

Polarization in interferometry

- Astrophysics of Polarization
- Physics of Polarization
- Antenna Response to Polarization
- Interferometer Response to Polarization
- Polarization Calibration \& Observational Strategies
- Polarization Data \& Image Analysis

The University of New Mexi

- There are lots of equations and concepts. Hang in there.
- I will illustrate the concepts with figures and 'handwaving'.
- Many good references:
- Synthesis Imaging II: Lecture 6, also parts of 1, 3, 5, 32
- Born and Wolf: Principle of Optics, Chapters 1 and 10
- Rolfs and Wilson: Tools of Radio Astronomy, Chapter 2
- Thompson, Moran and Swenson: Interferometry and Synthesis in Radio Astronomy, Chapter 4
- Tinbergen: Astronomical Polarimetry. All Chapters.
- J.P. Hamaker et al., A\&A, 117, 137 (1996) and series of papers
- Great care must be taken in studying these references conventions vary between them.

Polarization Astrophysics

S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Why Measure Polarization?

- Electromagnetic waves are intrinsically polarized
- monochromatic waves are fully polarized
- Polarization state of radiation can tell us about:
- the origin of the radiation
- intrinsic polarization, orientation of generating B-field
- the medium through which it traverses
- propagation and scattering effects
- unfortunately, also about the purity of our optics
- you may be forced to observe polarization even if you do not want to!

Astrophysical Polarization

- Examples:

- Processes which generate polarized radiation:
- Synchrotron emission: Up to ~80\% linearly polarized, with no circular polarization. Measurement provides information on strength and orientation of magnetic fields, level of turbulence.
- Zeeman line splitting: Presence of B-field splits RCP and LCP components of spectral lines ($2.8 \mathrm{~Hz} / \mu \mathrm{G}$ for HI). Measurement provides direct measure of B-field.
- Processes which modify polarization state:
- Free electron scattering: Induces a linear polarization which can indicate the origin of the scattered radiation.
- Faraday rotation: Magnetoionic region rotates plane of linear polarization. Measurement of rotation gives B-field estimate.
- Faraday conversion: Particles in magnetic fields can cause the polarization ellipticity to change, turning a fraction of the linear polarization into circular (possibly seen in cores of AGN)
S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

The University of New Mexico

Example: Radio Galaxy 3C31

- VLA @ 8.4 GHz
- Laing (1996)
- Synchrotron radiation
- relativistic plasma
- jet from central "engine"
- from pc to kpc scales
- feeding >10kpc "lobes"
- E-vectors
- along core of jet
- radial to jet at edge

Example: Radio Galaxy Cygnus A

- VLA @ 8.5 GHz B-vectors Perley \& Carilli (1996)

New Mexico Tech
S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Example: Faraday rotation of CygA

- See review of "Cluster Magnetic Fields" by Carilli \& Taylor 2002 (ARAA)

New Mexico Tech
SCIENCE ENGINEERING \cdot RESEARCH \cdot UNIVERSITY
S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Example: Zeeman effect
 \section*{

 Spectral line profiles}

Zeeman Effect

Atoms and molecules with a net magnetic moment will have their energy levels split in the presence of a magnetic field.
$\Rightarrow \mathrm{HI}, \mathrm{OH}, \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}$
\Rightarrow Detected by observing the frequency shift between right and left circularly polarized emission
$\Rightarrow \mathrm{V}=\mathrm{RCP}-\mathrm{LCP} \propto \mathrm{B}_{\mathrm{los}}$

Energy Levels for HI Ground State

Zeeman

 splitting1.42 GHz

Hyperfine transition

$$
\Delta E=\overrightarrow{\mu_{\mathrm{s}}} \cdot \vec{B}
$$

$V=R C P-L C P$

$$
\Delta v= \pm \frac{ \pm g_{i} \mu_{B} B}{h}
$$

W51C (2-b) $\quad B_{\theta}=2.5 \pm 0.2 \mathrm{mG}$

Example: the ISM of M51

- Trace magnetic field structure in galaxies
- follow spiral structure
- origin?
- amplified in dynamo?

Neininger (1992)

S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Scattering

- Anisotropic Scattering induces Linear Polarization
- electron scattering (e.g. in Cosmic Microwave Background)
- dust scattering (e.g. in the millimeter-wave spectrum)

Quadrupole
 Anisotropy

Linear
Polarization

Planck predictions - Hu \& Dodelson ARAA 2002

Animations from Wayne Hu
S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Polarization Fundamentals

The Polarization Ellipse

- From Maxwell's equations E•B=0 (E and B perpendicular)
- By convention, we consider the time behavior of the E-field in a fixed perpendicular plane, from the point of view of the receiver.

- For a monochromatic wave of frequency v, we write

- These two equations describe an ellipse in the ($x-y$) plane.
- The ellipse is described fully by three parameters:
- A_{X}, A_{Y}, and the phase difference, $\delta=\phi_{Y}-\phi_{X}$.

Elliptically Polarized Monochromatic Wave

The simplest description of wave polarization is in a Cartesian coordinate frame.

In general, three parameters are needed to describe the ellipse.

If the E-vector is rotating:

- clockwise, wave is 'Left Elliptically Polarized',
- counterclockwise, is
'Right Elliptically Polarized'.

The angle $\alpha=\operatorname{atan}\left(A_{Y} / A_{X}\right)$ is used later ...

equivalent to 2 independent E_{x} and E_{y} oscillators

New Mexico Tech
SCIENCE ENGINEERING •RESEARCH • UNIVERSITY

Polarization Ellipse Ellipticity and P.A.

