selection.
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Image plane selection is controlled by chans and stokes. See § 6.1.2 for details on plane selction.

For mode=’evalexpr’, the standard usage for specifying images to be used in the LEL expression is
to provide them as a list in the imagename parameter, and then access there in the LEL expression
by the names IM0, IM1, .... For example,

immath(imagename=[’image1.im’,’image2.im’],expr=’IM0-IM1’,outfile=’ImageDiff.im’)

would subtract the second image given from the first.

For the special modes ’spix’, ’pola’, ’poli’, the required images for the given operation are to
be provided in imagename (some times in a particular order). V3.0 ALERT: For mode=’pola’ you
MUST call as a function as in the example below (§ 6.5.1.2), giving the parameters as arguments,
or immath will fail.

Detailed examples are given below.

6.5.1 Examples for immath

The following are examples using immath using NGC5921 (§ F.1). Note that the image names in
the expr are assumed to refer to existing image files in the current working directory.

6.5.1.1 Simple math

Select a single plane (channel 22) of the 3-D cube and subtract it from the original image:

immath(imagename=’ngc5921.demo.cleanimg.image’,
expr=’IM0’,chans=’22’,
outfile=’ngc5921.demo.chan22.image’)

Double all values in our image:

immath(imagename=[’ngc5921.demo.chan22.image’],
expr=’IM0*2.0’,
outfile=’ngc5921.demo.chan22double.image’ )

Square all values in our image:

immath(imagename=[’ngc5921.demo.chan22.image’],
expr=’IM0^2’,
outfile=’ngc5921.demo.chan22squared.image’ )

Note that the units in the output image are still claimed to be “Jy/beam”, ie. immath will not
correctly scale the units in the image for non-linear cases like this. Beware.

You can do other mathematical operations on an image (e.g. triginometric functions) as well as use
scalars results from an image (e.g. max, min, median, mean, variance). You also have access to
constants such as e() and pi() (which are doubles internally, while most images are floats). For
example: Take the sine of an image:
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immath(imagename=[’ngc5921.demo.chan22.image’,’ngc5921.demo.chan22squared.image’],
expr=’sin(float(pi())*IM0/sqrt(max(IM1)))’,
outfile=’ngc5921.demo.chan22sine.image’)

Note again that the units are again kept as they were.

Select a single plane (channel 22) of the 3-D cube and subtract it from the original image:

immath(imagename=’ngc5921.demo.cleanimg.image’,
expr=’IM0’,chans=’22’,
outfile=’ngc5921.demo.chan22.image’)

immath(imagename=[’ngc5921.demo.cleanimg.image’,’ngc5921.demo.chan22.image’],
expr=’IM0-IM1’,
outfile=’ngc5921.demo.sub22.image’)

Note that in this example the 2-D plane gets expanded out and the values are applied to each plane
in the 3-D cube.

Select and save the inner 1/4 of an image for channels 40,42,44 as well as channels 10 and below:

default(’immath’)
imagename=[’ngc5921.demo.cleanimg.image’]
expr=’IM0’
box=’64,64,192,192’
chans=’<10;40,42,44’
outfile=’ngc5921.demo.inner.image’
immath()

ALERT: Note that if chan selects more than one channel then the output image has a number of
channels given by the span from the lowest and highest channel selected in chan. In the example
above, it will have 45 channels. The ones not selected will be masked in the output cube. If we
had set

chans = ’40,42,44’

then there would be 5 output channels corresponding to channels 40,41,42,43,44 of the MS with
41,43 masked. Also, the chans=’<10’ selects channels 0–9.

Note that the chans syntax allows the operators ’<’, ’<=’, ’>’, ’>’. For example,

chans = ’<17,>79’
chans = ’<=16,>=80’

do the same thing.

Divide an image by another, with a threshold on one of the images:

immath(imagename=[’ngc5921.demo.cleanimg.image’,’ngc5921.demo.chan22.image’],
expr=’IM0/IM1[IM1>0.008]’,
outfile=’ngc5921.demo.div22.image’)
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6.5.1.2 Polarization manipulation

The following are some examples using the 3C129 Tutorial

http://casa.nrao.edu/Doc/Scripts/3c129_tutorial.py

as an example.

It is helpful to extract the Stokes planes from the cube into individual images:

default(’immath’)
imagename = ’3C129BC.clean.image’
outfile=’3C129BC.I’; expr=’IM0’; stokes=’I’; immath();
outfile=’3C129BC.Q’; expr=’IM0’; stokes=’Q’; immath();
outfile=’3C129BC.U’; expr=’IM0’; stokes=’U’; immath();
outfile=’3C129BC.V’; expr=’IM0’; stokes=’V’; immath();

Extract linearly polarized intensity and polarization position angle images:

immath(stokes=’’, outfile=’3C129BC.P’, mode=’poli’,
imagename=[’3C129BC.Q’,’3C129BC.U’], sigma=’0.0mJy/beam’);

immath(stokes=’’, outfile=’3C129BC.X’, mode=’pola’,
imagename=[’3C129BC.Q’,’3C129BC.U’], sigma=’0.0mJy/beam’);

V3.0 ALERT: For mode=’pola’ you MUST call as a function as in this example (giving the
parameters as arguments) or immath will fail.

Create a fractional linear polarization image:

default( ’immath’)
imagename = [’3C129BC.I’,’3C129BC.Q’,’3C129BC.U’]
outfile=’3C129BC.fractional_linpol’
expr=’sqrt((IM1^2 + IM2^2)/IM0^2)’
stokes=’’
immath()

Create a polarized intensity image:

default( ’immath’)
imagename = [’3C129BC.Q’,’3C129BC.U’,’3C129BC.V’]
outfile=’3C129BC.pol_intensity’
expr=’sqrt(IM0^2 + IM1^2 + IM2^2)’
stokes=’’
immath()

Toolkit Tricks: The following uses the toolkit (§ 6.12). You can make a complex linear polarization
(Q + iU) image using the imagepol tool:

http://casa.nrao.edu/Doc/Scripts/3c129_tutorial.py
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# See CASA User Reference Manual:
# http://casa.nrao.edu/docs/casaref/imagepol-Tool.html
#
# Make an imagepol tool and open the clean image
potool = casac.homefinder.find_home_by_name(’imagepolHome’)
po = potool.create()
po.open(’3C129BC.clean.image’)
# Use complexlinpol to make a Q+iU image
po.complexlinpol(’3C129BC.cmplxlinpol’)
po.close()

You can now display this in the viewer, in particular overlay this over the intensity raster with the
intensity contours. When you load the image, use the LEL:

’3C129BC.cmplxlinpol’[’3C129BC.P’>0.0001]

which is entered into the LEL box at the bottom of the Load Data menu (§ 7.2.4).

6.5.1.3 Primary beam correction/uncorrection

In a script using mode=’evalexpr’, you might want to assemble the string for expr using string
variables that contain the names of files. Since you need to include quotes inside the expr string,
use a different quote outside (or escape the string, e.g. ’’́. For example, to do a primary beam
correction on the NGC5921 cube,

imname = ’ngc5921.demo.cleanimg’
imagename = imname
...
clean()

default(’immath’)
clnimage = imname + ’.image’
fluximage = imname + ’.flux’
pbcorimage = imname + ’.pbcor’

outfile = pbcorimage
imagename = [clnimage,fluximage]
# cutoff at the 10% level
expr=’IM0/IM1[IM1>0.1]’

immath()

Note that we did not use a minpb when we cleaned, so we use the trick above to effectively set a
cutoff in the primary beam .flux image of 0.1.

For more on LEL strings, see AIPS++ Note 223

http://aips2.nrao.edu/docs/notes/223/223.html

or in § 6.1.3 above.

http://aips2.nrao.edu/docs/notes/223/223.html
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6.5.1.4 Spectral analysis

One can make an integrated 1-d spectrum over the whole image by rebinning (integrating) over the
two coordinate axes in a specified region. For example, using the NGC5921 image cube (with 46
channels):

immath(outfile="ngc5921.demo.spectrum.all",mode="evalexpr",
imagename=’ngc5921.demo.clean.image’,
expr="rebin(IM0,[256,256,1,1])")

The resulting image has shape [1,1,1,46] as desired. You can view this with the viewer and will
see a 1-D spectrum.

One can also do this with a box:

immath(outfile="ngc5921.demo.spectrum.box",mode="evalexpr",
imagename=’ngc5921.demo.clean.image’,
expr="rebin(IM0,[256,256,1,1])",box="118,118,141,141")

ALERT: One cannot specify a region without it collapsing the channel axis (even when told to
use all axes or channels).

Toolkit Tricks: The following uses the toolkit (§ 6.12). You can make an ascii file containing only
the values (no other info though):

ia.open(’ngc5921.demo.spectrum.all’)
ia.toASCII(’ngc5921.demo.spectrum.all.ascii’)

You can also extract to a record inside Python:

myspec = ia.torecord()

which you can then manipulate in Python.

6.5.2 Using masks in immath

The mask parameter is used inside immath to apply a mask to all the images used in expr before
calculations are done (if you are curious, it uses the ia.subimage tool method to make virtual
images that are then input in the LEL to the ia.imagecalc method).

For example, lets assume that we have made a single channel image using clean for the NGC5921
data (see Appendix F.1).

default(’clean’)

vis = ’ngc5921.demo.src.split.ms.contsub’
imagename = ’ngc5921.demo.chan22.cleanimg’
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mode = ’channel’
nchan = 1
start = 22
step = 1

field = ’’
spw = ’’
imsize = [256,256]
cell = [15.,15.]
psfalg = ’clark’
gain = 0.1
niter = 6000
threshold=’8.0mJy’
weighting = ’briggs’
rmode = ’norm’
robust = 0.5

mask = [108,108,148,148]

clean()

There is now a file ’ngc5921.demo.chan22.cleanimg.mask’ that is an image with values 1.0 inside
the cleanbox region and 0.0 outside.

We can use this to mask the clean image:

default(’immath’)
imagename = ’ngc5921.demo.chan22.cleanimg.image’
expr=’IM0’
mask=’"ngc5921.demo.chan22.cleanimg.mask">0.5’
outfile=’ngc5921.demo.chan22.cleanimg.imasked’
immath()

Toolbox Tricks: Note that there are also pixel masks that can be contained in each image. These
are Boolean masks, and are implicitly used in the calculation for each image in expr. If you want
to use the mask in a different image not in expr, try it in mask:

# First make a pixel mask inside ngc5921.demo.chan22.cleanimg.mask
ia.open(’ngc5921.demo.chan22.cleanimg.mask’)
ia.calcmask(’"ngc5921.demo.chan22.cleanimg.mask">0.5’)
ia.summary()
ia.close()
# There is now a ’mask0’ mask in this image as reported by the summary

# Now apply this pixel mask in immath
default(’immath’)
imagename=’ngc5921.demo.chan22.cleanimg.image’
expr=’IM0’
mask=’mask(ngc5921.demo.chan22.cleanimg.mask)’
outfile=’ngc5921.demo.chan22.cleanimg.imasked1’
immath()
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Note that nominally the axes of the mask must be congruent to the axes of the images in expr.
However, one exception is that the image in mask can have fewer axes (but not axes that exist but
are of the wrong lengths). In this case immath will extend the missing axes to cover the range in
the images in expr. Thus, you can apply a mask made from a single channel to a whole cube.

# drop degenerate stokes and freq axes from mask image
ia.open(’ngc5921.demo.chan22.cleanimg.mask’)
im2 = ia.subimage(outfile=’ngc5921.demo.chan22.cleanimg.mymask’,dropdeg=True)
im2.summary()
im2.close()
ia.close()
# mymask has only RA and Dec axes

# Now apply this mask to the whole cube
default(’immath’)
imagename=’ngc5921.demo.cleanimg.image’
expr=’IM0’
mask=’"ngc5921.demo.chan22.cleanimg.mymask">0.5’
outfile=’ngc5921.demo.cleanimg.imasked’
immath()

For more on masks as used in LEL, see

http://aips2.nrao.edu/docs/notes/223/223.html

or in § 6.1.4 above.

6.6 Computing the Moments of an Image Cube (immoments)

For spectral line datasets, the output of the imaging process is an image cube, with a frequency or
velocity channel axis in addition to the two sky coordinate axes. This can be most easily thought
of as a series of image planes stacked along the spectral dimension.

A useful product to compute is to collapse the cube into a moment image by taking a linear
combination of the individual planes:

Mm(xi, yi) =
N∑
k

wm(xi, yi, vk) I(xi, yi, vk) (6.1)

for pixel i and channel k in the cube I. There are a number of choices to form the m moment,
usually approximating some polynomial expansion of the intensity distribution over velocity mean
or sum, gradient, dispersion, skew, kurtosis, etc.). There are other possibilities (other than a
weighted sum) for calculating the image, such as median filtering, finding minima or maxima along
the spectral axis, or absolute mean deviations. And the axis along which to do these calculation
need not be the spectral axis (ie. do moments along Dec for a RA-Velocity image). We will treat
all of these as generalized instances of a “moment” map.

The immoments task will compute basic moment images from a cube. The default inputs are:

http://aips2.nrao.edu/docs/notes/223/223.html
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# immoments :: Compute moments of an image cube:
imagename = ’’ # Input image name
moments = [0] # List of moments you would like to compute
axis = ’spectral’ # The momement axis: ra, dec, lat, long, spectral, or stokes
region = ’’ # Image Region. Use viewer
box = ’’ # Select one or more box regions
chans = ’’ # Select the channel(spectral) range
stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV)
mask = ’’ # mask used for selecting the area of the image to calculate the moments on
includepix = -1 # Range of pixel values to include
excludepix = -1 # Range of pixel values to exclude
outfile = ’’ # Output image file name (or root for multiple moments)
async = False # If true the taskname must be started using immoments(...)

This task will operate on the input file given by imagename and produce a new image or set of
images based on the name given in outfile.

The moments parameter chooses which moments are calculated. The choices for the operation mode
are:

moments=-1 - mean value of the spectrum
moments=0 - integrated value of the spectrum
moments=1 - intensity weighted coordinate;traditionally used to get

’velocity fields’
moments=2 - intensity weighted dispersion of the coordinate; traditionally

used to get ’velocity dispersion’
moments=3 - median of I
moments=4 - median coordinate
moments=5 - standard deviation about the mean of the spectrum
moments=6 - root mean square of the spectrum
moments=7 - absolute mean deviation of the spectrum
moments=8 - maximum value of the spectrum
moments=9 - coordinate of the maximum value of the spectrum
moments=10 - minimum value of the spectrum
moments=11 - coordinate of the minimum value of the spectrum

The meaning of these is described in the CASA Reference Manual:

http://casa.nrao.edu/docs/casaref/image.moments.html

The axis parameter sets the axis along which the moment is “collapsed” or calculated. Choices are:
’ra’, ’dec’, ’lat’, ’long’, ’spectral’, or ’stokes’. A standard moment-0 or moment-1 image
of a spectral cube would use the default choice ’spectral’. One could make a position-velocity
map by setting ’ra’ or ’dec’.

The includepix and excludepix parameters are used to set ranges for the inclusion and exclusion
of pixels based on values. For example, includepix=[0.05,100.0] will include pixels with values
from 50 mJy to 1000 Jy, and excludepix=[100.0,1000.0] will exclude pixels with values from
100 to 1000 Jy.

http://casa.nrao.edu/docs/casaref/image.moments.html
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If a single moment is chosen, the outfile specifies the exact name of the output image. If multiple
moments are chosen, then outfile will be used as the root of the output filenames, which will get
different suffixes for each moment.

6.6.1 Hints for using (immoments)

In order to make an unbiased moment-0 image, do not put in any thresholding using includepix
or excludepix. This is so that the (presumably) zero-mean noise fluctuations in off-line parts of
the image cube will cancel out. If you image has large biases, like a pronounced clean bowl due
to missing large-scale flux, then your moment-0 image will be biased also. It will be difficult to
alleviate this with a threshold, but you can try.

To make a usable moment-1 (or higher) image, on the other hand, it is critical to set a reasonable
threshold to exclude noise from being added to the moment maps. Something like a few times the
rms noise level in the usable planes seems to work (put into includepix or excludepix as needed.
Also use chans to ignore channels with bad data.

6.6.2 Examples using (immoments)

For example, using the NGC5921 example (§ F.1):

default(’immoments’)
imagename = ’ngc5921.demo.cleanimg’
# Do first and second spectral moments
axis = ’spectral’
chans = ’’
moments = [0,1]
# Need to mask out noisy pixels, currently done
# using hard global limits
excludepix = [-100,0.009]
outfile = ’ngc5921.demo.moments’

immoments()

# It will have made the images:
# --------------------------------------
# ngc5921.demo.moments.integrated
# ngc5921.demo.moments.weighted_coord

Other examples of NGC2403 (a moment zero image of a VLA line dataset) and NGC4826 (a
moment one image of a BIMA CO line dataset) are shown in Figure 6.1.

ALERT: We are working on improving the thresholding of planes beyond the global cutoffs in
includepix and excludepix.



CHAPTER 6. IMAGE ANALYSIS 259

Figure 6.1: NGC2403 VLA moment zero (left) and NGC4826 BIMA moment one (right) images
as shown in the viewer.

6.7 Computing image statistics (imstat)

The imstat task will calculate statistics on a region of an image, and return the results as a return
value in a Python dictionary.

The inputs are:

# imstat :: Displays statistical information on an image or image region
imagename = ’’ # Name of the input image
region = ’’ # Image Region or name. Use Viewer
box = ’’ # Select one or more box regions
chans = ’’ # Select the channel(spectral) range
stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV)
async = False

Area selection using box and region is detailed in § 6.1.1 and § 6.1.5 respectively.

Plane selection is controlled by chans and stokes. See § 6.1.2 for details on plane selction.

ALERT: As with imcontsub, if the image is missing one or more of the stokes and spectral axes,
then imstat will fail. See the discussion of the workaround for this in § 6.3.

6.7.1 Using the task return value

The contents of the return value of imstat are in a Python dictionary of key-value sets. For
example,
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xstat = imstat()

will assign this to the Python variable xstat.

The keys for xstat are then:

KEYS
blc - absolute PIXEL coordinate of the bottom left corner of

the bounding box surrounding the selected region
blcf - Same as blc, but uses WORLD coordinates instead of pixels
trc - the absolute PIXEL coordinate of the top right corner

of the bounding box surrounding the selected region
trcf - Same as trc, but uses WORLD coordinates instead of pixels
flux - the integrated flux density if the beam is defined and

the if brightness units are $Jy/beam$
npts - the number of unmasked points used
max - the maximum pixel value
min - minimum pixel value
maxpos - absolute PIXEL coordinate of maximum pixel value
maxposf - Same as maxpos, but uses WORLD coordinates instead of pixels
minpos - absolute pixel coordinate of minimum pixel value
minposf - Same as minpos, but uses WORLD coordinates instead of pixels
sum - the sum of the pixel values: $\sum I_i$
sumsq - the sum of the squares of the pixel values: $\sum I_i^2$
mean - the mean of pixel values:

ar{I} = \sum I_i / n$
sigma - the standard deviation about the mean:

$\sigma^2 = (\sum I_i -ar{I})^2 / (n-1)$
rms - the root mean square:

$\sqrt {\sum I_i^2 / n}$
median - the median pixel value (if robust=T)
medabsdevmed - the median of the absolute deviations from the

median (if robust=T)
quartile - the inter-quartile range (if robust=T). Find the points

which are 25% largest and 75% largest (the median is
50% largest), find their difference and divide that
difference by 2.

For example, an imstat call might be

default(’imstat’)
imagename = ’ngc5921.demo.cleanimg.image’ # The NGC5921 image cube
box = ’108,108,148,148’ # 20 pixels around the center
chans = ’21’ # channel 21

xstat = imstat()

In the terminal window, imstat reports:
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Statistics on ngc5921.usecase.clean.image

Region ---
-- bottom-left corner (pixel) [blc]: [108, 108, 0, 21]
-- top-right corner (pixel) [trc]: [148, 148, 0, 21]
-- bottom-left corner (world) [blcf]: 15:22:20.076, +04.58.59.981, I, 1.41332e+09Hz
-- top-right corner( world) [trcf]: 15:21:39.919, +05.08.59.981, I, 1.41332e+09Hz

Values --
-- flux [flux]: 0.111799236126
-- number of points [npts]: 1681.0
-- maximum value [max]: 0.029451508075
-- minimum value [min]: -0.00612453464419
-- position of max value (pixel) [maxpos]: [124, 131, 0, 21]
-- position of min value (pixel) [minpos]: [142, 110, 0, 21]
-- position of max value (world) [maxposf]: 15:22:04.016, +05.04.44.999, I, 1.41332e+09Hz
-- position of min value (world) [minposf]: 15:21:45.947, +04.59.29.990, I, 1.41332e+09Hz
-- Sum of pixel values [sum]: 1.32267159822
-- Sum of squared pixel values [sumsq]: 0.0284534543692

Statistics ---
-- Mean of the pixel values [mean]: 0.000786836167885
-- Standard deviation of the Mean [sigma]: 0.00403944306904
-- Root mean square [rms]: 0.00411418313161
-- Median of the pixel values [median]: 0.000137259965413
-- Median of the deviations [medabsdevmed]: 0.00152346317191
-- Quartile [quartile]: 0.00305395200849

The return value in xstat is

CASA <152>: xstat
Out[152]:

{’blc’: array([108, 108, 0, 21]),
’blcf’: ’15:22:20.076, +04.58.59.981, I, 1.41332e+09Hz’,
’flux’: array([ 0.11179924]),
’max’: array([ 0.02945151]),
’maxpos’: array([124, 131, 0, 21]),
’maxposf’: ’15:22:04.016, +05.04.44.999, I, 1.41332e+09Hz’,
’mean’: array([ 0.00078684]),
’medabsdevmed’: array([ 0.00152346]),
’median’: array([ 0.00013726]),
’min’: array([-0.00612453]),
’minpos’: array([142, 110, 0, 21]),
’minposf’: ’15:21:45.947, +04.59.29.990, I, 1.41332e+09Hz’,
’npts’: array([ 1681.]),
’quartile’: array([ 0.00305395]),
’rms’: array([ 0.00411418]),
’sigma’: array([ 0.00403944]),
’sum’: array([ 1.3226716]),
’sumsq’: array([ 0.02845345]),
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’trc’: array([148, 148, 0, 21]),
’trcf’: ’15:21:39.919, +05.08.59.981, I, 1.41332e+09Hz’}

ALERT: The return dictionary currently includes NumPy array values, which have to be accessed
by an array index to get the array value. To access these dictionary elements, use the standard
Python dictionary syntax, e.g.

xstat[<key string>][<array index>]

For example, to extract the standard deviation as a number

mystddev = xstat[’sigma’][0]
print ’Sigma = ’+str(xstat[’sigma’][0])

6.7.2 Examples for imstat)

The following are some examples using the B1608+656 Tutorial

http://casa.nrao.edu/Doc/Scripts/b1608_demo.py

as an example.

To extract statistics for the final image:

xstat = imstat(’b1608.demo.clean2.image’)
# Printing out some of these

print ’Max = ’+str(xstat[’max’][0])
print ’Sigma = ’+str(xstat[’sigma’][0])

# results:
# Max = 0.016796965152
# Sigma = 0.00033631979385

In a box around the brightest component:

xstat_A = imstat(’b1608.demo.clean2.image’,box=’124,125,132,133’)
# Printing out some of these

print ’Comp A Max Flux = ’+str(xstat_A[’max’][0])
print ’Comp A Max X,Y = (’+str(xstat_A[’maxpos’][0])+’,’+str(xstat_A[’maxpos’][1])+’)’

# results:
# Comp A Max Flux = 0.016796965152
# Comp A Max X,Y = (128,129)

http://casa.nrao.edu/Doc/Scripts/b1608_demo.py
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6.8 Extracting data from an image (imval)

The imval task will extract the values of the data and mask from a specified region of an image
and place in the task return value as a Python dictionary.

The inputs are:

# imval :: Get the data value(s) and/or mask value in an image.
imagename = ’’ # Name of the input image
region = ’’ # Image Region. Use viewer
box = ’’ # Select one or more box regions
chans = ’’ # Select the channel(spectral) range
stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV)
async = False

Area selection using box and region is detailed in § 6.1.1 and § 6.1.5 respectively. By default,
box=’’ will extract the image information at the reference pixel on the direction axes.

Plane selection is controlled by chans and stokes. See § 6.1.2 for details on plane selction. By
default, chans=’’ and stokes=’’ will extract the image information in all channels and Stokes
planes.

For instance,

xval = imval(’myimage’, box=’144,144’, stokes=’I’ )

will extract the Stokes I value or spectrum at pixel 144,144, while

xval = imval(’myimage’, box=’134,134.154,154’, stokes=’I’ )

will extract a 21 by 21 pixel region.

Extractions are returned in NumPy arrays in the return value dicionary, plus some extra elements
describing the axes and selection:

CASA <2>: xval = imval(’ngc5921.demo.moments.integrated’)

CASA <3>: xval
Out[3]:

{’axes’: [[0, ’Right Ascension’],
[1, ’Declination’],
[3, ’Frequency’],
[2, ’Stokes’]],

’blc’: [128, 128, 0, 0],
’data’: array([ 0.89667124]),
’mask’: array([ True], dtype=bool),
’trc’: [128, 128, 0, 0],
’unit’: ’Jy/beam.km/s’}
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extracts the reference pixel value in this 1-plane image. Note that the ’data’ and ’mask’ elements
are NumPy arrays, not Python lists.

To extract a spectrum from a cube:

CASA <8>: xval = imval(’ngc5921.demo.clean.image’,box=’125,125’)

CASA <9>: xval
Out[9]:

{’axes’: [[0, ’Right Ascension’],
[1, ’Declination’],
[3, ’Frequency’],
[2, ’Stokes’]],

’blc’: [125, 125, 0, 0],
’data’: array([ 8.45717848e-04, 1.93370355e-03, 1.53750915e-03,

2.88399984e-03, 2.38683447e-03, 2.89159478e-04,
3.16268904e-03, 9.93389636e-03, 1.88773088e-02,
3.01138610e-02, 3.14478502e-02, 4.03211266e-02,
3.82498614e-02, 3.06552909e-02, 2.80734301e-02,
1.72479432e-02, 1.20884273e-02, 6.13593217e-03,
9.04005766e-03, 1.71429547e-03, 5.22095338e-03,
2.49114982e-03, 5.30831399e-04, 4.80734324e-03,
1.19265869e-05, 1.29435991e-03, 3.75700940e-04,
2.34788167e-03, 2.72604497e-03, 1.78467855e-03,
9.74952069e-04, 2.24676146e-03, 1.82263291e-04,
1.98463408e-06, 2.02975096e-03, 9.65532148e-04,
1.68218743e-03, 2.92119570e-03, 1.29359076e-03,

-5.11484570e-04, 1.54162932e-03, 4.68662125e-04,
-8.50282842e-04, -7.91683051e-05, 2.95954203e-04,
-1.30133145e-03]),

’mask’: array([ True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True], dtype=bool),

’trc’: [125, 125, 0, 45],
’unit’: ’Jy/beam’}

To extract a region from the plane of a cube:

CASA <13>: xval = imval(’ngc5921.demo.clean.image’,box=’126,128,130,129’,chans=’23’)

CASA <14>: xval
Out[14]:

{’axes’: [[0, ’Right Ascension’],
[1, ’Declination’],
[3, ’Frequency’],
[2, ’Stokes’]],

’blc’: [126, 128, 0, 23],
’data’: array([[ 0.00938627, 0.01487772],

[ 0.00955847, 0.01688832],
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[ 0.00696965, 0.01501907],
[ 0.00460964, 0.01220793],
[ 0.00358087, 0.00990202]]),

’mask’: array([[ True, True],
[ True, True],
[ True, True],
[ True, True],
[ True, True]], dtype=bool),

’trc’: [130, 129, 0, 23],
’unit’: ’Jy/beam’}

CASA <15>: print xval[’data’][0][1]
0.0148777160794

In this example, a rectangular box was extracted, and you can see the order in the array and how
to address specific elements.

6.9 Regridding an Image (imregrid)

Inside the Toolkit:
More complex coordinate system
and image regridding operation can
be carried out in the toolkit.
The coordsys (cs) tool and the
ia.regrid method are the relevant
components.

It is occasionally necessary to regrid an image onto a new
coordinate system. The imregrid task will regrid one im-
age onto the coordinate system of another, creating an out-
put image. In this task, the user need only specify the
names of the input, template, and output images.

If the user needs to do more complex operations, such as
regridding an image onto an arbitrary (but known) coor-
dinate system, changing from Equatorial to Galactic coor-
dinates, or precessing Equinoxes, the CASA toolkit can be
used (see sidebox). Some of these facilities will eventually
be provided in task form.

The default inputs are:

# imregrid :: regrid an image onto a template image
imagename = ’’ # Name of input image
template = ’’ # Name of reference image
output = ’’ # Name of output regridded image
async = False #

The output image will have the data in imagename regridded onto the coordinate system of
template image.

ALERT: The imregrid task is currently under test againt similar AIPS tasks and we are looking
to improve its performance. Future releases will enable regridding without the need for a template
image.
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6.10 Image Convolution(imsmooth)

The default inputs are:

# imsmooth :: Smooth an image or portion of an image
imagename = ’’ # Name of the input image
kernel = ’boxcar’ # Type of kernel to use: gaussian or boxcar.
region = ’’ # Image Region or name. Use viewer
box = ’’ # Select one or more box regions
chans = ’’ # Select the channel(spectral) range
stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV)
mask = ’’ # mask used for selecting the area of the image to smooth
outfile = ’’ # Output, smoothed, image file name
async = False #

6.11 Image Import/Export to FITS

These tasks will allow you to write your CASA image to a FITS file that other packages can read,
and to import existing FITS files into CASA as an image.

6.11.1 FITS Image Export (exportfits)

To export your images to fits format use the exportfits task. The inputs are:

# exportfits :: Convert a CASA image to a FITS file
imagename = ’’ # Name of input CASA image
fitsimage = ’’ # Name of output image FITS file
velocity = False # Use velocity (rather than frequency) as spectral axis
optical = False # Use the optical (rather than radio) velocity convention
bitpix = -32 # Bits per pixel
minpix = 0 # Minimum pixel value
maxpix = 0 # Maximum pixel value
overwrite = False # Overwrite pre-existing imagename
dropstokes = False # Drop the Stokes axis?
stokeslast = True # Put Stokes axis last in header?
async = False # If true the taskname must be started using exportfits(...)

The dropstokes or stokeslast parameter may be needed to make the FITS image compatible
with an external application.

For example,

exportfits(’ngc5921.demo.cleanimg.image’,’ngc5921.demo.cleanimg.image.fits’)
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6.11.2 FITS Image Import (importfits)

You can also use the importfits task to import a FITS image into CASA image table format.
Note, the CASA viewer can read fits images so you don’t need to do this if you just want to look
a the image. The inputs for importfits are:

# importfits :: Convert an image FITS file into a CASA image:

fitsimage = ’’ # Name of input image FITS file
imagename = ’’ # Name of output CASA image
whichrep = 0 # Which coordinate representation (if multiple)
whichhdu = 0 # Which image (if multiple)
zeroblanks = True # If blanked fill with zeros (not NaNs)
overwrite = False # Overwrite pre-existing imagename
async = False # if True run in the background, prompt is freed

For example, we can read the above image back in

importfits(’ngc5921.demo.cleanimg.image.fits’,’ngc5921.demo.cleanimage’)

6.12 Using the CASA Toolkit for Image Analysis

Inside the Toolkit:
The image analysis tool (ia) is
the workhorse here. It appears in
the User Reference Manual as the
image tool. Other relevant tools
for analysis and manipulation in-
clude measures (me), quanta (qa)
and coordsys (cs).

Although this cookbook is aimed at general users employ-
ing the tasks, we include here a more detailed description of
doing image analysis in the CASA toolkit. This is because
there are currently only a few tasks geared towards image
analysis, as well as due to the breadth of possible manipu-
lations that the toolkit allows that more sophisticated users
will appreciate.

To see a list of the ia methods available, use the CASA
help command:

CASA <1>: help ia
--------> help(ia)
Help on image object:

class image(__builtin__.object)
| image object
|
| Methods defined here:
|
| __init__(...)
| x.__init__(...) initializes x; see x.__class__.__doc__ for signature
|
| __str__(...)
| x.__str__() <==> str(x)
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|
| adddegaxes(...)
| Add degenerate axes of the specified type to the image‘ :
| outfile
| direction = false
| spectral = false
| stokes
| linear = false
| tabular = false
| overwrite = false
| ----------------------------------------
|
| addnoise(...)

...

|
| unlock(...)
| Release any lock on the image‘ :
| ----------------------------------------
|
| ----------------------------------------------------------------------
| Data and other attributes defined here:
|
| __new__ = <built-in method __new__ of type object at 0x55d0f20>
| T.__new__(S, ...) -> a new object with type S, a subtype of T

or for a compact listing use <TAB> completion on ia., e.g.

CASA <2>: ia.
Display all 101 possibilities? (y or n)
ia.__class__ ia.fitsky ia.newimagefromshape
ia.__delattr__ ia.fromarray ia.open
ia.__doc__ ia.fromascii ia.outputvariant
ia.__getattribute__ ia.fromfits ia.pixelvalue
ia.__hash__ ia.fromforeign ia.putchunk
ia.__init__ ia.fromimage ia.putregion
ia.__new__ ia.fromshape ia.rebin
ia.__reduce__ ia.getchunk ia.regrid
ia.__reduce_ex__ ia.getregion ia.remove
ia.__repr__ ia.getslice ia.removefile
ia.__setattr__ ia.hanning ia.rename
ia.__str__ ia.haslock ia.replacemaskedpixels
ia.adddegaxes ia.histograms ia.restoringbeam
ia.addnoise ia.history ia.rotate
ia.boundingbox ia.imagecalc ia.sepconvolve
ia.brightnessunit ia.imageconcat ia.set
ia.calc ia.insert ia.setboxregion
ia.calcmask ia.isopen ia.setbrightnessunit
ia.close ia.ispersistent ia.setcoordsys
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ia.continuumsub ia.lock ia.sethistory
ia.convertflux ia.makearray ia.setmiscinfo
ia.convolve ia.makecomplex ia.setrestoringbeam
ia.convolve2d ia.maketestimage ia.shape
ia.coordmeasures ia.maskhandler ia.statistics
ia.coordsys ia.maxfit ia.subimage
ia.decompose ia.miscinfo ia.summary
ia.deconvolvecomponentlist ia.modify ia.toASCII
ia.done ia.moments ia.tofits
ia.echo ia.name ia.topixel
ia.fft ia.newimage ia.toworld
ia.findsources ia.newimagefromarray ia.twopointcorrelation
ia.fitallprofiles ia.newimagefromfile ia.type
ia.fitpolynomial ia.newimagefromfits ia.unlock
ia.fitprofile ia.newimagefromimage

A common use of the ia tool is to do region statistics on an image. The imhead task has
mode=’stats’ to do this quickly over the entire image cube. The tool can do this on specific
planes or sub-regions. For example, in the Jupiter 6cm example script (§ F.2), the ia tool is used
to get on-source and off-source statistics for regression:

# The variable clnimage points to the clean image name

# Pull the max and rms from the clean image
ia.open(clnimage)
on_statistics=ia.statistics()
thistest_immax=on_statistics[’max’][0]
oldtest_immax = 1.07732224464
print ’ Clean image ON-SRC max should be ’,oldtest_immax
print ’ Found : Max in image = ’,thistest_immax
diff_immax = abs((oldtest_immax-thistest_immax)/oldtest_immax)
print ’ Difference (fractional) = ’,diff_immax

print ’’
# Now do stats in the lower right corner of the image
box = ia.setboxregion([0.75,0.00],[1.00,0.25],frac=true)
off_statistics=ia.statistics(region=box)
thistest_imrms=off_statistics[’rms’][0]
oldtest_imrms = 0.0010449
print ’ Clean image OFF-SRC rms should be ’,oldtest_imrms
print ’ Found : rms in image = ’,thistest_imrms
diff_imrms = abs((oldtest_imrms-thistest_imrms)/oldtest_imrms)
print ’ Difference (fractional) = ’,diff_imrms

print ’’
print ’ Final Clean image Dynamic Range = ’,thistest_immax/thistest_imrms
print ’’
print ’ =============== ’

ia.close()
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ALERT: Bad things can happen if you open some tools, like ia, in the Python command line on
files and forget to close them before running scripts that use the os.system(’rm -rf <filename>)
call to clean up. We are in the process of cleaning up cases like this where there can be stale
handles on files that have been manually deleted, but for the meantime be warned that you might
get exceptions (usually of the “SimpleOrderedMap-remove” flavor, or even Segmentation Faults
and core-dumps!

6.13 Examples of CASA Image Analysis

See the scripts provied in Appendix F for examples of data and image analysis. In particular, we
refer the interested user to the demonstrations for:

• NGC5921 (VLA HI) — a quick demo of basic CASA spectral line analyis (F.1)

• Jupiter (VLA 6cm continuum polarimetry) — polarization image analysis (F.2)
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Visualization With The CASA Viewer

This chapter describes how to display data with the casaviewer either as a stand-alone or through
the viewer task. You can display both images and Measurement Sets.

7.1 Starting the viewer

Within the casapy environment, the viewer task can be used to display an image or MS. The
inputs are:

# viewer :: View an image or visibility data set.

infile = ’’ # (Optional) Name of file to visualize.
displaytype = ’raster’ # (Optional) Type of visual rendering

# (raster, contour, vector or marker).
# lel if an lel expression is given
# for infile (advanced).

Examples of starting the viewer:

CASA <1>: viewer()

CASA <2>: viewer(’ngc5921.usecase.ms’)

CASA <3>: viewer(’ngc5921.usecase.clean.image’)

CASA <4>: viewer(’ngc5921.usecase.clean.image.rstr’)

CASA <5>: viewer(’ngc5921.usecase.clean.image’, ’contour’)

CASA <6>: viewer(’"ngc5921.usecase.clean.image"^2’, ’lel’)

271
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Figure 7.1: The Viewer Display Panel (left) and Data Display Options (right)
panels that appear when the viewer is called with the image cube from NGC5921
(viewer(’ngc5921.usecase.clean.image’)). The initial display is of the first channel of the
cube.

The first of these creates an empty Viewer Display Panel (§ 7.2.1) and a Load Data window
(§ 7.2.4) . The second starts the viewer loaded with a Measurement Set. The third example starts
the viewer with an image cube (see Figure 7.1).

Example four brings up a display panel as it was when its state was saved to the given ’restore’ file
(ngc5921.usecase.clean.image.rstr). This includes the data displayed as well as options and
viewer settings. (See § 7.2.2, Saving and Restoring Viewer State).

Examples five and six are less common cases, which make use of the second parameter (displaytype).
Example five displays the image in contour form. Example six uses ’Lattice (Image) Expression
Language’ to display the square of the image data.

NOTE: the viewer task now determines file types (images, MSs, restore files) automatically. It is
no longer necessary to specify filetype=’ms’ explicitly.
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Figure 7.2: The Viewer Display Panel (left) and Data Display Options (right)
panels that appear when the viewer is called with the NGC5921 Measurement Set
(viewer(’ngc5921.usecase.ms’)).

7.1.1 Running the CASA viewer outside casapy

casaviewer is the name of the stand-alone viewer application that is available with a CASA
installation. From the operating system prompt, the following commands are equivalent to the
casapy task commands given previously:

casaviewer &

casaviewer ms_filename &

casaviewer image_filename &

casaviewer restore_filename &



CHAPTER 7. VISUALIZATION WITH THE CASA VIEWER 274

casaviewer image_filename contour &

casaviewer ’"image_filename"^2’ lel &

7.2 The viewer GUI

The CASA viewer application consists of a number of graphical user interface (GUI) windows that
respond to mouse and keyboard input. Here we describe the Viewer Display Panel (§ 7.2.1)
and the Load Data window (§ 7.2.4). They are used for both image and MS viewing. Several
other windows are context-specific and are described in the sections on viewing images (§ 7.3) and
Measurement Sets (§ 7.4).

7.2.1 The Viewer Display Panel

The Viewer Display Panel is the the window that actually displays the image or MS. This is shown
in the left panels of Figures 7.1 and 7.2. Note that this panel is the same whether an image or MS
is being displayed.

At the top of the Viewer Display Panel are the menus:

• Data

– Open — choose a data file to load and display

– Register — select/de-select the (previously-loaded) data file(s) which should display
right now (menu expands to the right showing all loaded data)

– Close — close (unload) selected data file (menu expands to the right)

– Adjust — open the Data Display Options (’Adjust’) panel

– Print — print the displayed image

– Save Panel State — to a ’restore’ file (xml format)

– Restore Panel State — from a restore file

– Close Panel — close the Viewer Display Panel (will exit if this is the last display panel
open)

– Quit Viewer — close all display panels and exit

• Display Panel

– New Panel — create another Viewer Display Panel (cleared)

– Panel Options — open the Display Panel’s options window

– Save Panel State

– Restore Panel State

– Print — print displayed image
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– Close Panel — close the Viewer Display Panel (will exit if this is the last display panel
open)

• Tools

– Annotations — not yet available (greyed out)

– Spectral Profile — plot frequency/velocity profile of point or region of image

– Region Manager — save regions and control their extent

• View

– Main Toolbar — show/hide top row of icons

– Mouse Toolbar — show/hide second row of mouse-button action selection icons

– Animator — show/hide tapedeck control panel

– Position Tracking — show/hide bottom position tracking report box

Below this is the Main Toolbar (Figure 7.3), the top row of icons for fast access to some of these
menu items:

• folder (Data:Open shortcut) — show the Load Data panel

• wrench (Data:Adjust shortcut) — show the Data Display Options (’Adjust’) panel

• panels (Data:Register shortcut) — show the menu of loaded data

• delete (Data:Close shortcut) — closes/unloads selected data

• new panel (Display Panel:New Panel)

• panel wrench (Display Panel:Panel Options) — show the Display Panel’s options win-
dow

• save – save panel state to a ’restore’ file

• restore – restore panel state from a restore file

• region save (Tools:Region Manager) — save/control regions.

(Note: some of these newer buttons do not appear in older figures of this document).

• print (Display Panel:Print) — print data

• magnifier box — Zoom out all the way

• magnifier plus — Zoom in (by a factor of 2)

• magnifier minus — Zoom out (by a factor of 2)
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Figure 7.3: The display panel’s Main Toolbar appears directly below the menus and contains
’shortcut’ buttons for most of the frequently-used menu items.

Figure 7.4: The ’Mouse Tool’ Bar allows you to assign separate mouse buttons to tools you
control with the mouse within the image display area. Initially, zooming, color adjustment, and
rectangular regions are assigned to the left, middle and right mouse buttons, respectively.

Below this are the eight Mouse Tool buttons (Figure 7.4). These allow assignment of each of
the three mouse buttons to a different operation on the display area. Clicking a mouse tool icon
will [re-]assign the mouse button that was clicked to that tool. The icons show which mouse
button is currently assigned to which tool.

The ’escape’ key can be used to cancel any mouse tool operation that was begun but not completed,
and to erase any tool showing in the display area.

• Zooming (magnifying glass icon): To zoom into a selected area, press the Zoom tool’s
mouse button (the left button by default) on one corner of the desired rectangle and drag
to the desired opposite corner. Once the button is released, the zoom rectangle can still
be moved or resized by dragging. To complete the zoom, double-click inside the selected
rectangle (double-clicking outside it will zoom out instead).

• Panning (hand icon): Press the tool’s mouse button on a point you wish to move, drag it
to the position where you want it moved, and release. Note: The arrow keys, Page Up, Page
Down, Home and End keys can also be used to scroll through your data any time you are
zoomed in. (Click on the main display area first, to be sure the keyboard is ’focused’ there).

• Stretch-shift colormap fiddling (crossed arrows): This is usually the handiest color
adjustment; it is assigned to the middle mouse button by default.

• Brightness-contrast colormap fiddling (light/dark sun)

• Positioning (bombsight): This tool can place a ’crosshair’ marker on the display to select
a position. It is used to flag Measurement Set data or to select an image position for spectral
profiles. Click on the desired position with the tool’s mouse button to place the crosshair;
once placed you can drag it to other locations. Double-click is not needed for this tool. See
§ 7.2.3 for more detail.
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• Rectangle and Polygon region drawing: The rectangle region tool is assigned to the
right mouse button by default. As with the zoom tool, a rectangle region is generated
by dragging with the assigned mouse button; the selection is confirmed by double-clicking
within the rectangle. Polygon regions are created by clicking the assigned mouse button
at the desired vertices, clicking the final location twice to finish. Once created, a polygon
can be moved by dragging from inside, or reshaped by dragging the handles at the vertices.
Double-click inside to confirm region selection. See § 7.2.3 for the uses of this tool.

• Polyline drawing: A polyline can be created by selecting this tool. It is manipulated
similarly to the polygon region tool: create segments by clicking at the desired positions and
then double-click to finish the line. [Uses for this tool are still to be implemented].

The main Display Area lies below the toolbars.

Underneath the display area is an Animator panel. The most prominent feature is the “tape deck”
which provides movement between image planes along a selected third dimension of an image cube.
This set of buttons is only enabled when a registered image reports that it has more than one plane
along its ’Z axis’. In the most common case, the animator selects the frequency channel. From left
to right, the tape deck controls allow the user to:

• rewind to the start of the sequence (i.e., the first plane)

• step backwards by one plane

• play backwards, or repetitively step backwards

• stop any current play

• play forward, or repetitively step forward

• step forward by one plane

• fast forward to the end of the sequence

To the right of the tape deck is an editable text box indicating the current frame (channel) number
and a label showing the total number of frames. Below that is a slider for controlling the (nominal)
animation speed. To the right is a ’Full/Compact’ toggle. In ’Full’ mode (the default), a slider
controlling frame number and a ’Blink mode’ control are also available.

’Blink’ mode is useful when more than one raster image is registered. In that mode, the tapedeck
controls which image is displayed at the moment rather than the particular image plane (set that
in ’Normal’ mode first). The registered images must cover the same portion of the sky and use the
same coordinate projection.

Note: In ’Normal’ mode, it is advisable to have only ONE raster image registered at a time, to
avoid confusion. Unregister (or close) the others).

At the bottom of the Display Panel is the Position Tracking panel. As the mouse moves over the
main display, this panel shows information such as flux density, position (e.g. RA and Dec), Stokes,
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and frequency (or velocity), for the point currently under the cursor. Each registered image/MS
displays its own tracking information. Tracking can be ’frozen’ (and unfrozen again) with the space
bar. (Click on the main display area first, to be sure the keyboard is ’focused’ there).

The Animator or Tracking panels can be hidden or detached (and later re-attached) by using the
boxes at upper right of the panels; this is useful for increasing the size of the display area. (Use the
’View’ menu to show a hidden panel again). The individual tracking areas (one for each registered
image) can be hidden using the checkbox at upper left of each area.

7.2.2 Saving and Restoring Display Panel State

It is straightforward to save a display panel’s current state (what data is on display along with data
and panel settings). Select ’Save’ (the unadorned floppy toolbutton) and confirm the filename. It
is usually advisable (but not required) to retain the file’s ’.rstr’ extension.

Press ’Restore’ (the button to the right of Save) to choose a previously-created restore file. You
can also select restore files from the Load Data window.

It is possible to restore MSs or images, multiple layers such as contour-over-raster, and LEL displays.
You can also the save the panel state with no data loaded, to restore preferred initial settings such
as overall panel size. Animation and zoom state should likewise restore themselves.

Restore is fairly forgiving about data location, and will find files located:

• in the original location recorded in the restore file

• in the current working directory (where you started the viewer)

• in the restore file’s directory

• in the original location relative to the restore file

This means that restore files will generally work if moved together with data files. The process is
less forgiving if you save the display of an LEL (image) expression, however; the files must be in the
locations specified in the original LEL expression. If a data file is not found, restore will attempt
to proceed but results will vary.

Restore files are in ascii (xml) format, and some obvious manual edits are possible. However, these
files are longer and more complex than you might imagine. Use caution, and back up restore files
you want to preserve. If you make a mistake, the viewer may not recognize the file as a restore file;
other unexpected results could also occur. It is usually easier and safer to make changes on the
display panel and then save the restore file again.

7.2.3 Region Selection and Positioning

You can draw regions or select positions on the display with the mouse, once you have selected the
appropriate tool(s) on the Mouse Toolbar (see above).

The Rectangle Region drawing tool currently works for the following:
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• Region statistics reporting for images,

• Region spectral profiles for images, via the Tools:Spectral Profile menu,

• Flagging of Measurement Sets

• Creating and Saving an image region for various types of analysis (§ 7.3.5)

• Selecting Clean regions interactively (§ 5.3.5)

The Polygon Region drawing has the same uses, except that polygon region flagging of an MS is
not supported.

The Positioning crosshair tool works for the last two of the above.

The Spectral Profile display (see § 7.3.4), when active, updates on each change of the rectangle,
polygon, or crosshair. Flagging with the crosshair also responds to single click or drag.

Region statistics are printed in the terminal window (not the logger) by double-clicking the com-
pleted region. The Rectangle Region tool’s mouse button must also be double-clicked to confirm
an MS flagging edit.

Here is an example of region statistics from the viewer:

ngc5921.usecase.clean.image-contour (Jy/beam)

n Std Dev RMS Mean Variance Sum
52 0.01067 0.02412 0.02168 0.0001139 1.127

Flux Med |Dev| IntQtlRng Median Min Max
0.09526 0.009185 0.01875 0.02076 0.003584 0.04181

7.2.4 The Load Data Panel

You can use the Load Data - Viewer GUI to interactively choose images or MS to load into
the viewer. An example of this panel is shown in Figure 7.5. This panel is accessed through the
Data:Open menu or Open icon of the Viewer Display Panel. It also appears if you open the
viewer without any infile specified.

Selecting a file on disk in the Load Data panel will provide options for how to display the data.
Images can be displayed as:

1. Raster Image,

2. Contour Map,

3. Vector map, or

4. Marker Map.
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Figure 7.5: The Load Data - Viewer panel that appears if you open the viewer without any
infile specified, or if you use the Data:Open menu or Open icon. You can see the images and MS
available in your current directory, and the options for loading them.

You can also enter a ’Lattice Expression Language’ (LEL) expression in the box provided (§ 6.1.3).
For example, you might enter:

’my.clean.im’ - ’my.dirty.im’

to display the difference between the two images. (The images should have the same coordinates
and extents).

A MS can only be displayed as a raster.
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7.2.4.1 Registered vs. Open Datasets

When you ’load’ data as described above, it is first opened, and then registered on all existing
Display Panels. The distinction is subtle. An ’open’ dataset has been prepared in memory from
disk; it may be registered (enabled for drawing) on one Display Panel and not on another. All
open datasets will have a tab in the Data Options window, whether currently registered or not.
On the other hand, only those datasets registered on a particular panel will show in its Tracking
area.

At present, it is useful to have more than one image registered on a panel only if you are displaying a
contour image over a raster image (§ 7.3.3) or ’blinking’ between images (see Animator in § 7.2.1).
(In future we also hope to provide transparent overlay of raster images).

It is the user’s responsibility – and highly advisable – to unregister (or close) datasets that are no
longer in use, using the Register or Close toolbutton or menu. In future the viewer will attempt
to aid in unregistering datasets which are not ’compatible’ with a newly-loaded one (different sky
area, e.g., or MS vs. image).

If you close a dataset, you must reload it from disk as described above to see it again. That can
take a little time for MSs, especially. If you unregister a dataset, it is set to draw immediately
when you re-register it, with its options as you have previously set them. In general, close unneeded
datasets but unregister those you’ll be working with again.

7.3 Viewing Images

You have several options for viewing an image. These are seen at the right of the Load Data -
Viewer panel described in § 7.2.4 and shown in Figure 7.6 when an image is selected. They are:

• Raster Image — a greyscale or color image,

• Contour Map — contours of intensity as a line plot,

• Vector Map — vectors (as in polarization) as a line plot,

• Marker Map — a line plot with symbols to mark positions.

The Raster Image is the default image display, and is what you get if you invoke the viewer from
casapy with an image file name. In this case, you will need to use the Open menu to bring up the
Load Data panel to choose a different display.

7.3.1 Viewing a raster map

A raster map of an image shows pixel intensities in a two-dimensional cross-section of gridded data
with colors selected from a finite set of (normally) smooth and continuous colors, i.e., a colormap.