- A more natural description is in a frame (ξ, η), rotated so the ξ-axis lies along the major axis of the ellipse.
- The three parameters of the ellipse are then:
A_{η} : the major axis length $\tan \chi=\mathrm{A}_{\xi} / \mathrm{A}_{\eta}$: the axial ratio Ψ : the major axis p.a.
$\tan 2 \Psi=\tan 2 \alpha \cos \delta$
$\sin 2 \chi=\sin 2 \alpha \sin \delta$
- The ellipticity χ is signed:

$$
\begin{aligned}
& \chi>0 \rightarrow R E P \\
& \chi<0 \rightarrow \text { LEP }
\end{aligned}
$$

$$
\begin{aligned}
& \chi=0,90^{\circ} \rightarrow \text { Linear }\left(\delta=0^{\circ}, 180^{\circ}\right) \\
& \chi= \pm 45^{\circ} \rightarrow \text { Circular }\left(\delta= \pm 90^{\circ}\right)
\end{aligned}
$$

New Mexico Tech
S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Circular Basis

- We can decompose the E-field into a circular basis, rather than a (linear) Cartesian one:

$$
\mathbf{E}=A_{R} \hat{e}_{R}+A_{L} \hat{e}_{L}
$$

- where A_{R} and A_{L} are the amplitudes of two counter-rotating unit vectors, e_{R} (rotating counter-clockwise), and e_{L} (clockwise)
- NOTE: R,L are obtained from X, Y by $\delta= \pm 90^{\circ}$ phase shift
- It is straightforward to show that:

The University of New Mexic

Circular Basis Example

- The black ellipse can be decomposed into an xcomponent of amplitude 2, and a y-component of amplitude 1 which lags by $1 / 4$ turn.
- It can alternatively be decomposed into a counterclockwise rotating vector of length 1.5 (red), and a clockwise rotating vector of length 0.5 (blue).

The Poincare Sphere

- Treat 2ψ and 2χ as longitude and latitude on sphere of radius $\mathrm{A}=\mathrm{E}^{2}$

Stokes parameters

- Spherical coordinates: radius I, axes Q, U, V

$$
\begin{array}{lll}
-I & =E_{X}{ }^{2}+E_{Y}{ }^{2} & =E_{R}{ }^{2}+E_{L}{ }^{2} \\
-Q=I \cos 2 \chi \cos 2 \psi & =E_{X}{ }^{2}-E_{Y}{ }^{2} & =2 E_{R} E_{L} \cos \delta_{R L} \\
-U=I \cos 2 \chi \sin 2 \psi & =2 E_{X} E_{Y} \cos \delta_{X Y} & =2 E_{R} E_{L} \sin \delta_{R L} \\
-V=I \sin 2 \chi & =2 E_{X} E_{Y} \sin \delta_{X Y} & =E_{R}{ }^{2}-E_{L}{ }^{2}
\end{array}
$$

- Only 3 independent parameters:
- wave polarization confined to surface of Poincare sphere
$-I^{2}=Q^{2}+U^{2}+V^{2}$
- Stokes parameters I,Q,U,V
- defined by George Stokes (1852)
- form complete description of wave polarization
- NOTE: above true for 100% polarized monochromatic wave!

Linear Polarization

- Linearly Polarized Radiation: V = 0
- Linearly polarized flux:

$$
P=\sqrt{Q^{2}+U^{2}}
$$

- Q and U define the linear polarization position angle:

$$
\tan 2 \psi=U / Q
$$

- Signs of Q and U:

Simple Examples

- If $\mathrm{V}=0$, the wave is linearly polarized. Then,
- If $U=0$, and Q positive, then the wave is vertically polarized, $\Psi=0^{\circ}$

- If $\mathrm{U}=0$, and Q negative, the wave is horizontally polarized, $\Psi=90^{\circ}$

- If $\mathrm{Q}=0$, and U positive, the wave is polarized at $\Psi=45^{\circ}$

- If $\mathrm{Q}=0$, and U negative, the wave is polarized at $\Psi=-45^{\circ}$.

Illustrative Example: Non-thermal Emission from Jupiter

- Apr 1999 VLA 5 GHz data
- D-config resolution is 14 "
- Jupiter emits thermal radiation from atmosphere, plus polarized synchrotron radiation from particles in its magnetic field
- Shown is the I image (intensity) with polarization vectors rotated by 90° (to show B-vectors) and polarized intensity (blue contours)
- The polarization vectors trace Jupiter's dipole
- Polarized intensity linked to
 the lo plasma torus

New Mexico Tech

Why Use Stokes Parameters?

- Tradition
- They are scalar quantities, independent of basis XY, RL
- They have units of power (flux density when calibrated)
- They are simply related to actual antenna measurements.
- They easily accommodate the notion of partial polarization of non-monochromatic signals.
- We can (as I will show) make images of the I, Q, U, and V intensities directly from measurements made from an interferometer.
- These I,Q,U, and V images can then be combined to make images of the linear, circular, or elliptical characteristics of the radiation.

Partial Polarization

- Monochromatic radiation is a myth.
- No such entity can exist (although it can be closely approximated).
- In real life, radiation has a finite bandwidth.
- Real astronomical emission processes arise from randomly placed, independently oscillating emitters (electrons).
- We observe the summed electric field, using instruments of finite bandwidth.
- Despite the chaos, polarization still exists, but is not complete - partial polarization is the rule.

Stokes Parameters for Partial Polarization

Stokes parameters defined in terms of mean quantities:

$$
\begin{aligned}
I & =\left\langle E_{x}^{2}\right\rangle+\left\langle E_{y}^{2}\right\rangle=\left\langle E_{r}^{2}\right\rangle+\left\langle E_{l}^{2}\right\rangle \\
Q & =\left\langle E_{x}^{2}\right\rangle-\left\langle E_{y}^{2}\right\rangle=2\left\langle E_{r} E_{l} \cos \delta_{r l}\right\rangle \\
U & =2\left\langle E_{x} E_{y} \cos \delta_{x y}\right\rangle=2\left\langle E_{r} E_{l} \sin \delta_{r l}\right\rangle \\
V & =2\left\langle E_{x} E_{y} \sin \delta_{x y}\right\rangle=\left\langle E_{r}^{2}\right\rangle-\left\langle E_{l}^{2}\right\rangle
\end{aligned}
$$

Note that now, unlike monochromatic radiation, the radiation is not necessarily 100% polarized.

SCIENCE•ENGINEERING • RESEARCH UNIVERSITY

Summary - Fundamentals

- Monochromatic waves are polarized
- Expressible as 2 orthogonal independent transverse waves
- elliptical cross-section \rightarrow polarization ellipse
- 3 independent parameters
- choice of basis, e.g. linear or circular
- Poincare sphere convenient representation
- Stokes parameters I, Q, U, V
- I intensity; Q,U linear polarization, V circular polarization
- Quasi-monochromatic "waves" in reality
- can be partially polarized
- still represented by Stokes parameters

Antenna Polarization

S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Measuring Polarization on the sky

- Coordinate system dependence:
- I independent
- V depends on choice of "handedness"
- $V>0$ for RCP
- Q, U depend on choice of "North" (plus handedness)
- Q "points" North, U 45 toward East
- Polarization Angle Ψ

$$
\Psi=1 / 2 \tan ^{-1}(\mathrm{U} / \mathrm{Q}) \quad \text { (North through East) }
$$

- also called the "electric vector position angle" (EVPA)
- by convention, traces E-field vector (e.g. for synchrotron)
- B-vector is perpendicular to this

Optics - Cassegrain radio telescope

- Paraboloid illuminated by feedhorn:

Feeds arranged in focal plane (off-axis)

New Mexico Tech

Optics - telescope response

- Reflections
- turn RCP \Leftrightarrow LCP
- E-field (currents) allowed only in plane of surface
- "Field distribution" on aperture for E and B planes:

Example - simulated VLA patterns

- EVLA Memo 58 "Using Grasp8 to Study the VLA Beam" W. Brisken

Linear Polarization

Circular Polarization cuts in R \& L

New Mexico Tech
SCIENCE•ENGINEERING • RESEARCH•UNIVERSITY

Example - measured VLA patterns

- AIPS Memo 86 "Widefield Polarization Correction of VLA Snapshot Images at 1.4 GHz" W. Cotton (1994)

Circular Polarization

Linear Polarization

New Mexico Tech
SCIENCE ENGINEERING • RESEARCH \cdot UNIVERSITY

Polarization Reciever Outputs

- To do polarimetry (measure the polarization state of the EM wave), the antenna must have two outputs which respond differently to the incoming elliptically polarized wave.
- It would be most convenient if these two outputs are proportional to either:
- The two linear orthogonal Cartesian components, $\left(E_{X}, E_{Y}\right)$ as in ATCA and ALMA
- The two circular orthogonal components, $\left(E_{R}, E_{L}\right)$ as in VLA
- Sadly, this is not the case in general.
- In general, each port is elliptically polarized, with its own polarization ellipse, with its p.a. and ellipticity.
- However, as long as these are different, polarimetry can be done.

New Mexico Tech S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Polarizers: Quadrature Hybrids

- We've discussed the two bases commonly used to describe polarization.
- It is quite easy to transform signals from one to the other, through a real device known as a 'quadrature hybrid'.

Four Port Device:
2 port input
2 ports output
mixing matrix

- To transform correctly, the phase shifts must be exactly 0 and 90 for all frequencies, and the amplitudes balanced.
- Real hybrids are imperfect - generate errors (mixing/leaking)
- Other polarizers (e.g. waveguide septum, grids) equivalent

New Mexico Tech
S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

SCIENCE•ENGINEERING \cdot RESEARCH \cdot UNIVERSITY

Polarization Interferometry

S.T. Myers - Twelfith Synthesis Imaging Workshop, June 8, 2010

Four Complex Correlations per Pair

- Two antennas, each with two differently polarized outputs, produce four complex correlations.
- From these four outputs, we want to make four Stokes Images.