CHAPTER 7. VISUALIZATION WITH THE CASA VIEWER 282

Figure 7.6: The Load Data - Viewer panel as it appears if you select an image. You can see all
options are available to load the image as a Raster Image, Contour Map, Vector Map, or Marker
Map. In this example, clicking on the Raster Image button would bring up the displays shown in
Figure 7.1.

Starting the casaviewer with an image as a raster map will look something like the example in
Figure 7.1.

You will see the GUI which consists of two main windows, entitled ”Viewer Display Panel” and
”Load Data”. In the ”Load Data” panel, you will see all of the viewable files in the current working
directory along with their type (Image, Measurement Set, etc). After selecting a file, you are
presented with the available display types (raster, contour, vector, marker) for these data. Clicking
on the button Raster Map will create a display as above.

The data display can be adjusted by the user as needed. This is done through the Data Display
Options panel. This window appears when you choose the Data:Adjust menu or use the wrench
icon from the Main Toolbar. This also comes up by default along with the Viewer Display
Panel when the data is loaded.

The Data Display Options window is shown in the right panel of Figure 7.1. It consists of a tab
for each image or MS loaded, under which are a cascading series of expandable categories. For an
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image, these are:

• Display axes

• Hidden axes

• Basic Settings

• Position tracking

• Axis labels

• Axis label properties

• Beam Ellipse

• Color Wedge

The Basic Settings category is expanded by default. To expand a category to show its options,
click on it with the left mouse button.

7.3.1.1 Raster Image — Basic Settings

This roll-up is open by default. It has some commonly-used parameters that alter the way the
image is displayed; three of these affect the colors used. An example of this part of the panel is
shown in Figure 7.7.

Figure 7.7: The Basic Settings category of the Data Display Options panel as it appears if
you load the image as a Raster Image. This is a zoom-in for the data displayed in Figure 7.1.

The options available are:
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• Basic Settings:Aspect ratio

This option controls the horizontal-vertical size ratio of data pixels on screen. Fixed world
(the default) means that the aspect ratio of the pixels is set according to the coordinate system
of the image (i.e., true to the projected sky). Fixed lattice means that data pixels will
always be square on the screen. Selecting flexible allows the map to stretch independently
in each direction to fill as much of the display area as possible.

• Basic Settings:Pixel treatment

This option controls the precise alignment of the edge of the current ’zoom window’ with
the data lattice. edge (the default) means that whole data pixels are always drawn, even on
the edges of the display. For most purposes, edge is recommended. center means that data
pixels on the edge of the display are drawn only from their centers inwards. (Note that a
data pixel’s center is considered its ’definitive’ position, and corresponds to a whole number
in ’data pixel’ or ’lattice’ coordinates).

• Basic Settings: Resampling mode

This setting controls how the data are resampled to the resolution of the screen. nearest (the
default) means that screen pixels are colored according to the intensity of the nearest data
point, so that each data pixel is shown in a single color. bilinear applies a bilinear interpo-
lation between data pixels to produce smoother looking images when data pixels are large on
the screen. bicubic applies an even higher-order (and somewhat slower) interpolation.

• Basic Settings: Data Range

You can use the entry box provided to set the minimum and maximum data values mapped
to the available range of colors as a list [min, max]. For very high dynamic range images,
you will probably want to enter a max less than the data maximum in order to see detail in
lower brightness-level pixels. The next setting also helps very much with high dynamic range
data.

• Basic settings: Scaling power cycles

This option allows logarithmic scaling of data values to colormap cells.

The color for a data value is determined as follows: first, the value is clipped to lie within the
data range specified above, then mapped to an index into the available colors, as described
in the next paragraph. The color corresponding to this index is determined finally by the
current colormap and its ’fiddling’ (shift/slope) and brightness/contrast settings (see Mouse
Toolbar, above). Adding a Color Wedge to your image can help clarify the effect of the
various color controls.

The Scaling power cycles option controls the mapping of clipped data values to colormap
indices. Set to zero (the default), a straight linear relation is used. For negative scaling
values, a logarithmic mapping assigns an larger fraction of the available colors to lower data
values (this is usually what you want). Setting dataMin to something around the noise level
is often useful/appropriate in conjunction with a negative ’Power cycles’ setting.

For positive values, an larger fraction of the colormap is used for the high data values. 1

1The actual functions are computed as follows:
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See Figure 7.8 for sample curves.

Figure 7.8: Example curves for scaling power cycles.

• Basic settings: Colormap

You can select from a variety of colormaps here. Hot Metal, Rainbow and Greyscale col-
ormaps are the ones most commonly used.

7.3.1.2 Raster Image — Other Settings

Many of the other settings on the Data Options panel for raster images are self-explanatory, such
as those which affect Beam ellipse drawing (only available if your image provides beam data),
or the form of the Axis labeling and Position tracking information. You can also give your
image a Color wedge, a key to the current mapping from data values to colors.

You can control which of your image’s axes are on the vertical and horizontal display axes and
which on the animation or ’movie’ axis, within the Display axes drop-down. You must set the
X, Y and Z (animation) axes so that each shows a different image axis, in order for your choice to
take effect.

If your image has a fourth axis (typically Stokes), it can be controlled by a slider within the Hidden
axes drop-down.

For negative scaling values (say −p), the data is scaled linearly from the range (dataMin – dataMax) to the range
(1 – 10p). Then the program takes the log (base 10) of that value (arriving at a number from 0 to p) and scales that
linearly to the number of available colors. Thus the data is treated as if it had p decades of range, with an equal
number of colors assigned to each decade.

For positive scaling values, the inverse (exponential) functions are used. If p is the (positive) value chosen, The
data value is scaled linearly to lie between 0 and p, and 10 is raised to this power, yielding a value in the range (1 –
10p). Finally, that value is scaled linearly to the number of available colors.
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7.3.2 Viewing a contour map

Viewing a contour image is similar to the process above. A contour map shows lines of equal data
value (e.g., flux density) for the selected plane of gridded data (Figure 7.9). Contour maps are
particularly useful for overlaying on raster images so that two different measurements of the same
part of the sky can be shown simultaneously (§ 7.3.3).

Several Basic Settings options control the contour levels used. The contours themselves are
specified by a list in the RelativeContourLevels box. These are defined relative to the two other
parameters, the BaseContourLevel (which sets what 0 in the relative contour list corresponds to in
the image), and the UnitContourLevel (which sets what 1 in the relative contour list corresponds
to in the image). Note that negative contours are usually dashed. BETA ALERT: This scheme
was adopted in 2.4.0 and is slightly different to that used in previous versions.

Figure 7.9: The Viewer Display Panel (left) and Data Display Options panel (right) after
choosing Contour Map from the Load Data panel. The image shown is for channel 11 of the
NGC5921 cube, selected using the Animator tape deck, and zoomed in using the tool bar icon.
Note the different options in the open Basic Settings category of the Data Display Options
panel.

For example, it is relatively straightforward to set fractional contours (e.g. “percent levels”), e.g.:



CHAPTER 7. VISUALIZATION WITH THE CASA VIEWER 287

RelativeContourLevels = [0.2, 0.4, 0.6, 0.8]
BaseContourLevel = 0.0
UnitContourLevel = <image max>

This maps the maximum to 1 and thus our contours are fractions of the peak.

Another example shows how to set absolute values so that the contours are given in flux density
units (Jy):

RelativeContourLevels = [0.010, 0.0.020, 0.040, 0.080, 0.160, 0.320]
BaseContourLevel = 0.0
UnitContourLevel = 1.0

Here we have contours starting at 10mJy and doubling every contour.

We can also set contours in multiples of the image rms (“sigma”):

RelativeContourLevels = [-3,3,5,10,15,20]
BaseContourLevel = 0.0
UnitContourLevel = <image rms>

Here we have first contours at negative and positive 3-sigma. You can get the image rms using the
imstat task (§ 6.7) or using the Viewer statistics tool on a region of the image (§ 7.2.3).

As a final example, not all images are of intensity, for example a moment-1 image (§ 6.6) has units of
velocity. In this case, absolute contours will work fine, but by default the viewer will set fractional
contours but referred to the min and max velocity:

RelativeContourLevels = [0.2, 0.4, 0.6, 0.8]
BaseContourLevel = <image min>
UnitContourLevel = <image max>

Here we have contours spaced evenly from min to max, and this is what you get by default if you
load a non-intensity image (like the moment-1 image). See Figure 7.10 for an example of this.

7.3.3 Overlay contours on a raster map

Contours of either a second data set or the same data set can be used for comparison or to enhance
visualization of the data. The Data Options Panel will have multiple tabs which allow adjusting
each overlay individually (Note tabs along the top). Beware: it’s easy to forget which tab is active!
Also note that axis labeling is controlled by the first-registered image overlay that has labeling
turned on (whether raster or contour), so make label adjustments within that tab.

To add a Contour overlay, open the Load Data panel (Use the Data menu or click on the Folder
icon), select the data set and select Contour. See Figure 7.10 for an example using NGC5921.
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Figure 7.10: The Viewer Display Panel (left) and Data Display Options panel (right) after
overlaying a Contour Map of velocity on a Raster Image of intensity. The image shown is for the
moments of the NGC5921 cube, zoomed in using the tool bar icon. The tab for the contour plot is
open in the Data Display Options panel.

7.3.4 Spectral Profile Plotting

From the Tools menu, the Spectral Profile plotting tool can be selected. This will pop up a
new Image Profile window containing an x-y plot of the intensity versus spectral axis (usually
velocity). You can then select a region with the Rectangle or Polygon Region drawing tools, or
pinpoint a position using the Crosshair tool. The profile for the region or position selected will
then appear in the Image Profile window. This profile will update in real time to track changes
to the region or crosshair, which can be moved by click-dragging the mouse. See Figure 7.11.

7.3.5 Managing and Saving Regions

To save a region of an image you have on display, first open the Region Manager window (the
Tools:Region Manager menu item, or the corresponding toolbutton). A window will appear as in
Figure 7.12.
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Figure 7.11: The Image Profile panel that appears if you use the Tools:Spectral Profile
menu, and then use the rectangle or polygon tool to select a region in the image. You can also use
the crosshair to get the profile at a single position in the image. The profile will change to track
movements of the region or crosshair if moved by dragging with the mouse.

Under Region Extent, choose whether you want your region to be confined to the viewed plane
only, or to extend over all channels or all image planes.

Then trace out your region on the display panel using the rectangle or polygon region mouse tools
(§ 7.2.1, § 7.2.3), and confirm by double-clicking inside the region. Figure 7.13 shows an image
region selected with the polygon tool.

Note: The extent of the region is determined by the extent button in effect when the region is
defined, not when it is saved. Therefore it is important to select the extent before double-clicking
the region with the mouse. If you neglected to do this, you can just double-click again within the
region after you select the extent and before saving.

Make any desired adjustments to the offered pathname and press Save Last region to save the
region to a file. The example Casa commands below illustrate usage of such files.
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Figure 7.12: The Region Manager panel that appears if you select the Tools:Region Manager
menu item.

reg = rg.fromfiletorecord( "my.im.rgn" )
ia.open( "my.im" )
ia.statistics( region=reg )

BETA ALERT: Visual region management is incomplete. Very soon, the region will be placed in-
side the image file rather than stored separately. Compound regions with iterative additions/deletions
and better visual feedback will also be provided.

Note that the current Region Extent choice also affects the image points used in computing statistics
(§ 7.2.3).

7.3.6 Adjusting Canvas Parameters/Multi-panel displays

The display area can also be manipulated with the following controls in the Panel Options (or
’Viewer Canvas Manager’) window. Use the wrench icon with a ’P’ (or the ’Display Panel’ menu)
to show this window.

• Margins - specify the spacing for the left, right, top, and bottom margins

• Number of panels - specify the number of panels in x and y and the spacing between those
panels.

• Background Color - white or black (more choices to come)
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Figure 7.13: Selecting an image region with the polygon tool.
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7.3.6.1 Setting up multi-panel displays

Figure 7.14 illustrates a multi-panel display along with the Viewer Canvas Manager settings which
created it.

Figure 7.14: A multi-panel display set up through the Viewer Canvas Manager.

7.3.6.2 Background Color

The Background Color selection can be used to change the background color from its default
of black. Currently, the only other choice is white, which is more appropriate for printing or
inclusion in documents.

7.4 Viewing Measurement Sets

Visibility data can also be displayed and flagged directly from the viewer. For Measurement Set
files the only option for display is ’Raster’ (similar to AIPS task TVFLG). An example of MS display
is shown in Figure 7.2; loading of an MS is shown in Figure 7.15.
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Figure 7.15: The Load Data - Viewer panel as it appears if you select an MS. The only option
available is to load this as a Raster Image. In this example, clicking on the Raster Image button
would bring up the displays shown in Figure 7.2.

Warning: Only one MS should be registered at a time on a Display Panel. Only one MS can be
shown in any case. You do not have to close other images/MSs, but you should at least ’unregister’
them from the Display Panel used for viewing the MS. If you wish to see other images or MSs at
the same time, create multiple Display Panel windows.

7.4.1 Data Display Options Panel for Measurement Sets

The Data Display Options panel provides adjustments for MSs similar to those for images,
and also includes flagging options. As with images, this window appears when you choose the
Data:Adjust menu or use the wrench icon from the Main Toolbar. It is also shown by default
when an MS is loaded. The right panel of Figure 7.2 shows a Data Options window. It has a tab
for each open MS, containing a set of categories. The options within each category can be either
’rolled up’ or expanded by clicking the category label.

For a Measurement Set, the categories are:
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• Advanced

• MS and Visibility Selection

• Display Axes

• Flagging Options

• Basic Settings

• Axis Drawing and Labels

• Color Wedge

7.4.1.1 MS Options — Basic Settings

The Basic Settings roll-up is expanded by default. It contains entries similar to those for a raster
image (§ 7.3.1.1). Together with the brightness/contrast and colormap adjustment icons on the
Mouse Toolbar of the Display Panel, they are especially important for adjusting the color display
of your MS.

The available Basic options are:

• Data minimum/maximum

This has the same usage as for raster images. Lowering the data maximum will help brighten
weaker data values.

• Scaling power cycles

This has exactly the same usage as for raster images (see § 7.3.1.1). Again, lowering this value
often helps make weaker data visible. If you want to view several fields with very different
amplitudes simultaneously, this is typically one of the best adjustments to make early, together
with the Colormap fiddling mouse tool, which is on the middle mouse button by default.

• Colormap

Greyscale or Hot Metal colormaps are generally good choices for MS data.

7.4.1.2 MS Options— MS and Visibility Selections

• Visibility Type

• Visibility Component

• Moving Average Size
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Figure 7.16: The MS for NGC4826 BIMA observations has been loaded into the viewer. We see
the first of the spw in the Display Panel, and have opened up MS and Visibility Selections in
the Data Display Options panel. The display panel raster is not full of visibiltiies because spw
0 is continuum and was only observed for the first few scans. This is a case where the different
spectral windows have different numbers of channels also.

This roll-up provides choice boxes for Visibility Type (Observed, Corrected, Model, Residual) and
Component (Amplitude, Phase, Real, or Imaginary).

Changes to Visibility Type or Component (changing from Phase to Amplitude, for example) require
the data to be retrieved again from the disk into memory, which can be a lengthy process. When
a large MS is first selected for viewing, the user must trigger this retrieval manually by pressing
the Apply button (located below all the options), after selecting the data to be viewed (see Field
IDs and Spectral Windows, below).

Tip: Changing visibility type between ’Observed’ and ’Corrected’ can also be used to assure that
data and flags are reloaded from disk. You should do this if you’re using another flagging tool
such as autoflag simultaneously, so that the viewer sees the other tool’s new edits and doesn’t
overwrite them with obsolete flags. The Apply button alone won’t reload unless something within
the viewer itself requires it; in the future, a button will be provided to reload flags from the disk
unconditionally.

You can also choose to view the difference from a running mean or the local RMS deviation of
either Phase or Amplitude. There is a slider for choosing the nominal number of time slots in the
’local neighborhood’ for these displays.
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(Note: Insufficient Data is shown in the tracking area during these displays when there is no
other unflagged data in the local neighborhood to compare to the point in question. The moving
time windows will not extend across changes in either field ID or scan number boundaries, so you
may see this message if your scan numbers change with every time stamp. An option will be added
later to ignore scan boundaries).

• Field IDs

• Spectral Windows

You can retrieve and edit a selected portion of the MS data by entering the desired Spectral
Window and Field ID numbers into these boxes. Important: Especially with large MSs, often
the first thing you’ll want to do is to select spectral windows which all have the same number
of channels and the same polarization setup. It also makes sense to edit only a few fields at a
time. Doing this will also greatly reduce data retrieval times and memory requirements.

You can separate the ID numbers with spaces or commas; you do not need to enter enclosing
brackets. Changes to either entry box will cause the selected MS data to be reloaded from disk.

If you select, say, spectral windows 7, 8, 23, and 24, the animator, slice position sliders, and axis
labeling will show these as 0, 1, 2, and 3 (the ’slice positions’ or ’pixel coordinates’ of the chosen
spectral windows). Looking at the position tracking display is the best way to avoid confusion in
such cases. It will show something like: Sp Win 23 (s 2) when you are viewing spectral window
23 (plane 2 of the selected spectral windows).

Changes to MS selections will not be allowed until you have saved (or discarded) any previous
edits you have made (see Flagging Options -- Save Edits, below). A warning is printed on the
console (not the logger).

Initially, all fields and spectral windows are selected. To revert to this ’unselected’ state, choose
’Original’ under the wrench icons next to the entry boxes.

See Figure 7.16 for an example showing the use of the MS and Visibility Selections controls
when viewing an MS.

7.4.1.3 MS Options — Display Axes

This roll-up is very similar to that for images: it allows the user to choose which axes (from Time,
Baseline, Polarization, Channel, and Spectral Window) are are on the display and the animator.
There are also sliders here for choosing positions on the remaining axes. (It’s useful to note that
the data is actually stored internally in memory as an array with these five axes).

For MSs, changing the choice of axis on one control will automatically swap axes, maintaining
different axes on each control. Changing axes or slider/animator positions does not normally
require pressing Apply — the new slice is shown immediately. However, the display may be
partially or completely grey in areas if the required data is not currently in memory, either because
no data has been loaded yet, or because not all the selected data will fit into the allowed memory.
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Figure 7.17: The MS for NGC4826 from Figure 7.16, now with the Display Axes open in the
Data Display Options panel. By default, channels are on the Animation Axis and thus in
the tapedeck, while spectral window and polarization are on the Display Axes sliders.

Press the Apply button in this case to load the data (see § 7.4.1.6 and Max. Visibility Memory
at the end of § 7.4.1.5).

Within the Display Axes rollup you may also select whether to order the baseline axis by antenna1-
antenna2 (the default) or by (unprojected) baseline length.

See Figures 7.17–7.18 showing the use of the Display Axes controls to change the axes on the
animation and sliders.

7.4.1.4 MS Options — Flagging Options

These options allow you to edit (flag or unflag) MS data. The Crosshair and Rectangle Region
Mouse Tools (§ 7.2.3) are used on the display to select the area to edit. When using the Rectangle
Region tool, double-click inside the selected rectangle to confirm the edit.

The options below determine how edits will be applied.

• Show Flagged Regions...
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Figure 7.18: The MS for NGC4826, continuing from Figure 7.17. We have now put spectral
window on the Animation Axis and used the tapedeck to step to spw 2, where we see the data
from the rest of the scans. Now channels is on a Display Axes slider, which has been dragged to
show Channel 33.

You have the option to display flagged regions in the background color (as in TVFLG) or to
highlight them with color. In the former case, flagged regions look just like regions of no
data. With the (default) color option, flags are shown in shades of blue: darker blue for flags
already saved to disk, lighter blue for new flags not yet saved; regions with no data will be
shown in black.

• Flag or Unflag

This setting determines whether selected regions will be flagged or unflagged. This does not
affect previous edits; it only determines the effect which later edits will have. Both flagging
and unflagging edits can be accumulated and then saved in one pass through the MS.

• Flag/Unflag All...

These flagging extent checkboxes allow you to extend your edit over any of the five data axes.
For example, to flag all the data in a given time range, you would check all the axes except
Time, and then select the desired time range with the Rectangle Region mouse tool. Such
edits will extend along the corresponding axes over the entire selected MS (whether loaded
into memory or not) and optionally over unselected portions of the MS as well (Use Entire
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MS, below). Use care in selecting edit extents to assure that you’re editing all the data you
wish to edit.

• Flag/Unflag Entire Antenna?

This control can be used to extend subsequent edits to all baselines which include the desired
antenna[s]. For example, if you set this item to ’Yes’ and then click the crosshair on a visibility
point with baseline 3-19, the edit would extend over baselines 0-3, 1-3, 2-3, 3-3, 3-4, ... 3-
nAntennas-1. Note that the second antenna of the selection (19) is irrelevant here – you can
click anywhere within the ’Antenna 3 block’, i.e., where the first antenna number is 3, to
select all baselines which include antenna 3.

This item controls the edit extent only along the baseline axis. If you wish to flag all the data
for a given antenna, you must still check the boxes to flag all Times, Channels, Polarizations
and Spectral Windows. There would be no point, however, in activating both this item and
the ’Flag All Baselines’ checkbox. You can flag an antenna in a limited range of times, etc.,
by using the appropriate checkboxes and selecting a rectangular region of visibilities with the
mouse.

Note: You do not need to include the entire ’antenna block’ in your rectangle (and you
may stray into the next antenna if you try). Anywhere within the block will work. To flag
higher-numbered antennas, it often helps to zoom in.

• Undo Last Edit

• Undo All Edits

The ’Undo’ buttons do the expected thing: completely undo the effect of the last edit (or all
unsaved edits). Please note, however, that only unsaved edits can be undone here; there is no
ability to revert to the flagging state at the start of the session once flags have been saved to
disk (unless you have previously saved a ’flag version’. The flag version tool is not available
through the viewer directly).

• Use Entire MS When Saving Edits?

”Yes” means that saving the edits will flag/unflag over the entire MS, including fields (and
possibly spectral windows) which are not currently selected for viewing. Specifically, data
within time range(s) you swept out with the mouse (even for unselected fields) will be edited.

In addition, if ”Flag/Unflag All...” boxes were checked, such edits will extend throughout the
MS. Note that only unselected times (fields) can be edited without checking extent boxes for
the edits as well. Unselected spectral windows, e.g., will not be edited unless the edit also
has ”Flag/Unflag All Spectral Windows” checked.

Warning: Beware of checking ”All Spectral Windows” unless you have also checked ”All
Channels” or turned ”Entire MS” off; channel edits appropriate to the selected spectral
windows may not be appropriate to unselected ones. Set ”Use Entire MS” to”No” if your
edits need to apply only to the portion of the MS you have selected for viewing. Edits can
often be saved significantly faster this way as well.

Also note that checkboxes apply to individual edits, and must be checked before making the
edit with the mouse. ”Use Entire MS”, on the other hand, applies to all the edits saved at
one time, and must be set as desired before pressing ”Save Edits”.
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• Save Edits

MS editing works like a text editor in that you see all of your edits immediately, but nothing
is committed to disk until you press ’Save Edits’. Feel free to experiment with all the other
controls; nothing but ’Save Edits’ will alter your MS on disk. As mentioned previously,
however, there is no way to undo your edits once they are saved, except by manually entering
the reverse edits (or restoring a previously-saved ’flag version’).

Also, you must save (or discard) your edits before changing the MS selections. If edits are
pending, the selection change will not be allowed, and a warning will appear on the console.

If you close the MS in the viewer, unsaved edits are simply discarded, without prior warning.
It’s important, therefore, to remember to save them yourself. You can distinguish unsaved
flags (when using the ’Flags In Color’ option), because they are in a lighter shade of blue.

The program must make a pass through the MS on disk to save the edits. This can take a
little time; progress is shown in the console window.

7.4.1.5 MS Options— Advanced

These settings can help optimize your memory usage, especially for large MSs. A rule of thumb
is that they can be increased until response becomes sluggish, when they should be backed down
again.

You can run the unix ’top’ program and hit ’M’ in it (to sort by memory usage) in order to examine
the effects of these settings. Look at the amount of RSS (main memory) and SWAP used by the X
server and ’casaviewer’ processes. If that sounds familiar and easy, then fiddling with these settings
is for you. Otherwise, the default settings should provide reasonable performance in most cases.

• Cache size

The value of this option specifies the maximum number of different views of the data to
save so that they can be redrawn quickly. If you run an animation or scroll around zoomed
data, you will notice that the data displays noticeably faster the second time through because
of this feature. Often, setting this value to the number of animation frames is ideal Note,
however, that on multi-panel displays, each panel counts as one cached image.

Large images naturally take more room than small ones. The memory used for these images
will show up in the X server process. If you need more Visibility Memory (below) for a really
large ms, it is usually better to forgo caching a large number of views.

• Max. Visibility Memory

This option specifies how many megabytes of memory may be used to store visibility data from
the measurement set internally. Even if you do not adjust this entry, it is useful to look at it
to see how many megabytes are required to store your entire (selected) MS in memory. If the
slider setting is above this, the whole selected MS will fit into the memory buffer. Otherwise,
some data planes will be ’greyed out’ (see Apply Button, § 7.4.1.6 below), and the selected
data will have to be viewed one buffer at a time, which is somewhat less convenient. In most
cases, this means you should select fewer fields or spectral windows – see § 7.4.1.2.



CHAPTER 7. VISUALIZATION WITH THE CASA VIEWER 301

The ’casaviewer’ process contains this buffer memory (it contains the entire viewer, but the
memory buffer can take most of the space).

7.4.1.6 MS Options — Apply Button

When viewing large MSs the display may be partially or completely grey in areas where the required
data is not currently in memory, either because no data has been loaded yet, or because not all the
selected data will fit into the allowed memory (see Max. Visibility Memory above). When the
cursor is over such an area, the following message shows in the position tracking area:

press ’Apply’ on Adjust panel to load data

Pressing the Apply button (which lies below all the options) will reload the memory buffer so that
it includes the slice you are trying to view.

The message No Data has a different meaning; in that case, there simply is no data in the selected
MS at the indicated position.

For large measurement sets, loading visibility data into memory is the most time-consuming step.
Progress feedback is provided in the console window. Again, careful selection of the data to be
viewed can greatly speed up retrieval.

7.5 Printing from the Viewer

You can use the Data:Print menu or the Print button to bring up the Viewer Print Manager.
From this panel, you can print a hardcopy of what is in the Display Panel, or save it in a variety
of formats.

Figure 7.19 shows an example of printing to a file. The key to making acceptable hardcopies
(particularly for printing or inclusion in documents) is to set the background color and line widths
to appropriate values so the plot and labels show up in the limited resolution of the hardcopy.

Use the Viewer Canvas Manager (§ 7.3.6) to change the Background Color from its default
of black to white if you are making plots for printing or inclusion in a document. You might also
want to change the colormap accordingly.

Adjust the Line Width of the Axis Label Properties options in the Data Display Options
panel so that the labels will be visible when printed. Increasing from the default of 1.4 to a value
around 2 seems to work well.

You can choose an output file name in the panel. Be sure to make it a new name, otherwise it will
not overwrite a previous file (and will not say anything about it).

If you will be printing to a postscript printer or to a PS or EPS file, dial up the [PS] Resolution
(dpi) to its maximum of 600. This will increase the size of the PS file somewhat, but will make
a much better plot. Use gzip to compress the PS file if necessary. Be sure to choose the desired
Output Media and Orientation for PS also.
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Figure 7.19: Setting up to print to a file. The background color has been set to white, the line
width to 2, and the print resolution to 600 dpi (for an postscript plot). To make the plot, use the
Save button on the Viewer Print Manager panel (positioned in the figure in the upper right)
and select a format with the drop-down, or use the Print button to send directly to a printer.

BETA ALERT: The postscript printing capabilities of the casaviewer are currently limited due
to some issues with the way we use Qt and do axis labels. Significant improvements have been
made in Patch 3. This will be further upgraded in the future, but for now you will need to follow
the suggestions above to get a useable plot. Note that ghostview may show a poorer version of
the PS than you will get when you print.



Appendix A

Single Dish Data Processing

R3.0 ALERT: The single-dish analysis package within CASA is still experimental. It is included
in the release for the use of the ALMA computing and commissioning groups. It is not intended
for general users. Therefore, this description is included in this Cookbook as an appendix.

For single-dish spectral calibration and analysis, CASA uses the ATNF Spectral Analysis Package
(ASAP). ASAP is imported as the sd tool. It forms the basis for a series of tasks (the “SDtasks”)
that encapsulates the functionality within the standard CASA task framework. ASAP was devel-
oped to support the Australian telescopes such as Mopra, Parkes, and Tidbinbilla, and we have
adapted it for use within CASA for GBT (see the note below for limitation of GBT SDFITS han-
dling) and eventually ALMA [Note: Some support for the ALMA is now available)]. For R3.0,
the ASAP version included in CASA was updated to Version 2.3.1 (which is the latest
official release of ASAP as of Nov. 2009). For details on ASAP – including the User Guide,
Reference Manual, and tutorial – see the ASAP home page at ATNF:

• http://www.atnf.csiro.au/computing/software/asap/ .

The ASAP tools are prefaced with sd. within CASA, e.g., the ASAP tool scantable becomes
sd.scantable. See § A.3 for more information on the tools.

All of the ASAP functionality is available within the CASA installation. Since we extended ASAP,
there are certain functionalities that are available only in the CASA version of ASAP. In the
following sections of this appendix, we outline how to access ASAP from within CASA and the
data flow for standard use cases.

If you run into trouble, be sure to check the list of known issues and features of ASAP and the
SDtasks presented in § A.5 first.

An important note for GBT raw SDFITS data: The GBT raw SDFITS data format (in
which the data are stored in multiple data tables within SDFITS file) are not supported in the
current SDtasks or sd toolkit. Thus the data reduction for the GBT data starting from the raw
SDFITS cannot be done. It is generally possible to process the GBT data once it is converted with
tools outside CASA to a single data table SDFITS or other data format supported by ASAP.
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A.1 Guidelines for Use of ASAP and SDtasks in CASA

A.1.1 Environment Variables

There are a number of environment variables that the ASAP tools (and thus the SDtasks) use to
control their operation. They are located in .asaprc and are described in the ASAP User Guide.
Within CASA, they are contained in the Python dictionary sd.rcParams and are accessible through
its keys and values. For SDtask users, the most important parameter is verbose, which controls
the display of detailed messages from the tools. By default,

sd.rcParams[’verbose’] = True

produced by lots of messages. Also, the scantable.storage parameter controls whether scantable
operations are done in memory or on disk. The default is

sd.rcParams[’scantable.storage’] = ’memory’ \, ,

which is the best choice if there is enough memory does it in memory. On the other hand,

sd.rcParams[’scantable.storage’] = ’disk’

forces the task to store datasets on disk, which might be necessary when they are large. See § A.3.1
for more details on the ASAP environment variables.

A.1.2 Assignment

Some ASAP methods and functions require assigning a method to a variable which can then be
manipulated. These methods and functions include sd.scantable and sd.selector, both of which
make objects. For example,

s = sd.scantable(’OrionS_rawACSmod’, average=False) \, .

A.1.3 Lists

For lists of scans or IFs, such as in scanlist and iflist in the SDtasks, the tasks and functions
require a comma-delimited Python list, e.g.,

scanlist = [241, 242, 243, 244, 245, 246] \, .

The python range function can be used to generate a list of consecutive numbers, e.g.,

scanlist = range(241,247) \, ,

giving the same list as above,
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CASA <3>: scanlist=range(241,247)
CASA <4>: print scanlist
[241, 242, 243, 244, 245, 246] \, .

Multiple ranges can be created by summing lists,

CASA <5>: scanlist=range(241,247) + range(251,255)
CASA <6>: print scanlist
[241, 242, 243, 244, 245, 246, 251, 252, 253, 254] \, .

Note that in the future, the sd tools and SDtasks will use the same selection language as in the
interferometric synthesis part of the CASA.

Spectral regions, such as those for setting masks, are pairs of min and max values for whatever
spectral axis unit is currently chosen. These are fed into the tasks and tools as a list of lists, where
each list element is a list with the [min,max] for that sub-region, e.g.,

masklist=[[1000,3000], [5000,7000]] \, .

A.1.4 Dictionaries

Currently, the SDtasks return the Python dictionary for the results of line fitting (in sdfit) and
region statistics (in sdstat). If you invoke these tasks by assigning a variable for the return, you
can then access the elements through the keywords, e.g.,

CASA <10>: line_stat=sdstat()
Current fluxunit = K
No need to convert fluxunits
Using current frequency frame
Using current doppler convention

CASA <11>: line_stat
Out[11]:

{’eqw’: 70.861755476162784,
’max’: 1.2750182151794434,
’mean’: 0.35996028780937195,
’median’: 0.23074722290039062,
’min’: -0.20840644836425781,
’rms’: 0.53090775012969971,
’stddev’: 0.39102539420127869,
’sum’: 90.350028991699219}

One can then use these values in scripts by accessing this dictionary, e.g.,

CASA <12>: print "Line max = %5.3f K" % (line_stat[’max’])
Line max = 1.275 K
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A.1.5 Line Formatting

The SDtasks trap leading and trailing whitespace on string parameters (such as infile and sdfile)
but ASAP does not, so be careful with setting string parameters. ASAP is case-sensitive, with most
parameters being upper-case, such as ASAP for the sd.scantable.save file format. The SDtasks
are generally more forgiving. Also, beware Python’s sensitivity to indentation.

A.1.6 Logging

Before R3.0, all messages from ASAP were written to the standard output (sys.stdout) and they
disappeared after exiting CASA. For R3.0, the logging system of ASAP is integrated into CASA
logging system. Therefore, all outputs from ASAP commands, except for GUI related notifications,
are sent to the file casapy.log and they are displayed to the CASA Logger (see § 1.4.2).

A.2 Single Dish Analysis Tasks

A set of single dish tasks is available for simplifying basic reduction activities. The list currently
includes:

• sdaverage — select, calibrate, and average SD data

• sdsmooth — smooth SD spectra

• sdbaseline — fit/remove spectral baselines from SD data

• sdcal — sdaverage, sdsmooth, and sdbaseline combined to perform standard single dish
processing all at once

• sdcoadd — merge/co-add multiple SD data

• sdflag — channel/row flagging of SD spectra

• sdfit — line fitting to SD spectra

• sdimaging — create an image from the total power or spectral data

• sdimprocess — remove the ’scanning noise’ from raster scanned data

• sdlist — print a summary of a SD dataset

• sdmath — do simple arithmetic for SD spectra

• sdplot — plotting of SD spectra, including overlay of line catalog data

• sdsave — save SD data to different format

• sdscale — scale SD data
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• sdstat — compute statistics of regions of SD spectra

• sdtpimaging — do a simple calibration and create an image from the total power raster
scans

• sdsim — simulate single dish data (experimental)

All of the SDtasks, except except those related to imaging (sdtpimaging, sdimaging, and sdimprocess),
work from a file on disk rather than from a scantable in memory as the ASAP toolkit does (see
§ A.3. Inside the tasks we invoke a call to sd.scantable to read the data. The scantable objects
do not persist within CASA after completion of the tasks and are destroyed to free up memory.

Three tasks sdaverage, sdsmooth, and sdbaseline are the workhorses for the calibration, selection,
averaging, baseline fitting, and smoothing. The output datasets for each task are written to a
file on disk. Alternatively, one can use the task sdcal to perform all of the steps in the three
tasks described. Its operation is controlled by three main ”mode” parameters: calmode (which
selects the type of calibration, if any, to be applied), kernel (which selects the smoothing), and
blmode (which selects baseline fitting). There are also parameters controlling the selection such as
scanlist, iflist, field, scanaverage, timeaverage, and polaverage. Note that sdcal can be
run with calmode=’none’ to allow re-selection or writing out of data that is already calibrated.
There is a ”wiring diagram” of the dataflow and control inputs for sdcal shown in Figure A.1.

The SDtasks support the import and export file formats supported by ASAP itself. For import, this
includes: ASAP (scantables), MS (CASA measurement set), RPFITS and SDFITS. For export, this
includes: ASAP (scantables), MS (CASA measurement set), ASCII (text file), SDFITS (a flavor of
SD FITS). The sdsave task is available exclusively for exporting with these data selection options.
The sdcoadd task is available to merge data in separate data files into one. A brief summary of
the data in a file is found in the sdlist task help.

Plotting of spectra is handled in the sdplot task. It also offers some selection, averaging, and
smoothing options in case you are working from a dataset that has not been split or averaged.
Note that there is some rudimentary plotting capability in many of SD tasks, controlled through
the plotlevel parameter, to aid in the assessment of the performance of these tasks.

Scaling of the spectra and Tsys is available in the sdscale. For arithmetic operations of spectra
in separate scantables, a new task, sdmath has been added.

Calculation of statistics on spectral regions is available in the sdstat task. Results are passed by
a Python dictionary return variable.

Basic Gaussian line-fitting is handled by the sdfit task. It can deal with the simpler cases, and
offers some automation as well as interactive selection of fitting region, but more complicated fitting
is best accomplished through the toolkit (sd.fitter).

Basic non-interactive channel and row flagging is available in the sdflag task. By default or by
specifying outfile parameter, a new file is created containing dataset with the flag information. To
update flags in the input data, outfile=’none’ must be set.

Limited total power data analysis functionality is available through the task sdtpimaging. A single
dish image data cube can be created using sdimaging, which also handles total power imaging.
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Figure A.1: Wiring diagram for the SDtask sdcal. The stages of processing within the task are
shown, along with the parameters that control them.

These tasks directly access the Measurement Set without converting it to scantable format. The
sdimprocess is intended to remove the ’scanning noise’ from single dish images by either the
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’Basket-Weaving’ or ’Pressed-out’ methods.

A.2.1 SDtask Summaries

The following are the list of parameters and brief descriptions of each of the SDtasks. These
descriptions are also contained in help <taskname> once asap init has been invoked.

A.2.1.1 sdaverage

Keyword arguments:
sdfile -- name of input SD dataset
fluxunit -- units for line flux

options: ’K’,’Jy’,’’
default: ’’ (keep current fluxunit)
WARNING: For GBT data, see description below.

>>> fluxunit expandable parameter
telescopeparm -- the telescope characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)
example: if telescopeparm=’’, it tries to get the telescope

name from the data.
Full antenna parameters (diameter,ap.eff.) known
to ASAP are
’ATPKSMB’, ’ATPKSHOH’, ’ATMOPRA’, ’DSS-43’,
’CEDUNA’,’HOBART’. For GBT, it fixes default fluxunit
to ’K’ first then converts to a new fluxunit.
telescopeparm=[104.9,0.43] diameter(m), ap.eff.
telescopeparm=[0.743] gain in Jy/K
telescopeparm=’FIX’ to change default fluxunit
see description below

specunit -- units for spectral axis
options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’
default: ’’ (=current)
example: these will be the units for masklist

frame -- frequency frame for spectral axis
options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,

’GEO’,’GALACTO’,’LGROUP’,’CMB’
default: currently set to frame in scantable
WARNING: frame=’REST’ not yet implemented

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: currently set to doppler in scantable
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calmode -- calibration mode
options: ’ps’,’nod’,’fs’,’fsotf’,’quotient’,’none’
default: ’none’
example: choose mode ’none’ if

already calibrated and want to
try averaging

scanlist -- list of scan numbers to process
default: [] (use all scans)
example: [21,22,23,24]

this selection is in addition to field,
iflist, and pollist

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist,
iflist, and pollist

iflist -- list of IF id numbers to select
default: [] (use all IFs)
example: [15]

this selection is in addition to scanlist,
field, and pollist

pollist -- list of polarization id numbers to select
default: [] (use all polarizations)
example: [1]

this selection is in addition to scanlist,
field, and iflist

channelrange -- channel range selection
default: [] (use all channels)
example: [0,5000]

Note that specified values are recognized as
’channel’ regardless of the value of specunit

scanaverage -- average integrations within scans
options: (bool) True,False
default: False
example: if True, this happens in read-in

For GBT, set False!
timeaverage -- average times for multiple scan cycles

options: (bool) True,False
default: False
example: if True, this happens after calibration

>>>timeaverage expandable parameter
tweight -- weighting for time average

options: ’none’
’var’ (1/var(spec) weighted)
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’tsys’ (1/Tsys**2 weighted)
’tint’ (integration time weighted)
’tintsys’ (Tint/Tsys**2)
’median’ ( median averaging)

default: ’none’
averageall -- average multi-resolution spectra

spectra are averaged by referring
their frequency coverage

default: False

polaverage -- average polarizations
options: (bool) True,False
default: False

>>>polaverage expandable parameter
pweight -- weighting for polarization average

options: ’none’
’var’ (1/var(spec) weighted)
’tsys’ (1/Tsys**2 weighted)

default: ’none’

tau -- atmospheric optical depth
default: 0.0 (no correction)

verify -- verify the results of calibration. Only effective if
calmode is not ’none’.

options: (bool) True,False
default: False
WARNING: Currently this just asks whether you accept

the displayed calibration and if not, continues
without doing any calibration.

outfile -- Name of output file
default: ’’ (<sdfile>_cal)

outform -- format of output file
options: ’ASCII’,’SDFITS’,’MS’,’ASAP’
default: ’ASAP’
example: the ASAP format is easiest for further sd

processing; use MS for CASA imaging.
If ASCII, it then will append some stuff to
the outfile name

overwrite -- overwrite the output file if it already exists
options: (bool) True,False
default: False
WARNING: if outform=’ASCII’, this parameter is ignored

plotlevel -- control for plotting of results
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options: (int) 0=none, 1=some, 2=more, <0=hardcopy
default: 0 (no plotting)
example: plotlevel<0 as abs(plotlevel), e.g.

-1 => hardcopy of final plot (will be named
<outfile>_calspec.eps)

WARNING: be careful plotting in fsotf mode!

DESCRIPTION:

Task sdaverage performs data selection, calibration for single-dish spectra. By setting calmode=’none’
one can run sdaverage on already calibrated data, for further selection , averaging and atmospheric
optical depth correction.

If you give multiple IFs in iflist, then your scantable will have multiple IFs. This can be handled,
but there can be funny interactions later on. We recommend you split each IF out into separate
files by re-running sdaverage with each IF in turn unless you want to averaging of multi-resolution
spectra (see below).

To save the output spectra in a certain range of channels, you set the range in channelrange.
Averaging of multi-resolution spectra can be achieved by setting the sub-parameter in timeaverage,
averageall to True. It generally handles multi-IFs by selecting overlaps in IFs and assigning new
IFs in the output spectra.

ASAP recognizes the data of the ”AT” telescopes, but currently does not know about the GBT
or any other telescope. This task does know about GBT. Telescope name is obtained from the
data. If you wish to change the fluxunit (see below) by unsetting the sub-parameter unset
(telescopeparm=’’), it will use internal telescope parameters for flux conversion for the data from
AT telescopes and it will use an approximate aperture efficiency conversion for the GBT data.
When telescopeparm is a list, then if the list has a single float it is assumed to be the gain in
Jy/K. If there are two or more elements they are assumed to be telescope diameter (m) and aperture
efficiency respectively.

sdaverage assumes that fluxunit is set correctly in the data already. If not, then set telescopeparm=’FIX’
and it will set the default units to fluxunit without conversion. NOTE: If the data table in sdfile
is an ms from GBT and the default flux unit is missing, this task automatically fixes the default
fluxunit to ’K’ before performing the conversion.

R3.0 New Features:

• A new parameter verify is added. The task plots both raw spectra and calibrated spectra
to verify the calibration results if verify is ’True’.

• If the observation mode is On-The-Fly, the direction information will be considered for aver-
aging, i.e., spectra will be averaged only if the directions are in agreement with each other.

• Calibration of frequency switching data is now fully implemented, including folding.
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• Additional calibration algorithms are implemented. These are the ’Chopper-Wheel’ calibra-
tion and the one adopted in APEX telescope (an advanced version of classical ’Chopper-
Wheel’ method). Two load calibration, which will be a standard calibration mode of ALMA
total power antennas, is formally implemented but still experimental.

A.2.1.2 sdsmooth

Keyword arguments:
sdfile -- name of input SD dataset
scanaverage -- average integrations within scans

options: (bool) True,False
default: False
example: if True, this happens in read-in

For GBT, set False!
scanlist -- list of scan numbers to process

default: [] (use all scans)
example: [21,22,23,24]

this selection is in addition to field,
iflist, and pollist

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist,
iflist,pollist

iflist -- list of IF id numbers to select
default: [] (use all IFs)
example: [15]

this selection is in addition to scanlist,
field, and pollist

pollist -- list of polarization id numbers to select
default: [] (use all polarizations)
example: [1]

this selection is in addition to scanlist,
field, and iflist

kernel -- type of spectral smoothing
options: ’hanning’,’gaussian’,’boxcar’
default: ’hanning’

>>>kernel expandable parameter
kwidth -- width of spectral smoothing kernel

options: (int) in channels
default: 5
example: 5 or 10 seem to be popular for boxcar,

ignored for hanning (fixed at 5 chans)
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(0 will turn off gaussian or boxcar)

verify -- verify the results of smoothing
options: (bool) True,False
default: False
WARNING: Currently this just asks whether you accept

the displayed smoothing and if not, continues
without smoothing.

outfile -- Name of output ASAP format(scantable) file
default: ’’ (<sdfile>_sm)

outform -- format of output file
options: ’ASCII’,’SDFITS’,’MS’,’ASAP’
default: ’ASAP’
example: the ASAP format is easiest for further sd

processing; use MS for CASA imaging.
If ASCII, then will append some stuff to
the outfile name

overwrite -- overwrite the output file if already exists
options: (bool) True,False
default: False
WARNING: if outform=’ASCII’, this parameter is ignored

plotlevel -- control for plotting of results
options: (int) 0=none, 1=some, 2=more, <0=hardcopy
default: 0 (no plotting)
example: plotlevel<0 as abs(plotlevel), e.g.

-1 => hardcopy of final plot (will be named
<outfile>_smspec.eps)

DESCRIPTION:

Task sdsmooth performs smoothing of the single-dish spectra. Set plotlevel <= 1 to plot the
spectrum before and after smoothing.

R3.0 New Feature:

A new parameter verify has been added. The task plots both raw spectra and smoothed spectra
to verify the calibration results if verify is ’True’.

A.2.1.3 sdbaseline

Keyword arguments:
sdfile -- name of input SD dataset
fluxunit -- units for line flux

options: ’K’,’Jy’,’’
default: ’’ (keep current fluxunit)
WARNING: For GBT data, see description below
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>>> fluxunit expandable parameter
telescopeparm -- the telescope characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)
example: if telescopeparm=’’, it tries to get the telescope

name from the data.
Full antenna parameters (diameter,ap.eff.) known
to ASAP are
’ATPKSMB’, ’ATPKSHOH’, ’ATMOPRA’, ’DSS-43’,
’CEDUNA’,’HOBART’. For GBT, it fixes default fluxunit
to ’K’ first then converts to a new fluxunit.
telescopeparm=[104.9,0.43] diameter(m), ap.eff.
telescopeparm=[0.743] gain in Jy/K
telescopeparm=’FIX’ to change default fluxunit
see description below

specunit -- units for spectral axis
options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’
default: ’’ (=current)
example: this will be the units for masklist

frame -- frequency frame for spectral axis
options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,

’GEO’,’GALACTO’,’LGROUP’,’CMB’
default: currently set frame in scantable
WARNING: frame=’REST’ not yet implemented

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: currently set to doppler in scantable

scanlist -- list of scan numbers to process
default: [] (use all scans)
example: [21,22,23,24]

this selection is in addition to field,
iflist, and pollist

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist,
iflist, and pollist

iflist -- list of IF id numbers to select
default: [] (use all IFs)
example: [15]

this selection is in addition to scanlist,
field, and pollist

pollist -- list of polarization id numbers to select
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default: [] (use all polarizations)
example: [1]

this selection is in addition to scanlist,
field, and iflist

tau -- atmospheric optical depth
default: 0.0 (no correction)

blmode -- mode for baseline fitting
options: (str) ’auto’,’list’,’interact’
default: ’auto’
example: blmode=’auto’ uses expandable parameters

in addition to blpoly to run linefinder
to determine line-free regions
USE WITH CARE! May need to tweak the parameters,
thresh, avg_limit, and edge.
blmode=’interact’ allows adding and deleting mask
regions by drawing rectangles on the plot with mouse.
Draw a rectangle with LEFT-mouse to ADD the region to
the mask and with RIGHT-mouse to DELETE the region.

>>> blmode expandable parameters
thresh -- S/N threshold for linefinder

default: 5
example: a single channel S/N ratio above which the channel is

considered to be a detection
avg_limit -- channel averaging for broad lines
default: 4
example: a number of consecutive channels not greater than

this parameter can be averaged to search for broad lines
edge -- channels to drop at beginning and end of spectrum

default: 0
example: [1000] drops 1000 channels at beginning AND end

[1000,500] drops 1000 from beginning and 500 from end

Note: For bad baselines threshold should be increased,
and avg_limit decreased (or even switched off completely by
setting this parameter to 1) to avoid detecting baseline
undulations instead of real lines.

blpoly -- order of baseline polynomial
options: (int) (<0 turns off baseline fitting)
default: 5
example: typically in range 2-9 (higher values

seem to be needed for GBT)
verify -- verify the results of baseline fitting

options: (bool) True,False
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default: False
WARNING: Currently it just asks whether you accept

the displayed fit and if not, continues
without doing any baseline fit.

masklist -- list of mask regions to INCLUDE in BASELINE fit
default: [] (entire spectrum)
example: [[1000,3000],[5000,7000]]

if blmode=’auto’ then this mask will be applied
before fitting

outfile -- Name of output file
default: ’’ (<sdfile>_bs)

outform -- format of output file
options: ’ASCII’,’SDFITS’,’MS’,’ASAP’
default: ’ASAP’
example: the ASAP format is easiest for further sd

processing; use MS for CASA imaging.
If ASCII, then will append some stuff to
the outfile name

overwrite -- overwrite the output file if already exists
options: (bool) True,False
default: False
WARNING: if outform=’ASCII’, this parameter is ignored

plotlevel -- control for plotting of results
options: (int) 0=none, 1=some, 2=more, <0=hardcopy
default: 0 (no plotting)
example: plotlevel<0 as abs(plotlevel), e.g.

-1 => hardcopy of final plot (will be named
<outfile>_bspec.eps)

WARNING: be careful plotting in fsotf mode!

DESCRIPTION:

Task sdbaseline performs baseline fitting/removal for single-dish spectra. The fit parameters,
terms and rms of base-line are saved to an ASCII file, <outfile> blparam.txt.

Also, see the notes on fluxunit and telescopeparm in the section for sdaverage. See the
sdaverage description for information on fluxunit conversion and the telescopeparm param-
eter.

By setting blmode=’interact’, you can set/unset mask regions interactively using mouse buttons.
Current mask regions will be shown with yellow shading. Baseline fit parameters and rms of fitted
spectra are automatically saved to an ASCII file, <outfile> blparam.txt.
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A.2.1.4 sdcal

Keyword arguments:
sdfile -- name of input SD dataset
fluxunit -- units for line flux

options: ’K’,’Jy’,’’
default: ’’ (keep current fluxunit)
WARNING: For GBT data, see description below.