Outputs: Polarization Vectors

- Each telescope receiver has two outputs
- should be orthogonal, close to X,Y or R,L
- even if single pol output, convenient to consider both possible polarizations (e.g. for leakage)
- put into vector

$$
\vec{E}(t)=\binom{E_{R}(t)}{E_{L}(t)} \quad \text { or } \quad \vec{E}(t)=\binom{E_{X}(t)}{E_{Y}(t)}
$$

Correlation products: coherency vector

- Coherency vector: outer product of 2 antenna vectors as averaged by correlator

$$
\vec{v}_{i j}=\left\langle\vec{E}_{\mathrm{i}} \otimes \vec{E}_{j}^{*}\right\rangle=\left\langle\binom{ E^{p}}{E^{q}}_{i} \otimes\binom{E^{p}}{E^{q}}_{j}^{*}\right\rangle=\left(\begin{array}{l}
\left\langle E_{i}^{p} \cdot E_{j}^{* p}\right\rangle \\
\left\langle E_{i}^{p} \cdot E_{j}^{* q}\right\rangle \\
\left\langle E_{i}^{q} \cdot E_{j}^{* p}\right\rangle \\
\left\langle E_{i}^{q} \cdot E_{j}^{* q}\right\rangle
\end{array}\right)=\left(\begin{array}{c}
v^{p p} \\
v^{p q} \\
v^{q p} \\
v^{q q}
\end{array}\right)_{i j}
$$

- these are essentially the uncalibrated visibilities v
- circular products RR, RL, LR, LL
- linear products $X X, X Y, Y X, Y Y$
- need to include corruptions before and after correlation

Polarization Products: General Case

$v^{p q}=\frac{1}{2} G_{p q}\left\{I\left[\cos \left(\Psi_{p}-\Psi_{q}\right) \cos \left(\chi_{p}-\chi_{q}\right)+i \sin \left(\Psi_{p}-\Psi_{q}\right) \sin \left(\chi_{p}+\chi_{q}\right)\right]\right.$ $+Q\left[\cos \left(\Psi_{p}+\Psi_{q}\right) \cos \left(\chi_{p}+\chi_{q}\right)+i \sin \left(\Psi_{p}+\Psi_{q}\right) \sin \left(\chi_{p}-\chi_{q}\right)\right]$ $-i U\left[\cos \left(\Psi_{p}+\Psi_{q}\right) \sin \left(\chi_{p}-\chi_{q}\right)+i \sin \left(\Psi_{p}+\Psi_{q}\right) \cos \left(\chi_{p}+\chi_{q}\right)\right]$ $\left.-V\left[\cos \left(\Psi_{p}-\Psi_{q}\right) \sin \left(\chi_{p}+\chi_{q}\right)+i \sin \left(\Psi_{p}-\Psi_{q}\right) \cos \left(\chi_{p}-\chi_{q}\right)\right]\right\}$

What are all these symbols?
vpq is the complex output from the interferometer, for polarizations p and q from antennas 1 and 2, respectively.
Ψ and χ are the antenna polarization major axis and ellipticity for states p and q.
$\mathrm{I}, \mathrm{Q}, \mathrm{U}$, and V are the Stokes Visibilities describing the polarization state of the astronomical signal.
G is the gain, which falls out in calibration.

Coherency vector and Stokes vector

- Maps (perfect) visibilities to the Stokes vector s
- Example: circular polarization (e.g. VLA)

$$
\vec{v}_{\text {circ }}=\mathbf{S}_{\text {circ }} \vec{s}=\left(\begin{array}{c}
v^{R R} \\
v^{R L} \\
v^{L R} \\
v^{L L}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & i & 0 \\
0 & 1 & -i & 0 \\
1 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
I \\
Q \\
U \\
V
\end{array}\right)=\left(\begin{array}{c}
I+V \\
Q+i U \\
Q-i U \\
I-V
\end{array}\right)
$$

- Example: linear polarization (e.g. ALMA, ATCA)

$$
\vec{v}_{\text {lin }}=\mathbf{S}_{\text {lin }} \vec{s}=\left(\begin{array}{c}
v^{X X} \\
v^{X Y} \\
v^{Y X} \\
v^{Y Y}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & i \\
0 & 0 & 1 & -i \\
1 & -1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
I \\
Q \\
U \\
V
\end{array}\right)=\left(\begin{array}{c}
I+Q \\
U+i V \\
U-i V \\
I-Q
\end{array}\right)
$$

Corruptions: Jones Matrices

- Antenna-based corruptions
- pre-correlation polarization-dependent effects act as a matrix muliplication. This is the Jones matrix:
$\vec{E}^{\text {out }}=\mathbf{J} \vec{E}^{\text {in }} \quad \mathbf{J}=\left(\begin{array}{ll}J_{11} & J_{12} \\ J_{21} & J_{22}\end{array}\right) \quad \vec{E}=\binom{E_{1}}{E_{2}}$
- form of \mathbf{J} depends on basis (RL or XY) and effect
- off-diagonal terms J_{12} and J_{21} cause corruption (mixing)
- total \mathbf{J} is a string of Jones matrices for each effect

$$
\mathbf{J}=\mathbf{J}_{F} \mathbf{J}_{E} \mathbf{J}_{D} \mathbf{J}_{P}
$$

- Faraday, polarized beam, leakage, parallactic angle

Parallactic Angle, P

- Orientation of sky in telescope's field of view
- Constant for equatorial telescopes
- Varies for alt-az telescopes
- Rotates the position angle of linearly polarized radiation (R-L phase)
$\mathbf{J}_{P}^{R L}=\left(\begin{array}{cc}e^{i \phi} & 0 \\ 0 & e^{-i \phi}\end{array}\right) ; \mathbf{J}_{P}^{X Y}=\left(\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$

- defined per antenna (often same over array)

$$
\begin{gathered}
\phi(t)=\arctan \left(\frac{\cos (l) \sin (h(t))}{\sin (l) \cos (\delta)-\cos (l) \sin (\delta) \cos (h(t))}\right) \\
l=\text { latitude, } h(t)=\text { hour angle, } \delta=\text { declination }
\end{gathered}
$$

- P modulation can be used to aid in calibration
S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Visibilities to Stokes on-sky: RL basis

- the (outer) products of the parallactic angle (P) and the Stokes matrices gives

$$
\vec{v}=\mathbf{J}_{P} \mathbf{S} \vec{s}
$$

- this matrix maps a sky Stokes vector to the coherence vector representing the four perfect (circular) polarization products:
$\left(\begin{array}{c}v^{R R} \\ v^{R L} \\ v^{L R} \\ v^{L L}\end{array}\right)=\left(\begin{array}{cccc}e^{-i\left(\phi_{i}-\phi_{j}\right)} & 0 & 0 & e^{-i\left(\phi_{i}-\phi_{j}\right)} \\ 0 & e^{-i\left(\phi_{i}+\phi_{j}\right)} & i e^{-i\left(\phi_{i}+\phi_{j}\right)} & 0 \\ 0 & e^{i\left(\phi_{i}+\phi_{j}\right)} & -i e^{i\left(\phi_{i}+\phi_{j}\right)} & 0 \\ e^{i\left(\phi_{i}-\phi_{j}\right)} & 0 & 0 & -e^{i\left(\phi_{i}-\phi_{j}\right)}\end{array}\right)\left(\begin{array}{c}I \\ Q \\ U \\ V\end{array}\right) \xrightarrow[\phi_{i}=\phi_{j}=\phi]{ }\left(\begin{array}{c}I+V \\ (Q+i U) e^{-i 2 \phi} \\ (Q-i U) e^{i 2 \phi} \\ I-V\end{array}\right)$

Circular Feeds: linear polarization in cross hands, circular in parallel-hands

Visibilities to Stokes on-sky: XY basis

- we have
$\left(\begin{array}{c}v^{X X} \\ v^{X Y} \\ v^{Y X} \\ v^{Y Y}\end{array}\right)=\left(\begin{array}{cccc}\cos \left(\phi_{i}-\phi_{j}\right) & \cos \left(\phi_{i}+\phi_{j}\right) & -\sin \left(\phi_{i}+\phi_{j}\right) & i \sin \left(\phi_{i}-\phi_{j}\right) \\ -\sin \left(\phi_{i}-\phi_{j}\right) & \sin \left(\phi_{i}+\phi_{j}\right) & \cos \left(\phi_{i}+\phi_{j}\right) & i \cos \left(\phi_{i}-\phi_{j}\right) \\ \sin \left(\phi_{i}-\phi_{j}\right) & \sin \left(\phi_{i}+\phi_{j}\right) & \cos \left(\phi_{i}+\phi_{j}\right) & -i \cos \left(\phi_{i}-\phi_{j}\right) \\ \cos \left(\phi_{i}-\phi_{j}\right) & -\cos \left(\phi_{i}+\phi_{j}\right) & -\sin \left(\phi_{i}+\phi_{j}\right) & i \sin \left(\phi_{i}-\phi_{j}\right)\end{array}\right)\left(\begin{array}{l}I \\ Q \\ U \\ V\end{array}\right)$
- and for identical parallactic angles ϕ between antennas:
$\left(\begin{array}{c}v^{X X} \\ v^{X Y} \\ v^{Y X} \\ v^{Y Y}\end{array}\right) \xrightarrow[\phi_{i}=\phi_{j}=\phi]{ }\left(\begin{array}{c}I+Q \cos 2 \phi-U \sin 2 \phi \\ Q \sin 2 \phi+U \cos 2 \phi+i V \\ Q \sin 2 \phi+U \cos 2 \phi-i V \\ I-Q \cos 2 \phi+U \sin 2 \phi\end{array}\right)$

Linear Feeds: linear polarization present in all hands
circular polarization only in cross-hands

Basic Interferometry equations

- An interferometer naturally measures the transform of the sky intensity in $u v$-space convolved with aperture
- cross-correlation of aperture voltage patterns in uv-plane
- its tranform on sky is the primary beam A with FWHM ~ λ / D

$$
\begin{aligned}
V(\mathbf{u}) & =\int d^{2} \mathbf{x} A\left(\mathbf{x}-\mathbf{x}_{p}\right) I(\mathbf{x}) e^{-2 \pi i \mathbf{u} \cdot\left(\mathbf{x}-\mathbf{x}_{p}\right)}+\mathrm{n} \\
& =\int d^{2} \mathbf{v} \tilde{A}(\mathbf{u}-\mathbf{v}) \tilde{I}(\mathbf{v}) e^{2 \pi i \mathbf{v} \cdot \mathbf{x}_{p}}+\mathrm{n}
\end{aligned}
$$

- The "tilde" quantities are Fourier transforms, with convention:

$$
\begin{aligned}
& \widetilde{T}(\mathbf{u})=\int d^{2} \mathbf{x} e^{-i 2 \pi \mathbf{u} \cdot \mathbf{x}} T(\mathbf{x}) \quad \mathbf{x}=(l, m) \leftrightarrow \mathbf{u}=(u, v) \\
& T(\mathbf{x})=\int d^{2} \mathbf{u} e^{i 2 \pi \mathbf{u} \cdot \mathbf{x}} \widetilde{T}(\mathbf{u})
\end{aligned}
$$