>>> fluxunit expandable parameter
telescopeparm -- the telescope characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)
example: if telescopeparm=’’, it tries to get the telescope

name from the data.
Full antenna parameters (diameter,ap.eff.) known
to ASAP are
’ATPKSMB’, ’ATPKSHOH’, ’ATMOPRA’, ’DSS-43’,
’CEDUNA’,’HOBART’. For GBT, it fixes default fluxunit
to ’K’ first then converts to a new fluxunit.
telescopeparm=[104.9,0.43] diameter(m), ap.eff.
telescopeparm=[0.743] gain in Jy/K
telescopeparm=’FIX’ to change default fluxunit
see description below

specunit -- units for spectral axis
options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’,’’
default: ’’ (=current)
example: this will be the unit for masklist

frame -- frequency frame for spectral axis
options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,

’GEO’,’GALACTO’,’LGROUP’,’CMB’
default: currently set frame in scantable
WARNING: frame=’REST’ not yet implemented

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: currently set doppler in scantable

calmode -- calibration mode
options: ’ps’,’nod’,’fs’,’fsotf’,’quotient’,’none’
default: ’none’
example: choose mode ’none’ if you have

already calibrated and want to
try baselines or averaging

scanlist -- list of scan numbers to process
default: [] (use all scans)
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example: [21,22,23,24]
this selection is in addition to field,
iflist, and pollist

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist,
iflist, and pollist

iflist -- list of IF id numbers to select
default: [] (use all IFs)
example: [15]

this selection is in addition to scanlist,
field, and pollist

pollist -- list of polarization id numbers to select
default: [] (use all polarizations)
example: [1]

this selection is in addition to scanlist,
field, and iflist

channelrange -- channel range selection
default: [] (use all channel)
example: [0,5000]

Note that specified values are recognized as
’channel’ regardless of the value of specunit

average -- averaging on spectral data
options: (bool) True,False
default: False

>>> average expandable parameter
scanaverage -- average integrations within scans

options: (bool) True,False
default: False
example: if True, this happens in read-in

For GBT, set False!
timeaverage -- average times for multiple scan cycles

options: (bool) True,False
default: False
example: if True, this happens after calibration

tweight -- weighting for time average
options: ’none’

’var’ (1/var(spec) weighted)
’tsys’ (1/Tsys**2 weighted)
’tint’ (integration time weighted)
’tintsys’ (Tint/Tsys**2)
’median’ ( median averaging)

default: ’none’
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averageall -- average multi-resolution spectra
spectra are averaged by referring
their frequency coverage

default: False
polaverage -- average polarizations

options: (bool) True,False
default: False

pweight -- weighting for polarization average
options: ’none’

’var’ (1/var(spec) weighted)
’tsys’ (1/Tsys**2 weighted)

tau -- atmospheric optical depth
default: 0.0 (no correction)

kernel -- type of spectral smoothing
options: ’none’,’hanning’,’gaussian’,’boxcar’
default: ’none’

>>> kernel expandable parameter
kwidth -- width of spectral smoothing kernel

options: (int) in channels
default: 5
example: 5 or 10 seems to be popular for boxcar

ignored for hanning (fixed at 5 chans)
(0 will turn off gaussian or boxcar)

blmode -- mode for baseline fitting
options: (str) ’none’,’auto’,’list’,’interact’
default: ’none’
example: blmode=’auto’ uses expandable parameters

in addition to blpoly to run linefinder
to determine line-free regions
USE WITH CARE! May need to tweak the parameters,
thresh, avg_limit, and edge.
blmode=’interact’ allows adding and deleting mask
regions by drawing rectangles on the plot with mouse.
Draw a rectangle with LEFT-mouse to ADD the region to
the mask and with RIGHT-mouse to DELETE the region.

>>> blmode expandable parameters
thresh -- S/N threshold for linefinder

default: 5
example: a single channel S/N ratio above which the channel is

considered to be a detection
avg_limit -- channel averaging for broad lines
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default: 4
example: a number of consecutive channels not greater than

this parameter can be averaged to search for broad lines
edge -- channels to drop at beginning and end of spectrum

default: 0
example: [1000] drops 1000 channels at beginning AND end

[1000,500] drops 1000 from beginning and 500 from end

Note: For bad baselines threshold should be increased,
and avg_limit decreased (or even switched off completely by
setting this parameter to 1) to avoid detecting baseline
undulations instead of real lines.

blpoly -- order of baseline polynomial
options: (int) (<0 turns off baseline fitting)
default: 5
example: typically in range 2-9 (higher values

seem to be needed for GBT)
verifycal -- verify the results of calibration

options: (bool) True,False
default: False
WARNING: Currently verifying parameters just asks whether you

accept the displayed calibraion/fit and if not,
continues without doing any calibraion/baseline fit.

verifysm -- verify the results of smoothing
options: (bool) True,False
default: False

verifybl -- verify the results of baseline fitting
options: (bool) True,False
default: False

masklist -- list of mask regions to INCLUDE in BASELINE fit
default: [] (entire spectrum)
example: [[1000,3000],[5000,7000]]
if blmode=’auto’ then this mask will be applied
before fitting

outfile -- Name of output file
default: ’’ (<sdfile>_cal)

outform -- format of output file
options: ’ASCII’,’SDFITS’,’MS’,’ASAP’
default: ’ASAP’
example: the ASAP format is easiest for further sd

processing; use MS for CASA imaging.
If ASCII, then will append some stuff to
the outfile name

overwrite -- overwrite the output file if already exists
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options: (bool) True,False
default: False
WARNING: if outform=’ASCII’, this parameter is ignored

plotlevel -- control for plotting of results
options: (int) 0=none, 1=some, 2=more, <0=hardcopy
default: 0 (no plotting)
example: plotlevel<0 as abs(plotlevel), e.g.

-1 => hardcopy of final plot (will be named
<outfile>_calspec.eps)

WARNING: be careful plotting in fsotf mode!

DESCRIPTION:

Task sdcal performs data selection, calibration, and/or spectral baseline fitting for single-dish
spectra. This task internally calls the tasks sdaverage, sdsmooth, and sdbaseline, and it can
be used to run all the three steps in one task execution. By setting calmode=’none’ one can run
sdcal on already calibrated data for further selection, averaging and atmospheric optical depth
correction. See the sdaverage description for information on the fluxunit conversion and the
telescopeparm parameter. To save the output spectra within a certain range of channels, you
set the range in channelrange. Averaging of multi-resolution spectra can be achieved by setting
the sub-parameter of average, averageall, to True. It generally handles multi-IFs by selecting
overlaps in IFs and assigning new IFs in the output spectra.

R3.0 New Features:

New parameters verifycal, verifysm, and verifybl are added. These parameters correspond to
parameter verify in sdaverage, sdsmooth, and sdbaseline, respectively.

A.2.1.5 sdcoadd

Keyword arguments:
sdfilelist -- list of names of input SD dataset
fluxunit -- units for line flux

options: ’K’,’Jy’,’’
default: ’’ (keep current fluxunit)
WARNING: For GBT data, see description below.

>>> fluxunit expandable parameter
telescopeparm -- the telescope characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)
example: if telescopeparm=’’, it tries to get the telescope

name from the data.
Full antenna parameters (diameter,ap.eff.) known
to ASAP are
’ATPKSMB’, ’ATPKSHOH’, ’ATMOPRA’, ’DSS-43’,
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’CEDUNA’,’HOBART’. For GBT, it fixes default fluxunit
to ’K’ first then convert to a new fluxunit.
telescopeparm=[104.9,0.43] diameter(m), ap.eff.
telescopeparm=[0.743] gain in Jy/K
telescopeparm=’FIX’ to change default fluxunit
see description below

specunit -- units for spectral axis
options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’
default: ’’ (=current)
example: this will be the units for masklist

frame -- frequency frame for spectral axis
options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,

’GEO’,’GALACTO’,’LGROUP’,’CMB’
default: currently set frame in scantable
WARNING: frame=’REST’ not yet implemented

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: currently sets doppler in scantable

scanaverage -- average integrations within scans
options: (bool) True,False
default: False
example: if True, this happens in read-in

For GBT, set False!
timeaverage -- average times for multiple scan cycles

options: (bool) True,False
default: False
example: if True, this happens after calibration

polaverage -- average polarizations
options: (bool) True,False
default: False

outfile -- Name of output file
default: ’’ (scantable)
example:

outform -- format of output file
options: ’ASCII’,’SDFITS’,’MS’,’ASAP’
default: ’ASAP’
example: the ASAP format is easiest for further sd

processing; use MS for CASA imaging.
If ASCII, then will append some stuff to
the outfile name

overwrite -- overwrite the output file if it already exists
options: (bool) True,False
default: False
WARNING: if outform=’ASCII’, this parameter is ignored
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DESCRIPTION:

Task sdcoadd merges multiple single dish spectral data given by a list of spectral data file names in
any of the following formats, ASAP, MS2, and SDFITS. The units of line flux, the units of spectral
axis, frame, and doppler are assumed to be those of the first one in the sdfilelist if not specified.
The timaverage and polaverage are used to perform time and polarization averaging over scans
on the merged scantable to obtained co-added spectra before saving to a file on disk.

A.2.1.6 sdflag

Keyword arguments:
sdfile -- name of input SD dataset
scanlist -- list of scan numbers to process

default: [] (use all scans)
example: [21,22,23,24]

this selection is in addition to field
and iflist

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist
and iflist

iflist -- list of IF id numbers to select
default: [] (use all IFs)
example: [15]

this selection is in addition to scanlist
and field

pollist -- list of polarization id numbers to select
default: [] (use all polarizations)
example: [1]

this selection is in addition to scanlist,
field, and iflist

maskflag -- list of mask regions to apply flag/unflag
default: [] (entire spectrum)
example: [[1000,3000],[5000,7000]]
WARNING: if one or more rows are given in flagrow,

this parameter is ignored
flagrow -- list of row numbers to apply flag/unflag (row-based)

default: [] (no row selection)
example: [0, 2, 3]
WARNING: this parameter is effective only when

one or more row numbers are given explicitly
flagmode -- flag mode

default: ’flag’
options: ’flag’,’unflag’,’restore’
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in ’restore’ mode, a history of flagging is
displayed and current flag state is returned

outfile -- Name of output file
default: ’’ (<sdfile>_f)

outform -- format of output file
options: ’ASCII’,’SDFITS’,’MS’,’ASAP’
default: ’ASAP’
example: the ASAP format is easiest for further sd

processing; use MS for CASA imaging.
overwrite -- overwrite the output file if it already exists

options: (bool) True,False
default: False
WARNING: if outform=’ASCII’, this parameter is ignored

plotlevel -- control for plotting of results
options: (int) 0=none, 1=some, 2=more, <0=hardcopy
default: 0 (no plotting)
example: plotlevel<0 as abs(plotlevel), e.g.

-1 => hardcopy of final plot (will be named
<outfile>_flag.eps)

WARNING: be careful plotting in fsotf mode!

-------------------------------------------------------------------
Returns: Current values of maskflag for each spectrum as a list,

only if flagmode is set to ’restore’. Note that the
’restore’ mode refers to scanlist, iflist, and pollist.

DESCRIPTION:

Task sdflag performs simple channel/row based flagging on spectra. Channel based flagging and
row based flagging can not be executed simultaneously: channel based flagging can be executed
using the flag regions specified in maskflag if no row is given in flagrow, whereas row based flagging
is executed when one or more rows are specified in flagrow. This is not interactive flagging. If
plotlevel>=1, the task asks you if you really apply the flags before it is actually written to the data
with a plot indicating flagged regions. The flags are not written to the current (input) datasets
unless outfile=’none’. Flagged regions (or values of flag masks already applied) of the input
data can be listed by setting flagmode=’restore’. It will print out a summary on the screen and
returns maskflag values for each spectrum as a list. Please note that this task is still experimental.

A.2.1.7 sdfit

Keyword arguments:
sdfile -- name of input SD dataset

default: none - must input file name
example: ’mysd.asap’
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See sdcal for allowed formats.
fluxunit -- units for line flux

options: (str) ’K’,’Jy’,’’
default: ’’ (keep current fluxunit)
WARNING: For GBT data, see description below.

>>> fluxunit expandable parameter
telescopeparm -- the telescope characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)
example: if telescopeparm=’’, it tries to get the telescope

name from the data.
Full antenna parameters (diameter,ap.eff.) known
to ASAP are
’ATPKSMB’, ’ATPKSHOH’, ’ATMOPRA’, ’DSS-43’,
’CEDUNA’,’HOBART’. For GBT, it fixes default fluxunit
to ’K’ first then converts to a new fluxunit.
telescopeparm=[104.9,0.43] diameter(m), ap.eff.
telescopeparm=[0.743] gain in Jy/K
telescopeparm=’FIX’ to change default fluxunit
see description below

specunit -- units for spectral axis
options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’,’’
default: ’’ (=current)

frame -- frequency frame for spectral axis
options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,

’GEO’,’GALACTO’,’LGROUP’,’CMB’
default: currently set frame in scantable
WARNING: frame=’REST’ not yet implemented

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: currently set doppler in scantable

scanlist -- list of scan numbers to process
default: [] (use all scans)
example: [21,22,23,24]

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist
and iflist

iflist -- list of IF id numbers to select
default: [] (use all IFs)
example: [15]

pollist -- list of polarization id numbers to select
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default: [] (use all polarizations)
example: [1]

fitmode -- mode for fitting
options: (str) ’list’,’auto’,’interact’
default: ’auto’
example: ’list’ will use maskline to define regions to

fit for lines with nfit in each
’auto’ will use the linefinder to fit for lines
using the following parameters
’interact’ allows adding and deleting mask
regions by drawing rectangles on the plot
with the mouse. Draw a rectangle with LEFT-mouse
to ADD the region to the mask and with RIGHT-mouse
to DELETE the region.

>>> fitmode expandable parameters
thresh -- S/N threshold for linefinder

default: 5
example: a single channel S/N ratio above which the channel

is considered to be a detection
min_nchan -- minimum number of consecutive channels for linefinder

default: 3
example: minimum number of consecutive channels required to

pass threshold
avg_limit -- channel averaging for broad lines

default: 4
example: a number of consecutive channels not greater than

this parameter can be averaged to search for broad
lines

box_size -- running mean box size
default: 0.2
example: a running mean box size specified as a fraction

of the total spectrum length
edge -- channels to drop at beginning and end of spectrum

default: 0
example: [1000] drops 1000 channels at beginning AND end

[1000,500] drops 1000 from beginning and 500 from
end

Note: For bad baselines thresh should be increased,
and avg_limit decreased (or even switched off completely by
setting this parameter to 1) to avoid detecting baseline
undulations instead of real lines.

maskline -- list of mask regions to INCLUDE in LINE fitting
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default: all
example: maskline=[[3900,4300]] for a single region, or

maskline=[[3900,4300],[5000,5400]] for two, etc.
invertmask -- invert mask (EXCLUDE masklist instead)

options: (bool) True, False
default: False
example: invertmask=True, then will make one region that is

the exclusion of the maskline regions
nfit -- list of number of gaussian lines to fit in in maskline region

default: 0 (no fitting)
example: nfit=[1] for single line in single region,

nfit=[2] for two lines in single region,
nfit=[1,1] for single lines in each of two regions, etc.

fitfile -- name of output file for fit results
default: no output fit file
example: ’mysd.fit’

overwrite -- overwrite the fitfile if already exists
options: (bool) True, False
default: False

plotlevel -- control for plotting of results
options: (int) 0=none, 1=some, 2=more
default: 0 (no plotting)
example: plotlevel=1 plots fit

plotlevel=2 plots fit and residual
no hardcopy available for fitter

WARNING: be careful plotting OTF data with lots of fields

-------------------------------------------------------------------
Returns a Python dictionary of line statistics

keys: ’peak’,’cent’,’fwhm’,’nfit’
example: each value is a list of lists with one list of

2 entries [fitvalue,error] per component.
e.g. xstat[’peak’]=[[234.9, 4.8],[234.2, 5.3]]
for 2 components.

DESCRIPTION:

Task sdfit is a basic line-fitter for single-dish spectra. It assumes that the spectra have been
calibrated in sdaverage or sdcal.

Furthermore, it assumes that any selection of scans, IFs, polarizations, and time and channel
averaging/smoothing has also already been done (in other sd tasks) as there are no controls for
these. Note that you can use sdsave to do selection and write out a new scantable.

Note that multiple scans and IFs can in principle be handled, but we recommend that you use
scanlist, field, and iflist to give a single selection for each fit.
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For complicated spectra, sdfit does not do a good job of ”auto-guessing” the starting model for
the fit. We recommend you use sd.fitter in the toolkit which has more options, such as fixing
components in the fit and supplying starting guesses by hand.

See the sdaverage description for information on fluxunit conversion and the telescopeparm
parameter.

R3.0 New Features: Interactive mask selection for spectral line fitting is enabled with fitmode=’interact’.

A.2.1.8 sdimaging

Keyword arguments:
sdfile -- name of input SD (MS) dataset
specunit -- units for spectral axis

options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’
default: ’channel’
example: these will be the units for nchan, start, and step

>>> specunit=’km/s’ expandable parameters
restfreq -- rest frequency

default: ’’ (refer input data)
example: 1.0e11, ’100GHz’

scanlist -- list of scan numbers to process
default: [] (use all scans)
example: [21,22,23,24]

this selection is in addition to field and spw
field -- field id or selection string for selecting scans by name

default: 0
example: ’FLS3a’, 0

this selection is in addition to scanlist and spw
spw -- spectral window id

default: 0
example: 1

this selection is in addition to scanlist and field
antenna -- select data based on antenna name(s) or id(s)

default: 0
example: ’0’, ’DV01’

stokes -- select data based on stokes or polarization type
default: ’’ (use all polarizations)
example: ’XX’

gridfunction -- gridding function for imaging
options: ’BOX’ (Box-car), ’SF’ (Spheroidal), ’PB’ (Primary-beam)
default: ’BOX’
example: ’SF’
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imagename -- output image name
default: none
example: ’mySDimage.im’

overwrite -- overwrite option for imagename
default: False (not overwrite)
options: True, False
example: if True, existing file will be overwritten

imsize -- x and y image size in pixels, symmetric for single value
default: [256,256]
example: imsize=200 (equivalent to [200,200])

cell -- x and y cell size. default unit arcmin
default: [’1.0arcmin’, ’1.0arcmin’]
example: cell=[’0.2arcmin, 0.2arcmin’]

cell=’0.2arcmin’ (equivalent to example above)
dochannelmap -- channel map image or total power image

default: False (total power)
options: True (channel map), False

>>> dochannelmap=True expandable parameters
nchan -- number of spectral channel for created image

default: 1
example: to do total power imaging, set -1

start -- reference value of start channel (in units of specunit)
default: 0 (0th channel if specunit=’channel’)
example: 100

step -- width of each spectral channel for created image
default: 1 (channel width of 1 channel if specunit=’channel’)
aexample: 100

phasecenter -- image phase center: direction measure or fieldid
default: 0
example: ’J2000 13h44m00 -17d02m00’, ’AZEL -123d48m29 15d41m41’

ephemsrcname -- ephemeris source name for moving source
default: ’’
if the source name in the data matches one of the known
solar objects by the system, this task automatically set
the source name.
example: ’moon’

pointingcolumn -- pointing data column to use
option: ’direction’, ’target’, ’pointing_offset’, ’source_offset’, ’encoder’
default: ’direction’

DESCRIPTION:

Task sdimaging creates an image from input single-dish data. The input can be either total power
or spectral data. Currently, this task directly accesses the Measurement Set data only because of
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the data access efficiently. It differs from other single-dish tasks that mostly operate on the ASAP
scantable data format.

Units of spectral axis can be specified via a parameter specunit. Allowed values for specunit are
’channel’, ’GHz’, ’MHz’, ’kHz’, ’Hz’, and ’km/s’. This parameter is also used as the units of the
parameter start and step that specify reference value of start channel and width of each spectral
channel for channel map, respectively.

Selection of the antennas can be made by setting antennaid(s) or antenna name(s) in string (e.g.
’0’, ’DV01’,etc.). Note that the task doesn’t work for multiple antenna selection and/or multiple
field selection.

The parameter gridfunction sets gridding function for imaging. Currently, the task supports
’BOX’ (Box-car), ’SF’ (Prolate Spheroidal Wave Function), and ’PB’ (Primary Beam). For ’PB’,
correct antenna information should be included in input file.

A.2.1.9 sdlist

Keyword arguments:
sdfile -- name of input SD dataset
scanaverage -- average integrations within scans

options: (bool) True,False
default: False
example: if True, this happens in read-in

For GBT, set False!
listfile -- Name of output file for summary list

default: ’’ (no output file)
example: ’mysd_summary.txt’

overwrite -- overwrite the output file if already exists
options: (bool) True,False
default: False

DESCRIPTION:

Task sdlist lists the scan summary of the dataset after importing as a scantable into ASAP. It
will optionally output this summary as file.

Note that if your PAGER environment variable is set to ’less’ and the ’verbose’ ASAP environment
variable to True (the default), then the screen version of the summary will page. You can disable
this for sdlist by setting sd.rcParams[’verbose’]=False before running sdlist. Set it back
afterward if you want lots of information.

A.2.1.10 sdmath

Keyword arguments:
expr -- Mathematical expression using scantables
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fluxunit -- units for line flux
options: ’K’,’Jy’,’’
default: ’’ (keep current fluxunit)
WARNING: For GBT data, see description below.

>>> fluxunit expandable parameter
telescopeparm -- the telescope characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)
example: if telescopeparm=’’, it tries to get the telescope

name from the data.
Full antenna parameters (diameter,ap.eff.) known
to ASAP are
’ATPKSMB’, ’ATPKSHOH’, ’ATMOPRA’, ’DSS-43’,
’CEDUNA’,’HOBART’. For GBT, it fixes default fluxunit
to ’K’ first then converts to a new fluxunit.
telescopeparm=[104.9,0.43] diameter(m), ap.eff.
telescopeparm=[0.743] gain in Jy/K
telescopeparm=’FIX’ to change default fluxunit
see description below

specunit -- units for spectral axis
options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’
default: ’’ (=current)
example: these will be the units for masklist

frame -- frequency frame for spectral axis
options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,

’GEO’,’GALACTO’,’LGROUP’,’CMB’
default: currently set frame in scantable
WARNING: frame=’REST’ not yet implemented

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: currently set doppler in scantable

scanlist -- list of scan numbers to process
default: [] (use all scans)
example: [21,22,23,24]

this selection is in addition to field,
iflist, and pollist

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist,
iflist, and pollist

iflist -- list of IF id numbers to select
default: [] (use all IFs)
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example: [15]
this selection is in addition to scanlist,
field, and pollist

pollist -- list of polarization id numbers to select
default: [] (use all polarizations)
example: [1]
this selection is in addition to scanlist,
field, and iflist

outfile -- Name of output file
default: ’’ (<sdfile>_cal)

outform -- format of output file
options: ’ASCII’,’SDFITS’,’MS’,’ASAP’
default: ’ASAP’
example: the ASAP format is easiest for further sd

processing; use MS for CASA imaging.
If ASCII, then will append some stuff to
the outfile name

overwrite -- overwrite the output file if already exists
options: (bool) True,False
default: False
WARNING: if outform=’ASCII’, this parameter is ignored

DESCRIPTION:

Task sdmath executes a mathematical expression for single dish spectra. The spectral data file can
be any of the formats supported by ASAP (scantable, MS, rpfits, and SDFITS). In the expression,
these file names should be put inside of single or double quotes.

The fluxunit, specunit, and frame can be set, otherwise, the current settings of the first spectral
data in the expression are used. Other selections (e.g. scan No, . IF, Pol) also apply to all the
spectral data in the expression, so if any of the data are not selected, the task will produce no
output.

Example:

# do on-off/off calculation
expr=’("orion_on_data.asap"-"orion_off_data.asap")/"orion_off_data.asap"
outfile=’orion_cal.asap’
sdmath()

A.2.1.11 sdplot

Keyword arguments:
sdfile -- name of input SD dataset
fluxunit -- units for line flux
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options: ’K’,’Jy’,’’
default: ’’ (keep current fluxunit)
WARNING: For GBT data, see description below.

>>> fluxunit expandable parameter
telescopeparm -- the telescope characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)
example: if telescopeparm=’’, it tries to get the telescope

name from the data.
Full antenna parameters (diameter,ap.eff.) known
to ASAP are
’ATPKSMB’, ’ATPKSHOH’, ’ATMOPRA’, ’DSS-43’,
’CEDUNA’,’HOBART’. For GBT, it fixes default fluxunit
to ’K’ first then converts to a new fluxunit.
telescopeparm=[104.9,0.43] diameter(m), ap.eff.
telescopeparm=[0.743] gain in Jy/K
telescopeparm=’FIX’ to change default fluxunit
see description below

specunit -- units for spectral axis
options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’
default: ’’ (=current)
example: these will be the units for masklist

restfreq -- rest frequency used for specunit=’km/s’
default: ’’ (use current setting)
example: 4.6e10 (float value), ’46GHz’ (string with unit)

Allowed units are ’THz’, ’GHz’, ’MHz’, ’kHz’, and ’Hz’
frame -- frequency frame for spectral axis

options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,
’GEO’,’GALACTO’,’LGROUP’,’CMB’

default: set current frame in scantable
WARNING: frame=’REST’ not yet implemented

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: set current doppler in scantable

scanlist -- list of scan numbers to process
default: [] (use all scans)
example: [21,22,23,24]

this selection is in addition to field
iflist and pollist

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist
iflist and pollist
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iflist -- list of IF id numbers to select
default: [] (use all IFs)
example: [15]

this selection is in addition to scanlist
field and pollist

pollist -- list of polarization id numbers to select
default: [] (use all polarizations)
example: [1]

this selection is in addition to scanlist,
field, and iflist

scanaverage -- average integs within scans
options: (bool) True,False
default: False

timeaverage -- average times for multiple scan cycles
options: (bool) True,False
default: False
example: if True, this happens after calibration

>>>timeaverage expandable parameter
tweight -- weighting for time average

options: ’none’
’var’ (1/var(spec) weighted)
’tsys’ (1/Tsys**2 weighted)
’tint’ (integration time weighted)
’tintsys’ (Tint/Tsys**2)
’median’ ( median averaging)

default: ’none’

polaverage -- average polarizations
options: (bool) True,False
default: False

>>>polaverage expandable parameter
pweight -- weighting for polarization average

options: ’none’
’var’ (1/var(spec) weighted)
’tsys’ (1/Tsys**2 weighted)

kernel -- type of spectral smoothing
options: ’hanning’,’gaussian’,’boxcar’, ’none’
default: ’none’

>>>kernel expandable parameter
kwidth -- width of spectral smoothing kernel

options: (int) in channels
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default: 5
example: 5 or 10 seem to be popular for boxcar

ignored for hanning (fixed at 5 chans)
(0 will turn off gaussian or boxcar)

plottype -- type of plot
options: ’spectra’,’totalpower’,’pointing’,’azel’
default: ’spectra’

stack -- code for stacking on single plot for spectral plotting
options: ’p’,’b’,’i’,’t’,’s’ or

’pol’, ’beam’, ’if’, ’time’, ’scan’
default: ’p’
example: maximum of 25 stacked spectra

stack by pol, beam, if, time, scan
panel -- code for splitting into multiple panels for spectral plotting

options: ’p’,’b’,’i’,’t’,’s’ or
’pol’, ’beam’, ’if’, ’time’, ’scan’

default: ’i’
example: maximum of 25 panels

panel by pol, beam, if, time, scan
flrange -- range for flux axis of plot for spectral plotting

options: (list) [min,max]
default: [] (full range)
example: flrange=[-0.1,2.0] if ’K’

assumes current fluxunit
sprange -- range for spectral axis of plot

options: (list) [min,max]
default: [] (full range)
example: sprange=[42.1,42.5] if ’GHz’

assumes current specunit
linecat -- control for line catalog plotting for spectral plotting

options: (str) ’all’,’none’ or by molecule
default: ’none’ (no lines plotted)
example: linecat=’SiO’ for SiO lines

linecat=’*OH’ for alcohols
uses sprange to limit catalog

WARNING: specunit must be in frequency (*Hz)
to plot from the line catalog!
and must be ’GHz’ or ’MHz’ to use
sprange to limit catalog

linedop -- doppler offset for line catalog plotting (spectral plotting)
options: (float) doppler velocity (km/s)
default: 0.0
example: linedop=-30.0

colormap -- the colours to be used for plot lines.
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default: None
example: colormap="green red black cyan magenta" (html standard)

colormap="g r k c m" (abbreviation)
colormap="#008000 #00FFFF #FF0090" (RGB tuple)
The plotter will cycle through these colours
when lines are overlaid (stacking mode).

linestyles -- the linestyles to be used for plot lines.
default: None
example: linestyles="line dashed dotted dashdot dashdotdot dashdashdot".

The plotter will cycle through these linestyles
when lines are overlaid (stacking mode).
WARNING: Linestyles can be specified only one color has been set.

linewidth -- width of plotted lines.
default: None
example: linewidth=1 (integer)

linewidth=0.75 (double)
histogram -- plot histogram

options: (bool) True, False
default: False

plotfile -- file name for hardcopy output
options: (str) filename.eps,.ps,.png
default: ’’ (no hardcopy)
example: ’specplot.eps’,’specplot.png’

Note this autodetects the format from
the suffix (.eps,.ps,.png).

overwrite -- overwrite the output file if already exists
options: (bool) True,False
default: False

DESCRIPTION:

Task sdplot displays single-dish spectra. It assumes that the spectra have been calibrated in sdcal.
It does allow selection of scans, IFs, polarizations, and some time and channel averaging/smoothing
options also, but does not write data.

*** Only apply to ’spectra’ plottype ***

Some header information of the data are plotted at top. Note that colormap and linestyles
cannot be controlled at this time. ’linestyles’ is ignored if both of them are specified. Some
plot options, like annotation and changing titles, legends, fonts, and the like are not supported in
this task. You should use sd.plotter from the ASAP toolkit directly for this.

This task uses the JPL line catalog as supplied by ASAP. If you wish to use a different catalog,
or have it plot the line IDs from top or bottom (rather than alternating), then you will need to
explore the sd toolkit also. See § A.3.9 for more information.

Note that multiple scans and IFs can in principle be handled through stacking and paneling, but
this is fairly rudimentary at present and you have little control of what happens in individual



APPENDIX A. APPENDIX: SINGLE DISH DATA PROCESSING 338

panels. We recommend that you use scanlist, field, and iflist to give a single selection for
each run.

After plotting, you can display a spectral value on a pop-up window along with mouse movement.
Click the LEFT-mouse button over a spectrum to select it, and drag mouse in the panel to output
its value at the x-position of mouse cursor. The selection is released when you release the mouse
button.

The task sdplot adds an additional toolbar to ASAP plotter which has three buttons, ’spec value’,
’statistics’, and ’Quit’. When the ’spec value’ button is pressed and activated, you can display a
spectral value on the toolbar along with mouse movement. Click the LEFT-mouse button over a
spectrum to select it, and drag mouse in the panel to output its value at the x-position of mouse
cursor. The selection is released when you release the mouse button. When ’statistic’ button is
pressed and activated, you can get statistic values of a channel region selected by mouse. Select a
rectangle region with LEFT/RIGHT-mouse buttons to SELECT/EXCLUDE the channel region to
calculate statistics for the all spectra plotted. The results are printed on the casapy console. Press
’Quit’ button to close the plotter.

*** other plottype options ***

plottype=’totalpower’ is used to plot the total power data. and only plot option is amplitude
versus data row number. plottype=’azel’ plots azimuth and elevation tracks of the source.
plottype=’pointing’ plots antenna pointing. Currently most of the plotting parameters are
ignored for these modes.

See the sdaverage description for information on fluxunit conversion and the telescopeparm
parameter.

WARNING: be careful plotting OTF (on-the-fly) mosaic data with lots of fields!

A.2.1.12 sdsave

Keyword arguments:
sdfile -- name of input SD dataset
rowlist -- list of row numbers to process

default: [] (use all rows)
example: [0,2,4,6]

For expert users only!
this selection is applied first, and then
followed by the selection with scans, fields,
ifs, and polarizations.

scanlist -- list of scans to process
default: [] (use all scans)
example: [21,22,23,24]

this selection is in addition to field,
iflist, and pollist

field -- selection string for selecting scans by name
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default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist,
iflist, and pollist

iflist -- list of IF id numbers to select
default: [] (use all IFs)
example: [15]

this selection is in addition to scanlist,
field, and pollist

pollist -- list of polarization id numbers to select
default: [] (use all polarizations)
example: [1]

this selection is in addition to scanlist,
field, and iflist

scanaverage -- average integrations within scans
options: (bool) True,False
default: False
example: if True, average integrations before it is saved

timeaverage -- average times for multiple scan cycles
options: (bool) True,False
default: False

>>>timeaverage expandable parameter
tweight -- weighting for time average

options: ’none’
’var’ (1/var(spec) weighted)
’tsys’ (1/Tsys**2 weighted)
’tint’ (integration time weighted)
’tintsys’ (Tint/Tsys**2)
’median’ (median averaging)

default: ’none’

polaverage -- average polarizations
options: (bool) True,False
default: False

>>>polaverage expandable parameter
pweight -- weighting for polarization average

options: ’none’
’var’ (1/var(spec) weighted)
’tsys’ (1/Tsys**2 weighted)

outfile -- name of output dataset
default: ’’

outform -- output data format
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default: ’ASAP’
Options: ’ASAP’, ’MS2’, ’SDFITS’, ’ASCII’

overwrite -- overwrite the output file if already exists
options: (bool) True,False
default: False
WARNING: if outform=’ASCII’, this parameter is ignored

DESCRIPTION:

Task sdsave writes the single dish data to a disk file in specified format (ASAP, MS2, SDFITS,
ASCII). It is possible to save the subset of the data by selecting row numbers, scan numbers, IF
ids and field names. The ASAP (scantable) format is recommended for further analysis using sd
tool. For further imaging using imager, save the data to the Measurement Set (MS2).

R3.0 New Features: The new parameter rowlist is added to enable data selection based on row
number in the Measurement Set for data saving. Notice that data should be treated carefully when
applying row based selection, since row numbers can be changed easily by sorting, prior selection,
etc. Therefore, this parameter is expected to be used by expert users only .

A.2.1.13 sdscale

Keyword arguments:
sdfile -- name of input SD dataset
factor -- scaling factor

default: 1 (no scaling)
scaletsys -- scaling of associated Tsys

default: False
outfile -- output file name

outfile=’’ will write the data to a file named,
<sdfile>_scaled<factor>
default: ’’

overwrite -- overwrite the output file if already exists
options: (bool) True,False
default: False

DESCRIPTION:

Task sdscale performs scaling of single-dish spectra. By setting scaletsys = True, associated
Tsys is also scaled. Tsys information are written into the file ’sdscale.log’ as well as they are
displayed in the terminal window. The infile can be any of ASAP, MS, SDFITS, or RPFITS
format. If outfile name is given or outfile=’’(default), the scaled data is written to a new file
with the same format as the input data (Note: in case of the RPFITS format input data, it will be
written to SDFITS format).
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A.2.1.14 sdstat

Keyword arguments:
sdfile -- name of input SD dataset

default: none - must input file name
example: ’mysd.asap’

See sdcal for allowed formats.
fluxunit -- units for line flux

options: (str) ’K’,’Jy’,’’
default: ’’ (keep current fluxunit)
WARNING: For GBT data, see description below.

>>> fluxunit expandable parameter
telescopeparm -- the telescope characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)
example: if telescopeparm=’’, it tries to get the telescope

name from the data.
Full antenna parameters (diameter,ap.eff.) known
to ASAP are
’ATPKSMB’, ’ATPKSHOH’, ’ATMOPRA’, ’DSS-43’,
’CEDUNA’,’HOBART’. For GBT, it fixes default fluxunit
to ’K’ first then convert to a new fluxunit.
telescopeparm=[104.9,0.43] diameter(m), ap.eff.
telescopeparm=[0.743] gain in Jy/K
telescopeparm=’FIX’ to change default fluxunit
see description below

specunit -- units for spectral axis
options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’,’’
default: ’’ (=current)

frame -- frequency frame for spectral axis
options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,

’GEO’,’GALACTO’,’LGROUP’,’CMB’
default: currently sets frame in scantable
WARNING: frame=’REST’ not yet implemented

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: currently sets doppler in scantable

scanlist -- list of scan numbers to process
default: [] (use all scans)
example: [21,22,23,24]

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist
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iflist, and pollist
iflist -- list of IF id numbers to select

default: [] (use all IFs)
example: [15]

this selection is in addition to field, scanlist
and pollist

pollist -- list of polarization id numbers to select
default: [] (use all pols)
example: [1]

this selection is in addition to field, scanlist
and iflist

masklist -- list of mask regions to INCLUDE in stats
default: [] (whole spectrum)
example: [4000,4500] for one region

[[1000,3000],[5000,7000]]
these must be pairs of [lo,hi] boundaries

invertmask -- invert mask (EXCLUDE masklist instead)
options: (bool) True,False

default: false
interactive -- determines interactive masking

options: (bool) True,False
default: False
example: interactive=True allows adding and deleting mask

regions by drawing rectangles on the plot with mouse.
Draw a rectangle with LEFT-mouse to ADD the region to
the mask and with RIGHT-mouse to DELETE the region.

statfile -- name of output file for line statistics
default: ’’ (no output statistics file)
example: ’stat.txt’

format -- format string to print statistic values
default: ’3.3f’

overwrite -- overwrites the statistics file if already exists
options: (bool) True,False
default: False

-------------------------------------------------------------------
Returns: a Python dictionary of line statistics

keys: ’rms’,’stddev’,’max’,’max_abscissa’, ’min’,
’min_abscissa’, ’sum’,’median’,’mean’,
’totint’,’eqw’,

example: xstat=sdstat(); print "rms = ",xstat[’rms’]
these can be used for testing in scripts or
for regression

’max_abscissa’ and ’min_abscissa’ refer to the abscissa
(channel/frequency/velocity) of max and min intensity.
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’totint’ is the integrated intensity (sum*dx)
where dx is the abscissa interval in ’specunit’.
’eqw’ is equivalent width (totint/mag) where mag
is either max or min depending on which has
greater magnitude.
Note that both ’totint’ and ’eqw’ are quantities
(python dictionaries with keys, ’unit’ and ’value’).

DESCRIPTION:

Task sdstat computes basic statistics (rms,mean,median,sum) for single-dish spectra. It assumes
that the spectra have been calibrated. Furthermore, it assumes that any time and channel aver-
aging/smoothing has also already been done as there are no controls for these. Note that you can
run sdcal with calmode=’none’ and do selection, writing out a new scantable. The calculated
statistics are written into a file specified by statfile. Interactive mask specification is possible
with interactive=True. Integrated intensity will be shown on the screen and will be included in
the saved statfile (but not yet available in the returned dictionary).

Note that multiple scans and IFs can in principle be handled, but we recommend that you use
scanlist, field, iflist, and pollist to give a single selection for each run.

See the sdcal description for information on the fluxunit conversion and the telescopeparm
parameter.

WARNING: If you do have multiple scantable rows, then xstat values will be lists.

R3.0 New Features: The new parameter format is added. The parameter enable user specified
output format to print statistic values.

A.2.1.15 sdtpimaging

Keyword arguments:
sdfile -- name of input SD (MS) dataset
calmode -- calibration mode (currently only baseline subtraction)

options: ’baseline’,’none’
default: ’none’
example: choose mode ’none’ if you have

already calibrated and want to do
plotting nd/or imaging

>>> calmode=’baseline’ expandable parameters
masklist -- mask in numbers of rows from each edge of each scan to

be included for baseline fitting
default: none
example: [30,30] or [30]
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used first 30 rows and last 30 rows of each scan for
the baseline

blpoly -- polynomial order for the baseline fit
default: 1

flaglist -- list of scan numbers to flag (ranges can be accepted)
default: [] (use all scans)
example: [[0,3],80]

flag the scan range [0,3] = [0,1,2,3] and scan 80
antenna -- select data based on antenna name(s) or id(s) in string

default: ’’ (use all antennas)
example: ’0,1’, ’DV01’
WARNING: currently baseline subtraction properly

only one of the antennas.
stokes -- select data based on stokes or polarization type

default: ’’ (use all polarizations)
example: ’XX’

createimage -- do imaging?
default: False

>>> createimage=True expandable parameters
imagename -- output image name

default: none
example: ’mySDimage.im’

imsize -- x and y image size in pixels, symmetric for single value
default: [256,256]
example: imsize=200 (equivalent to [200,200])

cell -- x and y cell size. default unit arcmin
default: ’1.0arcmin’
example: cell=[’0.2arcmin, 0.2arcmin’]

cell=’0.2arcmin’ (equivalent to example above)
phasecenter -- image phase center: direction measure or fieldid

default: 0
example: ’J2000 13h44m00 -17d02m00’, ’AZEL -123d48m29 15d41m41’

ephemsrcname -- ephemeris source name to proper shifting to center on
the moving source for imaging

default: ’’
if the source name in the data matches one of the known
solar objects by the system, this task automatically set
the source name.

example: ’moon’
pointingcolumn -- pointing data column to use

option: ’direction’, ’target’, ’pointing_offset’, ’source_offset’, ’encoder’
default: ’direction’

gridfunction -- gridding function for imaging
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options: ’BOX’ (Box-car), ’SF’ (Spheroidal), ’PB’ (Primary-beam)
default: ’BOX’
example: ’SF’

plotlevel -- control for plotting of results
options: (int) 0=none, 1=some, 2=more, <0=hardcopy

default: 0 (no plotting)
example: plotlevel<0 as abs(plotlevel), e.g.

-1: hardcopy plot (will be named <sdfile>_scans.eps)
1: plot raw data, calibrated data (for calmode=’baseline)

plot raw or if exist calibrated data (for calmode=’none’)
2: plot raw data, progressively display baseline fitting for each

scan, and final calibrated data (for calmode=’baseline’)

DESCRIPTION:

Task sdtpimaging performs data selection, calibration, and imaging for single-dish totalpower
raster scan data. This is a still experimental task made to work for the data taken at the ALMA
Testing Facility (ATF) and OSF. Currently, this task directly accesses the Measurement Set data
because of the data access efficiency. So it differs from other single-dish tasks that mostly operate
on the ASAP scantable data format. By setting calmode=’none’, one can run sdtpimaging to
plot the data (raw or calibrated, if exists) and further imaging by setting createimage=True. The
calibration available at this moment is just a simple baseline subtraction for each scan. The fitted
regions set by masklist are the common for all the scans. Selection of the antennas can be made
by setting antenna ID(s) or antenna name(s) in string (e.g. ’0’, ’0,1’, ’DV01’,etc.). For baseline
subtraction, it currently works properly for a single antenna selection. So a separate sdtpimaging
task needs to be run for each antenna. It currently assumes that the data has a single spw(=0)
and fieldid(=0). By setting flaglist, one can set flag by scan numbers to be excluded from
imaging. (Note: ’scan numbers’ are determined from state id and related to SUB SCAN column
in STATE subtable and they are typically different from SCAN NUMBER in MS.) The selection
of polarizations can be made by specifying the polarization name in stokes, such as ’XX’ or ’YY’
for linear polarizations. For example, with createimage=True, stokes=’XXYY’ will produces an
image cube with each plane contains the image of one of the polarizations while stokes=’’ or
stokes=’I’ will produces a ’total intensity’ or Stokes I image. Among the imaging sub-parameters,
ephemsrcname is used to set the name of a moving source such as planets to produce a stationary
image (can be omitted), and pointingcolumn is used to specify which pointing data column to use
for imaging.

R3.0 New Feature: A new parameter gridfunction is added. This parameter specifies the grid
function for imaging as any one of ’BOX’ (Box-car), ’SF’ (Spheroidal), or ’PB’ (Primary-beam).

A.2.1.16 sdimprocess

Keyword arguments:
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sdimages -- name of input SD (FITS or CASA) image
mode -- processing mode

default: ’basket’
options: ’basket’, ’press’

>>>mode expandable parameters
direction -- scan direction in unit of degree

default: []
example: [0.0,90.0]

masklist -- mask width for Basket-Weaving on percentage
default: 1.0 (1.0\% of map size)

numpoly -- order of polynomial fit in Presssed-out
default: 2

beamsize -- beam size
default: 0.0
example: 10.0 (interpreted as ’10arcsec’), ’1arcmin’

smoothsize -- smoothing beam in Pressed-out
default: 2.0 (interpreted as 2.0 * beamsize)
example: ’1arcmin’ (set smoothsize directly)

tmax -- maximum value used for process
default: 0.0 (no threshold in maximum)
example: 10.0 (mask data larger value than 10.0)

tmin -- minimum value used for process
default: 0.0 (no threshold in minimum)
example: -10.0 (mask data smaller value than -10.0)

imagename -- output CASA image name
default: ’’ (use default name)
example: ’output.im’

overwrite -- overwrite option for imagename
default: False (not overwrite)
options: True, False
example: if True, existing file will be overwritten

DESCRIPTION:

Task sdimprocess is used to remove a scanning noise that appears as a striped noise pattern along
the scan direction in a raster scan data.

By default, the scanning noise is removed by using the ’Basket-Weaving’ method (Emerson & Grave
1988) that requires multiple images that observed exactly the same area with different scanning
direction. If only one image is available, the ’Pressed-out’ method (Sofue & Reich 1979) can be
used to remove the scanning effect.

For ’Basket-Weaving’, scanning directions must have at least two different values. Normally, the
scanning direction should be specified for each input image. Otherwise, specified scanning directions
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will be used iteratively. The masklist is a width of masking region in the Fourier plane. It is specified
as a fraction (percentage) of the image size.

For ’Pressed-out’, the scanning direction must be unique. There are two ways to specify a size of
smoothing beam used for process. One is to specify smoothing size directly, where smoothsize is
specified as string that consists of a numerical value and an unit (e.g. ’10.0arcsec’). The value of
beamsize will be ignored in this case. Another way to specify smoothing size is to set an observed
beam size and indicate them smoothing size as a scale factor of the observed beam. In this case,
the beamsize is interpreted as the observed beam size, and the smoothsize is the scale factor. If
the beamsize is provided as float value, its unit is assumed to have ’arcsec’ units. It is also possible
to set the beamsize as string consisting of the numerical value and the unit. The smoothsize must
be float value.

The sdimages only allows an image data (CASA or FITS), and does not work with MS or Scantable.
The direction is an angle with respect to the horizontal direction in degree units. Any value may
be interpreted properly, but the value ranging from 0.0 to 180.0 will be secure. The tmax and the
tmin is used to specify a threshold that defines a range of spectral values used for processing. The
data point that has the value larger than tmax or smaller than tmin will be excluded from the
processing. The default (0.0) is no threshold. The imagename specifies an output CASA image
name. If the imagename is empty, the default name (’sdimprocess.out.im’) will be used.

A.2.1.17 sdsim

Task sdsim simulates single dish observations. Note this is a preliminary prototype task and
functionalities are limited. New functionality is actively being added, so if you have changed
versions of CASA, check the inputs carefully.

single dish simulation task (prototype):
Keyword arguments:
-- Input Model:
modelimage -- Name of an image to simulate.
modifymodel -- Modify model image WCS or flux scale

options: (bool) True,False
default: False

>>> modifymodel expandable parameters
refdirection -- Reference direction of the model image.

options: (str) ’direction’, ’header’, or reference
direction, e.g., ’J2000 19h00m00 -40d00m00"’

default: ’direction’
refpixcel -- Reference pixel in the model image.

options: (str) ’center’, ’header’ or reference pixel,
e.g. ’[100,100]’

default: ’center’
incell -- Pixel size of the model image.

options: ’header’ or pixel size, e.g. ’0.1arcsec’



APPENDIX A. APPENDIX: SINGLE DISH DATA PROCESSING 348

default: ’header’
inbright -- Peak surface brightness to scale input image

in Jy/square arcsec.
options: ’default’ or surface brightness in Jy/sq.
default: ’default’

antennalist -- Name of ascii file containing antenna positions.
Each row has x y z coordinates and antenna diameter;
header lines are required to specify the observatory name
and coordinate system, e.g.,
# observatory=ALMA
# coordsys=UTM
# datum=WGS84
# zone=19

antenna -- Antenna id with which observed.
default: ’’

-------------------------------
-- Output Control:
project -- Name of project simulated; created ms and images will

start with this string.
default: ’simsd’.

refdate -- Central time of simulated observation.
default: ’2012/05/21/22:05:00’
[alpha] ** observations are centered at the nearest transit **

integration --- Time interval for each integration
default: ’10s’

startfreq -- Frequency of first channel
default: ’89MHz’

chanwidth -- Channel width
default: ’10MHz’

nchan -- number of channels (can be 1 for a continuum simulation)
options: (int)
default: 1

direction -- image center direction
* can optionally be a list of pointings, which will override
pointingspacing. Otherwise sdsim will hexagonally
pack the input image with pointings. When direction is a
list, the centroid of direction will be used as the center.
default: [’J2000 19h00m00 -40d00m00’]

pointingspacing-- spacing in between beams
default: ’1arcmin’

relmargin -- how close pointing centers may approach the edge of the
output image, as a fraction of pointingspacing.
* ignored if direction is a list.
options: (float)
default: 1.0
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cell -- output cell/pixel size
default: ’0.1arcsec’

imsize -- output image size in pixels (x,y)
options: (list)
default: [128,128]

stokes -- Stokes parameters to image
default: ’I’

-------------------------------
-- Corrupting data:
noise_thermal -- add thermal noise

options: (bool) True, False
default: False
* [alpha] currently only knows about ALMA receivers

>>> noise_thermal expandable parameters
t_atm -- atmospheric temperature in K

default: 260.0
tau0 -- zenith opacity at observing frequency

default: 0.1

R3.0 New Features: This is a newly created task which will be merged to the task simdata in
the future.

A.2.2 Single Dish Analysis Use Cases With SDTasks

A.2.2.1 GBT Position Switched Data Analysis

As an example, the following illustrates the use of the SDtasks for the Orion data set, which contains
the HCCCN line in one of its IFs. This walk-through contains comments about setting parameter
values and some options during processing.

#####################################
#
# ORION-S SDtasks Use Case
# Position-Switched data
# Version TT 2008-10-14 (updated)
# Version STM 2007-03-04
#
# This is a detailed walk-through
# for using the SDtasks on a
# test dataset.
#
#####################################
import time
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import os

# NOTE: you should have already run
# asap_init()
# to import the ASAP tools as sd.<tool>
# and the SDtasks

#
# This is the environment variable
# pointing to the head of the CASA
# tree that you are running
casapath=os.environ[’AIPSPATH’]

#
# This bit removes old versions of the output files
os.system(’rm -rf sdusecase_orions* ’)
#
# This is the path to the OrionS GBT ms in the data repository
datapath=casapath+’/data/regression/ATST5/OrionS/OrionS_rawACSmod’
#
# The following will remove old versions of the data and
# copy the data from the repository to your
# current directory. Comment this out if you already have it
# and don’t want to recopy
os.system(’rm -rf OrionS_rawACSmod’)
copystring=’cp -r ’+datapath+’ .’
os.system(copystring)

# Now is the time to set some of the more useful
# ASAP environment parameters (the ones that the
# ASAP User Manual claims are in the .asaprc file).
# These are in the Python dictionary sd.rcParams
# You can see whats in it by typing:
#sd.rcParams
# One of them is the ’verbose’ parameter which tells
# ASAP whether to spew lots of verbiage during processing
# or to keep quiet. The default is
#sd.rcParams[’verbose’]=True
# You can make ASAP run quietly (with only task output) with
#sd.rcParams[’verbose’]=False

# Another key one is to tell ASAP to save memory by
# going off the disk instead. The default is
#sd.rcParams[’scantable.storage’]=’memory’
# but if you are on a machine with small memory, do
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#sd.rcParams[’scantable.storage’]=’disk’

# You can reset back to defaults with
#sd.rcdefaults

##########################
#
# ORION-S HC3N
# Position-Switched data
#
##########################
startTime=time.time()
startProc=time.clock()

##########################
# List data
##########################
# List the contents of the dataset
# First reset parameter defaults (safe)
default(’sdlist’)

# You can see its inputs with
#inp(’sdlist’)
# or just
#inp
# now that the defaults(’sdlist’) set the
# taskname=’sdlist’
#
# Set the name of the GBT ms file
sdfile = ’OrionS_rawACSmod’

# Set an output file in case we want to
# refer back to it
listfile = ’sdusecase_orions_summary.txt’
sdlist()

# You could also just type
#go

# You should see something like:
#
#--------------------------------------------------------------------------------
# Scan Table Summary
#--------------------------------------------------------------------------------
#Beams: 1
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#IFs: 26
#Polarisations: 2 (linear)
#Channels: 8192
#
#Observer: Joseph McMullin
#Obs Date: 2006/01/19/01:45:58
#Project: AGBT06A_018_01
#Obs. Type: OffOn:PSWITCHOFF:TPWCAL
#Antenna Name: GBT
#Flux Unit: Jy
#Rest Freqs: [4.5490258e+10] [Hz]
#Abcissa: Channel
#Selection: none
#
#Scan Source Time Integration
# Beam Position (J2000)
# IF Frame RefVal RefPix Increment
#--------------------------------------------------------------------------------
# 20 OrionS_psr 01:45:58 4 x 30.0s
# 0 05:15:13.5 -05.24.08.2
# 0 LSRK 4.5489354e+10 4096 6104.233
# 1 LSRK 4.5300785e+10 4096 6104.233
# 2 LSRK 4.4074929e+10 4096 6104.233
# 3 LSRK 4.4166215e+10 4096 6104.233
# 21 OrionS_ps 01:48:38 4 x 30.0s
# 0 05:35:13.5 -05.24.08.2
# 0 LSRK 4.5489354e+10 4096 6104.233
# 1 LSRK 4.5300785e+10 4096 6104.233
# 2 LSRK 4.4074929e+10 4096 6104.233
# 3 LSRK 4.4166215e+10 4096 6104.233
# 22 OrionS_psr 01:51:21 4 x 30.0s
# 0 05:15:13.5 -05.24.08.2
# 0 LSRK 4.5489354e+10 4096 6104.233
# 1 LSRK 4.5300785e+10 4096 6104.233
# 2 LSRK 4.4074929e+10 4096 6104.233
# 3 LSRK 4.4166215e+10 4096 6104.233
# 23 OrionS_ps 01:54:01 4 x 30.0s
# 0 05:35:13.5 -05.24.08.2
# 0 LSRK 4.5489354e+10 4096 6104.233
# 1 LSRK 4.5300785e+10 4096 6104.233
# 2 LSRK 4.4074929e+10 4096 6104.233
# 3 LSRK 4.4166215e+10 4096 6104.233
# 24 OrionS_psr 02:01:47 4 x 30.0s
# 0 05:15:13.5 -05.24.08.2
# 12 LSRK 4.3962126e+10 4096 6104.2336
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# 13 LSRK 4.264542e+10 4096 6104.2336
# 14 LSRK 4.159498e+10 4096 6104.2336
# 15 LSRK 4.3422823e+10 4096 6104.2336
# 25 OrionS_ps 02:04:27 4 x 30.0s
# 0 05:35:13.5 -05.24.08.2
# 12 LSRK 4.3962126e+10 4096 6104.2336
# 13 LSRK 4.264542e+10 4096 6104.2336
# 14 LSRK 4.159498e+10 4096 6104.2336
# 15 LSRK 4.3422823e+10 4096 6104.2336
# 26 OrionS_psr 02:07:10 4 x 30.0s
# 0 05:15:13.5 -05.24.08.2
# 12 LSRK 4.3962126e+10 4096 6104.2336
# 13 LSRK 4.264542e+10 4096 6104.2336
# 14 LSRK 4.159498e+10 4096 6104.2336
# 15 LSRK 4.3422823e+10 4096 6104.2336
# 27 OrionS_ps 02:09:51 4 x 30.0s
# 0 05:35:13.5 -05.24.08.2
# 12 LSRK 4.3962126e+10 4096 6104.2336
# 13 LSRK 4.264542e+10 4096 6104.2336
# 14 LSRK 4.159498e+10 4096 6104.2336
# 15 LSRK 4.3422823e+10 4096 6104.2336

# The HC3N and CH3OH lines are in IFs 0 and 2 respectively
# of scans 20,21,22,23. We will pull these out in our
# calibration.