Polarization Interferometry : Q \& U

- Parallel-hand \& Cross-hand correlations (circular basis)
- visibility k (antenna pair $i j$, time, pointing x, channel v, noise n):

$$
\begin{aligned}
& V_{k}^{R R}\left(\mathbf{u}_{k}\right)=\int d^{2} \mathbf{v} \tilde{A}_{k}^{R R}\left(\mathbf{u}_{k}-\mathbf{v}\right)\left[\tilde{I}_{v}(\mathbf{v})+\tilde{V}_{v}(\mathbf{v})\right] e^{2 \pi i \mathbf{v} \cdot \mathbf{x}_{k}}+\mathrm{n}_{k}^{R R} \\
& V_{k}^{R L}\left(\mathbf{u}_{k}\right)=\int d^{2} \mathbf{v} \tilde{A}_{k}^{R L}\left(\mathbf{u}_{k}-\mathbf{v}\right)\left[\tilde{Q}_{v}(\mathbf{v})+i \tilde{U}_{v}(\mathbf{v})\right] e^{-i 2 \phi_{k}} e^{2 \pi i \mathbf{v} \cdot \mathbf{x}_{k}}+\mathrm{n}_{k}^{R L} \\
& V_{k}^{L R}\left(\mathbf{u}_{k}\right)=\int d^{2} \mathbf{v} \tilde{A}_{k}^{L R}\left(\mathbf{u}_{k}-\mathbf{v}\right)\left[\tilde{Q}_{v}(\mathbf{v})-i \tilde{U}_{v}(\mathbf{v})\right] e^{i 2 \phi_{k}} e^{2 \pi i \mathbf{v} \cdot \mathbf{x}_{k}}+\mathrm{n}_{k}^{L R} \\
& V_{k}^{L L}\left(\mathbf{u}_{k}\right)=\int d^{2} \mathbf{v} \tilde{A}_{k}^{L L}\left(\mathbf{u}_{k}-\mathbf{v}\right)\left[\tilde{I}_{v}(\mathbf{v})-\tilde{V}_{v}(\mathbf{v})\right] e^{2 \pi i \mathbf{v} \cdot \mathbf{x}_{k}}+\mathrm{n}_{k}^{L L}
\end{aligned}
$$

- where kernel A is the aperture cross-correlation function, ϕ is the parallactic angle, and $\mathrm{Q}+\mathrm{iU}=\mathrm{P}$ is the complex linear polarization

$$
\tilde{P}(\mathbf{v})=\tilde{Q}(\mathbf{v})+i \tilde{U}(\mathbf{v})=|\tilde{P}(\mathbf{v})| e^{i 2 \varphi(\mathbf{v})}
$$

- the phase of P is φ (the R-L phase difference)

Example: RL basis imaging

- Parenthetical Note:
- can make a pseudo-I image by gridding RR+LL on the Fourier half-plane and inverting to a real image
- can make a pseudo-V image by gridding RR-LL on the Fourier half-plane and inverting to real image
- can make a pseudo-(Q+iU) image by gridding RL to the full Fourier plane (with LR as the conjugate) and inverting to a complex image
- does not require having full polarization RR,RL,LR,LL for every visibility (unlike calibration/correction of visibilities)
- More on imaging (\& deconvolution) tomorrow!

Polarization Leakage, D

- Polarizer is not ideal, so orthogonal polarizations not perfectly isolated
- Well-designed systems have $d<1-5 \%$ (but some systems >10\% :))
- A geometric property of the antenna, feed \& polarizer design
- frequency dependent (e.g. quarter-wave at center v)
- direction dependent (in beam) due to antenna
- For R,L systems
- parallel hands affected as $d \cdot Q+d \cdot U$, so only important at high dynamic range (because $Q, \cup \sim d$, typically)
- cross-hands affected as d•| so almost always important

$$
\mathbf{J}_{D}^{p q}=\left(\begin{array}{cc}
1 & d^{p} \\
d^{q} & 1
\end{array}\right) \quad \begin{aligned}
& \text { Leakage of q into } \mathrm{p} \\
& \text { (e.g. Linto R) }
\end{aligned}
$$

S.T. Myers - Twelfith Synthesis Imaging Workshop, June 8, 2010

Leakage revisited...

- Primary on-axis effect is "leakage" of one polarization into the measurement of the other (e.g. $R \Leftrightarrow L$)
- but, direction dependence due to polarization beam!
- Customary to factor out on-axis leakage into D and put direction dependence in "beam"
- example: expand RL basis with on-axis leakage

$$
\begin{aligned}
& \hat{V}_{i j}^{R R}=V_{i j}^{R R}+d_{i}^{R} V_{i j}^{L R}+d_{j}^{* R} V_{i j}^{R L}+d_{i}^{R} d_{j}^{* R} V_{i j}^{L L} \\
& \hat{V}_{i j}^{R L}=V_{i j}^{R L}+d_{i}^{R} V_{i j}^{L L}+d_{j}^{* L} V_{i j}^{R R}+d_{i}^{R} d_{j}^{L} V_{i j}^{L R}
\end{aligned}
$$

- similarly for XY basis

Example: RL basis leakage

- In full detail:

$$
\begin{aligned}
V_{i j}^{R R}= & \int_{s k y} E_{i j}^{R R}(l, m)\left[(\mathrm{I}+\mathrm{V}) e^{i\left(\chi_{i}-\chi_{j}\right)}\right. \\
& +d_{i}^{R} e^{-i\left(\chi_{i}+\chi_{j}\right)}(\mathrm{Q}-i \mathrm{U})+d_{j}^{* R} e^{i\left(\chi_{i}+\chi_{j}\right)}(\mathrm{Q}+i \mathrm{U}) \\
& \left.+d_{i}^{R} d_{j}^{d_{j}^{* R}} e^{-i\left(\chi_{i}-\chi_{i}\right)}(\mathrm{I}--\vee)\right](l, m) e^{-i 2 /\left(u_{i j} l+v_{i j} m\right)} d l d m \\
V_{i j}^{R L}= & \int_{s k y} E_{i j}^{R L}(l, m)\left[(\mathrm{Q}+i \mathrm{U}) e^{i\left(\chi_{i}+\chi_{j}\right)}\right. \\
& +d_{i}^{R}(\mathrm{I}-\mathrm{V}) e^{-i\left(\chi_{i}-\chi_{j}\right)}+d_{j}^{* L}(\mathrm{I}+\mathrm{V}) e^{i\left(\chi_{i}-\chi_{j}\right)}
\end{aligned}
$$

3 rd order:

Example: linearized leakage

- RL basis, keeping only terms linear in I,Q土iU,d:

$$
\begin{aligned}
& V_{i j}^{R L}=(\mathrm{Q}+i \mathrm{U}) e^{-i\left(\phi_{i}+\phi_{j}\right)}+\mathrm{I}\left(d_{i}^{R} e^{i\left(\phi_{i}-\phi_{j}\right)}+d_{j}^{* L} e^{-i\left(\phi_{i}-\phi_{j}\right)}\right) \\
& V_{i j}^{L R}=(\mathrm{Q}-i \mathrm{U}) e^{i\left(\phi_{i}+\phi_{j}\right)}-\mathrm{I}\left(d_{i}^{L} e^{-i\left(\phi_{i}-\phi_{j}\right)}+d_{j}^{* R} e^{i\left(\phi_{i}-\phi_{j}\right)}\right)
\end{aligned}
$$

- Likewise for XY basis, keeping linear in I,Q,U,V,d, $\sin \left(\phi_{i}-\phi_{j}\right)$

$$
\begin{aligned}
& V_{i j}^{X Y}=\mathrm{Q} \sin \left(\phi_{\mathrm{i}}+\phi_{j}\right)+\mathrm{U} \cos \left(\phi_{i}+\phi_{j}\right)+i \mathrm{~V}+\left[\left(d_{i}^{X}+d_{j}^{* Y}\right) \cos \left(\phi_{i}-\phi_{j}\right)-\sin \left(\phi_{i}-\phi_{j}\right)\right] \mathrm{I} \\
& V_{i j}^{Y X}=\mathrm{Q} \sin \left(\phi_{\mathrm{i}}+\phi_{j}\right)+\mathrm{U} \cos \left(\phi_{i}+\phi_{j}\right)+i \mathrm{~V}+\left[\left(d_{i}^{Y}+d_{j}^{* X}\right) \cos \left(\phi_{i}-\phi_{j}\right)+\sin \left(\phi_{i}-\phi_{j}\right)\right] \mathrm{I}
\end{aligned}
$$

WARNING: Using linear order will limit dynamic range!
(dropped terms have non-closing properties)

New Mexico Tech S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Ionospheric Faraday Rotation, F

- Birefringency due to magnetic field in ionospheric plasma

$$
\begin{aligned}
& \mathbf{J}_{F}^{R L}=\left(\begin{array}{cc}
e^{i \Delta \phi} & 0 \\
0 & e^{-i \Delta \phi}
\end{array}\right) \\
& \mathbf{J}_{F}^{X Y}=\left(\begin{array}{cc}
\cos \Delta \phi & -\sin \Delta \phi \\
\sin \Delta \phi & \cos \Delta \phi
\end{array}\right)
\end{aligned}
$$

is direction-dependent

$$
\begin{aligned}
& \Delta \phi \approx 0.15^{\circ} \lambda^{2} \int B_{\|} n_{e} d s \\
& \left(\lambda \mathrm{in} \mathrm{~cm}, n_{e} d s \text { in } 10^{14} \mathrm{~cm}^{-2}, B_{\|} \text {in } \mathrm{G}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { TEC } & =\int n_{e} d s \sim 10^{14} \mathrm{~cm}^{-2} ; \quad B_{\|} \sim 1 \mathrm{G} ; \\
\lambda & =20 \mathrm{~cm} \rightarrow \Delta \phi \sim 60^{\circ}
\end{aligned}
$$

Faraday Rotation

$$
\psi=\psi_{0}+R M \lambda^{2}
$$

- also present in ISM, IGM and intrinsic to radio sources!
- can come from different Faraday depths \rightarrow tomography

Antenna voltage pattern, E

- Direction-dependent gain and polarization
- includes primary beam
- Fourier transform of cross-correlation of antenna voltage patterns
- includes polarization asymmetry (squint)

$$
\mathbf{J}_{E}^{p q}=\left(\begin{array}{ll}
e^{p p}\left(l^{\prime}, m^{\prime}\right) & e^{p q}\left(l^{\prime}, m^{\prime}\right) \\
e^{q p}\left(l^{\prime}, m^{\prime}\right) & e^{q q}\left(l^{\prime}, m^{\prime}\right)
\end{array}\right)
$$

- includes off-axis cross-polarization (leakage)
- convenient to reserve D for on-axis leakage
- important in wide-field imaging and mosaicing
- when sources fill the beam (e.g. low frequency)

Summary - polarization interferometry

- Choice of basis: CP or LP feeds
- usually a technology consideration
- Follow the signal path
- ionospheric Faraday rotation F at low frequency
- direction dependent (and antenna dependent for long baselines)
- parallactic angle P for coordinate transformation to Stokes
- antennas can have differing PA (e.g. VLBI)
- "leakage" D varies with v and over beam (mix with E)
- Leakage
- use full (all orders) D solver when possible
- linear approximation OK for low dynamic range
- beware when antennas have different parallactic angles

Polarization Calibration \& Observation

So you want to make a polarization image...