##########################
# Calibrate data
##########################
# We will use the sdcal task to calibrate the data.
# Set the defaults
default(’sdcal’)

# You can see the inputs with
#inp

# Set our sdfile (which would have been set from our run of
# sdlist if we were not cautious and reset defaults).
sdfile = ’OrionS_rawACSmod’
fluxunit = ’K’

# Lets leave the spectral axis in channels for now
specunit = ’channel’

# This is position-switched data so we tell sdcal this
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calmode = ’ps’

# For GBT data, it is safest to not have scantable pre-average
# integrations within scans.
average = True
scanaverage = False

# We do want sdcal to average up scans and polarization after
# calibration however. The averaging of scans are weighted by
# integration time and Tsys, and the averaging of polarization
# by Tsys.
timeaverage = True
tweight = ’tintsys’
polaverage = True
pweight = ’tsys’
# Do an atmospheric optical depth (attenuation) correction
# Input the zenith optical depth at 43 GHz
tau = 0.09

# Select our scans and IFs (for HC3N)
scanlist = [20,21,22,23]
iflist = [0]

# We do not require selection by field name (they are all
# the same except for on and off)
field = ’’

# We will do some spectral smoothing
# For this demo we will use boxcar smoothing rather than
# the default
#kernel=’hanning’
# We will set the width of the kernel to 5 channels
kernel = ’boxcar’
kwidth = 5

# We wish to fit out a baseline from the spectrum
# The GBT has particularly nasty baselines :(
# We will let ASAP use auto_poly_baseline mode
# but tell it to drop the 1000 edge channels from
# the beginning and end of the spectrum.
# A 2nd-order polynomial will suffice for this test.
# You might try higher orders for fun.
blmode = ’auto’
blpoly = 2
edge = [1000]
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# We will not give it regions as an input mask
# though you could, with something like
#masklist=[[1000,3000],[5000,7000]]
masklist = []

# By default, we will not get plots in sdcal (but
# can make them using sdplot).
plotlevel = 0
# But if you wish to see a final spectrum, set
#plotlevel = 1
# or even
#plotlevel = 2
# to see intermediate plots and baselining output.

# Now we give the name for the output file
outfile = ’sdusecase_orions_hc3n.asap’

# We will write it out in ASAP scantable format
outform = ’asap’

# You can look at the inputs with
#inp

# Before running, lets save the inputs in case we want
# to come back and re-run the calibration.
saveinputs(’sdcal’,’sdcal.orions.save’)
# These can be recovered by
#execfile ’sdcal.orions.save’

# We are ready to calibrate
sdcal()

# Note that after the task ran, it produced a file
# sdcal.last which contains the inputs from the last
# run of the task (all tasks do this). You can recover
# this (anytime before sdcal is run again) with
#execfile ’sdcal.last’

##########################
# List data
##########################
# List the contents of the calibrated dataset
# Set the input to the just created file
sdfile = outfile
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listfile = ’’
sdlist()

# You should see:
#
#--------------------------------------------------------------------------------
# Scan Table Summary
#--------------------------------------------------------------------------------
#Beams: 1
#IFs: 26
#Polarisations: 1 (linear)
#Channels: 8192
#
#Observer: Joseph McMullin
#Obs Date: 2006/01/19/01:45:58
#Project: AGBT06A_018_01
#Obs. Type: OffOn:PSWITCHOFF:TPWCAL
#Antenna Name: GBT
#Flux Unit: K
#Rest Freqs: [4.5490258e+10] [Hz]
#Abcissa: Channel
#Selection: none
#
#Scan Source Time Integration
# Beam Position (J2000)
# IF Frame RefVal RefPix Increment
#--------------------------------------------------------------------------------
# 0 OrionS_ps 01:52:05 1 x 08:00.5
# 0 05:35:13.5 -05.24.08.2
# 0 LSRK 4.5489354e+10 4096 6104.233
#
# Note that our scans are now collapsed (timeaverage=True) but
# we still have our IF 0

##########################
# Plot data
##########################
default(’sdplot’)

# The file we produced after calibration
# (if we hadn’t reset defaults it would have
# been set - note that sdplot,sdfit,sdstat use
# sdfile as the input file, which is the output
# file of sdcal).
sdfile = ’sdusecase_orions_hc3n.asap’
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# Lets just go ahead and plot it up as-is
sdplot()

# Looks ok. Plot with x-axis in GHz
specunit=’GHz’
sdplot()

# Note that the rest frequency in the scantable
# is set correctly to the HCCCN line at 45.490 GHz.
# So you can plot the spectrum in km/s
specunit=’km/s’
sdplot()

# Zoom in
sprange=[-100,50]
sdplot()

# Lets plot up the lines to be sure
# We have to go back to GHz for this
# (known deficiency in ASAP)
specunit=’GHz’
sprange=[45.48,45.51]
linecat=’all’
sdplot()

# Too many lines! Focus on the HC3N ones
linecat=’HCCCN’
sdplot()

# Finally, we can convert from K to Jy
# using the aperture efficiencies we have
# coded into the sdtasks
# For GBT data, do not set telescopeparm
fluxunit=’Jy’
telescopeparm=’’
sdplot()

# Lets save this plot
plotfile=’sdusecase_orions_hc3n.eps’
sdplot()

##########################
# Off-line Statistics
##########################
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# Now do some region statistics
# First the line-free region
# Set parameters
default(’sdstat’)
sdfile = ’sdusecase_orions_hc3n.asap’

# Keep the default spectrum and flux units
# K and channel
fluxunit = ’’
specunit = ’’

# Pick out a line-free region
# You can bring up a default sdplot again
# to check this
masklist = [[5000,7000]]

# This is a line-free region so we don’t need
# to invert the mask
invertmask = False

# You can check with
#inp

# sdstat returns some results in
# the Python dictionary. You can assign
# this to a variable
off_stat=sdstat()

# and look at it
off_stat
# which should give
# {’eqw’: 38.563105620704945,
# ’max’: 0.15543246269226074,
# ’mean’: -0.0030361821409314871,
# ’median’: -0.0032975673675537109,
# ’min’: -0.15754437446594238,
# ’rms’: 0.047580458223819733,
# ’stddev’: 0.047495327889919281,
# ’sum’: -6.0754003524780273}

#You see it has some keywords for the various
#stats. We want the standard deviation about
#the mean, or ’stddev’
print "The off-line std. deviation = ",off_stat[’stddev’]
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# which should give
# The off-line std. deviation = 0.0474953278899

# or better formatted (using Python I/O formatting)
print "The off-line std. deviation = %5.3f K" %\

(off_stat[’stddev’])
# which should give
# The off-line std. deviation = 0.047 K

##########################
# On-line Statistics
##########################
# Now do the line region
# Continue setting or resetting parameters
masklist = [[3900,4200]]

line_stat = sdstat()

# look at these
line_stat
# which gives
# {’eqw’: 73.335154614280981,
# ’max’: 0.92909121513366699,
# ’mean’: 0.22636228799819946,
# ’median’: 0.10317134857177734,
# ’min’: -0.13283586502075195,
# ’rms’: 0.35585442185401917,
# ’stddev’: 0.27503398060798645,
# ’sum’: 68.135047912597656}

# of particular interest are the max value
print "The on-line maximum = %5.3f K" % (line_stat[’max’])
# which gives
# The on-line maximum = 0.929 K

# and the estimated equivalent width (in channels)
# which is the sum/max
print "The estimated equivalent width = %5.1f channels" %\

(line_stat[’eqw’])
# which gives
# The estimated equivalent width = 73.3 channels

##########################
# Line Fitting
##########################
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# Now we are ready to do some line fitting
# Default the parameters
default(’sdfit’)

# Set our input file
sdfile = ’sdusecase_orions_hc3n.asap’

# Stick to defaults
# fluxunit = ’K’, specunit = ’channel’
fluxunit = ’’
specunit = ’’

# We will try auto-fitting first
fitmode = ’auto’
# A single Gaussian
nfit = [1]
# Leave the auto-parameters to their defaults for
# now, except ignore the edge channels
edge = [1000]

# Lets see a plot while doing this
plotlevel = 1

# Save the fit output in a file
fitfile = ’sdusecase_orions_hc3n.fit’

# Go ahead and do the fit
fit_stat=sdfit()

# If you had verbose mode on, you probably saw something
# like:
#
# 0: peak = 0.811 K , centre = 4091.041 channel, FWHM = 72.900 channel
# area = 62.918 K channel
#

# The fit is output in the dictionary

fit_stat
#
# {’cent’: [[4091.04052734375, 0.72398632764816284]],
# ’fwhm’: [[72.899894714355469, 1.7048574686050415]],
# ’nfit’: 1,
# ’peak’: [[0.81080442667007446, 0.016420882195234299]]}
#
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# So you can write them out or test them:
print "The line-fit parameters were:"
print " maximum = %6.3f +/- %6.3f K" %\

(fit_stat[’peak’][0][0],fit_stat[’peak’][0][1])
print " center = %6.1f +/- %6.1f channels" %\

(fit_stat[’cent’][0][0],fit_stat[’cent’][0][1])
print " FWHM = %6.2f +/- %6.2f channels" %\

(fit_stat[’fwhm’][0][0],fit_stat[’fwhm’][0][1])
#
# Which gives:
# The line-fit parameters were:
# maximum = 0.811 +/- 0.016 K
# center = 4091.0 +/- 0.7 channels
# FWHM = 72.90 +/- 1.70 channels

# We can do the fit in km/s also
specunit = ’km/s’
# For some reason we need to help it along with a mask
maskline = [-50,0]

fitfile = ’sdusecase_orions_hc3n_kms.fit’
fit_stat_kms = sdfit()
# Should give (if in verbose mode)
# 0: peak = 0.811 K , centre = -27.134 km/s, FWHM = 2.933 km/s
# area = 2.531 K km/s
#

# with
fit_stat_kms
# giving
# {’cent’: [[-27.133651733398438, 0.016480101272463799]],
# ’fwhm’: [[2.93294358253479, 0.038807671517133713]],
# ’nfit’: 1,
# ’peak’: [[0.81080895662307739, 0.0092909494414925575]]}

print "The line-fit parameters were:"
print " maximum = %6.3f +/- %6.3f K" %\

(fit_stat_kms[’peak’][0][0],fit_stat_kms[’peak’][0][1])
print " center = %6.2f +/- %6.2f km/s" %\

(fit_stat_kms[’cent’][0][0],fit_stat_kms[’cent’][0][1])
print " FWHM = %6.4f +/- %6.4f km/s" %\

(fit_stat_kms[’fwhm’][0][0],fit_stat_kms[’fwhm’][0][1])
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# The line-fit parameters were:
# maximum = 0.811 +/- 0.009 K
# center = -27.13 +/- 0.02 km/s
# FWHM = 2.9329 +/- 0.0388 km/s

##########################
#
# End ORION-S Use Case
#
##########################

A.2.2.2 Imaging of Total Power Raster Scans

This example illustrates the use of sdtpimaging for the total power raster scans of the Moon taken
at ATF.

# load single dish module
# asap_init()

# The data used here (uid___X1e1_X3197_X1.ms) is the total power
# raster scans of the Moon taken at ATF (with both antennas).
# It is in MS format which was converted from the ASDM format.

# Do data plotting only
default(sdtpimaging)
inp()
plotlevel=2
# select antenna 1 (Vertex antenna)
antenna=’1’
sdfile=’uid___X1e1_X3197_X1.ms’
sdtpimaging()

# Now, rerun sdtpimaging to do actual data reduction (applying
# baseline subtraction from each scan, and then do imaging).
#
# Do baseline subtraction
calmode=’baseline’
masklist=[30] # use 30 data points from each end of scan for fitting
# Do imaging
createimage=True
imagename=’moon.im’
imagesize=[200,200]
cell=[0.2] # in arcmin
phasecenter=’AZEL 187d54m22s 41d03m0s’



APPENDIX A. APPENDIX: SINGLE DISH DATA PROCESSING 363

Figure A.2: Total power data display using sdtpimaging, with calmode=’baseline’. The top
panel shows uncalibrated data versus row numbers.The middle panel shows baseline fitting of each
scan (only shown here the last scan). The bottom panel shows the calibrated (baseline subtracted)
data.

ephemsrcname=’moon’ # specify ephemeris source name (can be omitted)
plotlevel=1
#plotlevel=2 to see progress of each fitting
sdtpimaging()
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A.2.2.3 spectral imaging? (with sdimaging?

A.3 Using The ASAP Toolkit Within CASA

ASAP is included with the CASA installation/build. It is not loaded upon start-up, however, and
must be imported as a standard Python package. A convenience function exists for importing
ASAP along with a set of prototype tasks for single dish analysis:

CASA <1>: asap_init

Once this is done, all of the ASAP functionality is now under the Python ’sd’ tool. Note: This
means that if you are following the ASAP cookbook or documentation, all of the commands should
be invoked with a ’sd.’ before the native ASAP command.

The ASAP interface is essentially the same as that of the CASA toolkit, that is, there are groups
of functionality (aka tools) which have the ability to operate on your data. Type:

CASA <4>: sd.<TAB>
sd.__builtins__ sd._validate_bool sd.list_scans
sd.__class__ sd._validate_int sd.mask_and
sd.__date__ sd.asapfitter sd.mask_not
sd.__delattr__ sd.asaplinefind sd.mask_or
sd.__dict__ sd.asaplog sd.merge
sd.__doc__ sd.asaplotbase sd.os
sd.__file__ sd.asaplotgui sd.plf
sd.__getattribute__ sd.asapmath sd.plotter
sd.__hash__ sd.asapplotter sd.print_log
sd.__init__ sd.asapreader sd.quotient
sd.__name__ sd.average_time sd.rc
sd.__new__ sd.calfs sd.rcParams
sd.__path__ sd.calnod sd.rcParamsDefault
sd.__reduce__ sd.calps sd.rc_params
sd.__reduce_ex__ sd.casapath sd.rcdefaults
sd.__repr__ sd.commands sd.reader
sd.__revision__ sd.defaultParams sd.revinfo
sd.__setattr__ sd.dosigref sd.scantable
sd.__str__ sd.dototalpower sd.selector
sd.__version__ sd.fitter sd.simple_math
sd._asap sd.interactivemask sd.sys
sd._asap_fname sd.is_ipython sd.unique
sd._asaplog sd.linecatalog sd.version
sd._is_sequence_or_number sd.linefinder sd.welcome
sd._n_bools sd.list_files sd.xyplotter

...to see the list of tools.

In particular, the following are essential for most reduction sessions:
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• sd.scantable - the data structure for ASAP and the core methods for manipulating the
data; allows importing data, making data selections, basic operations (averaging, baselines,
etc) and setting data characteristics (e.g., frequencies, etc).

• sd.selector - selects a subset of data for subsequent operations

• sd.fitter - fit data

• sd.plotter - plotting facilities (uses matplotlib)

The scantable functions are used most often and can be applied to both the initial scantable and
to any spectrum from that scan table. Type

sd.scantable.<TAB>

(using TAB completion) to see the full list.

A.3.1 Environment Variables

The asaprc environment variables are stored in the Python dictionary sd.rcParams in CASA.
This contains a number of parameters that control how ASAP runs, for both tools and tasks. You
can see what these are set to by typing at the CASA prompt:

CASA <2>: sd.rcParams
Out[2]:

{’insitu’: True,
’plotter.colours’: ’’,
’plotter.decimate’: False,
’plotter.ganged’: True,
’plotter.gui’: True,
’plotter.histogram’: False,
’plotter.linestyles’: ’’,
’plotter.panelling’: ’s’,
’plotter.papertype’: ’A4’,
’plotter.stacking’: ’p’,
’scantable.autoaverage’: True,
’scantable.freqframe’: ’LSRK’,
’scantable.save’: ’ASAP’,
’scantable.storage’: ’memory’,
’scantable.verbosesummary’: False,
’useplotter’: True,
’verbose’: True}

The use of these parameters is described in detail in the ASAP Users Guide.

These parameters can be changed through the sd.rc function. Use is described in help sd.rc:
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CASA <3>: help(sd.rc)
Help on function rc in module asap:

rc(group, **kwargs)
Set the current rc params. Group is the grouping for the rc, eg
for scantable.save the group is ’scantable’, for plotter.stacking, the
group is ’plotter’, and so on. kwargs is a list of attribute
name/value pairs, eg

rc(’scantable’, save=’SDFITS’)

sets the current rc params and is equivalent to

rcParams[’scantable.save’] = ’SDFITS’

Use rcdefaults to restore the default rc params after changes.

A.3.2 Import

Data can be loaded into ASAP by using the scantable function which will read a variety of
recognized formats (RPFITS, varieties of SDFITS, the CASA Measurement Set, and NRO OTF
data format). For example:

CASA <1>: scans = sd.scantable(’OrionS_rawACSmod’, average=False)
Importing OrionS_rawACSmod...

A.3.2.1 General descriptions

The following are some cautions when using this import feature.

• It is important to use the average=False parameter setting as the calibration routines sup-
porting GBT data require all of the individual times and phases.

• GBT data may need some pre-processing prior to using ASAP. In particular, the program
which converts GBT raw data into CASA Measurement Sets tends to proliferate the number
of spectral windows due to shifts in the tracking frequency; this is being worked on by GBT
staff. In addition, GBT SDFITS is currently not readable by ASAP (in progress).

• The Measurement Set to scantable conversion is able to deduce the reference and source data
and assigns an ’ r’ to the reference data to comply with the ASAP conventions.

• GBT observing modes are identifiable in scantable in the name assignment: position switched
(’ ps’), Nod (’ nod’), and frequency switched (’ fs’). These are combined with the reference
data assignment. (For example, the reference data taken in position switched mode observa-
tion are assigned as ’ psr’.)

• Importing of Nobeyama Radio Observatory (NRO) OTF data is now available. However, it
is still experimental and only tested to work from toolkit level.
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A.3.2.2 Handling ALMA data

• Currently ASDM data cannot be read to ASAP directly. It must be converted to a MS first
via importasdm task. Then you can load this MS to ASAP.

• If the MS data contain data from multiple single dish antennas you need to split the data
by antenna using sd.splitant for further processing in ASAP since ASAP scantable can-
not properly store the data from multiple antennas. The method sd.splitant splits a
measurement set by antenna ID and save the tables as scantables containing data from
each antenna. The names of output scantables are defined as prefix specified by users
(with parameter outprefix) + ’.’ + antenna name. For example, if you split measure-
ment set, foo.ms, which contains data from antA and antB, with outprefix=’splitted’,
i.e., sd.splitant(’foo.ms’, outprefix=’splitted’), the names of scantables are ’split-
ted.antA’ and ’splitted.antB’. The returned value of the method is a list of scantable names.

• It is possible to read the 2-element interferometric data taken by the ALMA telescopes (at
ATF, OSF, and the Array site) as a single dish data to further examine it using ASAP Toolkit
and the SD tasks. The usage is the same as importing single dish data.

s=sd.scantable({\it your\_ATF\_synthesis\_ms}, ’False’)

It is still experimental and limited to data obtained by two-element synthesis.

Use the summary function to examine the data and get basic information:

CASA <8>: scans.summary()
--------------------------------------------------------------------------------
Scan Table Summary
--------------------------------------------------------------------------------
Beams: 1
IFs: 26
Polarisations: 2 (linear)
Channels: 8192

Observer: Joseph McMullin
Obs Date: 2006/01/19/01:45:58
Project: AGBT06A_018_01
Obs. Type: OffOn:PSWITCHOFF:TPWCAL
Antenna Name: GBT
Flux Unit: Jy
Rest Freqs: [4.5490258e+10] [Hz]
Abcissa: Channel
Selection: none

Scan Source Time Integration
Beam Position (J2000)

IF Frame RefVal RefPix Increment
--------------------------------------------------------------------------------
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20 OrionS_psr 01:45:58 4 x 30.0s
0 05:15:13.5 -05.24.08.2

0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

21 OrionS_ps 01:48:38 4 x 30.0s
0 05:35:13.5 -05.24.08.2

0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

22 OrionS_psr 01:51:21 4 x 30.0s
0 05:15:13.5 -05.24.08.2

0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

23 OrionS_ps 01:54:01 4 x 30.0s
0 05:35:13.5 -05.24.08.2

0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

24 OrionS_psr 02:01:47 4 x 30.0s
0 05:15:13.5 -05.24.08.2

12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336

25 OrionS_ps 02:04:27 4 x 30.0s
0 05:35:13.5 -05.24.08.2

12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336

26 OrionS_psr 02:07:10 4 x 30.0s
0 05:15:13.5 -05.24.08.2

12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336

27 OrionS_ps 02:09:51 4 x 30.0s
0 05:35:13.5 -05.24.08.2

12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336
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A.3.3 Scantable Manipulation

Within ASAP, data is stored in a scantable, which holds all of the observational information and
provides functionality to manipulate the data and information. The building block of a scantable
is an integration which is a single row of a scantable. Each row contains just one spectrum for each
beam, IF and polarization.

Once you have a scantable in ASAP, you can select a subset of the data based on scan numbers,
sources, or types of scan; note that each of these selections returns a new ’scantable’ with all of the
underlying functionality:

CASA <5>: scan27=scans.get_scan(27) # Get the 27th scan
CASA <6>: scans20to24=scans.get_scan(range(20,25)) # Get scans 20 - 24
CASA <7>: scans_on=scans.get_scan(’*_ps’) # Get ps scans on source
CASA <8>: scansOrion=scans.get_scan(’Ori*’) # Get all Orion scans

To copy a scantable, do:

CASA <15>: ss=scans.copy()

A.3.3.1 Data Selection

In addition to the basic data selection above, data can be selected based on IF, beam, polarization,
scan number as well as values such as Tsys. To make a selection create a selector object choose
among various selection functions, e.g.,

sel = sd.selector() # initialize a selector object
# sel.<TAB> will list all options

sel.set_ifs(0) # select only the first IF of the data
scans.set_selection(sel) # apply the selection to the data
print scans # shows just the first IF

A.3.3.2 State Information

Some properties of a scantable apply to all of the data, such as example, spectral units, frequency
frame, or Doppler type. This information can be set using the scantable set xxxx methods.
These are currently:

CASA <1>: sd.scantable.set_<TAB>
sd.scantable.set_dirframe sd.scantable.set_fluxunit sd.scantable.set_restfreqs
sd.scantable.set_doppler sd.scantable.set_freqframe sd.scantable.set_selection
sd.scantable.set_feedtype sd.scantable.set_instrument sd.scantable.set_unit

For example, sd.scantable.set fluxunit sets the default units that describe the flux axis:
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scans.set_fluxunit(’K’) # Set the flux unit for data to Kelvin

Choices are ’K’ or ’Jy’. Note: the scantable.set fluxunit function only changes the name of
the current fluxunit. To change fluxunits, use scantable.convert flux as described in § A.3.4.2
instead (currently it is necessary to do some gymnastics for non-AT telescopes).

Use sd.scantable.set unit to set the units to be used on the spectral axis:

scans.set_unit(’GHz’) # Use GHz as the spectral axis for plots

The choices for the units are ’km/s’, ’channel’, or ’*Hz’ (e.g. ’GHz’, ’MHz’, ’kHz’, ’Hz’). This
does the proper conversion using the current frame and Doppler reference as can be seen when the
spectrum is plotted.

Set the frame in which the frequency (spectral) axis is defined by sd.scantable.set freqframe:

CASA <2>: help(sd.scantable.set_freqframe)
Help on method set_freqframe in module asap.scantable:

set_freqframe(self, frame=None) unbound asap.scantable.scantable method
Set the frame type of the Spectral Axis.
Parameters:

frame: an optional frame type, default ’LSRK’. Valid frames are:
’REST’, ’TOPO’, ’LSRD’, ’LSRK’, ’BARY’,
’GEO’, ’GALACTO’, ’LGROUP’, ’CMB’

Examples:
scan.set_freqframe(’BARY’)

The most useful choices here are frame = ’LSRK’ (the default for the function) and frame =
’TOPO’ (what the GBT actually observes in). Note that the ’REST’ option is not yet available.
The Doppler frame is set with sd.scantable.set doppler:

CASA <3>: help(sd.scantable.set_doppler)
Help on method set_doppler in module asap.scantable:

set_doppler(self, doppler=’RADIO’) unbound asap.scantable.scantable method
Set the doppler for all following operations on this scantable.
Parameters:

doppler: One of ’RADIO’, ’OPTICAL’, ’Z’, ’BETA’, ’GAMMA’

Finally, there are a number of functions to query the state of the scantable. These can be found in
the usual way:

CASA <4>: sd.scantable.get<TAB>
sd.scantable.get_abcissa sd.scantable.get_restfreqs sd.scantable.getbeamnos
sd.scantable.get_azimuth sd.scantable.get_scan sd.scantable.getcycle
sd.scantable.get_column_names sd.scantable.get_selection sd.scantable.getif
sd.scantable.get_direction sd.scantable.get_sourcename sd.scantable.getifnos
sd.scantable.get_elevation sd.scantable.get_time sd.scantable.getpol
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sd.scantable.get_fit sd.scantable.get_tsys sd.scantable.getpolnos
sd.scantable.get_fluxunit sd.scantable.get_unit sd.scantable.getscan
sd.scantable.get_parangle sd.scantable.getbeam sd.scantable.getscannos

These include functions to get the current values of the states mentioned above, as well as methods
to query the number of scans, IFs, and polarizations in the scantable and their designations. See
the inline help of the individual functions for more information.

A.3.3.3 Masks

Several functions (fitting, baseline subtraction, statistics, etc) may be run on a range of channels
(or velocity/frequency ranges). You can create masks of this type using the create mask function:

# spave = an averaged spectrum
spave.set_unit(’channel’)
rmsmask=spave.create_mask([5000,7000]) # create a region over channels 5000-7000
rms=spave.stats(stat=’rms’,mask=rmsmask) # get rms of line free region

rmsmask=spave.create_mask([3000,4000],invert=True) # choose the region
# *excluding* the specified channels

The mask is stored in a simple Python variable (a list) and so may be manipulated using an Python
facilities.

A.3.3.4 Scantable Management

scantables can be listed via:

CASA <33>: sd.list_scans()
The user created scantables are:
[’scans20to24’, ’s’, ’scan27’]

As every scantable will consume memory, if you will not use it any longer, you can explicitly
remove it via:

del <scantable name>

A.3.3.5 Scantable Mathematics

It is possible to do simple mathematics directly on scantables from the CASA command line
using the +,−, ∗, / operators as well as their cousins + =,− =, ∗ =, / =

CASA <10>: scan2=scan1+2.0 # add 2.0 to data
CASA <11>: scan *= 1.05 # scale spectrum by 1.05

NOTE: mathematics between two scantables is not currently available in ASAP.
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A.3.3.6 Scantable Save and Export

ASAP can save scantables in a variety of formats, suitable for reading into other packages. The
formats are:

• ASAP – This is the internal format used for ASAP. It is the only format that allows the
user to restore the data, fits, etc., without losing any information. As mentioned before, the
ASAP scantable is a CASA Table (memory-based table). This function just converts it to a
disk-based table. You can access it with the CASA browsetable task or any other CASA
table tasks.

• SDFITS – The Single Dish FITS format. This format was designed for interchange between
packages but few packages can actually read it.

• ASCII – A simple text based format suitable for the user to process using Python or other
means.

• Measurement Set (V2: CASA format) – Saves the data in a Measurement Set. All CASA
tasks which use an MS should work with this format.

scans.save(’output_filename’,’format’), e.g.,
CASA <19>: scans.save(’FLS3a_calfs’,’MS2’)

A.3.4 Calibration

For some observatories, the calibration happens transparently as the input data contains the Tsys
measurements taken during the observations. The nominal ’Tsys’ values may be in Kelvin or Jansky.
The user may wish to apply a Tsys correction or apply gain-elevation and opacity corrections.

A.3.4.1 Tsys scaling

If the nominal Tsys measurement at the telescope is wrong due to incorrect calibration, the scale
function allows it to be corrected.

scans.scale(1.05,tsys=True) # by default only the spectra are scaled
# (and not the corresponding Tsys) unless tsys=True

A.3.4.2 Flux and Temperature Unit Conversion

To convert measurements in Kelvin to Jansky (and vice versa), the convert flux function may be
used. This converts and scales the data to the selected units. The user may need to supply the
aperture efficiency, telescope diameter, or the Jy/K factor
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scans.convert_flux(eta=0.48, d=35.) # Unknown telescope
scans.convert_flux(jypk=15) # Unknown telescope (alternative)
scans.convert_flux() # known telescope (mostly AT telescopes)
scans.convert_flux(eta=0.48) # if telescope diameter known

A.3.4.3 Gain-Elevation and Atmospheric Optical Depth Corrections

At higher frequencies, it is important to make corrections for atmospheric opacity and gain-elevation
effects. NOTE: Currently, the MS to scantable conversion does not adequately populate the
azimuth and elevation in the scantable. As a result, one must calculate these via:

scans.recalc_azel()
Computed azimuth/elevation using
Position: [882590, -4.92487e+06, 3.94373e+06]
Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

...

With the correct Az/El, it can be corrected for a known opacity by:

scans.opacity(tau=0.09) # Opacity from which the correction factor:
# exp(tau*zenith-distance)

A.3.4.4 Calibration of GBT data

Data from the GBT are uncalibrated and come as sets of integrations representing the different
phases of a calibration cycle (e.g., on source, calibration on, on source, calibration off, on reference,
calibration on; on reference, calibration off). Currently, there are a number of routines emulating
the standard GBT calibration (in GBTIDL):

• calps - calibrate position switched data

• calfs - calibrate frequency switched data

• calnod - calibration nod (beam switch) data

All these routines calibrate the spectral data to antenna temperature adopting the GBT calibration
method as described in the GBTIDL calibration document available at:
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• http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/gbtidl_calibration.pdf

There are two basic steps:

First: determine system temperature using a noise tube calibrator (sd.dototalpower())

For each integration, the system temperature is calculated from CAL noise on/off data as:

Tsys = Tcal x <refcaloff >
<refcalon−refcaloff > + Tcal

2

ref which refers to reference data and the spectral data are averaged across the bandpass. Note
that the central 80% of the spectra are used for the calculation.

Second, determine antenna temperature (sd.dosigref())

The antenna temperature for each channel is calculated as:

Ta(ν) = Tsys x sig(ν)−ref(ν)
ref(ν)

where sig = 1
2(sigcalon + sigcaloff ), ref = 1

2(sigcalon + sigcaloff ).

Each calibration routine may be used as:

scans=sd.scantable(’inputdata’,False) # create a scantable called ’scans’
calibrated_scans = sd.calps(scans,[scanlist]) # calibrate scantable with position-switched

# scheme

Note: For calps and calnod, the scanlist must be scan pairs in correct order as these routines only
do minimal checking.

A.3.5 Averaging

One can average polarizations in a scantable using the sd.scantable.average pol function:

averaged_scan = scans.average_pol(mask,weight)

where:
Parameters:

mask: An optional mask defining the region, where the
averaging will be applied. The output will have all
specified points masked.

weight: Weighting scheme. ’none’ (default), ’var’ (1/var(spec)
weighted), or ’tsys’ (1/Tsys**2 weighted)

Example:

spave = stave.average_pol(weight=’tsys’)

One can also average scans over time using sd.average time:

http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/gbtidl_calibration.pdf
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sd.average_time(scantable,mask,scanav,weight,align)

where:

Parameters:
one scan or comma separated scans
compel: if True, enable averaging of multi-resolution spectra.
mask: an optional mask (only used for ’var’ and ’tsys’ weighting)
scanav: True averages each scan separately.

False (default) averages all scans together,
weight: Weighting scheme.

’none’ (mean no weight)
’var’ (1/var(spec) weighted)
’tsys’ (1/Tsys**2 weighted)
’tint’ (integration time weighted)
’tintsys’ (Tint/Tsys**2)
’median’ ( median averaging)

align: align the spectra in velocity before averaging. It takes
the time of the first spectrum in the first scantable
as reference time.

Example:

stave = sd.average_time(scans,weight=’tintsys’)

Note that alignment of the velocity frame should be done before averaging if the time spanned by
the scantable is long enough. This is done through the align=True option in sd.average time, or
explicitly through the sd.scantable.freq align function, e.g.,

CASA <62>: sc = sd.scantable(’orions_scan20to23_if0to3.asap’,False)
CASA <63>: sc.freq_align()
Aligned at reference Epoch 2006/01/19/01:49:23 (UTC) in frame LSRK
CASA <64>: av = sd.average_times(sc)

The time averaging can also be applied to multiple scantables. For example, such data might
have been taken on different days. The sd.average time function takes multiple scantables as
input. However, if th4y taken at significantly different times (different days for example), then
sd.scantable.freq align must be used to align the velocity scales to the same time, e.g.

CASA <65>: sc1 = sd.scantable(’orions_scan21_if0to3.asap’,False)
CASA <66>: sc2 = sd.scantable(’orions_scan23_if0to3.asap’,False)
CASA <67>: sc1.freq_align()
Aligned at reference Epoch 2006/01/19/01:49:23 (UTC) in frame LSRK
CASA <68>: sc2.freq_align(reftime=’2006/01/19/01:49:23’)
Aligned at reference Epoch 2006/01/19/01:54:46 (UTC) in frame LSRK
CASA <69>: scav = sd.average_times(sc1,sc2)

A.3.6 Spectral Smoothing

Smoothing on data can be done as follows:
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scantable.smooth(kernel, # type of smoothing: ’hanning’ (default), ’gaussian’, ’boxcar’
width, # width in pixls (ignored for hanning); FWHM for gaussian.
insitu) # if False (default), do smoothing in-situ; otherwise,

# make new scantable

Example:
# spave is an averaged spectrum
spave.smooth(’boxcar’,5) # do a 5 pixel boxcar smooth on the spectrum
sd.plotter.plot(spave) # should see smoothed spectrum

A.3.7 Baseline Fitting

The function sd.scantable.poly baseline carries out a baseline fit, given an mask of channels
(if desired):

msk=scans.create_mask([100,400],[600,900])
scans.poly_baseline(msk,order=1)

This will fit a first order polynomial to the selected channels and subtract this polynomial from the
full spectrum.

The auto poly baseline function can be used to automatically baseline your data without speci-
fying channel ranges for the line-free data. It automatically figures out the line-free emission and
fits a polynomial baseline to that data. The user can use masks to fix the range of channels or
velocity range for the fit as well as mark the band edge as invalid:

scans.auto_poly_baseline(mask,edge,order,threshold,chan_avg_limit,plot,insitu):

Parameters:
mask: an optional mask retrieved from scantable
edge: an optional number of channel to drop at

the edge of spectrum. If only one value is
specified, the same number will be dropped from
both sides of the spectrum. Default is to keep
all channels. Nested tuples represent individual
edge selection for different IFs (a number of spectral
channels can be different)

order: the order of the polynomial (default is 0)
threshold: the threshold used by line finder. It is better to

keep it large as only strong lines affect the
baseline solution.

chan_avg_limit:
the maximum number of consecutive spectral channels to
average during the search of weak and broad lines.
The default is no averaging (and no search for weak
lines). If such lines can affect the fitted baseline
(e.g. a high order polynomial is fitted), increase this
parameter (usually values up to 8 are reasonable). Most
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users of this method should find the default value
sufficient.

plot: plot the fit and the residual. In this each
individual fit has to be approved, by typing ’y’
or ’n’

insitu: if False a new scantable is returned.
Otherwise, the scaling is done in-situ
The default is taken from .asaprc (False)

Example:
scans.auto_poly_baseline(order=2,threshold=5)

A.3.8 Line Fitting

Multi-component Gaussian fitting is done by creating a fitting object, specifying fit parameters and
finally fitting the data. Fitting can be done on a scantable selection or an entire scantable using
the auto fit function.

#spave is an averaged spectrum
f=sd.fitter() # create fitter object
msk=spave.create_mask([3928,4255]) # create mask region around line
f.set_function(gauss=1) # set a single gaussian component
f.set_scan(spave,msk) # set the scantable and region

#
# Automatically guess start values

f.fit() # fit
f.plot(residual=True) # plot residual
f.get_parameters() # retrieve fit parameters
# 0: peak = 0.786 K , centre = 4091.236 channel, FWHM = 70.586 channel
# area = 59.473 K channel
f.store_fit(’orions_hc3n_fit.txt’) # store fit

#
# To specify an initial guess:

f.set_function(gauss=1) # set a single gaussian component
f.set_gauss_parameters(0.4,4100,200\ # set initial guesses for Gaussian

,component=0) # for first component (0)
# (peak,center,fwhm)
#
# For multiple components set
# initial guesses for each, e.g.,

f.set_function(gauss=2) # set two gaussian components
f.set_gauss_parameters(0.4,4100,200\ # set initial guesses for Gaussian

,component=0) # for first component (0)
f.set_gauss_parameters(0.1,4200,100\ # set initial guesses for Gaussian

,component=1) # for second component (1)
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A.3.9 Plotting

A.3.9.1 ASAP plotter

The ASAP plotter uses the same Python matplotlib library as in CASA (for x-y plots). It is
accessed via the:

sd.plotter<TAB> # see all functions (omitted here)
sd.plotter.plot(scans) # the workhorse function
sd.plotter.set<TAB>
sd.plotter.set_abcissa sd.plotter.set_legend sd.plotter.set_range
sd.plotter.set_colors sd.plotter.set_linestyles sd.plotter.set_selection
sd.plotter.set_colours sd.plotter.set_mask sd.plotter.set_stacking
sd.plotter.set_font sd.plotter.set_mode sd.plotter.set_title
sd.plotter.set_histogram sd.plotter.set_ordinate
sd.plotter.set_layout sd.plotter.set_panelling

Spectra can be plotted at any time, and it will attempt to do the correct layout depending on
whether it is a set of scans or a single scan. The details of the plotter display (matplotlib) are
detailed in the earlier section.

A.3.9.2 Line Catalog

ASAP allows loading a custom line catalog in ASCII format. The ASCII text file must have at
least 4 columns with Molecule name, frequency in MHz, frequency error and intensity (any units).
If the molecule name contains any spaces, they must be wrapped in quotes ””. A sample of the
ASCII catalog is shown below.

H2D+ 3955.2551 228.8818 -7.1941
H2D+ 12104.7712 177.1558 -6.0769
H2D+ 45809.2731 118.3223 -3.9494
CH 701.6811 .0441 -7.1641
CH 724.7709 .0456 -7.3912
CH 3263.7940 .1000 -6.3501
CH 3335.4810 .1000 -6.0304

You can load the ASCII line catalog, for example, if it is called my custom linecat.txt, by following
command.

mycatlog = sd.linecatlog(’my_custom_linecat.txt’)

Use sd.plotter.plot line to overlay the line catalog on the plot. (Currently overplotting line
catalog works only spectra plotted in frequency.)
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scans.set_unit(’GHz’)
sd.plotter.plot(scans)
sd.plotter.plot_line(mycatlog)

The following are some useful functions to control the line catalog access. See ASAP User Guide
for more complete descriptions.

mycatlog.save(’my_custom_linecat.tbl’) # save to the internal table format
mycatlog.set_frequency_limits(100,115,’GHz’) #set a frequency range for line selection
mycatlog.set_name(’*OH’) # select all alchols

A.3.10 Setting/Getting Rest Frequencies

The rest frequencies used in the data can be retrieved by sd.scantable.get restfreqs() and set
to new values by sd.scantable.set restfreqs(). The CASA version of ASAP now can store
multiple rest frequencies for each IF.

scans.get_restfreqs() #retrieve current rest frequencies
#{0: [45490258000.0]

All of the rest frequencies currently set to the data are listed in python dictionary for each MOLECULE ID.

Here is an example of setting multiple rest frequencies for spectra of a particular IF:

#Select IFs, then set rest frequencies,
sel=sd.selector()
sel.setifs(0)
scans.set_selection(sel)
scans.set_restfreqs([45490258000.0,45590258000.0,45690258000.0])

NOTE: there is no functionality yet to select a specific rest frequency to apply to a specific line, etc. Currently,
the first one in the list of the rest frequencies is used for such calculation.

A.3.11 Single Dish Spectral Analysis Use Case With ASAP Toolkit

Below is a script that illustrates how to reduce single dish data using ASAP within CASA. First a summary
of the dataset is given and then the script.

# MeasurementSet Name: /home/rohir3/jocular/SD/OrionS_rawACSmod MS Version 2
#
# Project: AGBT06A_018_01
# Observation: GBT(1 antennas)
#
#Data records: 256 Total integration time = 1523.13 seconds
# Observed from 01:45:58 to 02:11:21
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#
#Fields: 4
# ID Name Right Ascension Declination Epoch
# 0 OrionS 05:15:13.45 -05.24.08.20 J2000
# 1 OrionS 05:35:13.45 -05.24.08.20 J2000
# 2 OrionS 05:15:13.45 -05.24.08.20 J2000
# 3 OrionS 05:35:13.45 -05.24.08.20 J2000
#
#Spectral Windows: (8 unique spectral windows and 1 unique polarization setups)
# SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
# 0 8192 LSRK 45464.3506 6.10423298 50005.8766 45489.3536 RR LL HC3N
# 1 8192 LSRK 45275.7825 6.10423298 50005.8766 45300.7854 RR LL HN15CO
# 2 8192 LSRK 44049.9264 6.10423298 50005.8766 44074.9293 RR LL CH3OH
# 3 8192 LSRK 44141.2121 6.10423298 50005.8766 44166.2151 RR LL HCCC15N
# 12 8192 LSRK 43937.1232 6.10423356 50005.8813 43962.1261 RR LL HNCO
# 13 8192 LSRK 42620.4173 6.10423356 50005.8813 42645.4203 RR LL H15NCO
# 14 8192 LSRK 41569.9768 6.10423356 50005.8813 41594.9797 RR LL HNC18O
# 15 8192 LSRK 43397.8198 6.10423356 50005.8813 43422.8227 RR LL SiO

# Scans: 21-24 Setup 1 HC3N et al
# Scans: 25-28 Setup 2 SiO et al

casapath=os.environ[’AIPSPATH’]

#ASAP script # COMMENTS
#-------------------------------------- -----------------------------------------------
import asap as sd #import ASAP package into CASA

#Orion-S (SiO line reduction only)
#Notes:
#scan numbers (zero-based) as compared to GBTIDL

#changes made to get to OrionS_rawACSmod
#modifications to label sig/ref positions

os.environ[’AIPSPATH’]=casapath #set this environment variable back - ASAP changes it

s=sd.scantable(’OrionS_rawACSmod’,False)#load the data without averaging

s.summary() #summary info
s.set_fluxunit(’K’) # make ’K’ default unit
scal=sd.calps(s,[20,21,22,23]) # Calibrate HC3N scans

scal.recalc_azel() # recalculate az/el to
scal.opacity(0.09) # do opacity correction
sel=sd.selector() # Prepare a selection
sel.set_ifs(0) # select HC3N IF
scal.set_selection(sel) # get this IF
stave=sd.average_time(scal,weight=’tintsys’) # average in time
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Figure A.3: Multi-panel display of the scantable. There are two plots per scan indicating the psr
(reference position data) and the ps (source data).

spave=stave.average_pol(weight=’tsys’) # average polarizations;Tsys-weighted (1/Tsys**2) average
sd.plotter.plot(spave) # plot

spave.smooth(’boxcar’,5) # boxcar 5
spave.auto_poly_baseline(order=2) # baseline fit order=2
sd.plotter.plot(spave) # plot

spave.set_unit(’GHz’)
sd.plotter.plot(spave)
sd.plotter.set_histogram(hist=True) # draw spectrum using histogram
sd.plotter.axhline(color=’r’,linewidth=2) # zline
sd.plotter.save(’orions_hc3n_reduced.eps’)# save postscript spectrum

spave.set_unit(’channel’)
rmsmask=spave.create_mask([5000,7000]) # get rms of line free regions
rms=spave.stats(stat=’rms’,mask=rmsmask)# rms

#----------------------------------------------
#Scan[0] (OrionS_ps) Time[2006/01/19/01:52:05]:
# IF[0] = 0.048
#----------------------------------------------
# LINE

linemask=spave.create_mask([3900,4200])
max=spave.stats(’max’,linemask) # IF[0] = 0.918
sum=spave.stats(’sum’,linemask) # IF[0] = 64.994
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Figure A.4: Two panel plot of the calibrated spectra. The GBT data have a separate scan for the
SOURCE and REFERENCE positions so scans 20,21,22 and 23 result in these two spectra.

Figure A.5: Calibrated spectrum with a line at zero (using histograms).
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median=spave.stats(’median’,linemask) # IF[0] = 0.091
mean=spave.stats(’mean’,linemask) # IF[0] = 0.210

# Fitting
spave.set_unit(’channel’) # set units to channel
sd.plotter.plot(spave) # plot spectrum
f=sd.fitter()
msk=spave.create_mask([3928,4255]) # create region around line
f.set_function(gauss=1) # set a single gaussian component
f.set_scan(spave,msk) # set the data and region for the fitter
f.fit() # fit
f.plot(residual=True) # plot residual

f.get_parameters() # retrieve fit parameters
# 0: peak = 0.786 K , centre = 4091.236 channel, FWHM = 70.586 channel
# area = 59.473 K channel
f.store_fit(’orions_hc3n_fit.txt’) # store fit
# Save the spectrum
spave.save(’orions_hc3n_reduced’,’ASCII’,True) # save the spectrum

A.4 Single Dish Imaging

Single dish imaging is supported within CASA using standard tasks and tools. The data must be
in the Measurement Set format. Once there, you can use the im (imager) tool to create images:

Tool example:

scans.save(’outputms’,’MS2’) # Save your data from ASAP into an MS

im.open(’outputms’) # open the data set
im.selectvis(nchan=901,start=30,step=1, # choose a subset of the data

spwid=0,field=0) # (just the key emission channels)
dir=’J2000 17:18:29 +59.31.23’ # set map center
im.defineimage(nx=150,cellx=’1.5arcmin’, # define image parameters

phasecenter=dir,mode=’channel’,start=30, # (note it assumes symmetry if ny,celly
nchan=901,step=1) # aren’t specified)

im.setoptions(ftmachine=’sd’,cache=1000000000) # choose SD gridding
im.setsdoptions(convsupport=4) # use this many pixels to support the

# gridding function used
# (default=prolate spheroidal wave function)

im.makeimage(type=’singledish’, # make the image
image=’FLS3a_HI.image’)
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A.4.1 Single Dish Imaging Use Case With ASAP Toolkit

The data summary and and the script are given below.

# Project: AGBT02A_007_01
# Observation: GBT(1 antennas)
#
# Telescope Observation Date Observer Project
# GBT [ 4.57539e+09, 4.5754e+09]Lockman AGBT02A_007_01
# GBT [ 4.57574e+09, 4.57575e+09]Lockman AGBT02A_007_02
# GBT [ 4.5831e+09, 4.58313e+09]Lockman AGBT02A_031_12
#
# Thu Feb 1 23:15:15 2007 NORMAL ms::summary:
# Data records: 76860 Total integration time = 7.74277e+06 seconds
# Observed from 22:05:41 to 12:51:56
#
# Thu Feb 1 23:15:15 2007 NORMAL ms::summary:
# Fields: 2
# ID Name Right Ascension Declination Epoch
# 0 FLS3a 17:18:00.00 +59.30.00.00 J2000
# 1 FLS3b 17:18:00.00 +59.30.00.00 J2000
#
# Thu Feb 1 23:15:15 2007 NORMAL ms::summary:
# Spectral Windows: (2 unique spectral windows and 1 unique polarization setups)
# SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
# 0 1024 LSRK 1421.89269 2.44140625 2500 1420.64269 XX YY
# 1 1024 LSRK 1419.39269 2.44140625 2500 1418.14269 XX YY

# FLS3 data calibration
# this is calibration part of FLS3 data
#
casapath=os.environ[’AIPSPATH’]
import asap as sd
os.environ[’AIPSPATH’]=casapath

print ’--Import--’

s=sd.scantable(’FLS3_all_newcal_SP’,false) # read in MeasurementSet

print ’--Split--’

# splitting the data for each field
s0=s.get_scan(’FLS3a*’) # split the data for the field of interest
s0.save(’FLS3a_HI.asap’) # save this scantable to disk (asap format)
del s0 # free up memory from scantable

print ’--Calibrate--’
s=sd.scantable(’FLS3a_HI.asap’) # read in scantable from disk (FLS3a)
s.set_fluxunit(’K’) # set the brightness units to Kelvin
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scanns = s.getscannos() # get a list of scan numbers
sn=list(scanns) # convert it to a list
print "No. scans to be processed:", len(scanns)

res=sd.calfs(s,sn) # calibrate all scans listed using frequency
# switched calibration method

print ’--Save calibrated data--’
res.save(’FLS3a_calfs’, ’MS2’) # Save the dataset as a MeasurementSet

print ’--Image data--’

im.open(’FLS3a_calfs’) # open the data set
im.selectvis(nchan=901,start=30,step=1, # choose a subset of the data
spwid=0,field=0) # (just the key emission channels)
dir=’J2000 17:18:29 +59.31.23’ # set map center
im.defineimage(nx=150,cellx=’1.5arcmin’, # define image parameters
phasecenter=dir,mode=’channel’,start=30, # (note it assumes symmetry if ny,celly
nchan=901,step=1) # aren’t specified)

im.setoptions(ftmachine=’sd’,cache=1000000000) # choose SD gridding
im.setsdoptions(convsupport=4) # use this many pixels to support the

# gridding function used
# (default=prolate spheroidal wave function)

im.makeimage(type=’singledish’,image=’FLS3a_HI.image’) # make the image
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Figure A.6: FLS3a HI emission. The display illustrates the visualization of the data cube (left) and
the profile display of the cube at the cursor location (right); the Tools menu of the Viewer Display
Panel has a Spectral Profile button which brings up this display. By default, it grabs the left-mouse
button. Pressing down the button and moving in the display will show the profile variations.