- Making polarization images
- follow general rules for imaging
- image \& deconvolve I, Q, U, V planes
- Q, U, V will be positive and negative
- V image can often be used as check (if no intrinsic V-pol)
- Polarization vector plots
- EVPA calibrator to set angle (e.g. R-L phase difference)

$$
\Phi=1 / 2 \tan -1 \mathrm{U} / \mathrm{Q} \text { for } \mathrm{E} \text { vectors }
$$

- B vectors \perp E
- plot E vectors (length given by P)
- Leakage calibration is essential
e.g Jupiter 6 cm continuum

- See Tutorials on Friday

New Mexico Tech
S.T. Myers - Twelfith Synthesis Imaging Workshop, June 8, 2010

Strategies for leakage calibration

- Need a bright calibrator! Effects are low level...
- determine antenna gains independently (mostly from parallel hands)
- use cross-hands (mostly) to determine leakage
- however, cross-hand leakage insufficient to correct parallel-hands
- do matrix solution to go beyond linear order
- Calibrator is unpolarized
- leakage directly determined (ratio to I model), but only to an overall complex constant (additive over array)
- need way to fix phase $\delta_{p}-\delta_{q}$ (ie. R-L phase difference), e.g. using another calibrator with known EVPA
- Calibrator of known (non-zero) linear polarization
- leakage can be directly determined (for I,Q,U,V model) - for a single scan only within an overall offset (e.g. sum of D-terms)
- unknown $p-q$ phase can be determined (from U/Q etc.)

Other strategies

- Calibrator of unknown polarization
- solve for model IQUV and D simultaneously or iteratively
- need good parallactic angle coverage to modulate sky and instrumental signals
- in instrument basis, sky signal modulated by e ${ }^{i 2 x}$
- With a very bright strongly polarized calibrator
- can solve for leakages and polarization per baseline
- can solve for leakages using parallel hands!
- With no calibrator
- hope it averages down over parallactic angle
- transfer D from a similar observation
- usually possible for several days, better than nothing!
- need observations at same frequency

NRAO

Parallactic Angle Coverage at VLA

- fastest PA swing for source passing through zenith
- to get good PA coverage in a few hours, need calibrators between declination $+20^{\circ}$ and $+60^{\circ}$

S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Finding polarization calibrators

- Standard sources
- planets (unpolarized if unresolved)
- 3C286, 3C48, 3C147 (known IQU, stable)
- sources monitored (e.g. by VLA)
- other bright sources (bootstrap)
http://www.vla.nrao.edu/astro/calib/polar/

Example: VLA D-term calibration

- D-term calibration effect on RL visibilities (should be Q+iU):

$$
\text { S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, } 2010
$$

Example: VLA D-term calibration

- D-term calibration effect in Q image plane :

Example: EVLA D-term calibration

- C-band D-term calibration as a function of frequency (OSRO-1 mode):
- frequency-dependent effects over wide bands, beware of cross-hand delays

Example: EVLA D-term calibration

- C-band D-term calibration as a function of antenna (OSRO-1 mode):

D table: test2_TOSR0005_sb1216761_1.55269.279088587966.pcal1

S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Example: EVLA EVPA calibration

- C-band R-L phase as a function of frequency (OSRO-1 mode):
- solve for single-phase and cross-hand delay over array

X table: test2_TOSR0005_sb1216761_1.55269.279088587966.polx1

X table: test2_TOSR0005_sb1216761_1.55269.279088587966.polx1

S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

Summary - Observing \& Calibration

- Follow normal calibration procedure (see next lecture)
- Need bright calibrator for leakage D calibration
- bright calibrator with known polarization
- unpolarized (or very low polarization) sources see only leakage
- Parallactic angle coverage useful
- necessary for unknown calibrator polarization
- Need to determine unknown $p-q$ phase
- CP feeds need EVPA calibrator (known strong Q,U) for R-L phase
- if system stable, can transfer from other observations
- Upshot - build polarization calibration into schedule
- if you need PA coverage, will be observing near zenith
- watch antenna wraps (particularly in dynamic scheduling)!

Special Considerations - EVLA \& ALMA

- Wideband calibration issues
- D-term and p-q phase corrections as function of frequency
- need bright source to solve on per-channel basis
- Delay issues
- parallel-hand delays taken out in bandpass
- need to remove cross-hand delays in or before Pol calibration
- High-dynamic range issues
- D-term contribution to parallel-hand correlations (non-closing)
- wide-field polarization imaging/calibration algorithm development - direction-dependent voltage beam patterns needed
- Special issues
- EVLA circular feeds: observing V difficult
- ALMA linear feeds: gain calibration interaction
S.T. Myers - Twelfth Synthesis Imaging Workshop, June 8, 2010