A.5 Known Issues, Problems, Deficiencies and Features

The Single-Dish calibration and analysis package within CASA is still very much under develop-
ment. Not surprisingly, there are a number of issues with ASAP and the SDtasks that are known
and under repair. Some of these are non-obvious ”features” by the way ASAP and sd are imple-
mented, or limitations of the current Python tasking environment. Some are functions that have
yet to be implemented. These currently include:

1. sd.plotter

Currently one can get hardcopy only after making a viewed plot. Ideally, ASAP should allow
choosing the plotting device when you set up the plotter.

Multi-panel plotting is poor. Currently one can only add things (like lines, text, etc.) to the
first panel. Also, sd.plotter.set range() sets the same range for multiple panels, while we
would like it to be able to set the range for each independently, including the default ranges.

The appearance of the plots need to be improved. In principle, matplotlib can make ”publi-
cation quality” figures, but in practice a lot of work is required and the plots are not good.

The sd.plotter object remembers things throughout the session and thus can easily get con-
fused. For example, one must reset the range sd.plotter.set range() if set manually. This
behavior is not always expected, but is a consequence of having sd.plotter be its own object
that is fed data and commands.
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There are known bugs when switching between the task-based plotting with sdplot and the
tool-based plotting. sdplot adds extra control buttons that are not implemented in the sd
toolkit, so there are no ’spec value’, ’statistics’, or ’Quit’ buttons for sd.plotter.plot().
Once the ’statistics’ button on sdplot is used and deleted, sdplot, you can still use mouse
buttons to select region to get statistics with the plotter displayed with sd.plotter.plot().
But, spectral values won’t be displayed in such case. Also, when going back to sdplot
after using sd.plotter.plot(), an error may occur and the plotter window won’t be dis-
played. In that case, the window state can be reset by deleting the plotter window opened
by sd.plotter.plot() with the command, sd.plotter. plotter.unmap().

Eventually we would like the capability to interactively set things using the plots, like select
frequency ranges, identify lines, start fitting.

2. sd.selector

The selector object only allows one selection of each type. It would be nice to be able to make
a union of selections (without resorting to query) for the set name. Note that the others like
scans and IFs work off lists, which is fine. We should make set name work off lists of names.

3. sd.scantable

There is no useful inline help on the scantable constructor in help sd.scantable help sd.

The inline help for scantable.summary claims that there is a verbose parameter, but there is
not. The scantable.verbosesummary asaprc parameter (e.g. in sd.rcParams) does nothing.

GBT data has an undefined parameter fluxunit (’’ that should be ’K’), an incorrect freqframe
(’LSRK’ that is is really ’TOPO’), and reference frequency (set to that of the first IF only).

The sd.scantable.freq align does not yet work correctly.

4. sd general issues

There should be a sdhelp equivalent of toolhelp and tasklist for the sd tools and tasks.

The current output of ASAP is verbose and controlled by setting sd.rcParams[’verbose’]=False
(or True). We will make some of the output less cryptic.

We will strip off leading and trailing whitespace on string parameters.

5. SDtasks general issues

The SDtasks work with files saved onto disk in one of the scantable supported formats. It
might be useful to work with scantables in memory (passing the objects) but this would
require changes to the tasking system. Note that this behavior is consistent throughout the
casapy tasks.

6. sdaverage (and sdcal)

averageall=True is still experimental since the test was insufficient because of a lack of test
data.

7. sdfit
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Only way to handle multi-IFs is to set fitmode=’auto’ (linefinder is applied for each spectra
and derives initial guesses). For fitmode=’list’, there are no way to give initial guesses for
each IFs by hand.

8. sdplot

Only handles the included JPL line catalog. Also, see sd.plotter issues above.
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Simulation

The capability for simulating observations and datasets from the EVLA and ALMA are an im-
portant use-case for CASA. This not only allows one to get an idea of the capabilities of these
instruments for doing science, but also provides benchmarks for the performance and utility of the
software for processing “realistic” datasets (with atmospheric and instrumental effects). CASA can
now calculate visibilities (create a measurement set) for any interferometric array, and calculate
and apply calibration tables representing some of the most important corrupting effects. Version
3.0.0 now also contains a beta version of a task to simulate single dish or total power data from the
same sky model as interferometric data.

Inside the Toolkit:
The simulator methods are in the sm
tool. Many of the other tools are also
helpful when constructing and ana-
lyzing simulations.

CASA’s simulation capabilities have been under develop-
ment, and will likely continue to evolve through this and
the next release of CASA. For the most current informa-
tion, please refer to http://www.casaguides.nrao.edu,
and click on “Simulating Observations in CASA”. Follow-
ing general CASA practice, the greatest flexibility and rich-
est functionality is at the Toolkit level. The most com-
monly used procedures for interferometric simulation are
encapsulated in the simdata task. Total power simulation is possible at the task level using the
sdsimdata task, which follows somewhat parallel inputs and whose capabilities will being developed
more fully in the next release.

B.1 Simulating ALMA with simdata

The inputs are:

# simdata :: mosaic simulation task:
modelimage = ’’ # input image name
ignorecoord = False # scale model coordinates to output parameters
inbright = ’unchanged’ # set peak surface brightness in Jy/pixel or "unchanged"
complist = ’’ # componentlist table to observe
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antennalist = ’alma.out10.cfg’ # antenna position file
checkinputs = ’no’ # graphically verify parameters [yes|no|only]
project = ’sim’ # root for output files
refdate = ’2012/05/21/22:05:00’ # center time/date of observation *see help
totaltime = ’7200s’ # total time of observation
integration = ’10s’ # integration (sampling) time
scanlength = 5 # number of integrations per pointing in the mosaic
startfreq = ’89GHz’ # frequency of first channel
chanwidth = ’10MHz’ # channel width
nchan = 1 # number of channels
direction = [’J2000 19h00m00 -40d00m00’] # mosaic center, or list of pointings
pointingspacing = ’1arcmin’ # spacing in between beams in mosaic
relmargin = 1.0 # space btw. pointings and edge, rel. to pointingspacing
cell = ’0.1arcsec’ # output cell/pixel size
imsize = [128, 128] # output image size in pixels (x,y)
niter = 500 # maximum number of iterations
threshold = ’0.01mJy’ # flux level (+units) to stop cleaning
psfmode = ’clark’ # method of PSF calculation to use during minor cycles
weighting = ’natural’ # weighting to apply to visibilities
uvtaper = False # apply additional uv tapering of visibilities.
stokes = ’I’ # Stokes params to image
noise_thermal = True # add thermal noise

noise_mode = ’tsys-atm’ # tsys-atm: set PWV, use ATM; tsys-manual: set t_sky, tau0
user_pwv = 1.0 # Precipitable Water Vapor in mm
t_ground = 269.0 # ambient temperature
t_sky = 263.0 # atmospheric temperature
tau0 = 0.1 # zenith opacity

fidelity = True # Calculate fidelity images
display = True # Plot simulation result images,figures
verbose = False
async = False # If true the taskname must be started using simdata(...)

This task takes an input model image or list of components, plus a list of antennas (locations and
sizes), and simulates a particular observation (specifies by mosaic setup and observing cycles and
times). The output is a MS suitable for further analysis in CASA, a synthesized image create from
those visibilities, a difference image between the synthesized image and your sky model convolved
with the output synthesized beam, and a fidelity image.

Random thermal noise (from the atmosphere and receiver) can optionally be added. A realistic
model of the troposphere is created from known site characteristics (altitude, etc) and used to
calculate the frequency dependence of the noise. Similarly, specifications for ALMA and EVLA
receiver temperature and antenna efficiencies are coded into the task to determine a realistic system
temperature. Other corrupting effects, such as phase noise, gain drift, and cross-polarization, can
be added the the MS with the toolkit - see the web documentation for more information.

Much more detailed information, and use-case examples, can be found at

http://casaguides.nrao.edu/index.php?title=Simulating_Observations_in_CASA

http://casaguides.nrao.edu/index.php?title=Simulating_Observations_in_CASA
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Obtaining and Installing CASA

C.1 Installation Script

Currently you must be able to log into your system as the root user or an administrator user to
install CASA.

The easiest way to install CASA on a RedHat Enterprise Linux (or compatible) system is to use
our installation script, load-casapy. This script will ftp the CASA RPMs and install them. To use
it, first use the link above to download it to your hard disk. Next, make sure execute permission is
set for the file.

Install CASA into /usr by logging in as root and running:

load-casapy –root

This option will install CASA into /usr, but it can only be run by the root user.

Alternatively, you can visit our FTP server, download the rpms, and install them by hand. Note:
you must be root/administrater to install CASA in this manner.

See the following for more details:

https://wikio.nrao.edu/bin/view/Software/ObtainingCASA

C.2 Startup

This section assumes that CASA has been installed on your LINUX or OSX system. For NRAO-
AOC testers, you should do the following on an AOC RHE4 machine:

> . /home/casa/casainit.sh
or
> source /home/casa/casainit.csh
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Python and CASA

CASA uses Python, IPython and matplotlib within the package. IPython is an enhanced, inter-
active shell to Python which provides many features for efficient command line interaction, while
matplotlib is a Python 2-D plotting library for publication quality figures in different hardcopy
formats.

From www.python.org: ”Python is an interpreted, interactive, object-oriented programming lan-
guage”. Python is used as the underlying command line interface/scripting language to CASA.
Thus, CASA inherits the features and the annoyances of Python. For example, since Python is
inherently 0-based in its indexing of arrays, vectors, etc, CASA is also 0-based; any Index inputs
(e.g., start (for start channel), fieldIndex, antennaID, etc) will start with 0. Another example is
that indenting of lines means something to Python, of which users will have to be aware.

Some key links are:

• http://python.org – Main Python page

• http://python.org/doc/2.4.2/ref/ref.html – Python Reference

• http://python.org/doc/2.4.2/tut/tut.html – Python Tutorial

• http://ipython.scipy.org – IPython page

• http://matplotlib.sourceforge.net – matplotlib page

Each of the features of these components behave in the standard way within CASA . In the following
sections, we outline the key elements for analysis interactions; see the Python references and the
IPython page for the full suite of functionality.

D.1 Automatic parentheses

Automatic parenthesis is enabled for calling functions with argument lists; this feature is intended
to allow less typing for common situations. IPython will display the interpretation of the line,
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beneath the one typed, as indicated by the ’-------->’. Default behavior in CASA is to have
automatic parenthesis enabled.

D.2 Indentation

Python pays attention to indentation of lines in scripts or when you enter them interactively. It
uses indentation to determine the level of nesting in loops. Be careful when cutting and pasting,
if you get the wrong indentation, then unpredictable things can happen (usually it just gives an
error).

A blank line can be used to return the indentation to a previous level. For example, expanded pa-
rameters in tasks cause indentation in subsequent lines in the interface. For example, the following
snippet of inputs from clean can be cut and pasted without error due to the blank line after the
indented parameters:

mode = ’channel’ # Type of selection
nchan = -1 # Number of channels to select
start = 0 # Start channel
step = 1 # Increment between channels/velocity
width = 1 # Channel width

alg = ’clark’ # Algorithm to use

If the blank line were not there, an error would result if you pasted this at the casapy prompt.

D.3 Lists and Ranges

Sometimes, you need to give a task a list of indices. For example, some tasks and tools expect a
comma-separated Python list, e.g.

scanlist = [241, 242, 243, 244, 245, 246]

You can use the Python range function to generate a list of consecutive numbers, e.g.

scanlist = range(241,247)

giving the same list as above, e.g.

CASA <1>: scanlist=range(241,247)
CASA <2>: print scanlist
[241, 242, 243, 244, 245, 246]

Note that range starts from the first limit and goes to one below the second limit (Python is
0-based, and range is designed to work in loop functions). If only a single limit is given, the first
limit is treated as 0, and the one given is used as the second, e.g.
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CASA <3>: iflist=range(4)
CASA <4>: print iflist
[0, 1, 2, 3]

You can also combine multiple ranges by summing lists

CASA <5>: scanlist=range(241,247) + range(251,255)
CASA <6>: print scanlist
[241, 242, 243, 244, 245, 246, 251, 252, 253, 254]

D.4 Dictionaries

Python dictionaries are data structures that contain key:value pairs, sort of like a hash array.
These are useful to store mini-databases of things. In CASA, the parameter values are kept in a
dictionary behind the scenes.

To initialize a dictionary, say we call it mydict, for use:

CASA <7>: mydict = {}

To add members:

CASA <8>: mydict[’source’] = ’0137+331’
CASA <9>: mydict[’flux’] = 5.4

To see its contents:

CASA <10>: mydict
Out[10]: {’flux’: 5.4000000000000004, ’source’: ’0137+331’}

CASA <11>: print mydict
{’source’: ’0137+331’, ’flux’: 5.4000000000000004}

To access a specific entry:

CASA <12>: print mydict[’flux’]
5.4

D.4.1 Saving and Reading Dictionaries

To save a simple dictionary to a file:

CASA <13>: dictfile = open(’mydictfile.py’,’w’)
CASA <14>: print >>dictfile,"mydict = ",mydict
CASA <15>: dictfile.close()
CASA <16>: !cat mydictfile.py
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IPython system call: cat mydictfile.py
mydict = {’source’: ’0137+331’, ’flux’: 5.4000000000000004}

CASA <17>: mydict = {}
CASA <18>: run mydictfile.py
CASA <19>: mydict
Out[19]: {’flux’: 5.4000000000000004, ’source’: ’0137+331’}

More complex dictionaries, like those produced by imstat that contain NumPy arrays, require a
different approach to save. The pickle module lets you save general data structures from Python.
For example:

CASA <20>: import pickle
CASA <21>: xstat
Out[21]:

{’blc’: array([0, 0, 0, 0]),
’blcf’: ’15:24:08.404, +04.31.59.181, I, 1.41281e+09Hz’,
’flux’: array([ 4.0795296]),
’max’: array([ 0.05235516]),
’maxpos’: array([134, 134, 0, 38]),
’maxposf’: ’15:21:53.976, +05.05.29.998, I, 1.41374e+09Hz’,
’mean’: array([ 1.60097857e-05]),
’medabsdevmed’: array([ 0.00127436]),
’median’: array([ -1.17422514e-05]),
’min’: array([-0.0104834]),
’minpos’: array([160, 1, 0, 30]),
’minposf’: ’15:21:27.899, +04.32.14.923, I, 1.41354e+09Hz’,
’npts’: array([ 3014656.]),
’quartile’: array([ 0.00254881]),
’rms’: array([ 0.00202226]),
’sigma’: array([ 0.0020222]),
’sum’: array([ 48.26399646]),
’sumsq’: array([ 12.32857318]),
’trc’: array([255, 255, 0, 45]),
’trcf’: ’15:19:52.390, +05.35.44.246, I, 1.41391e+09Hz’}

CASA <22>: mydict
Out[22]: {’flux’: 5.4000000000000004, ’source’: ’0137+331’}

CASA <23>: pickfile = ’myxstat.pickle’
CASA <24>: f = open(pickfile,’w’)
CASA <25>: p = pickle.Pickler(f)
CASA <26>: p.dump(xstat)
CASA <27>: p.dump(mydict)
CASA <28>: f.close()

The dictionaries are now saved in pickle file myxstat.pickle in the current directory.

To retrieve:

CASA <29>: xstat2 = {}
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CASA <30>: mydict2 = {}
CASA <31>: f = open(pickfile)
CASA <32>: u = pickle.Unpickler(f)
CASA <33>: xstat2 = u.load()
CASA <34>: mydict2 = u.load()
CASA <35>: f.close()
CASA <36>: xstat2
Out[36]:

{’blc’: array([0, 0, 0, 0]),
’blcf’: ’15:24:08.404, +04.31.59.181, I, 1.41281e+09Hz’,
’flux’: array([ 4.0795296]),
’max’: array([ 0.05235516]),
’maxpos’: array([134, 134, 0, 38]),
’maxposf’: ’15:21:53.976, +05.05.29.998, I, 1.41374e+09Hz’,
’mean’: array([ 1.60097857e-05]),
’medabsdevmed’: array([ 0.00127436]),
’median’: array([ -1.17422514e-05]),
’min’: array([-0.0104834]),
’minpos’: array([160, 1, 0, 30]),
’minposf’: ’15:21:27.899, +04.32.14.923, I, 1.41354e+09Hz’,
’npts’: array([ 3014656.]),
’quartile’: array([ 0.00254881]),
’rms’: array([ 0.00202226]),
’sigma’: array([ 0.0020222]),
’sum’: array([ 48.26399646]),
’sumsq’: array([ 12.32857318]),
’trc’: array([255, 255, 0, 45]),
’trcf’: ’15:19:52.390, +05.35.44.246, I, 1.41391e+09Hz’}

CASA <37>: mydict2
Out[37]: {’flux’: 5.4000000000000004, ’source’: ’0137+331’}

Thus, you can make scripts that save information and use it later, like for regressions.

Note that these examples use Python file-handling and IO, as well as importing modules such as
pickle. See your friendly Python reference for more on this kind of stuff. Its fairly obvious how it
works.

D.5 Control Flow: Conditionals, Loops, and Exceptions

There are a number of ways to control the flow of execution in Python, including conditionals (if),
loops (for and while), and exceptions (try). We will discuss the first two below.

D.5.1 Conditionals

The standard if block handles conditional execution or branches in Python:
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if <expression>:
<statements>

elif <expression>:
<statements>

elif <expression>:
<statements>

...
else:

<statements>

Insert a pass statement if you want no action to be taken for a particular clause. The <expression>
should reduce down to True or False.

For example,

if ( importmode == ’vla’ ):
# Import the data from VLA Export to MS
default(’importvla’)
print "Use importvla to read VLA Export and make an MS"

archivefiles = datafile
vis = msfile
bandname = exportband
autocorr = False
antnamescheme = ’new’
project = exportproject

importvla()
elif ( importmode == ’fits’ ):

# Import the data from VLA Export to MS
default(’importuvfits’)
print "Use importuvfits to read UVFITS and make an MS"

fitsfile = datafile
vis = msfile
async = False

importuvfits()
else:

# Copy from msfile
print "Copying "+datafile+" to "+msfile
os.system(’cp -r ’+datafile+’ ’+msfile)
vis = msfile

chooses branches based on the value of the importmode Python variable (set previously in script).
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D.5.2 Loops

The for loop

for iter in seq:
<statements>

iterates over elements of a sequence seq, assigning each in turn to iter. The sequence is usually a
list of values.

For example,

splitms = ’polcal_20080224.cband.all.split.ms’
srclist = [’0137+331’,’2136+006’,’2202+422’,’2253+161’,’0319+415’,’0359+509’]
spwlist = [’0’,’1’]

for src in srclist:

for spwid in spwlist:

imname = splitms + ’.’ + src + ’.’ + spwid + ’.clean’
clean(vis=splitms,field=src,spw=spwid,imagename=imname,

stokes=’IQUV’,psfmode=’hogbom’,imagermode=’csclean’,
imsize=[288,288],cell=[0.4,0.4],niter=1000,
threshold=1.3,mask=[134,134,154,154])

# Done with spw

# Done with sources

As usual, blocks are closed by blank lines of the previous indentation level.

You can use the range (§ D.3) Python function to generate a numerical loop:

vis = ’polcal_20080224.cband.all.ms’
for i in range(0,6):

fld = str(i)
plotxy(vis,field=fld,xaxis=’uvdist’,yaxis=’amp’)

# Done with fields [0, 1, 2, 3, 4, 5]

There is also a while loop construct

while <expression>:
<statements>

which executes the statement block while the <expression> is True. The while loop can also take
an else block.

For example,
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# Do an explicit set of clean iterations down to a limit
prevrms = 1.e10
while rms > 0.001 :

clean(vis=splitms,field=src,spw=spwid,imagename=imname,
stokes=’IQUV’,psfmode=’hogbom’,imagermode=’csclean’,
imsize=[288,288],cell=[0.4,0.4],niter=200,
threshold=1.3,mask=[134,134,154,154])

offstat=imstat(imname+’.residual’,box=’224,224,284,284’)
rms=offstat[’sigma’][0]
if rms > prevrms:

break # the rms has increased, stop

prevrms = rms

# Clean until the off-source rms residual, reaches 0.001 Jy

Note that you can exit a loop using the break statement, as we have here when the rms increases.

D.6 System shell access

For scripts, the os.system methods are the preferred way to access system shell commands (see
§ D.6.1).

In interactive mode, any input line beginning with a ’ !’ character is passed verbatim (minus the ’ !’)
to the underlying operating system. Several common commands (ls, pwd, less) may be executed
with or without the ’!’. Note that the cd command must be executed without the ’!’, and the
cp command must use ’!’ as there is a conflict with the cp tool in casapy.

For example:

CASA [1]: pwd
/export/home/corsair-vml/jmcmulli/data
CASA [2]: ls n*
ngc5921.ms ngc5921.py
CASA [3]: !cp -r ../test.py .

D.6.1 Using the os.system methods

To use this, you need the os package. This should be loaded by default by casapy, but if not you
can use

import os

in your script.

For example, in our scripts we use this to clean up any existing output files
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# The prefix to use for all output files
prefix=’ngc5921.usecase’

# Clean up old files
os.system(’rm -rf ’+prefix+’*’)

Note that the os package has many useful methods. You can see these by using tab-completion:

CASA <2>: os.<tab>
Display all 223 possibilities? (y or n)
os.EX_CANTCREAT os.X_OK os.fdatasync os.readlink
os.EX_CONFIG os._Environ os.fdopen os.remove
os.EX_DATAERR os.__all__ os.fork os.removedirs
os.EX_IOERR os.__class__ os.forkpty os.rename
os.EX_NOHOST os.__delattr__ os.fpathconf os.renames
os.EX_NOINPUT os.__dict__ os.fstat os.rmdir
os.EX_NOPERM os.__doc__ os.fstatvfs os.sep
os.EX_NOUSER os.__file__ os.fsync os.setegid
os.EX_OK os.__getattribute__ os.ftruncate os.seteuid
os.EX_OSERR os.__hash__ os.getcwd os.setgid
os.EX_OSFILE os.__init__ os.getcwdu os.setgroups
os.EX_PROTOCOL os.__name__ os.getegid os.setpgid
os.EX_SOFTWARE os.__new__ os.getenv os.setpgrp
os.EX_TEMPFAIL os.__reduce__ os.geteuid os.setregid
os.EX_UNAVAILABLE os.__reduce_ex__ os.getgid os.setreuid
os.EX_USAGE os.__repr__ os.getgroups os.setsid
os.F_OK os.__setattr__ os.getloadavg os.setuid
os.NGROUPS_MAX os.__str__ os.getlogin os.spawnl
os.O_APPEND os._copy_reg os.getpgid os.spawnle
os.O_CREAT os._execvpe os.getpgrp os.spawnlp
os.O_DIRECT os._exists os.getpid os.spawnlpe
os.O_DIRECTORY os._exit os.getppid os.spawnv
os.O_DSYNC os._get_exports_list os.getsid os.spawnve
os.O_EXCL os._make_stat_result os.getuid os.spawnvp
os.O_LARGEFILE os._make_statvfs_result os.isatty os.spawnvpe
os.O_NDELAY os._pickle_stat_result os.kill os.stat
os.O_NOCTTY os._pickle_statvfs_result os.killpg os.stat_float_times
os.O_NOFOLLOW os._spawnvef os.lchown os.stat_result
os.O_NONBLOCK os.abort os.linesep os.statvfs
os.O_RDONLY os.access os.link os.statvfs_result
os.O_RDWR os.altsep os.listdir os.strerror
os.O_RSYNC os.chdir os.lseek os.symlink
os.O_SYNC os.chmod os.lstat os.sys
os.O_TRUNC os.chown os.major os.sysconf
os.O_WRONLY os.chroot os.makedev os.sysconf_names
os.P_NOWAIT os.close os.makedirs os.system
os.P_NOWAITO os.confstr os.minor os.tcgetpgrp
os.P_WAIT os.confstr_names os.mkdir os.tcsetpgrp
os.R_OK os.ctermid os.mkfifo os.tempnam
os.SEEK_CUR os.curdir os.mknod os.times
os.SEEK_END os.defpath os.name os.tmpfile
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os.SEEK_SET os.devnull os.nice os.tmpnam
os.TMP_MAX os.dup os.open os.ttyname
os.UserDict os.dup2 os.openpty os.umask
os.WCONTINUED os.environ os.pardir os.uname
os.WCOREDUMP os.error os.path os.unlink
os.WEXITSTATUS os.execl os.pathconf os.unsetenv
os.WIFCONTINUED os.execle os.pathconf_names os.urandom
os.WIFEXITED os.execlp os.pathsep os.utime
os.WIFSIGNALED os.execlpe os.pipe os.wait
os.WIFSTOPPED os.execv os.popen os.wait3
os.WNOHANG os.execve os.popen2 os.wait4
os.WSTOPSIG os.execvp os.popen3 os.waitpid
os.WTERMSIG os.execvpe os.popen4 os.walk
os.WUNTRACED os.extsep os.putenv os.write
os.W_OK os.fchdir os.read

D.6.2 Directory Navigation

In addition, filesystem navigation is aided through the use of bookmarks to simplify access to
frequently-used directories:

CASA [4]: cd /home/ballista/jmcmulli/other_data
CASA [4]: pwd
/home/ballista/jmcmulli/other_data
CASA [5]: bookmark other_data
CASA [6]: cd /export/home/corsair-vml/jmcmulli/data
CASA [7]: pwd
/export/home/corsair-vml/jmcmulli/data
CASA [8]: cd -b other_data
(bookmark:data) -> /home/ballista/jmcmulli/other_data

D.6.3 Shell Command and Capture

See also § D.8 for the use of the command history.

1. sx shell command, !!shell command - this captures the output to a list

CASA [1]: sx pwd # stores output of ’pwd’ in a list
Out[1]: [’/home/basho3/jmcmulli/pretest’]

CASA [2]: !!pwd # !! is a shortcut for ’sx’
Out[2]: [’/home/basho3/jmcmulli/pretest’]

CASA [3]: sx ls v* # stores output of ’pwd’ in a list
Out[3]:

[’vla_calplot.jpg’,
’vla_calplot.png’,
’vla_msplot_cals.jpg’,
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’vla_msplot_cals.png’,
’vla_plotcal_bpass.jpg’,
’vla_plotcal_bpass.png’,
’vla_plotcal_fcal.jpg’,
’vla_plotcal_fcal.png’,
’vla_plotvis.jpg’,
’vla_plotvis.png’]

CASA [4]: x=_ # remember ’_’ is a shortcut for the output from the last command

CASA [5]: x
Out[5]:

[’vla_calplot.jpg’,
’vla_calplot.png’,
’vla_msplot_cals.jpg’,
’vla_msplot_cals.png’,
’vla_plotcal_bpass.jpg’,
’vla_plotcal_bpass.png’, ’vla_plotcal_fcal.jpg’,
’vla_plotcal_fcal.png’,
’vla_plotvis.jpg’,
’vla_plotvis.png’]

CASA [6]: y=Out[2] # or just refer to the enumerated output

CASA [7]: y
Out[7]: [’/home/basho3/jmcmulli/pretest’]

2. sc - captures the output to a variable; options are ’-l’ and ’-v’

CASA [1]: sc x=pwd # capture output from ’pwd’ to the variable ’x’

CASA [2]: x
Out[2]: ’/home/basho3/jmcmulli/pretest’

CASA [3]: sc -l x=pwd # capture the output from ’pwd’ to the variable ’x’ but
# split newlines into a list (similar to sx command)

CASA [4]: x
Out[4]: [’/home/basho3/jmcmulli/pretest’]

CASA [5]: sc -v x=pwd # capture output from ’pwd’ to a variable ’x’ and
# show what you get (verbose mode)

x ==
’/home/basho3/jmcmulli/pretest’

CASA [6]: x
Out[6]: ’/home/basho3/jmcmulli/pretest’
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D.7 Logging

There are two components to logging within CASA. Logging of all command line inputs is done
via IPython.

Upon startup, CASA will log all commands to a file called ipython.log. This file can be changed
via the use of the ipythonrc file. This log file can be edited and re-executed as appropriate using
the execfile feature (§ D.11).

The following line sets up the logging for CASA . There are four options following the specification
of the logging file: 1) append, 2) rotate (each session of CASA will create a new log file with
a counter incrementing ipython.log.1, ipython.log.2 etc, 3) over (overwrite existing file), and 4)
backup (renames existing log file to log name).

logfile ./ipython.log append

The command logstate will provide details on the current logging setup:

CASA [12]: logstate

File: ipython.log
Mode: append
State: active

Logging can be turned on and off using the logon, logoff commands.

The second component is the output from applications which is directed to the file ./casapy.log.
See § 1.4.2 for more on the casalogger.

D.8 History and Searching

Numbered input/output history is provided natively within IPython. Command history is also
maintained on-line.

CASA [11]: x=1

CASA [12]: y=3*x

CASA [13]: z=x**2+y**2

CASA [14]: x
Out[14]: 1

CASA [15]: y
Out[15]: 3
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CASA [16]: z
Out[16]: 10

CASA [17]: Out[14] # Note: The ’Out’ vector contains command output
Out[17]: 1

CASA [18]: _15 # Note: The return value can be accessed by _number
Out[18]: 3

CASA [19]: ___ # Note: The last three return values can be accessed as:
Out[19]: 10 # _, __, ___

Command history can be accessed via the ’hist’ command. The history is reset at the beginning
of every CASA session, that is, typing ’hist’ when you first start CASA will not provide any
commands from the previous session. However, all of the commands are still available at the
command line and can be accessed through the up or down arrow keys, and through searching.

CASA [22]: hist
1 : __IP.system("vi temp.py") # Note:shell commands are designated in this way
2 : ipmagic("run -i temp.py") # Note:magic commands are designated in this way
3 : ipmagic("hist ")
4 : more temp.py
5 : __IP.system("more temp.py")
6 : quickhelp() # Note: autoparenthesis are added in the history
7 : im.open(’ngc5921.ms’)
8 : im.summary()
9 : ipmagic("pdoc im.setdata")
10: im.close()
11: quickhelp()
12: ipmagic("logstate ")
13: x=1
14: y=3*x
15: z=x**2+y**2
16: x
17: y
18: z
19: Out[16]
20: _17
21: ___

The history can be saved as a script or used as a macro for further use:

CASA [24]: save script.py 13:16
File ‘script.py‘ exists. Overwrite (y/[N])? y
The following commands were written to file ‘script.py‘:
x=1
y=3*x
z=x**2+y**2
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CASA [25]: !more script.py
x=1
y=3*x
z=x**2+y**2

Note that the history commands will be saved up to, but not including the last value (i.e., history
commands 13-16 saves commands 13, 14, and 15).

There are two mechanisms for searching command history:

1. Previous/Next: use Ctrl-p (previous,up) and Ctrl-n (next,down) to search through only
the history items that match what you have typed so far (min-match completion). If you use
Ctrl-p or Ctrl-n at a blank prompt, they behave just like the normal arrow keys.

2. Search: Ctrl-r opens a search prompt. Begin typing and the system searches your history
for lines that contain what you’ve typed so far, completing what it can. For example:

CASA [37]: <Cntl-r>

(reverse-i-search)‘’:

Typing anything after the colon will provide you with the last command matching the char-
acters, for example, typing ’op’ finds:

(reverse-i-search)‘op’: im.open(’ngc5921.ms’)

Subsequent hitting of Ctrl-r will search for the next command matching the characters.

D.9 Macros

Macros can be made for easy re-execution of previous commands. For example to store the com-
mands 13-15 to the macro ’example’:

CASA [31]: macro example 13:16
Macro ‘example‘ created. To execute, type its name (without quotes).
Macro contents:
x=1
y=3*x
z=x**2+y**2

CASA [32]: z
Out[32]: 6

CASA [33]: z=10

CASA [34]: example
Out[34]: Executing Macro...
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CASA [35]: z
Out[35]: 6

CASA [36]:

D.10 On-line editing

You can edit files on-line in two ways:

1. Using the shell access via ’ !vi’

2. Using the ed function; this will edit the file but upon closing, it will try to execute the file;
using the ’script.py’ example above:

CASA [13]: ed script.py # this will bring up the file in your chosen editor
# when you are finished editing the file,
# it will automatically
# execute it (as though you had done a
# execfile ’script.py’

Editing... done. Executing edited code...

CASA [14]: x
Out[14]: 1

CASA [15]: y
Out[15]: 3

CASA [16]: z
Out[16]: 6

D.11 Executing Python scripts

Python scripts are simple text files containing lists of commands as if typed at the keyboard. Note:
the auto-parentheses feature of IPython can not be used in scripts, that is, you should make sure
all function calls have any opening and closing parentheses.

# file is script.py
# My script to plot the observed visibilities
plotxy(’ngc5921.ms’,’uvdist’) #yaxis defaults to amplitude

This can be done by using the execfile command to execute this script. execfile will execute the
script as though you had typed the lines at the CASA prompt.

CASA [5]: execfile ’script.py’
--------> execfile(’script.py’)
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D.12 How do I exit from CASA?

You can exit CASA by using the quit command. This will bring up the query

Do you really want to exit ([y]/n)?

to give you a chance in case you did not mean to exit. You can also quit using %exit or CTRL-D.

If you don’t want to see the question "Do you really want to exit [y]/n?", then just type
Exit or exit followed by return, and CASA will stop right then and there.



Appendix E

The Measurement Equation and
Calibration

The visibilities measured by an interferometer must be calibrated before formation of an image.
This is because the wavefronts received and processed by the observational hardware have been
corrupted by a variety of effects. These include (but are not exclusive to): the effects of transmission
through the atmosphere, the imperfect details amplified electronic (digital) signal and transmission
through the signal processing system, and the effects of formation of the cross-power spectra by
a correlator. Calibration is the process of reversing these effects to arrive at corrected visibilities
which resemble as closely as possible the visibilities that would have been measured in vacuum by
a perfect system. The subject of this chapter is the determination of these effects by using the
visibility data itself.

E.1 The HBS Measurement Equation

The relationship between the observed and ideal (desired) visibilities on the baseline between an-
tennas i and j may be expressed by the Hamaker-Bregman-Sault Measurement Equation1:

~Vij = Jij
~V IDEAL

ij

where ~Vij represents the observed visibility, ~V IDEAL
ij represents the corresponding ideal visibilities,

and Jij represents the accumulation of all corruptions affecting baseline ij. The visibilities are
indicated as vectors spanning the four correlation combinations which can be formed from dual-
polarization signals. These four correlations are related directly to the Stokes parameters which
fully describe the radiation. The Jij term is therefore a 4×4 matrix.

Most of the effects contained in Jij (indeed, the most important of them) are antenna-based, i.e.,
they arise from measurable physical properties of (or above) individual antenna elements in a
synthesis array. Thus, adequate calibration of an array of Nant antennas forming Nant(Nant − 1)/2
baseline visibilities is usually achieved through the determination of only Nant factors, such that

1Hamaker, J.P., Bregman, J.D. & Sault, R.J. (1996), Astronomy and Astrophysics Supplement, v.117, p.137-147
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Jij = Ji⊗J∗
j . For the rest of this chapter, we will usually assume that Jij is factorable in this way,

unless otherwise noted.

As implied above, Jij may also be factored into the sequence of specific corrupting effects, each hav-
ing their own particular (relative) importance and physical origin, which determines their unique
algebra. Including the most commonly considered effects, the Measurement Equation can be writ-
ten:

~Vij = Mij Bij Gij Dij Eij Pij Tij
~V IDEAL

ij

where:

• Tij = Polarization-independent multiplicative effects introduced by the troposphere, such
as opacity and path-length variation.

• Pij = Parallactic angle, which describes the orientation of the polarization coordinates on
the plane of the sky. This term varies according to the type of the antenna mount.

• Eij = Effects introduced by properties of the optical components of the telescopes, such as
the collecting area’s dependence on elevation.

• Dij = Instrumental polarization response. ”D-terms” describe the polarization leakage
between feeds (e.g. how much the R-polarized feed picked up L-polarized emission, and vice
versa).

• Gij = Electronic gain response due to components in the signal path between the feed
and the correlator. This complex gain term Gij includes the scale factor for absolute flux
density calibration, and may include phase and amplitude corrections due to changes in the
atmosphere (in lieu of Tij). These gains are polarization-dependent.

• Bij = Bandpass (frequency-dependent) response, such as that introduced by spectral filters
in the electronic transmission system

• Mij = Baseline-based correlator (non-closing) errors. By definition, these are not factorable
into antenna-based parts.

Note that the terms are listed in the order in which they affect the incoming wavefront (G and B
represent an arbitrary sequence of such terms depending upon the details of the particular electronic
system). Note that M differs from all of the rest in that it is not antenna-based, and thus not
factorable into terms for each antenna.

As written above, the measurement equation is very general; not all observations will require
treatment of all effects, depending upon the desired dynamic range. E.g., bandpass need only be
considered for continuum observations if observed in a channelized mode and very high dynamic
range is desired. Similarly, instrumental polarization calibration can usually be omitted when
observing (only) total intensity using circular feeds. Ultimately, however, each of these effects
occurs at some level, and a complete treatment will yield the most accurate calibration. Modern
high-sensitivity instruments such as ALMA and EVLA will likely require a more general calibration
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treatment for similar observations with older arrays in order to reach the advertised dynamic ranges
on strong sources.

In practice, it is usually far too difficult to adequately measure most calibration effects absolutely (as
if in the laboratory) for use in calibration. The effects are usually far too changeable. Instead, the
calibration is achieved by making observations of calibrator sources on the appropriate timescales
for the relevant effects, and solving the measurement equation for them using the fact that we have
Nant(Nant − 1)/2 measurements and only Nant factors to determine (except for M which is only
sparingly used). (Note: By partitioning the calibration factors into a series of consecutive effects,
it might appear that the number of free parameters is some multiple of Nant, but the relative algebra
and timescales of the different effects, as well as the the multiplicity of observed polarizations and
channels compensate, and it can be shown that the problem remains well-determined until, perhaps,
the effects are direction-dependent within the field of view. Limited solvers for such effects are under
study; the calibrater tool currently only handles effects which may be assumed constant within the
field of view. Corrections for the primary beam are handled in the imager tool.) Once determined,
these terms are used to correct the visibilities measured for the scientific target. This procedure is
known as cross-calibration (when only phase is considered, it is called phase-referencing).

The best calibrators are point sources at the phase center (constant visibility amplitude, zero
phase), with sufficient flux density to determine the calibration factors with adequate SNR on the
relevant timescale. The primary gain calibrator must be sufficiently close to the target on the sky so
that its observations sample the same atmospheric effects. A bandpass calibrator usually must be
sufficiently strong (or observed with sufficient duration) to provide adequate per-channel sensitivity
for a useful calibration. In practice, several calibrators are usually observed, each with properties
suitable for one or more of the required calibrations.

Synthesis calibration is inherently a bootstrapping process. First, the dominant calibration term
is determined, and then, using this result, more subtle effects are solved for, until the full set of
required calibration terms is available for application to the target field. The solutions for each
successive term are relative to the previous terms. Occasionally, when the several calibration terms
are not sufficiently orthogonal, it is useful to re-solve for earlier types using the results for later
types, in effect, reducing the effect of the later terms on the solution for earlier ones, and thus better
isolating them. This idea is a generalization of the traditional concept of self-calibration, where
initial imaging of the target source supplies the visibility model for a re-solve of the gain calibration
(G or T ). Iteration tends toward convergence to a statistically optimal image. In general, the
quality of each calibration and of the source model are mutually dependent. In principle, as long
as the solution for any calibration component (or the source model itself) is likely to improve
substantially through the use of new information (provided by other improved solutions), it is
worthwhile to continue this process.

In practice, these concepts motivate certain patterns of calibration for different types of observation,
and the calibrater tool in CASA is designed to accommodate these patterns in a general and
flexible manner. For a spectral line total intensity observation, the pattern is usually:

1. Solve for G on the bandpass calibrator

2. Solve for B on the bandpass calibrator, using G



APPENDIX E. APPENDIX: THE MEASUREMENT EQUATION AND CALIBRATION 411

3. Solve for G on the primary gain (near-target) and flux density calibrators, using B solutions
just obtained

4. Scale G solutions for the primary gain calibrator according to the flux density calibrator
solutions

5. Apply G and B solutions to the target data

6. Image the calibrated target data

If opacity and gain curve information are relevant and available, these types are incorporated in
each of the steps (in future, an actual solve for opacity from appropriate data may be folded into
this process):

1. Solve for G on the bandpass calibrator, using T (opacity) and E (gain curve) solutions already
derived.

2. Solve for B on the bandpass calibrator, using G, T (opacity), and E (gain curve) solutions.

3. Solve for G on primary gain (near-target) and flux density calibrators, using B, T (opacity),
and E (gain curve) solutions.

4. Scale G solutions for the primary gain calibrator according to the flux density calibrator
solutions

5. Apply T (opacity), E (gain curve), G, and B solutions to the target data

6. Image the calibrated target data

For continuum polarimetry, the typical pattern is:

1. Solve for G on the polarization calibrator, using (analytical) P solutions.

2. Solve for D on the polarization calibrator, using P and G solutions.

3. Solve for G on primary gain and flux density calibrators, using P and D solutions.

4. Scale G solutions for the primary gain calibrator according to the flux density calibrator
solutions.

5. Apply P , D, and G solutions to target data.

6. Image the calibrated target data.

For a spectro-polarimetry observation, these two examples would be folded together.

In all cases the calibrator model must be adequate at each solve step. At high dynamic range
and/or high resolution, many calibrators which are nominally assumed to be point sources become
slightly resolved. If this has biased the calibration solutions, the offending calibrator may be imaged
at any point in the process and the resulting model used to improve the calibration. Finally, if
sufficiently strong, the target may be self-calibrated as well.
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E.2 General Calibrater Mechanics

The calibrater tasks/tool are designed to solve and apply solutions for all of the solution types
listed above (and more are in the works). This leads to a single basic sequence of execution for all
solves, regardless of type:

1. Set the calibrator model visibilities

2. Select the visibility data which will be used to solve for a calibration type

3. Arrange to apply any already-known calibration types (the first time through, none may yet
be available)

4. Arrange to solve for a specific calibration type, including specification of the solution timescale
and other specifics

5. Execute the solve process

6. Repeat 1-4 for all required types, using each result, as it becomes available, in step 2, and
perhaps repeating for some types to improve the solutions

By itself, this sequence doesn’t guarantee success; the data provided for the solve must have suffi-
cient SNR on the appropriate timescale, and must provide sufficient leverage for the solution (e.g.,
D solutions require data taken over a sufficient range of parallactic angle in order to separate the
source polarization contribution from the instrumental polarization).
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Annotated Example Scripts

Note: These data sets are available with the full CASA rpm distribution. Other data sets can be
made available upon request. The scripts are intended to illustrate the types of commands needed
for different types of reduction/astronomical observations.

BETA ALERT: During the Beta Release period, we will be occasionally updating the syntax of
the tasks, which may break older versions of the scripts. You can find the latest versions of these
(and other) scripts at:

http://casa.nrao.edu/Doc/Scripts/

F.1 NGC 5921 — VLA red-shifted HI emission

This script demonstates basic spectral calibration and imaging, but does not include any self-
calibration steps.

The latest version of this script can be found at:

http://casa.nrao.edu/Doc/Scripts/ngc5921_demo.py

##########################################################################
# #
# Use Case Script for NGC 5921 #
# #
# Converted by STM 2007-05-26 #
# Updated STM 2007-06-15 (Alpha Patch 1) #
# Updated STM 2007-09-05 (Alpha Patch 2+) #
# Updated STM 2007-09-18 (Alpha Patch 2+) #
# Updated STM 2007-09-18 (Pre-Beta) add immoments #
# Updated STM 2007-10-04 (Beta) update #
# Updated STM 2007-10-10 (Beta) add export #
# Updated STM 2007-11-08 (Beta Patch 0.5) add RRusk stuff #

413
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# Updated STM 2008-03-25 (Beta Patch 1.0) #
# Updated STM 2008-05-23 (Beta Patch 2.0) new tasking/clean/cal #
# Updated STM 2008-06-11 (Beta Patch 2.0) #
# Updated STM 2008-06-13 (Beta Patch 2.0) demo version #
# Updated STM 2008-06-14 (Beta Patch 2.0) post-school update #
# Updated STM 2008-07-06 (Beta Patch 2.0) regression version #
# Updated STM 2009-05-26 (Beta Patch 4.0) McMaster demo #
# Updated STM 2009-12-02 (Release 0) #
# #
# Features Tested: #
# The script illustrates end-to-end processing with CASA #
# as depicted in the following flow-chart. #
# #
# Filenames will have the <prefix> = ’ngc5921.demo’ #
# #
# Input Data Process Output Data #
# #
# NGC5921.fits --> importuvfits --> <prefix>.ms + #
# (1.4GHz, | <prefix>.ms.flagversions #
# 63 sp chan, v #
# D-array) listobs --> casapy.log #
# | #
# v #
# flagautocorr #
# | #
# v #
# setjy #
# | #
# v #
# bandpass --> <prefix>.bcal #
# | #
# v #
# gaincal --> <prefix>.gcal #
# | #
# v #
# fluxscale --> <prefix>.fluxscale #
# | #
# v #
# applycal --> <prefix>.ms #
# | #
# v #
# split --> <prefix>.cal.split.ms #
# | #
# v #
# split --> <prefix>.src.split.ms #
# | #
# v #
# exportuvfits --> <prefix>.split.uvfits #
# | #
# v #
# uvcontsub --> <prefix>.ms.cont + #
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# | <prefix>.ms.contsub #
# v #
# clean --> <prefix>.clean.image + #
# | <prefix>.clean.model + #
# | <prefix>.clean.residual #
# v #
# exportfits --> <prefix>.clean.fits #
# | #
# v #
# imhead --> casapy.log #
# | #
# v #
# imstat --> xstat (parameter) #
# | #
# v #
# immoments --> <prefix>.moments.integrated + #
# | <prefix>.moments.weighted_coord #
# v #
##########################################################################
print ’Demo Script for NGC5921 VLA HI observation’
print ’Version for Release 0 (3.0.0) 2-Dec-2009’
print ’’

import time
import os

scriptmode = True
#
# The prefix to use for all output files
prefix=’ngc5921.demo’

# Set up some useful variables (these will also be set later on)
msfile = prefix + ’.ms’
btable = prefix + ’.bcal’
gtable = prefix + ’.gcal’
ftable = prefix + ’.fluxscale’
splitms = prefix + ’.src.split.ms’
imname = prefix + ’.cleanimg’

#
# Get to path to the CASA home and stip off the name
pathname=os.environ.get(’CASAPATH’).split()[0]

# This is where the NGC5921 UVFITS data will be
fitsdata=pathname+’/data/demo/NGC5921.fits’
#
# Or uncomment the following to use data in current directory
#fitsdata=’NGC5921.fits’

# Clean up old files
# Use rmtables on ms and cal tables to clear cache
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# (not working on multiple runs for 2.4.0 release)
#rmtables(msfile)
#rmtables(btable)
#rmtables(gtable)
#rmtables(ftable)
#rmtables(ftable)
#rmtables(splitms+’*’)
#rmtables(imname+’.*’)
#rmtables(prefix+’.moments*’)

# Final clean up of auxiliary files
os.system(’rm -rf ’+prefix+’*’)

#
#=====================================================================
#
# Import the data from FITS to MS
#
print ’--Import--’

# Safest to start from task defaults
default(’importuvfits’)

# Set up the MS filename and save as new global variable
msfile = prefix + ’.ms’

# Use task importuvfits
fitsfile = fitsdata
vis = msfile

saveinputs(’importuvfits’,prefix+’.importuvfits.saved’)

importuvfits()

#
# Note that there will be a ngc5921.demo.ms.flagversions
# there containing the initial flags as backup for the main ms
# flags.
#
#=====================================================================
#
# List a summary of the MS
#
print ’--Listobs--’

# Don’t default this one and make use of the previous setting of
# vis. Remember, the variables are GLOBAL!

# You may wish to see more detailed information, like the scans.
# In this case use the verbose = True option
verbose = True
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listobs()

# You should get in your logger window and in the casapy.log file
# something like:
#
# MeasurementSet Name: /home/sandrock2/smyers/Testing2/Sep07/ngc5921.demo.ms
# MS Version 2
#
# Observer: TEST Project:
# Observation: VLA
#
# Data records: 22653 Total integration time = 5280 seconds
# Observed from 09:19:00 to 10:47:00
#
# ObservationID = 0 ArrayID = 0
# Date Timerange Scan FldId FieldName SpwIds
# 13-Apr-1995/09:19:00.0 - 09:24:30.0 1 0 1331+30500002_0 [0]
# 09:27:30.0 - 09:29:30.0 2 1 1445+09900002_0 [0]
# 09:33:00.0 - 09:48:00.0 3 2 N5921_2 [0]
# 09:50:30.0 - 09:51:00.0 4 1 1445+09900002_0 [0]
# 10:22:00.0 - 10:23:00.0 5 1 1445+09900002_0 [0]
# 10:26:00.0 - 10:43:00.0 6 2 N5921_2 [0]
# 10:45:30.0 - 10:47:00.0 7 1 1445+09900002_0 [0]
#
# Fields: 3
# ID Code Name Right Ascension Declination Epoch
# 0 C 1331+30500002_013:31:08.29 +30.30.32.96 J2000
# 1 A 1445+09900002_014:45:16.47 +09.58.36.07 J2000
# 2 N5921_2 15:22:00.00 +05.04.00.00 J2000
#
# Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)
# SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
# 0 63 LSRK 1412.68608 24.4140625 1550.19688 1413.44902 RR LL
#
# Feeds: 28: printing first row only
# Antenna Spectral Window # Receptors Polarizations
# 1 -1 2 [ R, L]
#
# Antennas: 27:
# ID Name Station Diam. Long. Lat.
# 0 1 VLA:N7 25.0 m -107.37.07.2 +33.54.12.9
# 1 2 VLA:W1 25.0 m -107.37.05.9 +33.54.00.5
# 2 3 VLA:W2 25.0 m -107.37.07.4 +33.54.00.9
# 3 4 VLA:E1 25.0 m -107.37.05.7 +33.53.59.2
# 4 5 VLA:E3 25.0 m -107.37.02.8 +33.54.00.5
# 5 6 VLA:E9 25.0 m -107.36.45.1 +33.53.53.6
# 6 7 VLA:E6 25.0 m -107.36.55.6 +33.53.57.7
# 7 8 VLA:W8 25.0 m -107.37.21.6 +33.53.53.0
# 8 9 VLA:N5 25.0 m -107.37.06.7 +33.54.08.0
# 9 10 VLA:W3 25.0 m -107.37.08.9 +33.54.00.1
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# 10 11 VLA:N4 25.0 m -107.37.06.5 +33.54.06.1
# 11 12 VLA:W5 25.0 m -107.37.13.0 +33.53.57.8
# 12 13 VLA:N3 25.0 m -107.37.06.3 +33.54.04.8
# 13 14 VLA:N1 25.0 m -107.37.06.0 +33.54.01.8
# 14 15 VLA:N2 25.0 m -107.37.06.2 +33.54.03.5
# 15 16 VLA:E7 25.0 m -107.36.52.4 +33.53.56.5
# 16 17 VLA:E8 25.0 m -107.36.48.9 +33.53.55.1
# 17 18 VLA:W4 25.0 m -107.37.10.8 +33.53.59.1
# 18 19 VLA:E5 25.0 m -107.36.58.4 +33.53.58.8
# 19 20 VLA:W9 25.0 m -107.37.25.1 +33.53.51.0
# 20 21 VLA:W6 25.0 m -107.37.15.6 +33.53.56.4
# 21 22 VLA:E4 25.0 m -107.37.00.8 +33.53.59.7
# 23 24 VLA:E2 25.0 m -107.37.04.4 +33.54.01.1
# 24 25 VLA:N6 25.0 m -107.37.06.9 +33.54.10.3
# 25 26 VLA:N9 25.0 m -107.37.07.8 +33.54.19.0
# 26 27 VLA:N8 25.0 m -107.37.07.5 +33.54.15.8
# 27 28 VLA:W7 25.0 m -107.37.18.4 +33.53.54.8
#
# Tables:
# MAIN 22653 rows
# ANTENNA 28 rows
# DATA_DESCRIPTION 1 row
# DOPPLER <absent>
# FEED 28 rows
# FIELD 3 rows
# FLAG_CMD <empty>
# FREQ_OFFSET <absent>
# HISTORY 273 rows
# OBSERVATION 1 row
# POINTING 168 rows
# POLARIZATION 1 row
# PROCESSOR <empty>
# SOURCE 3 rows
# SPECTRAL_WINDOW 1 row
# STATE <empty>
# SYSCAL <absent>
# WEATHER <absent>
#
#
#=====================================================================
#
# Get rid of the autocorrelations from the MS
#
print ’--Flagautocorr--’

# Don’t default this one either, there is only one parameter (vis)

flagautocorr()

#
#=====================================================================
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#
# Set the fluxes of the primary calibrator(s)
#
print ’--Setjy--’
default(’setjy’)

vis = msfile

#
# 1331+305 = 3C286 is our primary calibrator
# Use the wildcard on the end of the source name
# since the field names in the MS have inherited the
# AIPS qualifiers
field = ’1331+305*’

# This is 1.4GHz D-config and 1331+305 is sufficiently unresolved
# that we dont need a model image. For higher frequencies
# (particularly in A and B config) you would want to use one.
modimage = ’’

# Setjy knows about this source so we dont need anything more

saveinputs(’setjy’,prefix+’.setjy.saved’)

# Pause script if you are running in scriptmode
if scriptmode:

inp()
user_check=raw_input(’Return to continue script\n’)

setjy()

#
# You should see something like this in the logger and casapy.log file:
#
# 1331+30500002_0 spwid= 0 [I=14.76, Q=0, U=0, V=0] Jy, (Perley-Taylor 99)
#
# So its using 14.76Jy as the flux of 1331+305 in the single Spectral Window
# in this MS.
#
#=====================================================================
#
# Bandpass calibration
#
print ’--Bandpass--’
default(’bandpass’)

# We can first do the bandpass on the single 5min scan on 1331+305
# At 1.4GHz phase stablility should be sufficient to do this without
# a first (rough) gain calibration. This will give us the relative
# antenna gain as a function of frequency.
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vis = msfile

# set the name for the output bandpass caltable
btable = prefix + ’.bcal’
caltable = btable

# No gain tables yet
gaintable = ’’
gainfield = ’’
interp = ’’

# Use flux calibrator 1331+305 = 3C286 (FIELD_ID 0) as bandpass calibrator
field = ’0’
# all channels
spw = ’’
# No other selection
selectdata = False

# In this band we do not need a-priori corrections for
# antenna gain-elevation curve or atmospheric opacity
# (at 8GHz and above you would want these)
gaincurve = False
opacity = 0.0

# Choose bandpass solution type
# Pick standard time-binned B (rather than BPOLY)
bandtype = ’B’

# set solution interval arbitrarily long (get single bpass)
solint = ’inf’
combine = ’scan’

# reference antenna Name 15 (15=VLA:N2) (Id 14)
refant = ’15’

saveinputs(’bandpass’,prefix+’.bandpass.saved’)

# Pause script if you are running in scriptmode
if scriptmode:

inp()
user_check=raw_input(’Return to continue script\n’)

bandpass()

#
#=====================================================================
#
# Use plotcal to examine the bandpass solutions
#
print ’--Plotcal (bandpass)--’
default(’plotcal’)
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caltable = btable
field = ’0’

# Set up 2x1 panels - upper panel amp vs. channel
subplot = 211
yaxis = ’amp’
# No output file yet (wait to plot next panel)

saveinputs(’plotcal’,prefix+’.plotcal.b.amp.saved’)

if scriptmode:
showgui = True

else:
showgui = False

plotcal()
#
# Set up 2x1 panels - lower panel phase vs. channel
subplot = 212
yaxis = ’phase’

saveinputs(’plotcal’,prefix+’.plotcal.b.phase.saved’)

#
# Note the rolloff in the start and end channels. Looks like
# channels 6-56 (out of 0-62) are the best

# Pause script if you are running in scriptmode
if scriptmode:

# If you want to do this interactively and iterate over antenna, set
# iteration = ’antenna’
showgui = True
plotcal()
user_check=raw_input(’Return to continue script\n’)

else:
# No GUI for this script
showgui = False
# Now send final plot to file in PNG format (via .png suffix)
figfile = caltable + ’.plotcal.png’
plotcal()

#=====================================================================
#
# Gain calibration
#
print ’--Gaincal--’
default(’gaincal’)

# Armed with the bandpass, we now solve for the
# time-dependent antenna gains
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vis = msfile

# set the name for the output gain caltable
gtable = prefix + ’.gcal’
caltable = gtable

# Use our previously determined bandpass
# Note this will automatically be applied to all sources
# not just the one used to determine the bandpass
gaintable = btable
gainfield = ’’

# Use nearest (there is only one bandpass entry)
interp = ’nearest’

# Gain calibrators are 1331+305 and 1445+099 (FIELD_ID 0 and 1)
field = ’0,1’

# We have only a single spectral window (SPW 0)
# Choose 51 channels 6-56 out of the 63
# to avoid end effects.
# Channel selection is done inside spw
spw = ’0:6~56’

# No other selection
selectdata = False

# In this band we do not need a-priori corrections for
# antenna gain-elevation curve or atmospheric opacity
# (at 8GHz and above you would want these)
gaincurve = False
opacity = 0.0

# scan-based G solutions for both amplitude and phase
gaintype = ’G’
solint = ’inf’
combine = ’’
calmode = ’ap’

# minimum SNR allowed
minsnr = 1.0

# reference antenna 15 (15=VLA:N2)
refant = ’15’

saveinputs(’gaincal’,prefix+’.gaincal.saved’)

if scriptmode:
inp()
user_check=raw_input(’Return to continue script\n’)
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gaincal()

#
#=====================================================================
#
# Bootstrap flux scale
#
print ’--Fluxscale--’
default(’fluxscale’)

vis = msfile

# set the name for the output rescaled caltable
ftable = prefix + ’.fluxscale’
fluxtable = ftable

# point to our first gain cal table
caltable = gtable

# we will be using 1331+305 (the source we did setjy on) as
# our flux standard reference - note its extended name as in
# the FIELD table summary above (it has a VLA seq number appended)
reference = ’1331*’

# we want to transfer the flux to our other gain cal source 1445+099
transfer = ’1445*’

saveinputs(’fluxscale’,prefix+’.fluxscale.saved’)

# Pause script if you are running in scriptmode
if scriptmode:

inp()
user_check=raw_input(’Return to continue script\n’)

fluxscale()

# In the logger you should see something like:
# Flux density for 1445+09900002_0 in SpW=0 is:
# 2.48576 +/- 0.00123122 (SNR = 2018.94, nAnt= 27)

# If you run plotcal() on the tablein = ’ngc5921.demo.fluxscale’
# you will see now it has brought the amplitudes in line between
# the first scan on 1331+305 and the others on 1445+099

#
#=====================================================================
#
# Now use plotcal to examine the gain solutions
#
print ’--Plotcal (fluxscaled gains)--’
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default(’plotcal’)

caltable = ftable
field = ’0,1’

# Set up 2x1 panels - upper panel amp vs. time
subplot = 211
yaxis = ’amp’
# No output file yet (wait to plot next panel)

saveinputs(’plotcal’,prefix+’.plotcal.gscaled.amp.saved’)

if scriptmode:
showgui = True

else:
showgui = False

plotcal()
#
# Set up 2x1 panels - lower panel phase vs. time
subplot = 212
yaxis = ’phase’

saveinputs(’plotcal’,prefix+’.plotcal.gscaled.phase.saved’)

#
# The amp and phase coherence looks good

# Pause script if you are running in scriptmode
if scriptmode:

# If you want to do this interactively and iterate over antenna, set
#iteration = ’antenna’
showgui = True
plotcal()
user_check=raw_input(’Return to continue script\n’)

else:
# No GUI for this script
showgui = False
# Now send final plot to file in PNG format (via .png suffix)
figfile = caltable + ’.plotcal.png’
plotcal()

#=====================================================================
#
# Apply our calibration solutions to the data
# (This will put calibrated data into the CORRECTED_DATA column)
#
print ’--ApplyCal--’
default(’applycal’)

vis = msfile
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# We want to correct the calibrators using themselves
# and transfer from 1445+099 to itself and the target N5921

# Start with the fluxscale/gain and bandpass tables
gaintable = [ftable,btable]

# pick the 1445+099 out of the gain table for transfer
# use all of the bandpass table
gainfield = [’1’,’*’]

# interpolation using linear for gain, nearest for bandpass
interp = [’linear’,’nearest’]

# only one spw, do not need mapping
spwmap = []

# all channels
spw = ’’
selectdata = False

# as before
gaincurve = False
opacity = 0.0

# select the fields for 1445+099 and N5921
field = ’1,2’

applycal()

# Now for completeness apply 1331+305 to itself

field = ’0’
gainfield = [’0’,’*’]

# The CORRECTED_DATA column now contains the calibrated visibilities

saveinputs(’applycal’,prefix+’.applycal.saved’)

# Pause script if you are running in scriptmode
if scriptmode:

inp()
user_check=raw_input(’Return to continue script\n’)

applycal()

#
#=====================================================================
#
# Now use plotxy to plot the calibrated target data (before contsub)
#
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print ’--Plotxy (NGC5921)--’
default(’plotxy’)

vis = msfile

field = ’2’
# Edge channels are bad
spw = ’0:4~59’

# Time average across scans
timebin = ’86000.’
crossscans = True

# Set up 2x1 panels - upper panel amp vs. channel
subplot = 211
xaxis = ’channel’
yaxis = ’amp’
datacolumn = ’corrected’
# No output file yet (wait to plot next panel)

saveinputs(’plotxy’,prefix+’.plotxy.final.amp.saved’)

print "Amp averaged across time and baseline (upper)"

figfile = ’’
if scriptmode:

interactive = True
else:

interactive = False

plotxy()
#
# Set up 2x1 panels - lower panel phase vs. time
subplot = 212
yaxis = ’phase’
datacolumn = ’corrected’
# Time average across scans and baselines
timebin = ’86000.’
crossscans = True
crossbls = True

saveinputs(’plotxy’,prefix+’.plotxy.final.phase.saved’)

print "Phase averaged across time and baseline (lower)"

print "Final calibrated data"

# Pause script if you are running in scriptmode
if scriptmode:

interactive = True
figfile = ’’
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plotxy()
user_check=raw_input(’Return to continue script\n’)

else:
interactive = False
# Now send final plot to file in PNG format (via .png suffix)
figfile = vis + ’.plotxy.png’
plotxy()

#=====================================================================
#
# Split the sources out, pick off the CORRECTED_DATA column
#
#
# Split NGC5921 data (before continuum subtraction)
#
print ’--Split NGC5921 Data--’
default(’split’)

vis = msfile
splitms = prefix + ’.src.split.ms’
outputvis = splitms
field = ’N5921*’
spw = ’’
datacolumn = ’corrected’

saveinputs(’split’,prefix+’.split.n5921.saved’)

split()

print "Created "+splitms

# If you want, split out the calibrater 1445+099 field, all chans
#print ’--Split 1445+099 Data--’
#
#calsplitms = prefix + ’.cal.split.ms’
#outputvis = calsplitms
#field = ’1445*’
#
#saveinputs(’split’,prefix+’.split.1445.saved’)
#
#split()

#=====================================================================
#
# Here is how to export the NGC5921 data as UVFITS
# Start with the split file.
# Since this is a split dataset, the calibrated data is
# in the DATA column already.
# Write as a multisource UVFITS (with SU table)
# even though it will have only one field in it
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# Run asynchronously so as not to interfere with other tasks
# (BETA: also avoids crash on next importuvfits)
#
#print ’--Export UVFITS--’
#default(’exportuvfits’)
#
#srcuvfits = prefix + ’.split.uvfits’
#
#vis = splitms
#fitsfile = srcuvfits
#datacolumn = ’data’
#multisource = True
#async = True
#
#saveinputs(’exportuvfits’,prefix+’.exportuvfits.saved’)
#
#myhandle = exportuvfits()
#
#print "The return value for this exportuvfits async task for tm is "+str(myhandle)

#=====================================================================
#
# UV-plane continuum subtraction on the target
# use the split ms
# (this will update the CORRECTED_DATA column)
#
print ’--UV Continuum Subtract--’
default(’uvcontsub’)

vis = splitms

field = ’N5921*’
# Use channels 4-6 and 50-59 for continuum
fitspw=’0:4~6;50~59’

# Output all of spw 0
spw = ’0’

# Averaging time (none)
solint = 0.0

# Fit only a mean level
fitorder = 0

# Do the uv-plane subtraction
fitmode = ’subtract’

# Let it split out the data automatically for us
splitdata = True

saveinputs(’uvcontsub’,prefix+’.uvcontsub.saved’)
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# Pause script if you are running in scriptmode
if scriptmode:

inp()
user_check=raw_input(’Return to continue script\n’)

uvcontsub()

# You will see it made two new MS:
# <vis>.cont
# <vis>.contsub

srcsplitms = splitms + ’.contsub’

# Note that ngc5921.demo.ms.contsub contains the uv-subtracted
# visibilities (in its DATA column), and ngc5921.demo.ms.cont
# the pseudo-continuum visibilities (as fit).

# The original ngc5921.demo.ms now contains the uv-continuum
# subtracted vis in its CORRECTED_DATA column and the continuum
# in its MODEL_DATA column as per the fitmode=’subtract’

# Done with calibration
#=====================================================================
#
# Here is how to make a dirty image cube
#
#print ’--Clean (dirty image)--’
#default(’clean’)

# Pick up our split source continuum-subtracted data
#vis = srcsplitms
#dirtyname = prefix + ’.dirtyimg’
#imagename = dirtyname
#
#mode = ’channel’
#nchan = 46
#start = 5
#width = 1
#
#field = ’0’
#spw = ’’
#imsize = [256,256]
#cell = [15.,15.]
#weighting = ’briggs’
#robust = 0.5

# No cleaning
#niter = 0

#saveinputs(’clean’,prefix+’.invert.saved’)
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# Pause script if you are running in scriptmode
#if scriptmode:
# inp()
# user_check=raw_input(’Return to continue script\n’)
#
#clean()

#dirtyimage = dirtyname+’.image’

# Get the dirty image cube statistics
#dirtystats = imstat(dirtyimage)

#=====================================================================
#
# Now clean an image cube of N5921
#
print ’--Clean (clean)--’
default(’clean’)

# Pick up our split source continuum-subtracted data
vis = srcsplitms

# Make an image root file name
imname = prefix + ’.cleanimg’
imagename = imname

# Set up the output image cube
mode = ’channel’
nchan = 46
start = 5
width = 1

# This is a single-source MS with one spw
field = ’0’
spw = ’’

# Standard gain factor 0.1
gain = 0.1

# Set the output image size and cell size (arcsec)
imsize = [256,256]

# Do a simple Clark clean
psfmode = ’clark’
# No Cotton-Schwab iterations
csclean = False

# If desired, you can do a Cotton-Schwab clean
# but will have only marginal improvement for this data
#csclean = True
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# Twice as big for Cotton-Schwab (cleans inner quarter)
#imsize = [512,512]

# Pixel size 15 arcsec for this data (1/3 of 45" beam)
# VLA D-config L-band
cell = [15.,15.]

# Fix maximum number of iterations
niter = 6000

# Also set flux residual threshold (in mJy)
threshold=8.0

# Set up the weighting
# Use Briggs weighting (a moderate value, on the uniform side)
weighting = ’briggs’
robust = 0.5

# Set a cleanbox +/-20 pixels around the center 128,128
mask = [108,108,148,148]

# But if you had a cleanbox saved in a file, e.g. "regionfile.txt"
# you could use it:
#mask=’regionfile.txt’
#
# If you don’t want any clean boxes or masks, then
#mask = ’’

# If you want interactive clean set to True
#interactive=True
interactive=False

saveinputs(’clean’,prefix+’.clean.saved’)

# Pause script if you are running in scriptmode
if scriptmode:

inp()
user_check=raw_input(’Return to continue script\n’)

clean()

# Should find stuff in the logger like:
#
# Fitted beam used in restoration: 51.5643 by 45.6021 (arcsec)
# at pa 14.5411 (deg)
#
# It will have made the images:
# -----------------------------
# ngc5921.demo.cleanimg.flux
# ngc5921.demo.cleanimg.image
# ngc5921.demo.cleanimg.mask
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# ngc5921.demo.cleanimg.model
# ngc5921.demo.cleanimg.psf
# ngc5921.demo.cleanimg.residual

clnimage = imname+’.image’

#=====================================================================
#
# Done with imaging
# Now view the image cube of N5921
#
if scriptmode:

print ’--View image--’
print "Use Spectral Profile Tool to get line profile in box in center"
viewer(clnimage,’image’)
user_check=raw_input(’Return to continue script\n’)

#=====================================================================
#
# Here is how to export the Final CLEAN Image as FITS
# Run asynchronously so as not to interfere with other tasks
# (BETA: also avoids crash on next importfits)
#
#print ’--Final Export CLEAN FITS--’
#default(’exportfits’)
#
#clnfits = prefix + ’.cleanimg.fits’
#
#imagename = clnimage
#fitsimage = clnfits
#async = True
#
#saveinputs(’exportfits’,prefix+’.exportfits.saved’)
#
#myhandle2 = exportfits()
#
#print "The return value for this exportfits async task for tm is "+str(myhandle2)

#=====================================================================
#
# Print the image header
#
print ’--Imhead--’
default(’imhead’)

imagename = clnimage

mode = ’summary’

imhead()
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# A summary of the cube will be seen in the logger

#=====================================================================
#
# Get the cube statistics
#
print ’--Imstat (cube)--’
default(’imstat’)

imagename = clnimage

# Do whole image
box = ’’
# or you could stick to the cleanbox
#box = ’108,108,148,148’

cubestats = imstat()

# Statistics will printed to the terminal, and the output
# parameter will contain a dictionary of the statistics

#=====================================================================
#
# Get some image moments
#
print ’--ImMoments--’
default(’immoments’)

imagename = clnimage

# Do first and second moments
moments = [0,1]

# Need to mask out noisy pixels, currently done
# using hard global limits
excludepix = [-100,0.009]

# Collapse along the spectral (channel) axis
axis = ’spectral’
# Include all planes
chans = ’’

# Output root name
momfile = prefix + ’.moments’
outfile = momfile

saveinputs(’immoments’,prefix+’.immoments.saved’)

# Pause script if you are running in scriptmode
if scriptmode:

inp()
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user_check=raw_input(’Return to continue script\n’)

immoments()

momzeroimage = momfile + ’.integrated’
momoneimage = momfile + ’.weighted_coord’

# It will have made the images:
# --------------------------------------
# ngc5921.demo.moments.integrated
# ngc5921.demo.moments.weighted_coord

#
#=====================================================================
#
# Get some statistics of the moment images
#
print ’--Imstat (moments)--’
default(’imstat’)

imagename = momzeroimage
momzerostats = imstat()

imagename = momoneimage
momonestats = imstat()

#=====================================================================
#
# Now view the moments
#
if scriptmode:

print ’--View image (Moments)--’
viewer(momzeroimage)
print "You can add mom-1 image "+momoneimage
print "as a contour plot"
user_check=raw_input(’Return to continue script\n’)

#=====================================================================
#
# Set up an output logfile
import datetime
datestring=datetime.datetime.isoformat(datetime.datetime.today())

outfile = ’out.’+prefix+’.’+datestring+’.log’
logfile=open(outfile,’w’)
print >>logfile,’Results for ’+prefix+’ :’
print >>logfile,""

#=====================================================================
#
# Can do some image statistics if you wish
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# Treat this like a regression script
# WARNING: currently requires toolkit
#
print ’ NGC5921 results ’
print ’ =============== ’

print >>logfile,’ NGC5921 results ’
print >>logfile,’ =============== ’

#
# Use the ms tool to get max of the MSs
# Eventually should be available from a task
#
# Pull the max cal amp value out of the MS (if you split this)
#ms.open(calsplitms)
#thistest_cal = max(ms.range(["amplitude"]).get(’amplitude’))
#ms.close()
#oldtest_cal = 34.0338668823
#diff_cal = abs((oldtest_cal-thistest_cal)/oldtest_cal)
#
#print ’ Calibrator data ampl max = ’,thistest_cal
#print ’ Previous: cal data max = ’,oldtest_cal
#print ’ Difference (fractional) = ’,diff_cal
#print ’’
#
#print >>logfile,’ Calibrator data ampl max = ’,thistest_cal
#print >>logfile,’ Previous: cal data max = ’,oldtest_cal
#print >>logfile,’ Difference (fractional) = ’,diff_cal
#print >>logfile,’’

# Pull the max src amp value out of the MS
ms.open(srcsplitms)
thistest_src = max(ms.range(["amplitude"]).get(’amplitude’))
ms.close()
oldtest_src = 46.2060050964 # now in all chans
diff_src = abs((oldtest_src-thistest_src)/oldtest_src)

print ’ Target Src data ampl max = ’,thistest_src
print ’ Previous: src data max = ’,oldtest_src
print ’ Difference (fractional) = ’,diff_src
print ’’

print >>logfile,’ Target Src data ampl max = ’,thistest_src
print >>logfile,’ Previous: src data max = ’,oldtest_src
print >>logfile,’ Difference (fractional) = ’,diff_src
print >>logfile,’’

#
# Now use the stats produced by imstat above
#
# DIRTY IMAGE MAX & RMS (IF YOU MADE A DIRTY IMAGE)
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#
#thistest_dirtymax=dirtystats[’max’][0]
#oldtest_dirtymax = 0.0515365377069
#diff_dirtymax = abs((oldtest_dirtymax-thistest_dirtymax)/oldtest_dirtymax)
#
#print ’ Dirty image max = ’,thistest_dirtymax
#print ’ Previous: max = ’,oldtest_dirtymax
#print ’ Difference (fractional) = ’,diff_dirtymax
#print ’’
#
#print >>logfile,’ Dirty Image max = ’,thistest_dirtymax
#print >>logfile,’ Previous: max = ’,oldtest_dirtymax
#print >>logfile,’ Difference (fractional) = ’,diff_dirtymax
#print >>logfile,’’
#
#thistest_dirtyrms=dirtystats[’rms’][0]
#oldtest_dirtyrms = 0.00243866862729
#diff_dirtyrms = abs((oldtest_dirtyrms-thistest_dirtyrms)/oldtest_dirtyrms)
#
#print ’ Dirty image rms = ’,thistest_dirtyrms
#print ’ Previous: rms = ’,oldtest_dirtyrms
#print ’ Difference (fractional) = ’,diff_dirtyrms
#print ’’
#
#print >>logfile,’ Dirty Image rms = ’,thistest_dirtyrms
#print >>logfile,’ Previous: rms = ’,oldtest_dirtyrms
#print >>logfile,’ Difference (fractional) = ’,diff_dirtyrms
#print >>logfile,’’

# Now the clean image
#
thistest_immax=cubestats[’max’][0]
oldtest_immax = 0.052414759993553162
diff_immax = abs((oldtest_immax-thistest_immax)/oldtest_immax)

print ’ Clean image max = ’,thistest_immax
print ’ Previous: max = ’,oldtest_immax
print ’ Difference (fractional) = ’,diff_immax
print ’’

print >>logfile,’ Clean Image max = ’,thistest_immax
print >>logfile,’ Previous: max = ’,oldtest_immax
print >>logfile,’ Difference (fractional) = ’,diff_immax
print >>logfile,’’

thistest_imrms=cubestats[’rms’][0]
oldtest_imrms = 0.0020218724384903908
diff_imrms = abs((oldtest_imrms-thistest_imrms)/oldtest_imrms)

print ’ Clean image rms = ’,thistest_imrms
print ’ Previous: rms = ’,oldtest_imrms
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print ’ Difference (fractional) = ’,diff_imrms
print ’’

print >>logfile,’ Clean image rms = ’,thistest_imrms
print >>logfile,’ Previous: rms = ’,oldtest_imrms
print >>logfile,’ Difference (fractional) = ’,diff_imrms
print >>logfile,’’

# Now the moment images
#
thistest_momzeromax=momzerostats[’max’][0]
oldtest_momzeromax = 1.40223777294
diff_momzeromax = abs((oldtest_momzeromax-thistest_momzeromax)/oldtest_momzeromax)

print ’ Moment 0 image max = ’,thistest_momzeromax
print ’ Previous: m0 max = ’,oldtest_momzeromax
print ’ Difference (fractional) = ’,diff_momzeromax
print ’’

print >>logfile,’ Moment 0 image max = ’,thistest_momzeromax
print >>logfile,’ Previous: m0 max = ’,oldtest_momzeromax
print >>logfile,’ Difference (fractional) = ’,diff_momzeromax
print >>logfile,’’

thistest_momoneavg=momonestats[’mean’][0]
oldtest_momoneavg = 1479.77119646
diff_momoneavg = abs((oldtest_momoneavg-thistest_momoneavg)/oldtest_momoneavg)

print ’ Moment 1 image mean = ’,thistest_momoneavg
print ’ Previous: m1 mean = ’,oldtest_momoneavg
print ’ Difference (fractional) = ’,diff_momoneavg
print ’’
print ’--- Done ---’

print >>logfile,’ Moment 1 image mean = ’,thistest_momoneavg
print >>logfile,’ Previous: m1 mean = ’,oldtest_momoneavg
print >>logfile,’ Difference (fractional) = ’,diff_momoneavg
print >>logfile,’’
print >>logfile,’--- Done ---’

# Should see output like:
#
# Clean image max should be 0.0524147599936
# Found : Image Max = 0.0523551553488
# Difference (fractional) = 0.00113717290288
#
# Clean image rms should be 0.00202187243849
# Found : Image rms = 0.00202226242982
# Difference (fractional) = 0.00019288621809
#
# Moment 0 image max should be 1.40223777294
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# Found : Moment 0 Max = 1.40230333805
# Difference (fractional) = 4.67574844349e-05
#
# Moment 1 image mean should be 1479.77119646
# Found : Moment 1 Mean = 1479.66974528
# Difference (fractional) = 6.85586935973e-05
#
#=====================================================================
# Done
#
logfile.close()
print "Results are in "+outfile

F.2 Jupiter — VLA continuum polarization

This script demonstrates continuum polarization calibration and imaging, including self-calibration.
There is also extensive interactive flagging, and image analysis.

The latest version of this script can be found at:

http://casa.nrao.edu/Doc/Scripts/jupiter6cm_demo.py

######################################################################
# #
# Use Case Script for Jupiter 6cm VLA #
# Trimmed down from Use Case jupiter6cm_usecase.py #
# #
# Updated STM 2008-05-15 (Beta Patch 2.0) #
# Updated STM 2008-06-11 (Beta Patch 2.0) #
# Updated STM 2008-06-12 (Beta Patch 2.0) for summer school demo #
# Updated STM 2008-06-13 (Beta Patch 2.0) make a bit faster #
# Updated STM 2008-12-24 (Beta Patch 3.0) extendflags #
# Updated STM 2009-05-29 (Beta Patch 4.0) for mcmaster tutorial #
# Updated STM 2009-12-20 (Release 0) for Version 3.0.0 #
# #
# This is a VLA 6cm dataset that was observed in 1999 to set the #
# flux scale for calibration of the VLA. Included in the program #
# were observations of the planets, including Jupiter. #
# #
# This is D-configuration data, with resolution of around 14" #
# #
# Includes polarization imaging and analysis #
# #
######################################################################

import time
import os

http://casa.nrao.edu/Doc/Scripts/jupiter6cm_demo.py
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print "Jupiter 6cm Interactive Tutorial/Demo Script"
print "Version 2009-12-20 (Version 3.0.0 Release 0)"
print ""

#
#=====================================================================
#
# This script has some interactive commands: scriptmode = True
# if you are running it and want it to stop during interactive parts.

scriptmode = True

#=====================================================================
#
# Set up some useful variables - these will be set during the script
# also, but if you want to restart the script in the middle here
# they are in one place:

# This will prefix all output file names
prefix=’jupiter6cm.demo’

# Clean up old files
os.system(’rm -rf ’+prefix+’*’)

# This is the output MS file name
msfile = prefix + ’.ms’

#
#=====================================================================
# Calibration variables
#
# Use same prefix as rest of script
calprefix = prefix

# spectral windows to process
usespw = ’’
usespwlist = [’0’,’1’]

# prior calibration to apply
usegaincurve = True
gainopacity = 0.0

# reference antenna 11 (11=VLA:N1)
calrefant = ’11’

gtable = calprefix + ’.gcal’
ftable = calprefix + ’.fluxscale’
atable = calprefix + ’.accum’

#
#=====================================================================
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# Polarization calibration setup
#
dopolcal = True

ptable = calprefix + ’.pcal’
xtable = calprefix + ’.polx’

# Pol leakage calibrator
poldfield = ’0137+331’

# Pol angle calibrator
polxfield = ’1331+305’
# At Cband the fractional polarization of this source is 0.112 and
# the R-L PhaseDiff = 66deg (EVPA = 33deg)
polxfpol = 0.112
polxrlpd_deg = 66.0
# Dictionary of IPOL in the spw
polxipol = {’0’ : 7.462,

’1’ : 7.510}

# Make Stokes lists for setjy
polxiquv = {}
for spw in [’0’,’1’]:

ipol = polxipol[spw]
fpol = polxfpol
ppol = ipol*fpol
rlpd = polxrlpd_deg*pi/180.0
qpol = ppol*cos(rlpd)
upol = ppol*sin(rlpd)
polxiquv[spw] = [ipol,qpol,upol,0.0]

#
# Split output setup
#
srcname = ’JUPITER’
srcsplitms = calprefix + ’.’ + srcname + ’.split.ms’
calname = ’0137+331’
calsplitms = calprefix + ’.’ + calname + ’.split.ms’

#
#=====================================================================
#
# Intensity imaging parameters
#
# Same prefix for this imaging demo output
#
imprefix = prefix

# This is D-config VLA 6cm (4.85GHz) obs
# Check the observational status summary
# Primary beam FWHM = 45’/f_GHz = 557"
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# Synthesized beam FWHM = 14"
# RMS in 10min (600s) = 0.06 mJy (thats now, but close enough)

# Set the output image size and cell size (arcsec)
# 4" will give 3.5x oversampling
clncell = [4.,4.]

# 280 pix will cover to 2xPrimaryBeam
# clean will say to use 288 (a composite integer) for efficiency
clnalg = ’clark’
clnmode = ’’
# For Cotton-Schwab use
clnmode = ’csclean’
clnimsize = [288,288]

# iterations
clniter = 10000

# Also set flux residual threshold (0.04 mJy)
# From our listobs:
# Total integration time = 85133.2 seconds
# With rms of 0.06 mJy in 600s ==> rms = 0.005 mJy
# Set to 10x thermal rms
clnthreshold=0.05

#
# Filenames
#
imname1 = imprefix + ’.clean1’
clnimage1 = imname1+’.image’
clnmodel1 = imname1+’.model’
clnresid1 = imname1+’.residual’
clnmask1 = imname1+’.clean_interactive.mask’

imname2 = imprefix + ’.clean2’
clnimage2 = imname2+’.image’
clnmodel2 = imname2+’.model’
clnresid2 = imname2+’.residual’
clnmask2 = imname2+’.clean_interactive.mask’

imname3 = imprefix + ’.clean3’
clnimage3 = imname3+’.image’
clnmodel3 = imname3+’.model’
clnresid3 = imname3+’.residual’
clnmask3 = imname3+’.clean_interactive.mask’

#
# Selfcal parameters
#
# reference antenna 11 (11=VLA:N1)
calrefant = ’11’
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#
# Filenames
#
selfcaltab1 = imprefix + ’.selfcal1.gtable’

selfcaltab2 = imprefix + ’.selfcal2.gtable’
smoothcaltab2 = imprefix + ’.smoothcal2.gtable’

#
#=====================================================================
#
# Polarization imaging parameters
#
# New prefix for polarization imaging output
#
polprefix = prefix + ’.polimg’

# Set up clean slightly differently
polclnalg = ’hogbom’
polclnmode = ’csclean’

polimname = polprefix + ’.clean’
polimage = polimname+’.image’
polmodel = polimname+’.model’
polresid = polimname+’.residual’
polmask = polimname+’.clean_interactive.mask’

#
# Other files
#
ipolimage = polimage+’.I’
qpolimage = polimage+’.Q’
upolimage = polimage+’.U’

poliimage = polimage+’.poli’
polaimage = polimage+’.pola’

#
#=====================================================================
#=====================================================================
# Start processing
#=====================================================================
#
# Get to path to the CASA home and stip off the name
pathname=os.environ.get(’CASAPATH’).split()[0]

# This is where the UVFITS data should be
#fitsdata=pathname+’/data/demo/jupiter6cm.fits’
# Or
#fitsdata=pathname+’/data/nrao/VLA/planets_6cm.fits’
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#fitsdata=’/home/ballista/casa/devel/data/nrao/VLA/planets_6cm.fits’
#
# Can also be found online at
#http://casa.nrao.edu/Data/VLA/Planets6cm/planets_6cm.fits

# Use version in current directory
fitsdata=’planets_6cm.fits’

#
#=====================================================================
# Data Import and List
#=====================================================================
#
# Import the data from FITS to MS
#
print ’--Import--’

# Safest to start from task defaults
default(’importuvfits’)

print "Use importuvfits to read UVFITS and make an MS"

# Set up the MS filename and save as new global variable
msfile = prefix + ’.ms’

print "MS will be called "+msfile

# Use task importuvfits
fitsfile = fitsdata
vis = msfile
importuvfits()

#=====================================================================
#
# List a summary of the MS
#
print ’--Listobs--’

# Don’t default this one and make use of the previous setting of
# vis. Remember, the variables are GLOBAL!

print "Use listobs to print verbose summary to logger"

# You may wish to see more detailed information, in this case
# use the verbose = True option
verbose = True

listobs()

# You should get in your logger window and in the casapy.log file
# something like:
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#
# Observer: FLUX99 Project:
# Observation: VLA
#
# Data records: 2021424 Total integration time = 85133.2 seconds
# Observed from 23:15:27 to 22:54:20
#
# ObservationID = 0 ArrayID = 0
# Date Timerange Scan FldId FieldName SpwIds
# 15-Apr-1999/23:15:26.7 - 23:16:10.0 1 0 0137+331 [0, 1]
# 23:38:40.0 - 23:48:00.0 2 1 0813+482 [0, 1]
# 23:53:40.0 - 23:55:20.0 3 2 0542+498 [0, 1]
# 16-Apr-1999/00:22:10.1 - 00:23:49.9 4 3 0437+296 [0, 1]
# 00:28:23.3 - 00:30:00.1 5 4 VENUS [0, 1]
# 00:48:40.0 - 00:50:20.0 6 1 0813+482 [0, 1]
# 00:56:13.4 - 00:57:49.9 7 2 0542+498 [0, 1]
# 01:10:20.1 - 01:11:59.9 8 5 0521+166 [0, 1]
# 01:23:29.9 - 01:25:00.1 9 3 0437+296 [0, 1]
# 01:29:33.3 - 01:31:10.0 10 4 VENUS [0, 1]
# 01:49:50.0 - 01:51:30.0 11 6 1411+522 [0, 1]
# 02:03:00.0 - 02:04:30.0 12 7 1331+305 [0, 1]
# 02:17:30.0 - 02:19:10.0 13 1 0813+482 [0, 1]
# 02:24:20.0 - 02:26:00.0 14 2 0542+498 [0, 1]
# 02:37:49.9 - 02:39:30.0 15 5 0521+166 [0, 1]
# 02:50:50.1 - 02:52:20.1 16 3 0437+296 [0, 1]
# 02:59:20.0 - 03:01:00.0 17 6 1411+522 [0, 1]
# 03:12:30.0 - 03:14:10.0 18 7 1331+305 [0, 1]
# 03:27:53.3 - 03:29:39.9 19 1 0813+482 [0, 1]
# 03:35:00.0 - 03:36:40.0 20 2 0542+498 [0, 1]
# 03:49:50.0 - 03:51:30.1 21 6 1411+522 [0, 1]
# 04:03:10.0 - 04:04:50.0 22 7 1331+305 [0, 1]
# 04:18:49.9 - 04:20:40.0 23 1 0813+482 [0, 1]
# 04:25:56.6 - 04:27:39.9 24 2 0542+498 [0, 1]
# 04:42:49.9 - 04:44:40.0 25 8 MARS [0, 1]
# 04:56:50.0 - 04:58:30.1 26 6 1411+522 [0, 1]
# 05:24:03.3 - 05:33:39.9 27 7 1331+305 [0, 1]
# 05:48:00.0 - 05:49:49.9 28 1 0813+482 [0, 1]
# 05:58:36.6 - 06:00:30.0 29 8 MARS [0, 1]
# 06:13:20.1 - 06:14:59.9 30 6 1411+522 [0, 1]
# 06:27:40.0 - 06:29:20.0 31 7 1331+305 [0, 1]
# 06:44:13.4 - 06:46:00.0 32 1 0813+482 [0, 1]
# 06:55:06.6 - 06:57:00.0 33 8 MARS [0, 1]
# 07:10:40.0 - 07:12:20.0 34 6 1411+522 [0, 1]
# 07:28:20.0 - 07:30:10.1 35 7 1331+305 [0, 1]
# 07:42:49.9 - 07:44:30.0 36 8 MARS [0, 1]
# 07:58:43.3 - 08:00:39.9 37 6 1411+522 [0, 1]
# 08:13:30.0 - 08:15:19.9 38 7 1331+305 [0, 1]
# 08:27:53.4 - 08:29:30.0 39 8 MARS [0, 1]
# 08:42:59.9 - 08:44:50.0 40 6 1411+522 [0, 1]
# 08:57:09.9 - 08:58:50.0 41 7 1331+305 [0, 1]
# 09:13:03.3 - 09:14:50.1 42 9 NGC7027 [0, 1]
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# 09:26:59.9 - 09:28:40.0 43 6 1411+522 [0, 1]
# 09:40:33.4 - 09:42:09.9 44 7 1331+305 [0, 1]
# 09:56:19.9 - 09:58:10.0 45 9 NGC7027 [0, 1]
# 10:12:59.9 - 10:14:50.0 46 8 MARS [0, 1]
# 10:27:09.9 - 10:28:50.0 47 6 1411+522 [0, 1]
# 10:40:30.0 - 10:42:00.0 48 7 1331+305 [0, 1]
# 10:56:10.0 - 10:57:50.0 49 9 NGC7027 [0, 1]
# 11:28:30.0 - 11:35:30.0 50 10 NEPTUNE [0, 1]
# 11:48:20.0 - 11:50:10.0 51 6 1411+522 [0, 1]
# 12:01:36.7 - 12:03:10.0 52 7 1331+305 [0, 1]
# 12:35:33.3 - 12:37:40.0 53 11 URANUS [0, 1]
# 12:46:30.0 - 12:48:10.0 54 10 NEPTUNE [0, 1]
# 13:00:29.9 - 13:02:10.0 55 6 1411+522 [0, 1]
# 13:15:23.3 - 13:17:10.1 56 9 NGC7027 [0, 1]
# 13:33:43.3 - 13:35:40.0 57 11 URANUS [0, 1]
# 13:44:30.0 - 13:46:10.0 58 10 NEPTUNE [0, 1]
# 14:00:46.7 - 14:01:39.9 59 0 0137+331 [0, 1]
# 14:10:40.0 - 14:12:09.9 60 12 JUPITER [0, 1]
# 14:24:06.6 - 14:25:40.1 61 11 URANUS [0, 1]
# 14:34:30.0 - 14:36:10.1 62 10 NEPTUNE [0, 1]
# 14:59:13.4 - 15:00:00.0 63 0 0137+331 [0, 1]
# 15:09:03.3 - 15:10:40.1 64 12 JUPITER [0, 1]
# 15:24:30.0 - 15:26:20.1 65 9 NGC7027 [0, 1]
# 15:40:10.0 - 15:45:00.0 66 11 URANUS [0, 1]
# 15:53:50.0 - 15:55:20.0 67 10 NEPTUNE [0, 1]
# 16:18:53.4 - 16:19:49.9 68 0 0137+331 [0, 1]
# 16:29:10.1 - 16:30:49.9 69 12 JUPITER [0, 1]
# 16:42:53.4 - 16:44:30.0 70 11 URANUS [0, 1]
# 16:54:53.4 - 16:56:40.0 71 9 NGC7027 [0, 1]
# 17:23:06.6 - 17:30:40.0 72 2 0542+498 [0, 1]
# 17:41:50.0 - 17:43:20.0 73 3 0437+296 [0, 1]
# 17:55:36.7 - 17:57:39.9 74 4 VENUS [0, 1]
# 18:19:23.3 - 18:20:09.9 75 0 0137+331 [0, 1]
# 18:30:23.3 - 18:32:00.0 76 12 JUPITER [0, 1]
# 18:44:49.9 - 18:46:30.0 77 9 NGC7027 [0, 1]
# 18:59:13.3 - 19:00:59.9 78 2 0542+498 [0, 1]
# 19:19:10.0 - 19:21:20.1 79 5 0521+166 [0, 1]
# 19:32:50.1 - 19:34:29.9 80 3 0437+296 [0, 1]
# 19:39:03.3 - 19:40:40.1 81 4 VENUS [0, 1]
# 20:08:06.7 - 20:08:59.9 82 0 0137+331 [0, 1]
# 20:18:10.0 - 20:19:50.0 83 12 JUPITER [0, 1]
# 20:33:53.3 - 20:35:40.1 84 1 0813+482 [0, 1]
# 20:40:59.9 - 20:42:40.0 85 2 0542+498 [0, 1]
# 21:00:16.6 - 21:02:20.1 86 5 0521+166 [0, 1]
# 21:13:53.4 - 21:15:29.9 87 3 0437+296 [0, 1]
# 21:20:43.4 - 21:22:30.0 88 4 VENUS [0, 1]
# 21:47:26.7 - 21:48:20.1 89 0 0137+331 [0, 1]
# 21:57:30.0 - 21:59:10.0 90 12 JUPITER [0, 1]
# 22:12:13.3 - 22:14:00.1 91 2 0542+498 [0, 1]
# 22:28:33.3 - 22:30:19.9 92 4 VENUS [0, 1]
# 22:53:33.3 - 22:54:19.9 93 0 0137+331 [0, 1]
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#
# Fields: 13
# ID Name Right Ascension Declination Epoch
# 0 0137+331 01:37:41.30 +33.09.35.13 J2000
# 1 0813+482 08:13:36.05 +48.13.02.26 J2000
# 2 0542+498 05:42:36.14 +49.51.07.23 J2000
# 3 0437+296 04:37:04.17 +29.40.15.14 J2000
# 4 VENUS 04:06:54.11 +22.30.35.91 J2000
# 5 0521+166 05:21:09.89 +16.38.22.05 J2000
# 6 1411+522 14:11:20.65 +52.12.09.14 J2000
# 7 1331+305 13:31:08.29 +30.30.32.96 J2000
# 8 MARS 14:21:41.37 -12.21.49.45 J2000
# 9 NGC7027 21:07:01.59 +42.14.10.19 J2000
# 10 NEPTUNE 20:26:01.14 -18.54.54.21 J2000
# 11 URANUS 21:15:42.83 -16.35.05.59 J2000
# 12 JUPITER 00:55:34.04 +04.45.44.71 J2000
#
# Spectral Windows: (2 unique spectral windows and 1 unique polarization setups)
# SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
# 0 1 TOPO 4885.1 50000 50000 4885.1 RR RL LR LL
# 1 1 TOPO 4835.1 50000 50000 4835.1 RR RL LR LL
#
# Feeds: 28: printing first row only
# Antenna Spectral Window # Receptors Polarizations
# 1 -1 2 [ R, L]
#
# Antennas: 27:
# ID Name Station Diam. Long. Lat.
# 0 1 VLA:W9 25.0 m -107.37.25.1 +33.53.51.0
# 1 2 VLA:N9 25.0 m -107.37.07.8 +33.54.19.0
# 2 3 VLA:N3 25.0 m -107.37.06.3 +33.54.04.8
# 3 4 VLA:N5 25.0 m -107.37.06.7 +33.54.08.0
# 4 5 VLA:N2 25.0 m -107.37.06.2 +33.54.03.5
# 5 6 VLA:E1 25.0 m -107.37.05.7 +33.53.59.2
# 6 7 VLA:E2 25.0 m -107.37.04.4 +33.54.01.1
# 7 8 VLA:N8 25.0 m -107.37.07.5 +33.54.15.8
# 8 9 VLA:E8 25.0 m -107.36.48.9 +33.53.55.1
# 9 10 VLA:W3 25.0 m -107.37.08.9 +33.54.00.1
# 10 11 VLA:N1 25.0 m -107.37.06.0 +33.54.01.8
# 11 12 VLA:E6 25.0 m -107.36.55.6 +33.53.57.7
# 12 13 VLA:W7 25.0 m -107.37.18.4 +33.53.54.8
# 13 14 VLA:E4 25.0 m -107.37.00.8 +33.53.59.7
# 14 15 VLA:N7 25.0 m -107.37.07.2 +33.54.12.9
# 15 16 VLA:W4 25.0 m -107.37.10.8 +33.53.59.1
# 16 17 VLA:W5 25.0 m -107.37.13.0 +33.53.57.8
# 17 18 VLA:N6 25.0 m -107.37.06.9 +33.54.10.3
# 18 19 VLA:E7 25.0 m -107.36.52.4 +33.53.56.5
# 19 20 VLA:E9 25.0 m -107.36.45.1 +33.53.53.6
# 21 22 VLA:W8 25.0 m -107.37.21.6 +33.53.53.0
# 22 23 VLA:W6 25.0 m -107.37.15.6 +33.53.56.4
# 23 24 VLA:W1 25.0 m -107.37.05.9 +33.54.00.5
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# 24 25 VLA:W2 25.0 m -107.37.07.4 +33.54.00.9
# 25 26 VLA:E5 25.0 m -107.36.58.4 +33.53.58.8
# 26 27 VLA:N4 25.0 m -107.37.06.5 +33.54.06.1
# 27 28 VLA:E3 25.0 m -107.37.02.8 +33.54.00.5
#
# Tables:
# MAIN 2021424 rows
# ANTENNA 28 rows
# DATA_DESCRIPTION 2 rows
# DOPPLER <absent>
# FEED 28 rows
# FIELD 13 rows
# FLAG_CMD <empty>
# FREQ_OFFSET <absent>
# HISTORY 7058 rows
# OBSERVATION 1 row
# POINTING 2604 rows
# POLARIZATION 1 row
# PROCESSOR <empty>
# SOURCE <empty> (see FIELD)
# SPECTRAL_WINDOW 2 rows
# STATE <empty>
# SYSCAL <absent>
# WEATHER <absent>

#
#=====================================================================
# Data Examination and Flagging
#=====================================================================
#
# Use Plotxy to interactively flag the data
#
print ’--Plotxy--’
default(’plotxy’)

print "Now we use plotxy to examine and interactively flag data"

vis = msfile

# The fields we are interested in: 1331+305,JUPITER,0137+331
selectdata = True

# First we do the primary calibrator
field = ’1331+305’

# Plot only the RR and LL for now
correlation = ’RR LL’

# As of 2.3.0 (Patch 3) you can extend the flags to the cross-correlations
# But this slows things down immensely
#extendflag = T
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#extendcorr = ’all’

# Plot amplitude vs. uvdist
xaxis = ’uvdist’
yaxis = ’amp’
multicolor = ’both’

# Use the field name as the title
selectplot = True
title = field+" "

iteration = ’’

plotxy()

print ""
print "-----------------------------------------------------"
print "Plotxy"
print "Showing 1331+305 RR LL for all antennas"
print "Use MarkRegion then draw boxes around points to flag"
print "You can use ESC to drop last drawn box"
print "When happy with boxes, hit Flag to flag"
print "You can repeat as necessary"
print ""
#print "NOTE: These flags will extend to the RL LR cross-hands"
#print "Because of this the flagging will be slower than otherwise"

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

# You can also use flagdata to do this non-interactively
# (see below)

# Now look at the cross-polar products
correlation = ’RL LR’
extendflag = F

plotxy()

print ""
print "-----------------------------------------------------"
print "Looking at RL LR"
print "Now flag any remaining bad data here"

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

#---------------------------------------------------------------------
# Now do calibrater 0137+331
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field = ’0137+331’
correlation = ’RR LL’
xaxis = ’uvdist’
spw = ’’
iteration = ’’
antenna = ’’

# As of 2.3.0 (Patch 3) you can extend the flags to the cross-correlations
# But this slows things down immensely
#extendflag = T
#extendcorr = ’all’

title = field+" "

plotxy()

# You’ll see a bunch of bad data along the bottom near zero amp
# Draw a box around some of it and use Locate
# Looks like much of it is Antenna 9 (ID=8) in spw=1

print ""
print "-----------------------------------------------------"
print "Plotting 0137+331 RR LL all antennas"
print "You see bad data along bottom"
print "Mark a box around a bit of it and hit Locate"
print "Look in logger to see what it is"
print "You see much is Antenna 9 (ID=8) in spw 1"

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

xaxis = ’time’
spw = ’1’
correlation = ’’
extendflag = F

# Note that the strings like antenna=’9’ first try to match the
# NAME which we see in listobs was the number ’9’ for ID=8.
# So be careful here (why naming antennas as numbers is bad).
antenna = ’9’

plotxy()

# YES! the last 4 scans are bad. Box ’em and flag.

print ""
print "-----------------------------------------------------"
print "Plotting vs. time antenna=’9’ and spw=’1’ "
print "Box up last 4 scans which are bad and Flag"
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# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

# Go back and clean up
xaxis = ’uvdist’
spw = ’’
antenna = ’’

correlation = ’RR LL’

# Note that RL,LR are too weak to clip on.
# As of 2.3.0 (Patch 3) you can extend the flags to the cross-correlations
# But this slows things down immensely
#extendflag = T
#extendcorr = ’all’

plotxy()

# Box up the bad low points (basically a clip below 0.52) and flag

print ""
print "-----------------------------------------------------"
print "Back to all data"
print "Clean up remaining bad points"
print ""
#print "NOTE: These flags will extend to the RL LR cross-hands"
#print "Because of this the flagging will be slower than otherwise"

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

#---------------------------------------------------------------------
# Finally, do JUPITER
field = ’JUPITER’
correlation = ’RR LL’
iteration = ’’
xaxis = ’uvdist’

title = field+" "

plotxy()

# Here you will see that the final scan at 22:00:00 UT is bad
# Draw a box around it and flag it!

print ""
print "-----------------------------------------------------"
print "Now plot JUPITER versus uvdist"
print "Lots of bad stuff near bottom"
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print "Lets go and find it - try Locate"
print "Looks like lots of different antennas but at same time"

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

correlation = ’’
extendflag = F
xaxis = ’time’

plotxy()

# Here you will see that the final scan at 22:00:00 UT is bad
# Draw a box around it and flag it!

print ""
print "-----------------------------------------------------"
print "Now plotting vs. time"
print "See bad scan at end - flag it!"

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

# Now look at whats left
correlation = ’RR LL’
# As of 2.3.0 (Patch 3) you can extend the flags to the cross-correlations
# But this slows things down immensely
#extendflag = T
#extendcorr = ’all’

xaxis = ’uvdist’
spw = ’1’
antenna = ’’
iteration = ’antenna’

plotxy()

# As you step through, you will see that Antenna 9 (ID=8) is often
# bad in this spw. If you box and do Locate (or remember from
# 0137+331) its probably a bad time.

print ""
print "-----------------------------------------------------"
print "Looking now at SPW 1"
print "Now we set iteration to Antenna"
print "Step through antennas with Next"
print "See bad Antenna 9 (ID 8) as in 0137+331"
print "Do not flag yet, we will isolate this next"
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# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

# The easiset way to kill it:

antenna = ’9’
iteration = ’’
xaxis = ’time’
correlation = ’’
extendflag = F

plotxy()

# Draw a box around all points in the last bad scans and flag ’em!

print ""
print "-----------------------------------------------------"
print "Now plotting vs. time antenna 9 spw 1"
print "Box up the bad scans and Flag"

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

# Now clean up the rest
xaxis = ’uvdist’
correlation = ’RR LL’
# As of 2.3.0 (Patch 3) you can extend the flags to the cross-correlations
# But this slows things down immensely
#extendflag = T
#extendcorr = ’all’

antenna = ’’
spw = ’’

# You will be drawing many tiny boxes, so remember you can
# use the ESC key to get rid of the most recent box if you
# make a mistake.

plotxy()

# Note that the end result is we’ve flagged lots of points
# in RR and LL. We will rely upon imager to ignore the
# RL LR for points with RR LL flagged!

print ""
print "-----------------------------------------------------"
print "Final cleanup of JUPITER data"
print "Back to uvdist plot, see remaining bad data"
print "You can draw little boxes around the outliers and Flag"
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print "Depends how patient you are in drawing boxes!"
print "Could also use Locate to find where they come from"
print ""
#print "NOTE: These flags will extend to the RL LR cross-hands"
#print "Because of this the flagging will be slower than otherwise"

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

print "Done with plotxy!"

#
#=====================================================================
#
# Use Flagmanager to save a copy of the flags so far
#
print ’--Flagmanager--’
default(’flagmanager’)

print "Now will use flagmanager to save a copy of the flags we just made"
print "These are named xyflags"

vis = msfile
mode = ’save’
versionname = ’xyflags’
comment = ’Plotxy flags’
merge = ’replace’

flagmanager()

#=====================================================================
#
# Use Flagmanager to list all saved versions
#
print ’--Flagmanager--’
default(’flagmanager’)

print "Now will use flagmanager to list all the versions we saved"

vis = msfile
mode = ’list’

flagmanager()

#
# Done Flagging
print ’--Done with flagging--’

#
#=====================================================================



APPENDIX F. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 454

# Calibration
#=====================================================================
#
# Set the fluxes of the primary calibrator(s)
#
print ’--Setjy--’
default(’setjy’)

print "Use setjy to set flux of 1331+305 (3C286)"

vis = msfile

#
# 1331+305 = 3C286 is our primary calibrator
field = ’1331+305’

# Setjy knows about this source so we dont need anything more

setjy()

#
# You should see something like this in the logger and casapy.log file:
#
# 1331+305 spwid= 0 [I=7.462, Q=0, U=0, V=0] Jy, (Perley-Taylor 99)
# 1331+305 spwid= 1 [I=7.51, Q=0, U=0, V=0] Jy, (Perley-Taylor 99)
#

print "Look in logger for the fluxes (should be 7.462 and 7.510 Jy)"

#
#=====================================================================
#
# Initial gain calibration
#
print ’--Gaincal--’
default(’gaincal’)

print "Solve for antenna gains on 1331+305 and 0137+331"
print "We have 2 single-channel continuum spw"
print "Do not want bandpass calibration"

vis = msfile

# set the name for the output gain caltable
caltable = gtable

print "Output gain cal table will be "+gtable

# Gain calibrators are 1331+305 and 0137+331 (FIELD_ID 7 and 0)
# We have 2 IFs (SPW 0,1) with one channel each
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# selection is via the field and spw strings
field = ’1331+305,0137+331’
spw = ’’

# a-priori calibration application
gaincurve = usegaincurve
opacity = gainopacity

# scan-based G solutions for both amplitude and phase
gaintype = ’G’
calmode = ’ap’

# one solution per scan
solint = ’inf’
combine = ’’

# do not apply parallactic angle correction (yet)
parang = False

# reference antenna
refant = calrefant

# minimum SNR 3
minsnr = 3

gaincal()

#
#=====================================================================
#
# Bootstrap flux scale
#
print ’--Fluxscale--’
default(’fluxscale’)

print "Use fluxscale to rescale gain table to make new one"

vis = msfile

# set the name for the output rescaled caltable
fluxtable = ftable

print "Output scaled gain cal table is "+ftable

# point to our first gain cal table
caltable = gtable

# we will be using 1331+305 (the source we did setjy on) as
# our flux standard reference
reference = ’1331+305’
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# we want to transfer the flux to our other gain cal source 0137+331
# to bring its gain amplitues in line with the absolute scale
transfer = ’0137+331’

fluxscale()

# You should see in the logger something like:
#Flux density for 0137+331 in SpW=0 is:
# 5.42575 +/- 0.00285011 (SNR = 1903.7, nAnt= 27)
#Flux density for 0137+331 in SpW=1 is:
# 5.46569 +/- 0.00301326 (SNR = 1813.88, nAnt= 27)

#
#---------------------------------------------------------------------
# Plot calibration
#
print ’--PlotCal--’
default(’plotcal’)

showgui = True

caltable = ftable
multiplot = True
yaxis = ’amp’

showgui = True

plotcal()

print ""
print "-------------------------------------------------"
print "Plotcal"
print "Looking at amplitude in cal-table "+caltable

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

#
# Now go back and plot to file
#
showgui = False

yaxis = ’amp’

#figfile = caltable + ’.plotcal.amp.png’
#print "Plotting calibration to file "+figfile
#saveinputs(’plotcal’,caltable.plotcal.amp.saved’)
#plotcal()

yaxis = ’phase’
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#figfile = caltable + ’.plotcal.phase.png’
#print "Plotting calibration to file "+figfile
#saveinputs(’plotcal’,caltable.plotcal.phase.saved’)
#plotcal()

#
#=====================================================================
# Polarization Calibration
#=====================================================================
#
if (dopolcal):

print ’--Polcal (D)--’
default(’polcal’)

print "Solve for polarization leakage on 0137+331"
print "Pretend it has unknown polarization"

vis = msfile

# Start with the un-fluxscaled gain table
gaintable = gtable

# use settings from gaincal
gaincurve = usegaincurve
opacity = gainopacity

# Output table
caltable = ptable

# Use a 3C48 tracked through a range of PA
field = ’0137+331’
spw = ’’

# No need for further selection
selectdata=False

# Polcal mode (D+QU = unknown pol for D)
poltype = ’D+QU’

# One solution for entire dataset
solint = ’inf’
combine = ’scan’

# reference antenna
refant = calrefant

# minimum SNR 3
minsnr = 3

#saveinputs(’polcal’,calprefix+’.polcal.saved’)
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polcal()

#=====================================================================
#
# List polcal solutions
#
print ’--Listcal (PolD)--’

listfile = caltable + ’.list’

print "Listing calibration to file "+listfile

listcal()

#=====================================================================
#
# Plot polcal solutions
#
print ’--Plotcal (PolD)--’

iteration = ’’
showgui = False

xaxis = ’antenna’
yaxis = ’amp’

showgui = True
figfile = ’’

plotcal()

print "These are the amplitudes of D-terms versus antenna"

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

# Now plot to files
showgui = False

#figfile = caltable + ’.plotcal.antamp.png’
#print "Plotting calibration to file "+figfile
#saveinputs(’plotcal’,caltable+’.plotcal.antamp.saved’)
#plotcal()

xaxis = ’antenna’
yaxis = ’phase’

#figfile = caltable + ’.plotcal.antphase.png’
#print "Plotting calibration to file "+figfile
#saveinputs(’plotcal’,caltable+’.plotcal.antphase.saved’)
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#plotcal()

xaxis = ’antenna’
yaxis = ’snr’

#figfile = caltable + ’.plotcal.antsnr.png’
#print "Plotting calibration to file "+figfile
#saveinputs(’plotcal’,caltable+’.plotcal.antsnr.saved’)
#plotcal()

xaxis = ’real’
yaxis = ’imag’

#figfile = caltable + ’.plotcal.reim.png’
#print "Plotting calibration to file "+figfile
#saveinputs(’plotcal’,caltable+’.plotcal.reim.saved’)
#plotcal()

#=====================================================================
# Do Chi (X) pol angle calibration
#=====================================================================
# First set the model
print ’--Setjy--’
default(’setjy’)

vis = msfile

print "Use setjy to set IQU fluxes of "+polxfield
field = polxfield

for spw in usespwlist:
fluxdensity = polxiquv[spw]

#saveinputs(’setjy’,calprefix+’.setjy.polspw.’+spw+’.saved’)
setjy()

#
# Polarization (X-term) calibration
#
print ’--PolCal (X)--’
default(’polcal’)

print "Polarization R-L Phase Calibration (linear approx)"

vis = msfile

# Start with the G and D tables
gaintable = [gtable,ptable]

# use settings from gaincal
gaincurve = usegaincurve
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opacity = gainopacity

# Output table
caltable = xtable

# previously set with setjy
field = polxfield
spw = ’’

selectdata=False

# Solve for Chi
poltype = ’X’
solint = ’inf’
combine = ’scan’

# reference antenna
refant = calrefant

# minimum SNR 3
minsnr = 3

#saveinputs(’polcal’,calprefix+’.polcal.X.saved’)
polcal()

#=====================================================================
# Apply the Calibration
#=====================================================================
#
# Interpolate the gains onto Jupiter (and others)
#
# print ’--Accum--’
# default(’accum’)
#
# print "This will interpolate the gains onto Jupiter"
#
# vis = msfile
#
# tablein = ’’
# incrtable = ftable
# calfield = ’1331+305, 0137+331’
#
# # set the name for the output interpolated caltable
# caltable = atable
#
# print "Output cumulative gain table will be "+atable
#
# # linear interpolation
# interp = ’linear’
#
# # make 10s entries
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# accumtime = 10.0
#
# accum()
#
# NOTE: bypassing this during testing
atable = ftable

# #=====================================================================
#
# Correct the data
# (This will put calibrated data into the CORRECTED_DATA column)
#
print ’--ApplyCal--’
default(’applycal’)

print "This will apply the calibration to the DATA"
print "Fills CORRECTED_DATA"

vis = msfile

# Start with the interpolated fluxscale/gain table
gaintable = [atable,ptable,xtable]

# use settings from gaincal
gaincurve = usegaincurve
opacity = gainopacity

# select the fields
field = ’1331+305,0137+331,JUPITER’
spw = ’’
selectdata = False

# IMPORTANT set parang=True for polarization
parang = True

# do not need to select subset since we did accum
# (note that correct only does ’nearest’ interp)
gainfield = ’’

applycal()

#
#=====================================================================
#
# Now split the Jupiter target data
#
print ’--Split Jupiter--’
default(’split’)

vis = msfile
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# Now we write out the corrected data to a new MS

# Select the Jupiter field
field = srcname
spw = ’’

# pick off the CORRECTED_DATA column
datacolumn = ’corrected’

# Make an output vis file
outputvis = srcsplitms

print "Split "+field+" data into new ms "+srcsplitms

split()

# Also split out 0137+331 as a check
field = calname

outputvis = calsplitms

print "Split "+field+" data into new ms "+calsplitms

split()

#=====================================================================
# Force scratch column creation so plotxy will work
#
vis = srcsplitms
clearcal()

vis = calsplitms
clearcal()

#=====================================================================
# Use Plotxy to look at the split calibrated data
#
print ’--Plotxy--’
default(’plotxy’)

selectdata = True
correlation = ’RR LL’
xaxis = ’uvdist’
datacolumn = ’data’
multicolor = ’both’
iteration = ’’
selectplot = True
field = ’JUPITER’

#vis = srcsplitms
#interactive = True
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#yaxis = ’amp’
#title = field+" "
#
# Plotxy interactively if desired
#plotxy()
#
#print ""
#print "-----------------------------------------------------"
#print "Plotting JUPITER corrected visibilities"
#print "Look for outliers"

# Pause script if you are running in scriptmode
#if scriptmode:
# user_check=raw_input(’Return to continue script\n’)
#
# Now go back and plot to files
interactive = False

#
# First the target
#
vis = srcsplitms
field = srcname
yaxis = ’amp’
# Use the field name as the title
title = field+" "

#figfile = vis + ’.plotxy.amp.png’
#print "Plotting to file "+figfile
#saveinputs(’plotxy’,vis+’.plotxy.amp.saved’)
#plotxy()

yaxis = ’phase’
# Use the field name as the title

#figfile = vis + ’.plotxy.phase.png’
#print "Plotting to file "+figfile
#saveinputs(’plotxy’,vis+’.plotxy.phase.saved’)
#plotxy()

#
# Now the calibrator
#
vis = calsplitms
field = calname
yaxis = ’amp’
# Use the field name as the title
title = field+" "

#figfile = vis + ’.plotxy.amp.png’
#print "Plotting to file "+figfile



APPENDIX F. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 464

#saveinputs(’plotxy’,vis+’.plotxy.amp.saved’)
#plotxy()

yaxis = ’phase’

#figfile = vis + ’.plotxy.phase.png’
#print "Plotting to file "+figfile
#saveinputs(’plotxy’,vis+’.plotxy.phase.saved’)
#plotxy()

print ’Calibration completed’
#
#=====================================================================
#
# Intensity Imaging/Selfcal
#
#=====================================================================
#
# Make the scratch columns in the split ms
#
print ’--Clearcal--’
default(’clearcal’)

vis = srcsplitms

clearcal()

print "Created scratch columns for MS "+vis
print ""
#
#=====================================================================
# FIRST CLEAN / SELFCAL CYCLE
#=====================================================================
#
# Now clean an image of Jupiter
# NOTE: this uses the new combined invert/clean/mosaic task Patch 2
#
print ’--Clean 1--’
default(’clean’)

# Pick up our split source data
vis = srcsplitms

# Make an image root file name
imagename = imname1

print "Output images will be prefixed with "+imname1

# Set up the output continuum image (single plane mfs)
mode = ’mfs’
stokes = ’I’
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print "Will be a single MFS continuum image"

# NOTE: current version field=’’ doesnt work
field = ’*’

# Combine all spw
spw = ’’

# Imaging mode params
psfmode = clnalg
imagermode = clnmode

# Imsize and cell
imsize = clnimsize
cell = clncell

# NOTE: will eventually have an imadvise task to give you this
# information

# Standard gain factor 0.1
gain = 0.1

# Fix maximum number of iterations and threshold
niter = clniter
threshold = clnthreshold

# Note - we can change niter and threshold interactively
# during clean

# Set up the weighting
# Use Briggs weighting (a moderate value, on the uniform side)
weighting = ’briggs’
robust = 0.5

# No clean mask or box
mask = ’’

# Use interactive clean mode
interactive = True

# We will be doing selfcal
calready = True

# Moderate number of iter per interactive cycle
npercycle = 100

saveinputs(’clean’,imagename+’.clean.saved’)
clean()

# When the interactive clean window comes up, use the right-mouse
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# to draw rectangles around obvious emission double-right-clicking
# inside them to add to the flag region. You can also assign the
# right-mouse to polygon region drawing by right-clicking on the
# polygon drawing icon in the toolbar. When you are happy with
# the region, click ’Done Flagging’ and it will go and clean another
# 100 iterations. When done, click ’Stop’.

print ""
print "----------------------------------------------------"
print "Clean"
print "Final clean model is "+clnmodel1
print "Final restored clean image is "+clnimage1
print "The clean residual image is "+clnresid1
print "Your final clean mask is "+clnmask1

print ""
print "This is the final restored clean image in the viewer"
print "Zoom in and set levels to see faint emission"
print "Use rectangle drawing tool to box off source"
print "Double-click inside to print statistics"
print "Move box on-source and get the max"
print "Calcualte DynRange = MAXon/RMSoff"
print "I got 1.060/0.004 = 270"
print "Still not as good as it can be - lets selfcal"
print "Close viewer panel when done"

#
#---------------------------------------------------------------------
#
# If you did not do interactive clean, bring up viewer manually
viewer(clnimage1,’image’)

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

# You can use the right-mouse to draw a box in the lower right
# corner of the image away from emission, the double-click inside
# to bring up statistics. Use the right-mouse to grab this box
# and move it up over Jupiter and double-click again. You should
# see stuff like this in the terminal:
#
# jupiter6cm.demo.clean1.image (Jy/beam)
#
# n Std Dev RMS Mean Variance Sum
# 4712 0.003914 0.003927 0.0003205 1.532e-05 1.510
#
# Flux Med |Dev| IntQtlRng Median Min Max
# 0.09417 0.002646 0.005294 0.0001885 -0.01125 0.01503
#
#
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# On Jupiter:
#
# n Std Dev RMS Mean Variance Sum
# 3640 0.1007 0.1027 0.02023 0.01015 73.63
#
# Flux Med |Dev| IntQtlRng Median Min Max
# 4.592 0.003239 0.007120 0.0001329 -0.01396 1.060
#
# Estimated dynamic range = 1.060 / 0.003927 = 270 (poor)
#
# Note that the exact numbers you get will depend on how deep you
# take the interactive clean and how you draw the box for the stats.

#=====================================================================
#
# Do some non-interactive image statistics
print ’--Imstat--’
default(’imstat’)

imagename = clnimage1
on_statistics1 = imstat()

# Now do stats in the lower right corner of the image
# remember clnimsize = [288,288]
box = ’216,1,287,72’
off_statistics1 = imstat()

# Pull the max and rms from the clean image
thistest_immax=on_statistics1[’max’][0]
print ’ Found : Max in image = ’,thistest_immax
thistest_imrms=off_statistics1[’rms’][0]
print ’ Found : rms in image = ’,thistest_imrms
print ’ Clean image Dynamic Range = ’,thistest_immax/thistest_imrms
print ’’
#
#---------------------------------------------------------------------
#
# Self-cal using clean model
#
# Note: clean will have left FT of model in the MODEL_DATA column
# If you’ve done something in between, can use the ft task to
# do this manually.
#
print ’--SelfCal 1--’
default(’gaincal’)

vis = srcsplitms

print "Will self-cal using MODEL_DATA left in MS by clean"

# New gain table
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caltable = selfcaltab1

print "Will write gain table "+selfcaltab1

# Don’t need a-priori cals
selectdata = False
gaincurve = False
opacity = 0.0

# This choice seemed to work
refant = calrefant

# Do amp and phase
gaintype = ’G’
calmode = ’ap’

# Do 30s solutions with SNR>1
solint = 30.0
minsnr = 1.0
print "Calibrating amplitudes and phases on 30s timescale"

# Do not need to normalize (let gains float)
solnorm = False

gaincal()

#
#---------------------------------------------------------------------
# It is useful to put this up in plotcal
#
#
print ’--PlotCal--’
default(’plotcal’)

caltable = selfcaltab1
multiplot = True
yaxis = ’amp’

plotcal()

print ""
print "-------------------------------------------------"
print "Plotcal"
print "Looking at amplitude in self-cal table "+caltable

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

yaxis = ’phase’
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plotcal()

print ""
print "-------------------------------------------------"
print "Plotcal"
print "Looking at phases in self-cal table "+caltable

#
# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

#
#---------------------------------------------------------------------
#
# Correct the data (no need for interpolation this stage)
#
print ’--ApplyCal--’
default(’applycal’)

vis = srcsplitms

print "Will apply self-cal table to over-write CORRECTED_DATA in MS"

gaintable = selfcaltab1

gaincurve = False
opacity = 0.0
field = ’’
spw = ’’
selectdata = False

calwt = True

applycal()

# Self-cal is now in CORRECTED_DATA column of split ms
#=====================================================================
# Use Plotxy to look at the self-calibrated data
#
#print ’--Plotxy--’
#default(’plotxy’)
#
#vis = srcsplitms
#selectdata = True
#field = ’JUPITER’
#correlation = ’RR LL’
#xaxis = ’uvdist’
#yaxis = ’amp’
#datacolumn = ’corrected’
#multicolor = ’both’
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#selectplot = True
#title = field+" "
#
#iteration = ’’
#
#plotxy()
#
#print ""
#print "-----------------------------------------------------"
#print "Plotting JUPITER self-corrected visibilities"
#print "Look for outliers, and you can flag them"

# Pause script if you are running in scriptmode
#if scriptmode:
# user_check=raw_input(’Return to continue script\n’)
#

#
#=====================================================================
# SECOND CLEAN / SELFCAL CYCLE
#=====================================================================
#
print ’--Clean 2--’
default(’clean’)

print "Now clean on self-calibrated data"

vis = srcsplitms

imagename = imname2

field = ’*’
spw = ’’
mode = ’mfs’
gain = 0.1

# Imaging mode params
psfmode = clnalg
imagermode = clnmode
imsize = clnimsize
cell = clncell
niter = clniter
threshold = clnthreshold

weighting = ’briggs’
robust = 0.5

mask = ’’
interactive = True
npercycle = 100
calready = True



APPENDIX F. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 471

saveinputs(’clean’,imagename+’.clean.saved’)
clean()

print ""
print "----------------------------------------------------"
print "Clean"
print "Final clean model is "+clnmodel2
print "Final restored clean image is "+clnimage2
print "The clean residual image is "+clnresid2
print "Your final clean mask is "+clnmask2

print ""
print "This is the final restored clean image in the viewer"
print "Zoom in and set levels to see faint emission"
print "Use rectangle drawing tool to box off source"
print "Double-click inside to print statistics"
print "Move box on-source and get the max"
print "Calculate DynRange = MAXon/RMSoff"
print "This time I got 1.050 / 0.001 = 1050 (better)"
print "Still not as good as it can be - you can try selfcal again"
print "We will stop here"
print "Close viewer panel when done"

#
#---------------------------------------------------------------------
#
# If you did not do interactive clean, bring up viewer manually
viewer(clnimage2,’image’)

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

# jupiter6cm.demo.clean2.image (Jy/beam)
#
# n Std Dev RMS Mean Variance Sum
# 5236 0.001389 0.001390 3.244e-05 1.930e-06 0.1699
#
# Flux Med |Dev| IntQtlRng Median Min Max
# 0.01060 0.0009064 0.001823 -1.884e-05 -0.004015 0.004892
#
#
# On Jupiter:
#
# n Std Dev RMS Mean Variance Sum
# 5304 0.08512 0.08629 0.01418 0.007245 75.21
#
# Flux Med |Dev| IntQtlRng Median Min Max
# 4.695 0.0008142 0.001657 0.0001557 -0.004526 1.076
#
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# Estimated dynamic range = 1.076 / 0.001389 = 775 (better)
#
# Note that the exact numbers you get will depend on how deep you
# take the interactive clean and how you draw the box for the stats.
#
print ""
print "--------------------------------------------------"
print "After this script is done you can continue on with"
print "more self-cal, or try different cleaning options"

#
#=====================================================================
# Image Analysis
#=====================================================================
#
# Can do some image statistics if you wish
print ’--Imstat (Cycle 2)--’
default(’imstat’)

imagename = clnimage2
on_statistics2 = imstat()

# Now do stats in the lower right corner of the image
# remember clnimsize = [288,288]
box = ’216,1,287,72’
off_statistics2 = imstat()

# Pull the max and rms from the clean image
thistest_immax=on_statistics2[’max’][0]
print ’ Found : Max in image = ’,thistest_immax
thistest_imrms=off_statistics2[’rms’][0]
print ’ Found : rms in image = ’,thistest_imrms
print ’ Clean image Dynamic Range = ’,thistest_immax/thistest_imrms
print ’’

#=====================================================================
#
# Print results and regression versus previous runs
#
print ""
print ’ Final Jupiter results ’
print ’ ===================== ’
print ’’
# Pull the max and rms from the clean image
thistest_immax=on_statistics2[’max’][0]
oldtest_immax = 1.07732224464
print ’ Clean image ON-SRC max = ’,thistest_immax
print ’ Previously found to be = ’,oldtest_immax
diff_immax = abs((oldtest_immax-thistest_immax)/oldtest_immax)
print ’ Difference (fractional) = ’,diff_immax
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print ’’
thistest_imrms=off_statistics2[’rms’][0]
oldtest_imrms = 0.0010449
print ’ Clean image OFF-SRC rms = ’,thistest_imrms
print ’ Previously found to be = ’,oldtest_imrms
diff_imrms = abs((oldtest_imrms-thistest_imrms)/oldtest_imrms)
print ’ Difference (fractional) = ’,diff_imrms

print ’’
print ’ Final Clean image Dynamic Range = ’,thistest_immax/thistest_imrms
print ’’
print ’--- Done with I Imaging and Selfcal---’

#
#=====================================================================
# Polarization Imaging
#=====================================================================
#
print ’--Clean (Polarization)--’
default(’clean’)

print "Now clean polarized data"

vis = srcsplitms

imagename = polimname

field = ’*’
spw = ’’
mode = ’mfs’
gain = 0.1

# Polarization
stokes = ’IQUV’

psfmode = polclnalg
imagermode = polclnmode

niter = clniter
threshold = clnthreshold

imsize = clnimsize
cell = clncell

weighting = ’briggs’
robust = 0.5

interactive = True
npercycle = 100

saveinputs(’clean’,imagename+’.clean.saved’)
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clean()

print ""
print "----------------------------------------------------"
print "Clean"
print "Final restored clean image is "+polimage
print "Final clean model is "+polmodel
print "The clean residual image is "+polresid
print "Your final clean mask is "+polmask

#
#=====================================================================
# Image Analysis
#=====================================================================
#
# Polarization statistics
print ’--Final Pol Imstat--’
default(’imstat’)

imagename = polimage

on_statistics = {}
off_statistics = {}

# lower right corner of the image (clnimsize = [288,288])
onbox = ’’
# lower right corner of the image (clnimsize = [288,288])
offbox = ’216,1,287,72’

for stokes in [’I’,’Q’,’U’,’V’]:
box = onbox
on_statistics[stokes] = imstat()
box = offbox
off_statistics[stokes] = imstat()

#
# Peel off some Q and U planes
#
print ’--Immath--’
default(’immath’)

mode = ’evalexpr’

stokes = ’I’
outfile = ipolimage
imagename = polimage
expr = ’IM0’

immath()
print "Created I image "+outfile
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stokes = ’Q’
outfile = qpolimage

immath()
print "Created Q image "+outfile

stokes = ’U’
outfile = upolimage

immath()
print "Created U image "+outfile

#
#---------------------------------------------------------------------
# Now make POLI and POLA images
#
# Use our rms above for debiasing
mysigma = 0.5*( off_statistics[’Q’][’rms’][0] + off_statistics[’U’][’rms’][0] )
#sigma = str(mysigma)+’Jy/beam’
# This does not work well yet
sigma = ’0.0Jy/beam’

#stokes = ’’
#imagename = [qpolimage,upolimage]
#outfile = poliimage
#mode = ’poli’
#immath()
#
#outfile = polaimage
#mode = ’pola’
#immath()

#Call as function instead:
immath(imagename=[qpolimage,upolimage],mode=’poli’,outfile=poliimage,sigma=’0.0Jy/beam’)
print "Created POLI image "+poliimage
immath(imagename=[qpolimage,upolimage],mode=’pola’,outfile=polaimage,sigma=’0.0Jy/beam’)
print "Created POLA image "+polaimage

#
#---------------------------------------------------------------------
# Save statistics of these images
default(’imstat’)

imagename = poliimage
stokes = ’’
box = onbox
on_statistics[’POLI’] = imstat()
box = offbox
off_statistics[’POLI’] = imstat()

#
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#
#---------------------------------------------------------------------
# Display clean I image in viewer but with polarization vectors
#
# If you did not do interactive clean, bring up viewer manually
viewer(polimage,’image’)

print "Displaying pol I now. You should overlay pola vectors"
print "Bring up the Load Data panel:"
print ""
print "Use LEL for POLA VECTOR with cut above 6*mysigma in POLI = "+str(6*mysigma)
print "For example:"
print "\’"+polaimage+"\’[\’"+poliimage+"\’>0.0048]"
print ""
print "In the Data Display Options for the vector plot:"
print " Set the x,y increments to 2 (default is 3)"
print " Use an extra rotation this 90deg to get B field"
print "Note the lengths are all equal. You can fiddle these."
print ""
print "You can also load the poli image as contours"

# Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

# NOTE: the LEL will be something like
# ’jupiter6cm.demo.polimg.clean.image.pola’[’jupiter6cm.demo.polimg.clean.image.poli’>0.005]

#
# NOTE: The viewer can take complex images to make Vector plots, although
# the image analysis tasks (and ia tool) cannot yet handle these. But we
# can use the imagepol tool (which is not imported by default) to make
# a complex image of the linear polarized intensity for display.
# See CASA User Reference Manual:
# http://casa.nrao.edu/docs/casaref/imagepol-Tool.html
#
# Make an imagepol tool and open the clean image
potool = casac.homefinder.find_home_by_name(’imagepolHome’)
po = potool.create()
po.open(polimage)
# Use complexlinpol to make a Q+iU image
complexlinpolimage = polimname + ’.cmplxlinpol’
po.complexlinpol(complexlinpolimage)
po.close()

# You can now display this in the viewer, in particular overlay this
# over the intensity raster with the poli contours. The vector lengths
# will be proportional to the polarized intensity. You can play with
# the Data Display Options panel for vector spacing and length.
# You will want to have this masked, like the pola image above, on
# the polarized intensity. When you load the image, use the LEL:
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# ’jupiter6cm.demo.polimg.clean.cmplxlinpol’[’jupiter6cm.demo.polimg.clean.image.poli’>0.005]

#=====================================================================
#
# Print results
#
print ""
print ’ Jupiter polarization results ’
print ’ ============================ ’
print ’’
for stokes in [’I’,’Q’,’U’,’V’,’POLI’]:

print ’’
print ’ =============== ’
print ’’
print ’ Polarization (Stokes ’+stokes+’):’
mymax = on_statistics[stokes][’max’][0]
mymin = on_statistics[stokes][’min’][0]
myrms = off_statistics[stokes][’rms’][0]
absmax = max(mymax,mymin)
mydra = absmax/myrms
print ’ Clean image ON-SRC max = ’,mymax
print ’ Clean image ON-SRC min = ’,mymin
print ’ Clean image OFF-SRC rms = ’,myrms
print ’ Clean image dynamic rng = ’,mydra

print ’--- Done ---’

#
#=====================================================================

F.3 BIMA Mosaic Spectral Imaging

This script analyzes a BIMA SONG mosaic of the galaxy NGC 4826 at 3mm.

The latest version of this script can be found at:

http://casa.nrao.edu/Doc/Scripts/ngc4826_tutorial.py

##########################################################################
# #
# Demo Script for NGC 4826 (BIMA line data) #
# #
# Converted by STM 2008-05-27 (Beta Patch 2.0) new tasking/clean/cal #
# Updated by CB 2008-05-30 start from raw data #
# Updated by STM 2008-06-01 scriptmode, plotting #
# Updated by CB,STM 2008-06-02 improvements #
# Updated by CB,STM 2008-06-03 bigger cube, pbcor #

http://casa.nrao.edu/Doc/Scripts/ngc4826_tutorial.py


APPENDIX F. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 478

# Updated by CB,STM 2008-06-04 pbcor stuff #
# Updated by CB,STM 2008-06-04 tutorial script #
# Updated by CB 2008-06-05 small tweaks #
# Updated by CB,STM 2008-06-12 final revisions (DS) #
# Updated by STM 2008-06-14 post-school fix #
# Updated by DP 2009-05-05 pre-Garching immoments chans #
# Updated by DP 2009-05-05 messages for flagging #
# Updated by CB 2009-05-18 pre-Canada spw fix not needed now #
# Updated by CB 2009-05-18 immoments axis=spectral #
# Updated by CB 2009-05-19 added restfreq to clean #
# Updated by CB 2009-05-19 removed clearcals #
# Updated by STM 2009-06-26 Patch 4, web download #
# Updated by STM 2009-12-20 Release 3.0 final #
# #
# N4826 - BIMA SONG Data #
# #
# This data is from the BIMA Survey of Nearby Galaxies (BIMA SONG) #
# Helfer, Thornley, Regan, et al., 2003, ApJS, 145, 259 #
# Many thanks to Michele Thornley for providing the data and description #
# #
# First day of observations only #
# #
# Script Notes: #
# o This script will automatically download the data from the web #
# if it cannot find the data on disk. #
# o The "default" commands are not necessary, but are included #
# in case we want to change from function calls to globals #
# o This script has some interactive commands, such as with plotxy #
# and the viewer. This script will stop and require a #
# carriage-return to continue at these points. #
# o Sometimes cut-and-paste of a series of lines from this script #
# into the casapy terminal will get garbled (usually a single #
# dropped character). In this case, try fewer lines, like groups #
# of 4-6. #
# o If you want to re-run the script, quit casapy and start again #
# #
##########################################################################
import os

# needed for existence check
from os import F_OK

# Might need these if having problems with plotxy windows
#pl.ion()
#pl.clf()
#
##########################################################################
#
# Clear out previous run results
#rmtables(’ngc4826.tutorial.*’)
os.system(’rm -rf ngc4826.tutorial.*’)
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# Sets a shorthand for the ms, not necessary
prefix=’ngc4826.tutorial’
msfile = prefix + ’.16apr98.ms’

print ’Tutorial Script for BIMASONG NGC4826 Mosaic’
print ’Version for Release 0 (3.0.0) 20-Dec-2009’
print ’Will do: import, flagging, calibration, imaging’
print ’’
#
##########################################################################
#
#
##########################################################################
#
# N4826 - BIMA SONG Data CO(1-0) 115.2712 GHz
# 16apr98
# source=ngc4826
# phasecal=1310+323
# fluxcal=3c273, Flux = 23 Jy on 16apr98
# passcal= none - data were observed with online bandpass correction.
#
# NOTE: This data has been filled into MIRIAD, line-length correction
# done, and then exported as separate files for each source.
# 3c273 was not line length corrected since it was observed
# for such a short amount of time that it did not need it.
#
# From miriad: source Vlsr = 408; delta V is 20 km/s
#
##########################################################################
# Locate the data
##########################################################################
#
fitsdir = ’fitsfiles’
# See if this sub-directory exists
if os.access(fitsdir,F_OK):

# already in current directory
print " Found "+fitsdir+" for UVFITS files"

else:
pathname=os.environ.get(’CASAPATH’).split()[0]
datapath=pathname+’/data/demo/tutorial/BIMA/NGC4826/’
dataname=’ngc4826.fitsfiles.tgz’
datafiles = datapath+dataname
# Path to web archive
webfiles = ’http://casa.nrao.edu/Data/BIMA/NGC4826/’+dataname
if os.access(dataname,F_OK):

print ’--Found data tarball in local directory--’
print " Using "+dataname

elif os.access(datafiles,F_OK):
print ’--Copy data tarball to local directory--’
print " Using "+datafiles
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os.system("cp -r "+datafiles+" .")
os.system(’chmod -R a+wx ’+datafiles)

else:
# try web retrieval

print ’--Trying to retrieve data from ’+webfiles
# Use curl (for Mac compatibility)
os.system(’curl ’+webfiles+’ -f -o ’+dataname)
# NOTE: could also use wget
#os.system(’wget ’+webfiles)

print ’--Unpacking tarball ’
os.system(’tar xzf ’+dataname)
if os.access(fitsdir,F_OK):

# should now be in current directory
print " Will use "+fitsdir+" in current directory"

else:
raise IOError," ERROR: "+fitsdir+" not found"

##########################################################################
# Import and concatenate sources
##########################################################################
#
# USB spectral windows written separately by miriad for 16apr98
# Assumes these are in sub-directory called "fitsfiles" of working directory
print ’--Importuvfits (16apr98)--’
default(’importuvfits’)

print "Starting from the uvfits files exported by miriad"
print "The USB spectral windows were written separately by miriad for 16apr98"

#### We could read in each of the individual fits files as example
#### below -- this works well if you only have one or two files to
#### read, but here we have many, so instead we use some useful
#### pythonease to simplify the commands.

#importuvfits(fitsfile=’fitsfiles/3c273.fits5’, vis=’ngc4826.tutorial.3c273.5.ms’)

#### Tutorial Note: For the loop to work, the high end of range must be
#### 1+ number of actual files.

for i in range(5,9):
importuvfits(fitsfile="fitsfiles/3c273.fits"+str(i),
vis="ngc4826.tutorial.3c273."+str(i)+".ms")

for i in range(9,17):
importuvfits(fitsfile="fitsfiles/1310+323.ll.fits"+str(i),
vis="ngc4826.tutorial.1310+323.ll."+str(i)+".ms")

for i in range(5,9):
importuvfits(fitsfile="fitsfiles/ngc4826.ll.fits"+str(i),
vis="ngc4826.tutorial.ngc4826.ll."+str(i)+".ms")



APPENDIX F. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 481

#
##########################################################################
#
print ’--Concat--’
default(’concat’)

concat(vis=[’ngc4826.tutorial.3c273.5.ms’,
’ngc4826.tutorial.3c273.6.ms’,
’ngc4826.tutorial.3c273.7.ms’,
’ngc4826.tutorial.3c273.8.ms’,
’ngc4826.tutorial.1310+323.ll.9.ms’,
’ngc4826.tutorial.1310+323.ll.10.ms’,
’ngc4826.tutorial.1310+323.ll.11.ms’,
’ngc4826.tutorial.1310+323.ll.12.ms’,
’ngc4826.tutorial.1310+323.ll.13.ms’,
’ngc4826.tutorial.1310+323.ll.14.ms’,
’ngc4826.tutorial.1310+323.ll.15.ms’,
’ngc4826.tutorial.1310+323.ll.16.ms’,
’ngc4826.tutorial.ngc4826.ll.5.ms’,
’ngc4826.tutorial.ngc4826.ll.6.ms’,
’ngc4826.tutorial.ngc4826.ll.7.ms’,
’ngc4826.tutorial.ngc4826.ll.8.ms’],

concatvis=’ngc4826.tutorial.ms’,
freqtol="",dirtol="1arcsec",async=False)

#
##########################################################################
#
# TUTORIAL NOTES:
#
# You can invoke tasks in two ways:
#
# (1) As function calls with arguments as shown above for concat and used
# extensively in this script, e.g.
#
# task( par1=val1, par2=val2, ... )
#
# with parameters set as arguments in the call. Note that in this
# case, the global parameter values are NOT used or changed, and any
# task parameters that are not specified as arguments to the call
# will be defaulted to the task-specific default values (see the
# "help task" description).
#
# (2) By setting the values of the global parameters and then using the
# "go" command (if taskname is set) or calling the task with no
# arguments. For example:
#
# default task
# par1 = val1
# par2 = val2
# ...
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# inp
# task()
#
# In this case, the "default" command sets the parmeters to their
# task defaults, and sets the "taskname" paramter to the task to be
# run. The "inp" command displays the current values for the task
# parameters. Then the call with no arguments runs with the globals.
#
# Warning: "go" does not work inside scripts. See Cookbook.
#
# Using the concat call above as an example, we would do:
#
#default(’concat’)
#
#vis = [’ngc4826.tutorial.3c273.5.ms’,
# ’ngc4826.tutorial.3c273.6.ms’,
# ’ngc4826.tutorial.3c273.7.ms’,
# ’ngc4826.tutorial.3c273.8.ms’,
# ’ngc4826.tutorial.1310+323.ll.9.ms’,
# ’ngc4826.tutorial.1310+323.ll.10.ms’,
# ’ngc4826.tutorial.1310+323.ll.11.ms’,
# ’ngc4826.tutorial.1310+323.ll.12.ms’,
# ’ngc4826.tutorial.1310+323.ll.13.ms’,
# ’ngc4826.tutorial.1310+323.ll.14.ms’,
# ’ngc4826.tutorial.1310+323.ll.15.ms’,
# ’ngc4826.tutorial.1310+323.ll.16.ms’,
# ’ngc4826.tutorial.ngc4826.ll.5.ms’,
# ’ngc4826.tutorial.ngc4826.ll.6.ms’,
# ’ngc4826.tutorial.ngc4826.ll.7.ms’,
# ’ngc4826.tutorial.ngc4826.ll.8.ms’]
#
#concatvis=’ngc4826.tutorial.ms’
#freqtol = ""
#dirtol = "1arcsec"
#async=False
#
#concat()

#
##########################################################################
#
# Fix up the MS
# This ensures that the rest freq will be found for all spws.
# NOTE: STILL NECESSARY
#
# print ’--Fixing up spw rest frequencies in MS--’
vis=’ngc4826.tutorial.ms’
tb.open(vis+’/SOURCE’,nomodify=false)
spwid=tb.getcol(’SPECTRAL_WINDOW_ID’)
#spwid.setfield(-1,int)
# Had to do this for 64bit systems 08-Jul-2008
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spwid.setfield(-1,’int32’)
tb.putcol(’SPECTRAL_WINDOW_ID’,spwid)
tb.close()

##########################################################################
# 16 APR Calibration
##########################################################################
#
# List contents of MS
#
print ’--Listobs--’
listobs(vis=’ngc4826.tutorial.ms’)

# Should see the listing included at the end of this script
#

print "There are 3 fields observed in a total of 16 spectral windows"
print " field=0 3c273 spwids 0,1,2,3 64 chans "
print " field=1 1310+323 spwids 4,5,6,7,8,9,10,11 32 chans "
print " field=2~8 NGC4826 spwids 12,13,14,15 64 chans "
print ""
print "See listobs summary in logger"
#
##########################################################################
# Plotting and Flagging
##########################################################################
#
# The plotxy task is the interactive x-y display and flagging GUI
#
print ’--Plotxy--’
default(plotxy)

# Here we will suggest things to plot, and actually only do a few
# (near the end of this task block). If you like you can
# uncomment these when you run this script
#
# First look at amplitude as a funciton of uv-distance using an
# average over all channels for each source.
#
# Interactive plotxy
#plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’uvdist’,yaxis=’amp’,field=’0’,spw=’0~3’,
# averagemode=’vector’,width=’1000’,selectplot=True,title=’Field 0 SPW 0~3’)
#
# Pause script if you are running in scriptmode
#user_check=raw_input(’Return to continue script\n’)

# NOTE: width here needs to be larger than combination of all channels
# selected with spw and/or field. Since field and spw are unique in this
# case, both don’t need to be specified, however plotting is much faster
# if you "help it" by selecting both.
#
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# Now average over all times across scans but not over channel and
# plot versus channel. There are four 64-channel spws set end-to-end
# by plotxy You should see bad edge channels in each spw segment We
# will flag these (non-interactively) later
#
# Interactive plotxy
#plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’channel’,yaxis=’amp’,field=’0’,spw=’0~3’,
# averagemode=’vector’,timebin=’1e7’,crossscans=True,selectplot=True,
# newplot=False,title=’Field 0 SPW 0~3’)
#
# Pause script if you are running in scriptmode
#user_check=raw_input(’Return to continue script\n’)

# You can also plot versus velocity by setting xaxis=’velocity’
#
# You might do this for all the other spw/field combos
#

# You can also non-interactively plotxy to a file
# (note this works only if iteration is not set)
# Also, see how we use Python variables to make this easier
#
#field = ’0’
#spw = ’0~3’
#figfile = ’ngc4826.tutorial.ms’ + ’.plotxy.’+field+’.spectrum.raw.png’
#plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’velocity’,yaxis=’amp’,field=field,spw=spw,
# averagemode=’vector’,timebin=’1e7’,crossscans=True,selectplot=True,
# newplot=False,title=’Field ’+field+’ SPW ’+spw,interactive=False,figfile=figfile)

# Now lets look at the target source, the first of the NGC4826 mosaic fields
# which are 2~8 in this MS.
#
# Since we are plotting versus velocity we can clearly see the bad edge
# channels and the overlap between spw
#
# There is nothing terribly wrong with this data and again we will flag the
# edge channels non-interactively later for consistency.
#
# Normally, if there were obviously bad data, you would flag it here
# before calibration. To do this, hit the Mark Region button, then draw a box around
# some of the moderately high outliers, and then Flag.
#
# But this data is relatively clean, and flagging will not improve results.
#
# Interactive plotxy
plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’velocity’,yaxis=’amp’,field=’2’,spw=’12~15’,

averagemode=’vector’,timebin=’1e7’,crossscans=True,
selectplot=True,newplot=False,title=’Field 2 SPW 12~15’)

print "You could Mark Region around outliers and Flag"
# Pause script if you are running in scriptmode



APPENDIX F. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 485

user_check=raw_input(’Return to continue script\n’)

#
# You could set up a Python loop to do all the N4826 fields, like this:
#
#for fld in range(2,9):
# field = str(fld)
# plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’velocity’,yaxis=’amp’,field=field,spw=spw,
# averagemode=’vector’,timebin=’1e7’,crossscans=True,selectplot=True,
# newplot=False,title=’Field ’+field+’ SPW ’+spw)
#
# print "Nominally, Mark Region around outliers and Flag"
# # Pause script if you are running in scriptmode
# user_check=raw_input(’Return to continue script\n’)

# Back to first field.
# You can also have it iterate over baselines, using Next to advance
# Ignore baselines 1:1, 2:2 etc. as they would correspond to autocorrelations
# if they were present (they are not in this dataset)
#
# Interactive plotxy
#plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’channel’,yaxis=’amp’,field=’0’,spw=’0~3’,
# averagemode=’vector’,timebin=’1e7’,crossscans=True,iteration=’baseline’,
# selectplot=True,newplot=False,title=’Field 0 SPW 0~3’)
#
# Pause script if you are running in scriptmode
#user_check=raw_input(’Return to continue script\n’)

#
# Finally, look for bad data. Here we look at field 8 w/o averaging
plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’time’,yaxis=’amp’,field=’8’,spw=’12~15’,

selectplot=True,newplot=False,title=’Field 8 SPW 12~15’)

print "You can see some bad data here"
print "Mark Region and Locate, look in logger"
print "This is a correlator glitch in baseline 3-9 at 06:19:30"
print "PLEASE DON\’T FLAG ANYTHING HERE. THE SCRIPT WILL DO IT!"
print "In a normal session you could Mark Region and Flag."
print "Here we will use flagdata instead."
# Pause script if you are running in scriptmode
user_check=raw_input(’Return to continue script\n’)

# If you change xaxis=’channel’ you see its all channels
#
##########################################################################
#
# Flag end channels
#
print ’--Flagdata--’
default(’flagdata’)
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print ""
print "Flagging edge channels in all spw"
print " 0~3:0~1;62~63 , 4~11:0~1;30~31, 12~15:0~1;62~63 "
print ""

flagdata(vis=’ngc4826.tutorial.ms’, mode=’manualflag’,
spw=’0~3:0;1;62;63,4~11:0;1;30;31,12~15:0;1;62;63’)

#
# Flag correlator glitch
#
print ""
print "Flagging bad correlator field 8 antenna 3&9 spw 15 all channels"
print " timerange 1998/04/16/06:19:00.0~1998/04/16/06:20:00.0"
print ""

flagdata(vis=’ngc4826.tutorial.ms’, mode=’manualflag’, field=’8’, spw=’15’, antenna=’3&9’,
timerange=’1998/04/16/06:19:00.0~1998/04/16/06:20:00.0’)

#
##########################################################################
#
# Some example clean-up editing
# Slightly high almost-edge channel in field=’1’, spw=’4’ (channel 2)
# can be flagged interactively with plotxy.
#
#plotxy(vis=’ngc4826.tutorial.ms’,
# xaxis=’channel’,yaxis=’amp’,field=’1’,spw=’4’,
# averagemode=’vector’,timebin=’1e7’,crossscans=True,
# selectplot=True,newplot=False,title=’Field 1 SPW 4’)

print "Completed pre-calibration flagging"

#
##########################################################################
#
# Use Flagmanager to save a copy of the flags so far
#
print ’--Flagmanager--’
default(’flagmanager’)

print "Now will use flagmanager to save a copy of the flags we just made"
print "These are named myflags"

flagmanager(vis=’ngc4826.tutorial.ms’,mode=’save’,versionname=’myflags’,
comment=’My flags’,merge=’replace’)

# Can also use Flagmanager to list all saved versions
#
#flagmanager(vis=’ngc4826.tutorial.ms’,mode=’list’)
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#
##########################################################################
#
# CALIBRATION
#
##########################################################################
#
# Bandpasses are very flat because of observing mode used (online bandpass
# correction) so bandpass calibration is unecessary for these data.
#
##########################################################################
#
# Derive gain calibration solutions.
# We will use VLA-like G (per-scan) calibration:
#
##########################################################################
#
# Set the flux density of 3C273 to 23 Jy
#
print ’--Setjy (3C273)--’
default(’setjy’)

setjy(vis=’ngc4826.tutorial.ms’,field=’0’,fluxdensity=[23.0,0.,0.,0.],spw=’0~3’)
#
# Not really necessary to set spw but you get lots of warning messages if
# you don’t
#
##########################################################################
#
# Gain calibration
#
print ’--Gaincal--’
default(’gaincal’)

# This should be combining all spw for the two calibrators for single
# scan-based solutions

print ’Gain calibration for fields 0,1 and spw 0~11’
print ’Using solint=inf combining over spw’
print ’Output table ngc4826.tutorial.16apr98.gcal’

gaincal(vis=’ngc4826.tutorial.ms’, caltable=’ngc4826.tutorial.16apr98.gcal’,
field=’0,1’, spw=’0~11’, gaintype=’G’, minsnr=2.0,
refant=’ANT5’, gaincurve=False, opacity=0.0,
solint=’inf’, combine=’spw’)

#
##########################################################################
#
# Transfer the flux density scale:
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#
print ’--Fluxscale--’
default(’fluxscale’)

print ’’
print ’Transferring flux of 3C273 to sources: 1310+323’
print ’Output table ngc4826.tutorial.16apr98.fcal’

fluxscale(vis=’ngc4826.tutorial.ms’, caltable=’ngc4826.tutorial.16apr98.gcal’,
fluxtable=’ngc4826.tutorial.16apr98.fcal’,
reference=’3C273’, transfer=[’1310+323’])

# Flux density for 1310+323 is: 1.48 +/- 0.016 (SNR = 90.6, nAnt= 8)
#
##########################################################################
#
# Plot calibration
print ’--Plotcal (fluxscale)--’
default(plotcal)

# Interactive plotcal
plotcal(caltable=’ngc4826.tutorial.16apr98.fcal’, yaxis=’amp’, field=’’)
print ’’
print ’Plotting final scaled gain calibration table’
print ’First amp vs. time for all fields ’

# Pause script if you are running in scriptmode
user_check=raw_input(’Return to continue script\n’)

plotcal(caltable=’ngc4826.tutorial.16apr98.fcal’, yaxis=’phase’, field=’’)
print ’’
print ’and phase vs. time ’

# Pause script if you are running in scriptmode
user_check=raw_input(’Return to continue script\n’)

# And you can plot the SNR of the solution
#plotcal(caltable=’ngc4826.tutorial.16apr98.fcal’, yaxis=’snr’, field=’’)

# You can also plotcal to file
#figfile = ’ngc4826.tutorial.16apr98.fcal.plotcal.amp.png’
#plotcal(caltable=’ngc4826.tutorial.16apr98.fcal’,yaxis=’amp’,field=’’,showgui=False,figfile=figfile)
#figfile = ’ngc4826.tutorial.16apr98.fcal.plotcal.phase.png’
#plotcal(caltable=’ngc4826.tutorial.16apr98.fcal’,yaxis=’phase’,field=’’,showgui=False,figfile=figfile)

#
##########################################################################
#
# Correct the calibrater/target source data:
# Use new parm spwmap to apply gain solutions derived from spwid1
# to all other spwids...
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print ’--Applycal--’
default(’applycal’)

print ’Applying calibration table ngc4826.tutorial.16apr98.fcal to data’

applycal(vis=’ngc4826.tutorial.ms’,
field=’’, spw=’’,
gaincurve=False, opacity=0.0,

gaintable=’ngc4826.tutorial.16apr98.fcal’,
spwmap=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])

#
##########################################################################
#
# Check calibrated data
print ’--Plotxy--’
default(plotxy)

#
# Here we plot the first of the NGC4826 fields unaveraged versus velocity
# Notice how the spw fit together

# Interactive plotxy
#print "Will plot all the NGC4826 calibrated data unaveraged - this will take a while"
#plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’velocity’,yaxis=’amp’,field=’2~8’,spw=’12~15’,
# averagemode=’vector’,datacolumn=’corrected’,selectplot=True,
# newplot=False,title=’Field 2~8 SPW 12~15’)

#print ""
#print "Look for outliers, flag them if there are any bad ones"
#print ""

# Pause script if you are running in scriptmode
#user_check=raw_input(’Return to continue script\n’)

# You can also plot all the N4826 fields 2 through 8, for example using a loop:

#for fld in range(2,9):
# field = str(fld)
# plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’velocity’,yaxis=’amp’,field=field,spw=’11~15’,
# averagemode=’vector’,datacolumn=’corrected’,selectplot=True,
# newplot=False,title=’Field ’+field+’ SPW 11~15’)
#
# user_check=raw_input(’Return to continue script\n’)

# Now here we time-average the data, plotting versus velocity

#plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’velocity’,yaxis=’amp’,field=field,spw=spw,
# averagemode=’vector’,datacolumn=’corrected’,timebin=’1e7’,crossscans=True,
# plotcolor=’blue’,selectplot=True,newplot=False,title=’Field ’+field+’ SPW ’+spw)
#print ""
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#print ’Final Spectrum field ’+field+’ spw ’+spw+’ TimeAverage Corrected Data’

# Pause script if you are running in scriptmode
#user_check=raw_input(’Return to continue script\n’)

# Here we overplot 3C273 the Time+Chan averaged calibrated and uncalibrated data

#
# First the corrected column in blue
#field = ’0’
#spw = ’0~3’
#plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’uvdist’,yaxis=’amp’,field=field,spw=spw,
# averagemode=’vector’,width=’1000’,datacolumn=’corrected’,timebin=’1e7’,
# crossscans=True,plotcolor=’blue’,selectplot=True,newplot=False,
# title=’Field ’+field+’ SPW ’+spw)
#print ""
#print ’Plotting field ’+field+’ spw ’+spw+’ TimeChanAverage Corrected Data in blue’
#
# Now the original data column in red
#plotxy(vis=’ngc4826.tutorial.ms’,xaxis=’uvdist’,yaxis=’amp’,field=field,spw=spw,
# averagemode=’vector’,width=’1000’,datacolumn=’data’,timebin=’1e7’,
# crossscans=True,plotcolor=’red’,overplot=True,selectplot=True,
# newplot=False,title=’Field ’+field+’ SPW ’+spw)
#
#print ’OverPlotting field ’+field+’ spw ’+spw+’ TimeChanAverage Original Data in red’

## Pause script if you are running in scriptmode
#user_check=raw_input(’Return to continue script\n’)

# Can repeat for
#field = ’1’
#spw = ’4~11’

print "Done calibration and plotting"
#
##########################################################################
#
# SPLIT THE DATA INTO SINGLE-SOURCE MS
# AND THEN IMAGE THE CALIBRATOR
#
##########################################################################
#
#
# Split out calibrated target source and calibrater data:
#
print ’--Split--’
default(’split’)

print ’Splitting 3C273 data to ngc4826.tutorial.16apr98.3C273.split.ms’

split(vis=’ngc4826.tutorial.ms’,
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outputvis=’ngc4826.tutorial.16apr98.3C273.split.ms’,
field=’0’,spw=’0~3:0~63’, datacolumn=’corrected’)

print ’Splitting 1310+323 data to ngc4826.tutorial.16apr98.1310+323.split.ms’

split(vis=’ngc4826.tutorial.ms’,
outputvis=’ngc4826.tutorial.16apr98.1310+323.split.ms’,
field=’1’, spw=’4~11:0~31’, datacolumn=’corrected’)

print ’Splitting NGC4826 data to ngc4826.tutorial.16apr98.src.split.ms’

split(vis=’ngc4826.tutorial.ms’,
outputvis=’ngc4826.tutorial.16apr98.src.split.ms’,
field=’2~8’, spw=’12~15:0~63’,
datacolumn=’corrected’)

#
##########################################################################
#
# If you want to use plotxy before cleaning to look at the split ms
#plotxy(vis=’ngc4826.tutorial.16apr98.src.split.ms’,xaxis=’time’,yaxis=’amp’)
#
##########################################################################
#
# You might image the calibrater data:
#
#print ’--Clean (1310+323)--’
#default(’clean’)
#
#
#clean(vis=’ngc4826.tutorial.16apr98.1310+323.split.ms’,
# imagename=’ngc4826.tutorial.16apr98.cal.clean’,
# cell=[1.,1.],imsize=[256,256],field=’0’,spw=’0~7’,
# threshold=10.,mode=’mfs’,psfmode=’clark’,niter=100,stokes=’I’)

# You can look at this in the viewer
#viewer(’ngc4826.tutorial.16apr98.cal.clean.image’)

#
#
##########################################################################
#
# IMAGING OF NGC4826 MOSAIC
#
##########################################################################
#
# Mosaic field spacing looks like:
#
# F3 (field 3) F2 (field 2)
#
# F4 (field 4) F0 (field 0) F1 (field 1)
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#
# F5 (field 5) F6 (field 6)
#
# 4x64 channels = 256 channels
#
# Primary Beam should be about 1.6’ FWHM (7m dishes, 2.7mm wavelength)
# Resolution should be about 5-8"
##########################################################################
#
# Image the target source mosaic:
#
print ’--Clean (NGC4826)--’
default(’clean’)

clean(vis=’ngc4826.tutorial.16apr98.src.split.ms’,
imagename=’ngc4826.tutorial.16apr98.src.clean’,
field=’0~6’,spw=’0~3’,
cell=[1.,1.],imsize=[256,256],stokes=’I’,
mode=’channel’,nchan=36,start=35,width=4,
interpolation=’nearest’,
psfmode=’clark’,imagermode=’mosaic’,scaletype=’SAULT’,
cyclefactor=4,ftmachine=’mosaic’,
niter=10000,threshold=’45mJy’,
restfreq=’115.2712GHz’,interactive=F,
minpb=0.3,pbcor=False)

### NOTE: Interpolation = ’nearest’, can try ’linear’ also

### NOTE: Explicitly set restfreq to CO 1-0

### NOTE: Sault weighting implies a uniform noise mosaic

### NOTE: that niter is set to large number so that stopping point is
### controlled by threshold.

### NOTE: with pbcor=False, the final image is not "flux correct",
### instead the image has constant noise despite roll off in power as
### you move out from the phase center(s). Though this format makes it
### "look nicest", for all flux density measurements, and to get an
### accurate integrated intensity image, one needs to divide the
### srcimage.image/srcimage.flux in order to correct for the mosaic
### response pattern. One could also achieve this by setting pbcor=True
### in clean.

# Try running clean adding the parameter interactive=True.
# This parameter will periodically bring up the viewer to allow
# interactive clean boxing. For poor uv-coverage, deep negative bowls
# from missing short spacings, this can be very important to get correct
# integrated flux densities.

#
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##########################################################################
#
# Do interactive viewing of clean image
print ’--Viewer--’
viewer(’ngc4826.tutorial.16apr98.src.clean.image’)

print ""
print "This is the non-pbcorrected cube of NGC4826"
print "Use tape deck to move through channels"
print "Close the viewer when done"
print ""
#
# Pause script if you are running in scriptmode
user_check=raw_input(’Return to continue script\n’)

#
##########################################################################
#
# Statistics on clean image cube
#
print ’--ImStat (Clean cube)--’

srcstat = imstat(’ngc4826.tutorial.16apr98.src.clean.image’)

print "Found image max = "+str(srcstat[’max’][0])

# offbox = ’106,161,153,200’

offstat = imstat(’ngc4826.tutorial.16apr98.src.clean.image’,
box=’106,161,153,200’)

print "Found off-source image rms = "+str(offstat[’sigma’][0])

# cenbox = ’108,108,148,148’
# offlinechan = ’0,1,2,3,4,5,30,31,32,33,34,35’

offlinestat = imstat(’ngc4826.tutorial.16apr98.src.clean.image’,
box=’108,108,148,148’,
chans=’0,1,2,3,4,5,30,31,32,33,34,35’)

print "Found off-line image rms = "+str(offlinestat[’sigma’][0])

#
##########################################################################
#
# Manually correct for mosaic response pattern using .image/.flux images
#
print ’--ImMath (PBcor)--’

immath(outfile=’ngc4826.tutorial.16apr98.src.clean.pbcor’,
imagename=[’ngc4826.tutorial.16apr98.src.clean.image’,’ngc4826.tutorial.16apr98.src.clean.flux’],
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mode=’evalexpr’,expr=’IM0/IM1’)

#
##########################################################################
#
# Statistics on PBcor image cube
#
print ’--ImStat (PBcor cube)--’

pbcorstat = imstat(’ngc4826.tutorial.16apr98.src.clean.pbcor’)

print "Found image max = "+str(pbcorstat[’max’][0])

pbcoroffstat = imstat(’ngc4826.tutorial.16apr98.src.clean.pbcor’,
box=’106,161,153,200’)

print "Found off-source image rms = "+str(pbcoroffstat[’sigma’][0])

pbcorofflinestat = imstat(’ngc4826.tutorial.16apr98.src.clean.pbcor’,
box=’108,108,148,148’,
chans=’0,1,2,3,4,5,30,31,32,33,34,35’)

print "Found off-line image rms = "+str(pbcorofflinestat[’sigma’][0])

#
##########################################################################
#
# Do zeroth and first moments
#
# NGC4826 LSR velocity is 408 km/s; delta is 20 km/s
#
print ’--ImMoments--’
default(’immoments’)

momfile = ’ngc4826.tutorial.16apr98.moments’
momzeroimage = ’ngc4826.tutorial.16apr98.moments.integrated’
momoneimage = ’ngc4826.tutorial.16apr98.moments.mom1’

print "Calculating Moments 0,1 for PBcor image"

immoments(imagename=’ngc4826.tutorial.16apr98.src.clean.pbcor’,
moments=0,axis=’spectral’,
chans=’7~28’,

outfile=’ngc4826.tutorial.16apr98.moments.integrated’)

# TUTORIAL NOTES: For moment 0 we use the image corrected for the
# mosaic response to get correct integrated flux densities. However,
# in *real signal* regions, the value of moment 1 does not dependent on
# the flux being correct so the non-pb corrected SAULT image can be
# used, this avoids having lots of junk show up at the edges of your
# moment 1 image due to the primary beam correction. Try it both ways
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# and see for yourself.

# TUTORIAL NOTES:
#
# Moments greater than zero need to have a conservative lower
# flux cutoff to produce sensible results.

immoments(imagename=’ngc4826.tutorial.16apr98.src.clean.image’,
moments=1,axis=’spectral’,includepix=[0.2,1000.0],
chans=’7~28’,

outfile=’ngc4826.tutorial.16apr98.moments.mom1’)

# Now view the resulting images
viewer(’ngc4826.tutorial.16apr98.moments.integrated’)
#
print "Now viewing Moment-0 ngc4826.tutorial.16apr98.moments.integrated"
print "Note PBCOR effects at field edge"
print "Change the colorscale to get better image"
print "You can also Open and overlay Contours of Moment-1 ngc4826.tutorial.16apr98.moments.mom1"
print "Close the viewer when done"
#
# Pause script if you are running in scriptmode
user_check=raw_input(’Return to continue script\n’)

#
##########################################################################
#
# Statistics on moment images
#
print ’--ImStat (Moment images)--’

momzerostat=imstat(’ngc4826.tutorial.16apr98.moments.integrated’)

print "Found moment 0 max = "+str(momzerostat[’max’][0])

print "Found moment 0 rms = "+str(momzerostat[’rms’][0])

momonestat=imstat(’ngc4826.tutorial.16apr98.moments.mom1’)

print "Found moment 1 median = "+str(momonestat[’median’][0])

#
##########################################################################
#
# An alternative is to mask the pbcor image before calculating
# moments. The following block shows how to do this.

#print ’--Viewer--’
#viewer(ngc4826.tutorial.16apr98.moments.integrated)

# TUTORIAL NOTES: After loading change "unit contour level" in "Data
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# Display Options" gui to something like 70. select "region manager
# tool" from "tool" drop down menu Then assign the sqiggly Polygon
# button to a mouse button by clicking on it with a mouse button. Then
# draw a polygon region around galaxy emission, avoiding edge regions
# and double click in the region you created. Then in "region manager
# tool" select "save to file" and give file name mom0mask.rgn.

#print ’--ImMoments (masked)--’
#print ’Creating masked moment 0 image ngc4826.tutorial.16apr98.moments.integratedmasked’
#
#immoments(imagename=’ngc4826.tutorial.16apr98.src.clean.pbcor’,moments=0,
# axis=’spectral’,chans=’7~28’,region=’mom0mask.rgn’,
# outfile=’ngc4826.tutorial.16apr98.moments.integratedmasked’)
#
#print ’Creating masked moment 1 image ngc4826.tutorial.16apr98.moments.mom1masked’
#
#immoments(imagename=’ngc4826.tutorial.16apr98.src.clean.pbcor.masked’,moments=1,
# axis=’spectral’,includepix=[0.2,1000.0],chans=’7~28’,
# region=’mom0mask.rgn’,outfile=’ngc4826.tutorial.16apr98.moments.mom1masked’)

# Now view the resulting images
#viewer(’ngc4826.tutorial.16apr98.moments.integratedmasked’)
#
#print "Now viewing masked Moment-0 ngc4826.tutorial.16apr98.moments.integratedmasked"
#print "You can Open and overlay Contours of Moment-1 ngc4826.tutorial.16apr98.moments.mom1masked"
#
# Pause script if you are running in scriptmode
#user_check=raw_input(’Return to continue script\n’)

# Finally, can compute and print statistics
#print ’--ImStat (masked moments)--’
#
#maskedmomzerostat = imstat(’ngc4826.tutorial.16apr98.moments.integratedmasked’)
#print "Found masked moment 0 max = "+str(maskedmomzerostat[’max’][0])
#print "Found masked moment 0 rms = "+str(maskedmomzerostat[’rms’][0])
#
#maskedmomonestat=imstat(’ngc4826.tutorial.16apr98.moments.mom1masked’)
#print "Found masked moment 1 median = "+str(maskedmomonestat[’median’][0])

#
##########################################################################
#
# Now show how to print out results
#
print ’--Results (16apr98)--’
print ’’
#
# Currently using non-PBcor values
#
im_srcmax16 = srcstat[’max’][0]
im_offrms16 = offstat[’sigma’][0]
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im_offlinerms16 = offlinestat[’sigma’][0]
thistest_immax = momzerostat[’max’][0]
thistest_imrms = momzerostat[’rms’][0]

#
# Report a few key stats
#
print ’ NGC4826 Image Cube Max = ’+str(im_srcmax16)
print " At ("+str(srcstat[’maxpos’][0])+","+str(srcstat[’maxpos’][1])+") Channel "+str(srcstat[’maxpos’][3])
print ’ ’+srcstat[’maxposf’]
print ’’
print ’ Off-Source Rms = ’+str(im_offrms16)
print ’ Signal-to-Noise ratio = ’+str(im_srcmax16/im_offrms16)
print ’’
print ’ Off-Line Rms = ’+str(im_offlinerms16)
print ’ Signal-to-Noise ratio = ’+str(im_srcmax16/im_offlinerms16)

print "Done with NGC4826 Tutorial"
#
##########################################################################



Appendix G

CASA Dictionaries

BETA ALERT: These tend to become out of date as we add new tasks or change names.

G.1 AIPS – CASA dictionary

Please see:

• https://wikio.nrao.edu/bin/view/Software/CASA-AIPSDictionary

BETA ALERT: This link is out-of-date and refers mostly to the Toolkit. We will update this with
a task dictionary.

G.2 MIRIAD – CASA dictionary

Table G.1 provides a list of common Miriad tasks, and their equivalent CASA tool or tool function
names. The two packages differ in both their architecture and calibration and imaging models,
and there is often not a direct correspondence. However, this index does provide a scientific user
of CASA who is familiar with MIRIAD, with a simple translation table to map their existing data
reduction knowledge to the new package.

G.3 CLIC – CASA dictionary

Table G.2 provides a list of common CLIC tasks, and their equivalent CASA tool or tool function
names. The two packages are very similar since the CASA software to reduce IRAM data is based
on the CLIC reduction procedures.

498
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Table G.1: MIRIAD – CASA dictionary

MIRIAD Task Description CASA task/tool
atlod load ATCA data atcafiller tool
blflag Interactive baseline based editor/flagger mp raster displays
cgcurs Interactive image analysis viewer
cgdisp Image display, overlays viewer
clean Clean an image clean
fits FITS image filler importfits

gpboot Set flux density scale fluxscale
gpcal Polarization leakage and gain calibration cb with ’G’ and ’D’

gpcopy copy calibration tables not needed
gpplt Plot calibration solutions plotcal

imcomb Image combination im tool
imfit Image-plane component fitter ia.imagefitter
impol Create polarization images ia.imagepol
imstat Image statistics ia.statistics
imsub Extract sub-image ia.subimage
invert Synthesis imaging invert, im tool
linmos linear mosaic combination of images mosaic
maths Calculations involving images ia.imagecalc, ia.calc
mfcal Bandpass and gain calibration bandpass
prthd Print header of image or uvdata imhead, listobs
restor Restore a clean component model im tool
selfcal selfcalibration of visibility data clean, gaincal, etc.
tvclip automated flagging based on clip levels flagdata
tvdisp Load image to TV display viewer
tvflag Interactive TB data editing viewer
uvaver Average/select data, apply calibration applycal, split
uvfit uv-plane component fitter uvmodelfit
uvflag Command-based flagging flagdata
uvgen Simulator sm tool
uvlist List uv-data listvis (TBD)

uvmodel Source model computation ft
uvplt uv-data plotting plotxy

uvsplit split uv file in sources and spectral windows split
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Table G.2: CLIC–CASA dictionary

CLIC Function Description CASA task/tool
load Load data almatifiller tool
print Print text summary of data listobs
flag Flag data plotxy, flagdata, viewer

phcor Atmospheric phase correction almatifiller
rf Radio frequency bandpass bandpass

phase Phase calibration gaincal
flux Absolute flux calibration setjy, fluxscale
ampl Amplitude calibration gaincal
table Split out calibrated data (uv table) split



Appendix H

Writing Tasks

ALERT: This prescription for writing and incorporating tasks in CASA is for the power-user.
This procedure is also likely to change in future releases.

It is possible to write your own task and have it appear in casapy. For example, if you want to create
a task named “yourtask”, then must create two files, yourtask.xml and a task yourtask.py. The
.xml file is use to describe the interface to the task and the task yourtask.py does the actual
work. The argument names must be the same in both the yourtask.xml and task yourtask.py
file. The yourtask.xml file is used to generate all the interface files so yourtask will appear in the
casapy system. It is easiest to start from one of the existing tasks when constructing these. You
would make the name of the function in the yourtask.py be “yourtask” in this example.

We have provided the buildmytasks command (outside casa) in order to assemble your Python
and XML into a loadable Python file. Thus, the steps you need to execute (again for an example
task named “yourtask”):

• Create python code for task as yourtask task.py

• Create xml for task as yourtask.xml

• Execute outside casapy: buildmytasks yourtask

• Execute inside casapy: execfile ’mytasks.py’

After this, you should see the help and inputs inside casapy, e.g. inp yourtask should work. Note
that for the final step you invoke the file called mytasks.py, regardless of what you named the
actual task.

Note that in order to run the buildmytasks command in your OS, you need the path to that
executable. This is set up if you’ve sourced one of the casainit.sh files, otherwise you will have
to find this on your system,

/usr/lib64/casapy/24.0.8115-001/bin/buildmytasks yourtask

501
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for the 2.4.0 beta release on Linux at the AOC. Note also if the files you have provided are not in
the directory you are working from in CASA, you would provide that path

execfile ’<MYPATH>/mytasks.py’

where <MYPATH> is that path.

ALERT: This has changed since Beta Patch 2.4 in that before you would do execfile ’yourtask.py’
instead of execfile ’mytasks.py’.

H.1 The XML file

The key to getting your task into casapy is constructing a task interface description XML file.

Some XML basics, an xml element begins with <element> and ends with </element>. If an XML
element contains no other XML element you may specify it via <element/>. An XML element
may have zero or more attributes which are specified by attribute=”attribute value”. You must
put the attribute value in quotes, i.e. <element myattribute=”attribute value”>.

All task xml files must start with this header information.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" ?>
<casaxml xmlns="http://casa.nrao.edu/schema/psetTypes.html"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://casa.nrao.edu/schema/casa.xsd
file:///opt/casa/code/xmlcasa/xml/casa.xsd">

and the file must have the end tag

</casaxml>

Inside a <task> tags you will need to specify the following elements.

<task>

Attributes

type required, allowed value is ”function”
name required

Subelements

shortdescription required
description required
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input optional
output optional
returns optional
constraints optional

<shortdescription> - required by <task>; A short one-line description describing your task

Attributes

None

Subelements

None

<description> - required] by <task>, Also used by <param>a; A longer description describing
your task with multiple lines

Attributes

None

Subelements

None

<input> - optional element used by <task>; An input block specifies which parameters are used
for input

Attributes

None

Subelements

<param> , optional

<output> - optional An output element that contains a list of parameters that are ”returned”
by the task.

Attributes

None

Subelements

<param> , optional

<returns> - optional Value returned by the task

Attributes

type optional; as specfied in <param>

Subelements

<description> , optional

<constraints> - optional A constraints element that lets you constrain params based on the
values of other params.
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Attributes

None

Subelements

<when> , required.

<param> - optional The input and output elements consist of param elements.

Attributes

type , required; allowed values are record, variant, string int, double, bool, intArray,
doubleArray, boolArray, stringArray

name , required;
subparam , optional; allowed values True, False, Yes or No.
kind , optional;
mustexist , optional; allowed values True, False, Yes or No.

All param elements require name and type attributes.

Subelements

<description> , required;
<value> , optional;
<allowed> , optional;

<value> - optional Value returned by the task

Attributes

type , required; as specified in <param> attributes.

Subelements

<value> , optional

<allowed> - optional; Block of allowed values

Attributes

enum , required; maybe enum or range. If specfied as enum only specific values are
allowed If specified as range then the value tags may have min and max attributes.

Subelements

<value> , optional

<when> - optional When blocks allow value specific handling for parameters

Attributes

param , required; Specifies special handling for a <param>

Subelements

<equals> , optional
<notequals> , optional
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<equals> - optional Reset parameters if equal to the specified value

Attributes

value , required; the value of the parameter

Subelements

<default> , required

<notequals> - optional Reset specified parameters if not equal to the specified value

Attributes

value , required; The value of the parameter

Subelements

<default> , optional

<default> - optional Resets default values for specified parameters

Attributes

param , required; Name of the <param> to be reset.

Subelements

<value> , required, the revised value of the <param>.

<example> - optional An example block, typically in python

Attributes

lang optional; specifies the language of the example, defaults to python.

Subelements

None

H.2 The task yourtask.py file

You must write the python code that does the actual work. The task *.py file function call sequence
must be the same as specified in the XML file. We may relax the requirement that the function
call sequence exactly match the sequence in the XML file in a future release.

H.3 Example: The clean task

H.3.1 File clean.xml

Clean.xml gives a fairly comprehensive example of how to construct the XML file.
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<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" ?>
<casaxml xmlns="http://casa.nrao.edu/schema/psetTypes.html"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://casa.nrao.edu/schema/casa.xsd
file:///opt/casa/code/xmlcasa/xml/casa.xsd">

<!-- This is the param set for clean -->
<!-- This does the equivalent of -->
<!-- imgr:=imager(’anyfile.ms’); -->
<!-- imgr.setdata(mode=’channel’,nchan=100,start=1,step=1,fieldid=1) -->
<!-- imgr.setimage(nx=512,ny=,cellx=’1arcsec’,celly=’1arcsec’,stokes=’I’,-->
<!-- mode=’channel’,start=35,step=1,nchan=40, -->
<!-- fieldid=[1]) -->
<!-- imgr.weight(’natural’); -->
<!-- imgr.clean(algorithm=’csclean’,niter=500,model=’field1’) -->

<task type="function" name="clean">

<shortdescription>Deconvolve an image with selected algorithm</shortdescription>

<description>
Form images from visibilities. Handles continuum and spectral line cubes.
</description>

<input>

<param type="string" name="vis" kind="ms" mustexist="true">
<description>name of input visibility file</description>
<value></value>
</param>

<param type="string" name="imagename">
<description>Pre-name of output images</description>
<value></value>
</param>

<param type="string" name="field">
<description>Field Name</description>
<value></value>

</param>

<param type="any" name="spw">
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<description>Spectral windows:channels: \’\’ is all </description>
<any type="variant"/>
<value type="string"></value>
</param>
<param type="bool" name="selectdata">
<description>Other data selection parameters</description>
<value>False</value>
</param>

<param type="string" name="timerange" subparam="true">
<description>Range of time to select from data</description>
<value></value>
</param>
<param type="string" name="uvrange" subparam="true">
<description>Select data within uvrange </description>
<value></value>
</param>
<param type="string" name="antenna" subparam="true">
<description>Select data based on antenna/baseline</description>
<value></value>
</param>
<param type="string" name="scan" subparam="true">
<description>scan number range</description>
<value></value>
</param>

<param type="string" name="mode">
<description>

Type of selection (mfs, channel, velocity, frequency)
</description>

<value>mfs</value>
<allowed kind="enum">
<value>mfs</value>
<value>channel</value>
<value>velocity</value>
<value>frequency</value>
</allowed>
</param>

<param type="int" name="niter">
<description>Maximum number of iterations</description>
<value>500</value>
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</param>

<param type="double" name="gain">
<description>Loop gain for cleaning</description>
<value>0.1</value>
</param>

<param type="double" name="threshold" units="mJy">
<description>Flux level to stop cleaning. Must include units</description>
<value>0.0</value>
</param>

<!-- Getting rid of this
<param type="bool" name="csclean">
<description>Use Cotton-Schwab style reconciliation with UV-data</description>
<value>False</value>

</param>
-->

<param type="string" name="psfmode">
<description>method of PSF calculation to use during minor cycles</description>
<value>clark</value>
<allowed kind="enum">
<value>clark</value>
<value>hogbom</value>

</allowed>
</param>

<param type="string" name="imagermode">
<description> Use csclean or mosaic. If \’\’, use psfmode</description>
<value></value>
<allowed kind="enum">
<value></value>
<value>csclean</value>
<value>mosaic</value>
</allowed>

</param>
<param type="string" name="ftmachine" subparam="true">
<description>Gridding method for the image</description>
<value>mosaic</value>
<allowed kind="enum">
<value>mosaic</value>
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<value>ft</value>
<value>sd</value>
<value>both</value>

</allowed>

</param>
<param type="bool" name="mosweight" subparam="true">
<description>Individually weight the fields of the mosaic</description>
<value>False</value>

</param>
<param type="string" name="scaletype" subparam="true">
<description>Controls scaling of pixels in the image plane.

default=\’SAULT\’;
example: scaletype=\’PBCOR\’ Options: \’PBCOR\’,\’SAULT\’</description>

<value>SAULT</value>
<allowed kind="enum">

<value>SAULT</value>
<value>PBCOR</value>

</allowed>
</param>

<param type="intArray" name="multiscale">
<description>set deconvolution scales (pixels),
default: multiscale=[] (standard CLEAN)</description>

<value type="vector">
<value></value>

</value>

</param>
<param type="int" name="negcomponent" subparam="true">
<description>

Stop cleaning if the largest scale finds this number of neg components
</description>
<value>0</value>

</param>

<param type="bool" name="interactive">
<description>use interactive clean (with GUI viewer)</description>
<value>False</value>
</param>

<param type="any" name="mask">
<description>cleanbox(es), mask image(s), and/or region(s) used in cleaning
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</description>
<any type="variant"/>
<value type="stringArray"></value>
</param>

<param type="int" name="nchan" subparam="true">
<description>Number of channels (planes) in output image</description>
<value>1</value>
</param>

<param type="any" name="start" subparam="true">
<description>First channel in input to use</description>
<any type="variant"/>
<value type="int">0</value>
</param>

<param type="any" name="width" subparam="true">
<description>Number of input channels to average</description>
<any type="variant"/>
<value type="int">1</value>
</param>

<param type="intArray" name="imsize">
<description>x and y image size in pixels, symmetric for single value

</description>
<value type="vector">
<value>256</value><value>256</value>
</value>
</param>

<param type="doubleArray" name="cell" units="arcsec">
<description>x and y cell size. default unit arcsec</description>
<value type="vector"><value>1.0</value><value>1.0</value></value>
</param>

<param type="any" name="phasecenter">
<description>Image phase center: position or field index</description>
<any type="variant"/>
<value type="string"></value>
</param>

<param type="string" name="restfreq">
<description>rest frequency to assign to image (see help)</description>



APPENDIX H. APPENDIX: WRITING TASKS IN CASA 511

<value></value>
</param>

<param type="string" name="stokes">
<description>Stokes params to image (eg I,IV, QU,IQUV)</description>
<value>I</value>
<allowed kind="enum">
<value>I</value>
<value>IV</value>
<value>QU</value>
<value>IQUV</value>
<value>RR</value>
<value>LL</value>
<value>RRLL</value>
<value>XX</value>
<value>YY</value>
<value>XXYY</value>
</allowed>
</param>

<param type="string" name="weighting">
<description>Weighting to apply to visibilities</description>
<value>natural</value>
<allowed kind="enum">
<value>natural</value>
<value>uniform</value>
<value>briggs</value>
<value>briggsabs</value>
<value>radial</value>
<value>superuniform</value>
</allowed>
</param>

<param type="double" name="robust" subparam=’true’>
<description>Briggs robustness parameter</description>
<value>0.0</value>
<allowed kind="range">
<value range="min">-2.0</value>
<value range="max">2.0</value>
</allowed>
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</param>

<param type="bool" name="uvtaper">
<description>Apply additional uv tapering of visibilities.</description>
<value>False</value>
</param>

<param type="stringArray" name="outertaper" subparam="true">
<description>uv-taper on outer baselines in uv-plane</description>
<value type="vector">
<value></value>

</value>
</param>

<param type="stringArray" name="innertaper" subparam="true">
<description>uv-taper in center of uv-plane</description>
<value>1.0</value>
</param>

<param type="string" name="modelimage">
<description>Name of model image(s) to initialize cleaning</description>
<value></value>
</param>
<param type="stringArray" name="restoringbeam">
<description>Output Gaussian restoring beam for CLEAN image</description>
<value></value>

</param>
<param type="bool" name="pbcor">
<description>Output primary beam-corrected image</description>
<value>False</value>
</param>

<param type="double" name="minpb">
<description>Minimum PB level to use</description>
<value>0.1</value>
</param>

<param type="any" name="noise" subparam=’true’>
<description>noise parameter for briggs abs mode weighting</description>
<any type="variant"/>
<value type="string">1.0Jy</value>
</param>

<param type="int" name="npixels" subparam=’true’>
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<description>number of pixels for superuniform or briggs weighting
</description>

<value>0</value>
</param>

<param type="int" name="npercycle" subparam=’true’>
<description>Number of iterations before interactive prompt</description>
<value>100</value>
</param>
<param type="double" name="cyclefactor" subparam=’true’>
<description>change depth in between of csclean cycle</description>
<value>1.5</value>

</param>
<param type="int" name="cyclespeedup" subparam=’true’>
<description>Cycle threshold doubles in this number of iteration</description>
<value>-1</value>
</param>

<constraints>
<when param="selectdata">

<equals type="bool" value="False"/>
<equals type="bool" value="True">
<default param="timerange"><value type="string"></value>
</default>
<default param="uvrange"><value type="string"></value>
</default>
<default param="antenna"><value type="string"></value>
</default>
<default param="scan"><value type="string"></value>
</default>

</equals>
</when>

<when param="multiscale">
<notequals type="vector" value="[]" >
<default param="negcomponent"><value>-1</value>
</default>

</notequals>
</when>

<when param="mode">
<equals value="mfs"/>
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<equals value="channel">
<default param="nchan"><value>1</value></default>
<default param="start"><value>0</value>

<description>first input channel to use</description>
</default>
<default param="width"><value>1</value></default>
</equals>

<equals value="velocity">
<default param="nchan"><value>1</value></default>
<default param="start"><value type="string">0.0km/s</value>

<description>Velocity of first image channel: e.g \’0.0km/s\’
</description>

</default>
<default param="width"><value type="string">1km/s</value>
<description>image channel width in velocity units:

e.g \’-1.0km/s\’</description>
</default>

</equals>
<equals value="frequency">

<default param="nchan"><value>1</value></default>
<default param="start"><value type="string">1.4GHz</value>

<description>Frequency of first image channel: e.q. \’1.4GHz\’
</description>

</default>
<default param="width"><value type="string">10kHz</value>
<description>Image channel width in frequency units:

e.g \’1.0kHz\’</description>
</default>

</equals>
</when>

<when param="weighting">
<equals value="natural"/>

<equals value="uniform"/>
<equals value="briggs">

<default param="robust"><value>0.0</value></default>
<default param="npixels"><value>0</value>

<description>number of pixels to determine uv-cell size
0=&gt; field of view</description>

</default>
</equals>

<equals value="briggsabs">
<default param="robust"><value>0.0</value></default>
<default param="noise"><value type="string">1.0Jy</value></default>
<default param="npixels"><value>0</value>
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<description>number of pixels to determine uv-cell size
0=&gt; field of view</description>

</default>
</equals>
<equals value="superuniform">

<default param="npixels"><value>0</value>
<description>number of pixels to determine uv-cell size

0=&gt; +/-3pixels</description>
</default>

</equals>
</when>

<when param="uvtaper">
<equals type="bool" value="False"/>
<equals type="bool" value="True">
<default param="outertaper"><value type="vector"></value></default>
<default param="innertaper"><value type="vector"></value></default>

</equals>
</when>

<when param="interactive">
<equals type="bool" value="False"/>
<equals type="bool" value="True">

<default param="npercycle"><value>100</value></default>
</equals>

</when>
<when param="imagermode">

<equals value=""/>
<equals value="csclean">
<default param="cyclefactor"><value>1.5</value></default>
<default param="cyclespeedup"><value>-1</value></default>

</equals>
<equals value="mosaic">

<default param="mosweight"><value>False</value></default>
<default param="ftmachine"><value type="string">mosaic</value>

</default>
<default param="scaletype"><value type="string">SAULT</value>

</default>
<default param="cyclefactor"><value>1.5</value></default>
<default param="cyclespeedup"><value>-1</value></default>

</equals>
</when>

<!--Get rid of that soon
<when param="mosaicmode">

<equals type="bool" value="False"/>
<equals type="bool" value="True">
<default param="mosweight"><value>False</value></default>
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<default param="ftmachine"><value type="string">mosaic</value></default>
<default param="scaletype"><value type="string">SAULT</value></default>

</equals>
</when>

-->
</constraints>

</input>

<returns type="void"/>

<example>

The main clean deconvolution task. It contains many functions

1) Make ’dirty’ image and ’dirty’ beam (psf)
2) Multi-frequency-continuum images or spectral channel imaging
3) Full Stokes imaging
4) Mosaicking of several pointings
5) Multi-scale cleaning
6) Interactive clean boxing
7) Initial starting model

vis -- Name of input visibility file
default: none; example: vis=’ngc5921.ms’

imagename -- Pre-name of output images:
default: none; example: imagename=’m2’
output images are:
m2.image; cleaned and restored image

With or without primary beam correction
m2.psf; point-spread function (dirty beam)
m2.flux; relative sky sensitivity over field
m2.model; image of clean components
m2.residual; image of residuals
m2.interactive.mask; image containing clean regions

field -- Select fields in mosaic. Use field id(s) or field name(s).
[’go listobs’ to obtain the list id’s or names]

default: ’’=all fields
If field string is a non-negative integer, it is assumed to

be a field index otherwise, it is assumed to be a
field name

field=’0~2’; field ids 0,1,2
field=’0,4,5~7’; field ids 0,4,5,6,7
field=’3C286,3C295’; field named 3C286 and 3C295
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field = ’3,4C*’; field id 3, all names starting with 4C
spw -- Select spectral window/channels

NOTE: This selects the data passed as the INPUT to mode
default: ’’=all spectral windows and channels
spw=’0~2,4’; spectral windows 0,1,2,4 (all channels)
spw=’0:5~61’; spw 0, channels 5 to 61
spw=’&lt;2’; spectral windows less than 2 (i.e. 0,1)
spw=’0,10,3:3~45’; spw 0,10 all channels, spw 3,

channels 3 to 45.
spw=’0~2:2~6’; spw 0,1,2 with channels 2 through 6 in each.
spw=’0:0~10;15~60’; spectral window 0 with channels

0-10,15-60
spw=’0:0~10,1:20~30,2:1;2;3’; spw 0, channels 0-10,

spw 1, channels 20-30, and spw 2, channels, 1,2 and 3
selectdata -- Other data selection parameters

default: True
&gt;&gt;&gt; selectdata=True expandable parameters

See help par.selectdata for more on these
timerange -- Select data based on time range:

default = ’’ (all); examples,
timerange = ’YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
Note: if YYYY/MM/DD is missing date defaults to first

day in data set
timerange=’09:14:0~09:54:0’ picks 40 min on first day
timerange= ’25:00:00~27:30:00’ picks 1 hr to 3 hr

30min on NEXT day
timerange=’09:44:00’ pick data within one integration

of time
timerange=’&gt;10:24:00’ data after this time

uvrange -- Select data within uvrange (default units meters)
default: ’’ (all); example:
uvrange=’0~1000klambda’; uvrange from 0-1000 kilo-lambda
uvrange=’&gt;4klambda’;uvranges greater than 4 kilo lambda

antenna -- Select data based on antenna/baseline
default: ’’ (all)
If antenna string is a non-negative integer, it is

assumed to be an antenna index, otherwise, it is
considered an antenna name.

antenna=’5&amp;6’; baseline between antenna index 5 and
index 6.

antenna=’VA05&amp;VA06’; baseline between VLA antenna 5
and 6.

antenna=’5&amp;6;7&amp;8’; baselines 5-6 and 7-8
antenna=’5’; all baselines with antenna index 5
antenna=’05’; all baselines with antenna number 05
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(VLA old name)
antenna=’5,6,9’; all baselines with antennas 5,6,9

index numbers
scan -- Scan number range.

default: ’’ (all)
example: scan=’1~5’
Check ’go listobs’ to insure the scan numbers are in

order.
mode -- Frequency Specification:

NOTE: See examples below:
default: ’mfs’
mode = ’mfs’ means produce one image from all

specified data.
mode = ’channel’; Use with nchan, start, width to specify

output image cube. See examples below
mode = ’velocity’, means channels are specified in

velocity.
mode = ’frequency’, means channels are specified in

frequency.
&gt;&gt;&gt; mode expandable parameters (for modes other than ’mfs’)

Start, width are given in units of channels, frequency
or velocity as indicated by mode, but only channel
is complete.

nchan -- Number of channels (planes) in output image
default: 1; example: nchan=3

start -- Start input channel (relative-0)
default=0; example: start=5

width -- Output channel width in units of the input
channel width (&gt;1 indicates channel averaging)

default=1; example: width=4
examples:

spw = ’0,1’; mode = ’mfs’
will produce one image made from all channels in spw

0 and 1
spw=’0:5~28^2’; mode = ’mfs’

will produce one image made with channels
(5,7,9,...,25,27)

spw = ’0’; mode = ’channel’: nchan=3; start=5; width=4
will produce an image with 3 output planes
plane 1 contains data from channels (5+6+7+8)
plane 2 contains data from channels (9+10+11+12)
plane 3 contains data from channels (13+14+15+16)

spw = ’0:0~63^3’; mode=’channel’; nchan=21; start = 0;
width = 1

will produce an image with 20 output planes
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Plane 1 contains data from channel 0
Plane 2 contains date from channel 2
Plane 21 contains data from channel 61

spw = ’0:0~40^2’; mode = ’channel’; nchan = 3; start =
5; width = 4

will produce an image with three output planes
plane 1 contains channels (5,7)
plane 2 contains channels (13,15)
plane 3 contains channels (21,23)

psfmode -- method of PSF calculation to use during minor cycles:
default: ’clark’: Options: ’clark’,’hogbom’
’clark’ use smaller beam (faster, usually good enough)
’hogbom’ full-width of image (slower, better for poor

uv-coverage)
Note: psfmode will be used to clean is imagermode = ’’

imagermode -- Advanced imaging e.g mosaic or Cotton-Schwab clean
default: imagermode=’’: Options: ’’, ’csclean’, ’mosaic’
default ’’ =&gt; psfmode cleaning algorithm used

&gt;&gt;&gt; imagermode=’mosaic’ expandable parameter(s):
Image as a mosaic of the different pointings (uses csclean

style too)
mosweight -- Individually weight the fields of the mosaic

default: False; example: mosweight=True
This can be useful if some of your fields are more
sensitive than others (i.e. due to time spent

on-source); this parameter will give more weight to
higher sensitivity fields in the overlap regions.

ftmachine -- Gridding method for the image;
Options: ft (standard interferometric gridding), sd
(standard single dish) both (ft and sd as appropriate),
mosaic (gridding use PB as convolution function)
default: ’mosaic’; example: ftmachine=’ft’

scaletype -- Controls scaling of pixels in the image plane.
(Not fully implemented...for now only controls

what is seen if interactive=True...but in the future will
control the image on which clean components are searched)

default=’SAULT’; example: scaletype=’PBCOR’
Options: ’PBCOR’,’SAULT’
’SAULT’ when interactive=True shows the residual

with constant noise across the mosaic. If
pbcor=False, the final output image is NOT
corrected for the PB pattern, and therefore is
not "flux correct". Division of SAULT
&lt;imagename&gt;.image by the &lt;imagename&gt;.flux image
will produce a "flux correct image", can also
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be acheived by setting pbcor=True.
’PBCOR’ uses the SAULT scaling scheme for

deconvolution, but if interactive=True shows the
primary beam corrected image; the final PBCOR
image is "flux correct" if pbcor=True.

&gt;&gt;&gt; imagermode=’csclean’ expandable parameter(s): Image using the
Cotton-Schwab algorithm in between major cycles

cyclefactor -- Change the threshold at which
the deconvolution cycle will stop, degrid
and subtract from the visibilities. For
poor PSFs, reconcile often (cyclefactor=4 or
5); For good PSFs, use cyclefactor 1.5 to
2.0. Note: threshold = cyclefactor * max
sidelobe * max residual.
default: 1.5; example: cyclefactor=4
cyclespeedup -- Cycle threshold doubles in this

number of iterations default: -1;
example: cyclespeedup=3

try cyclespeedup = 50 to speed up cleaning
multiscale -- set of scales to use in deconvolution. If set,

cleans with several resolutions using hobgom clean. The
scale sizes are in units of cellsize. So if
cell=’2arcsec’, a multiscale scale=10 = 20arcsec. First
scale should always be 0 (point), we suggest second on
the order of synthesized beam, third 3-5 times
synthesized beam, etc. For example if synthesized beam
is 10" and cell=2", try multscale = [0,5,15]. Note,
multiscale is currently a bit slow.

default: multiscale=[] (standard CLEAN using psfmode algorithm,
no multi-scale). Example: multscale = [0,5,15]

&gt;&gt;&gt; multiscale expandable parameter(s): negcomponent -- Stop
component search when the largest scale has found this
number of negative components; -1 means continue
component search even if the largest component is
negative. default: -1; example: negcomponent=50

imsize -- Image pixel size (x,y)
default = [256,256]; example: imsize=[350,350]
imsize = 500 is equivalent to [500,500]

cell -- Cell size (x,y)
default= ’1.0arcsec’;
example: cell=[’0.5arcsec,’0.5arcsec’] or
cell=[’1arcmin’, ’1arcmin’]
cell = ’1arcsec’ is equivalent to [’1arcsec’,’1arcsec’]
NOTE:cell = 2.0 =&gt; [’2arcsec’, ’2arcsec’]

phasecenter -- direction measure or fieldid for the mosaic center
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default: ’’ =&gt; first field selected ; example: phasecenter=6
or phasecenter=’J2000 19h30m00 -40d00m00’

restfreq -- Specify rest frequency to use for output image
default=’’ Occasionally it is necessary to set this (for
example some VLA spectral line data). For example for
NH_3 (1,1) put restfreq=’23.694496GHz’

stokes -- Stokes parameters to image
default=’I’; example: stokes=’IQUV’;
Options: ’I’,’IV’’QU’,’IQUV’,’RR’,’LL’,’XX’,’YY’,’RRLL’,’XXYY’

niter -- Maximum number iterations,
if niter=0, then no CLEANing is done ("invert" only)
default: 500; example: niter=5000

gain -- Loop gain for CLEANing
default: 0.1; example: gain=0.5

threshold -- Flux level at which to stop CLEANing
default: ’0.0mJy’;
example: threshold=’2.3mJy’ (always include units)

threshold = ’0.0023Jy’
threshold = ’0.0023Jy/beam’ (okay also)

interactive -- use interactive clean (with GUI viewer)
default: interactive=False
example: interactive=True
interactive clean allows the user to build the cleaning

mask interactively using the viewer. The viewer will
appear every npercycle interation, but modify as needed
The final interactive maks is saved in the file
imagename_interactive.mask. The initial masks use the
union of mask and cleanbox (see below)

&gt;&gt;&gt; interactive=True expandable parameter npercycle -- this is the
number of iterations between each clean to update mask
interactively. Set to about niter/5, but can also be
changed interactively.

mask -- Specification of cleanbox(es), mask image(s), and/or
region(s) to be used for CLEANing. As long as the image has
the same shape (size), mask images from a previous
interactive session can be used for a new execution. NOTE:
the initial clean mask actually used is the union of what
is specified in mask and &lt;imagename&gt;.mask default: [] (no
masking); Possible pecification types: (a) Explicit
cleanbox pixel ranges example: mask=[110,110,150,145] clean
region with blc=110,100; trc=150,145 (pixel values) (b)
Filename with cleanbox pixel values with ascii format:
example: mask=’mycleanbox.txt’ &lt;fieldid blc-x blc-y
trc-x trc-y&gt; on each line
1 45 66 123 124
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2 23 100 300 340
(c) Filename for image mask example: mask=’myimage.mask’
(d) Filename for region specification (e.g. from viewer)
example: mask=’myregion.rgn’ (e) Combinations of any of the
above example: mask=[[110,110,150,145],’mycleanbox.txt’,
’myimage.mask’,’myregion.rgn’]
uvtaper -- Apply additional uv tapering of the visibilities.

default: uvtaper=False; example: uvtaper=True
&gt;&gt;&gt; uvtaper=True expandable parameters

outertaper -- uv-taper on outer baselines in uv-plane
[bmaj, bmin, bpa] taper Gaussian scale in uv or

angular units. NOTE: uv taper in (klambda) is roughly on-sky
FWHM(arcsec/200)

default: outertaper=[]; no outer taper applied
example: outertaper=[’5klambda’] circular taper
FWHM=5 kilo-lambda

outertaper=[’5klambda’,’3klambda’,’45.0deg’]
outertaper=[’10arcsec’] on-sky FWHM 10"
outertaper=[’300.0’] default units are meters

in aperture plane
innertaper -- uv-taper in center of uv-plane
[bmaj,bmin,bpa] Gaussian scale at which taper falls to

zero at uv=0
default: innertaper=[]; no inner taper applied
NOT YET IMPLEMENTED

modelimage -- Name of model image(s) to initialize cleaning. If
multiple images, then these will be added together to
form initial staring model NOTE: these are in addition
to any initial model in the &lt;imagename&gt;.model image file
default: ’’ (none); example: modelimage=’orion.model’
modelimage=[’orion.model’,’sdorion.image’] Note: if the
units in the image are Jy/beam as in a single-dish
image, then it will be converted to Jy/pixel as in a
model image, using the restoring beam in the image
header

weighting -- Weighting to apply to visibilities:
default=’natural’; example: weighting=’uniform’;
Options: ’natural’,’uniform’,’briggs’,

’superuniform’,’briggsabs’,’radial’
&gt;&gt;&gt; Weighting expandable parameters

For weighting=’briggs’ and ’briggsabs’
robust -- Brigg’s robustness parameter
default=0.0; example: robust=0.5;
Options: -2.0 to 2.0; -2 (uniform)/+2 (natural)

For weighting=’briggsabs’
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noise -- noise parameter to use for Briggs "abs"
weighting

example noise=’1.0mJy’
For superuniform/briggs/briggsabs weighting
npixels -- number of pixels to determine uv-cell size
for weight calculation
example npixels=7

restoringbeam -- Output Gaussian restoring beam for CLEAN image
[bmaj, bmin, bpa] elliptical Gaussian restoring beam
default units are in arc-seconds for bmaj,bmin, degrees
for bpa default: restoringbeam=[]; Use PSF calculated
from dirty beam.

example: restoringbeam=[’10arcsec’] circular Gaussian
FWHM 10" example:
restoringbeam=[’10.0’,’5.0’,’45.0deg’] 10"x5"

at 45 degrees
pbcor -- Output primary beam-corrected image
default: pbcor=False; output un-corrected image
example: pbcor=True; output pb-corrected image (masked outside

minpb) Note: if you set pbcor=False, you can later
recover the pbcor image by dividing by the .flux image
(e.g. using immath)

minpb -- Minimum PB level to use default=0.1; example:
minpb=0.01 Note: this minpb is always in effect
(regardless of pbcor=True/False)

async -- Run asynchronously
default = False; do not run asychronously

</example>

</task>

</casaxml>

H.3.2 File task clean.py

Task clean implementation file.

import os
from taskinit import *
from cleanhelper import *



APPENDIX H. APPENDIX: WRITING TASKS IN CASA 524

def clean(vis,imagename,field, spw, selectdata, timerange, uvrange, antenna,
scan, mode,niter, gain,threshold, psfmode, imagermode, ftmachine,
mosweight, scaletype, multiscale, negcomponent,interactive,mask,
nchan,start,width,imsize,cell, phasecenter, restfreq, stokes,
weighting,robust, uvtaper,outertaper,innertaper, modelimage,
restoringbeam,pbcor, minpb, noise, npixels, npercycle, cyclefactor,
cyclespeedup):

#Python script

casalog.origin(’clean’)

maskimage=’’
if((mask==[]) or (mask==’’)):
mask=[’’]
if (interactive):
if( (mask==’’) or (mask==[’’]) or (mask==[])):
maskimage=imagename+’.mask’

#try:
if(1):
imCln=imtool.create()
imset=cleanhelper(imCln, vis)

if((len(imagename)==0) or (imagename.isspace())):
raise Exception, ’Cannot proceed with blank imagename’
casalog.origin(’clean’)

imset.defineimages(imsize=imsize, cell=cell, stokes=stokes,
mode=mode, spw=spw, nchan=nchan,
start=start, width=width,
restfreq=restfreq, field=field,
phasecenter=phasecenter)

imset.datselweightfilter(field=field, spw=spw,
timerange=timerange, uvrange=uvrange,
antenna=antenna, scan=scan,
wgttype=weighting, robust=robust,
noise=noise, npixels=npixels,
mosweight=mosweight,
innertaper=innertaper,
outertaper=outertaper)
if(maskimage==’’):
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maskimage=imagename+’.mask’
imset.makemaskimage(outputmask=maskimage,imagename=imagename,

maskobject=mask)

###define clean alg
alg=psfmode
if(multiscale==[0]):
multiscale=[]
if((type(multiscale)==list) and (len(multiscale)>0)):
alg=’multiscale’
imCln.setscales(scalemethod=’uservector’,
uservector=multiscale)
if(imagermode==’csclean’):
alg=’mf’+alg
if(imagermode==’mosaic’):
if(alg.count(’mf’) <1):
alg=’mf’+alg
imCln.setoptions(ftmachine=ftmachine, padding=1.0)
imCln.setvp(dovp=True)
###PBCOR or not
sclt=’SAULT’
if((scaletype==’PBCOR’) or (scaletype==’pbcor’)):
sclt=’NONE’
imCln.setvp(dovp=True)
else:
if(imagermode != ’mosaic’):
##make a pb for flux scale
imCln.setvp(dovp=True)
imCln.makeimage(type=’pb’, image=imagename+’.flux’)
imCln.setvp(dovp=False)
##restoring
imset.setrestoringbeam(restoringbeam)
###model image
imset.convertmodelimage(modelimages=modelimage,
outputmodel=imagename+’.model’)

####after all the mask shenanigans...make sure to use the
####last mask
maskimage=imset.outputmask
if((imagermode==’mosaic’)):
imCln.setmfcontrol(stoplargenegatives=negcomponent,scaletype=sclt,

minpb=minpb,cyclefactor=cyclefactor,
cyclespeedup=cyclespeedup,
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fluxscale=[imagename+’.flux’])
else:
imCln.setmfcontrol(stoplargenegatives=negcomponent,

cyclefactor=cyclefactor, cyclespeedup=cyclespeedup)

imCln.clean(algorithm=alg,niter=niter,gain=gain,
threshold=qa.quantity(threshold,’mJy’),
model=[imagename+’.model’],
residual=[imagename+’.residual’],
image=[imagename+’.image’],
psfimage=[imagename+’.psf’],
mask=maskimage, interactive=interactive,
npercycle=npercycle)

imCln.close()
presdir=os.path.realpath(’.’)
newimage=imagename
if(imagename.count(’/’) > 0):
newimage=os.path.basename(imagename)
os.chdir(os.path.dirname(imagename))
result = ’\’’ + newimage + ’.image’ + ’\’’;
fluxscale_image = ’\’’ + newimage + ’.flux’ + ’\’’;
if (pbcor):
if(sclt != ’NONE’):
##otherwise its already divided
ia.open(newimage+’.image’)

pixmask = fluxscale_image+’>’+str(minpb);
ia.calcmask(pixmask,asdefault=True);

pixels=’iif(’+ fluxscale_image+’>’+str(minpb)+’,’
+ result+’/’+fluxscale_image+’, 0)’

ia.calc(pixels=pixels)
ia.close()
else:
## people has imaged the fluxed corrected image
## but want the
## final image to be non-fluxed corrected
if(sclt==’NONE’):
ia.open(newimage+’.image’)
result=newimage+’.image’
fluxscale_image=newimage+’.flux’
pixels=result+’*’+fluxscale_image
ia.calc(pixels=pixels)
ia.close()
os.chdir(presdir)
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del imCln

# except Exception, instance:
# print ’*** Error *** ’,instance
# raise Exception, instance
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