

Polarization in Interferometry

Steven T. Myers (NRAO-Socorro)

Eleventh Synthesis Imaging Workshop Socorro, June 10-17, 2008

Polarization in interferometry

- Astrophysics of Polarization
- Physics of Polarization
- Antenna Response to Polarization
- Interferometer Response to Polarization
- Polarization Calibration & Observational Strategies
- Polarization Data & Image Analysis

WARNING!

- This is tough stuff. Difficult concepts, hard to explain without complex mathematics.
- I will illustrate the concepts with figures and 'handwaving'.
- Many good references:
 - Synthesis Imaging II: Lecture 6, also parts of 1, 3, 5, 32
 - Born and Wolf: Principle of Optics, Chapters 1 and 10
 - Rolfs and Wilson: Tools of Radio Astronomy, Chapter 2
 - Thompson, Moran and Swenson: Interferometry and Synthesis in Radio Astronomy, Chapter 4
 - Tinbergen: Astronomical Polarimetry. All Chapters.
 - J.P. Hamaker et al., A&A, 117, 137 (1996) and series of papers
- Great care must be taken in studying these conventions vary between them.

DON'T PANIC !

Polarization Astrophysics

What is Polarization?

- Electromagnetic field is a vector phenomenon it has ulletboth direction and magnitude.
- From Maxwell's equations, we know a propagating EM wave (in the far field) has no component in the direction of propagation – it is a transverse wave.

$\mathbf{k} \bullet \mathbf{E} = 0$

• The characteristics of the transverse component of the electric field, E, are referred to as the polarization properties. The E-vector follows a (elliptical) helical path as it propagates:

Why Measure Polarization?

- Electromagnetic waves are intrinsically polarized
 - monochromatic waves are fully polarized
- Polarization state of radiation can tell us about:
 - the origin of the radiation
 - intrinsic polarization
 - the medium through which it traverses
 - propagation and scattering effects
 - unfortunately, also about the purity of our optics
 - you may be forced to observe polarization even if you do not want to!

Astrophysical Polarization

- Examples:
 - Processes which generate polarized radiation:
 - Synchrotron emission: Up to ~80% linearly polarized, with no circular polarization. Measurement provides information on strength and orientation of magnetic fields, level of turbulence.
 - Zeeman line splitting: Presence of B-field splits RCP and LCP components of spectral lines by by 2.8 Hz/μG. Measurement provides direct measure of B-field.
 - Processes which modify polarization state:
 - Free electron scattering: Induces a linear polarization which can indicate the origin of the scattered radiation.
 - Faraday rotation: Magnetoionic region rotates plane of linear polarization. Measurement of rotation gives B-field estimate.
 - Faraday conversion: Particles in magnetic fields can cause the polarization ellipticity to change, turning a fraction of the linear polarization into circular (possibly seen in cores of AGN)

Example: Radio Galaxy 3C31

- VLA @ 8.4 GHz
- E-vectors
 - along core of jet
 - radial to jet at edge
- Laing (1996)

Example: Radio Galaxy Cygnus A

• VLA @ 8.5 GHz B-vectors Perley & Carilli (1996)

CIENCE · ENGINEERING · RESEARCH

The University of New Mexico

Example: Faraday rotation of CygA

 See review of "Cluster Magnetic Fields" by Carilli & Taylor 2002 (ARAA)

Example: Zeeman effect

Example: the ISM of M51

Trace magnetic field structure in galaxies

Neininger (1992)

Scattering

- Anisotropic Scattering induces Linear Polarization
 - electron scattering (e.g. in Cosmic Microwave Background)
 - dust scattering (e.g. in the millimeter-wave spectrum)

Animations from Wayne Hu

ew Mexico

Polarization Fundamentals

The Polarization Ellipse

- From Maxwell's equations E•B=0 (E and B perpendicular)
 - By convention, we consider the time behavior of the E-field in a fixed perpendicular plane, from the point of view of the receiver.
- For a monochromatic wave of frequency v, we write

 $E_x = A_x \cos(2\pi \upsilon t + \phi_x)$ $E_y = A_y \cos(2\pi \upsilon t + \phi_y)$

- These two equations describe an ellipse in the (x-y) plane.

• The ellipse is described fully by three parameters:

- A_X , A_Y , and the phase difference, $\delta = \phi_Y - \phi_X$.

- The wave is elliptically polarized. If the E-vector is:
 - Rotating clockwise, the wave is 'Left Elliptically Polarized',
 - Rotating counterclockwise, it is 'Right Elliptically Polarized'.

New Mexico Tech

Elliptically Polarized Monochromatic Wave

The simplest description of wave polarization is in a Cartesian coordinate frame.

In general, three parameters are needed to describe the ellipse.

The angle $\alpha = atan(A_Y/A_X)$ is used later ...

Polarization Ellipse Ellipticity and P.A.

- A more natural description is in a frame (ξ,η), rotated so the ξ-axis lies along the major axis of the ellipse.
- The three parameters of the ellipse are then:

 A_{η} : the major axis length tan $\chi = A_{\xi}/A_{\eta}$: the axial ratio Ψ : the major axis p.a.

 $\tan 2\Psi = \tan 2\alpha \cos \delta$ $\sin 2\chi = \sin 2\alpha \sin \delta$

• The ellipticity χ is signed: $\chi > 0 \rightarrow REP$ $\chi < 0 \rightarrow LEP$

 $\chi = 0.90^{\circ} \rightarrow \text{Linear} (\delta = 0^{\circ}.180^{\circ})$ $\chi = \pm 45^{\circ} \rightarrow \text{Circular} (\delta = \pm 90^{\circ})$

Circular Basis

 We can decompose the E-field into a circular basis, rather than a (linear) Cartesian one:

$$\mathbf{E} = A_R \hat{e}_R + A_L \hat{e}_L$$

- where A_R and A_L are the amplitudes of two counter-rotating unit vectors, e_R (rotating counter-clockwise), and e_L (clockwise)
- NOTE: R,L are obtained from X,Y by δ =±90° phase shift
- It is straightforward to show that:

$$A_{R} = \frac{1}{2}\sqrt{A_{X}^{2} + A_{Y}^{2} - 2A_{X}A_{Y}}\sin\delta_{XY}$$
$$A_{L} = \frac{1}{2}\sqrt{A_{X}^{2} + A_{Y}^{2} + 2A_{X}A_{Y}}\sin\delta_{XY}$$

Circular Basis Example

- The black ellipse can be decomposed into an xcomponent of amplitude 2, and a y-component of amplitude 1 which lags by ¼ turn.
- It can alternatively be decomposed into a counterclockwise rotating vector of length 1.5 (red), and a clockwise rotating vector of length 0.5 (blue).

The Poincare Sphere

• Treat 2ψ and 2χ as longitude and latitude on sphere of radius A=E²

Stokes parameters

- Spherical coordinates: radius I, axes Q, U, V $= E_x^2 + E_y^2 = E_B^2 + E_L^2$
 - $Q = I \cos 2\chi \cos 2\Psi = E_X^2 E_Y^2 = 2 E_R E_L \cos \delta_{RL}$
 - $U = I \cos 2\chi \sin 2\Psi = 2 E_X E_Y \cos \delta_{XY} = 2 E_R E_L \sin \delta_{RL}$
 - $V = I \sin 2\chi$ = 2 E_X E_Y sin δ_{XY} = E_R² E_L²
- Only 3 independent parameters:
 - wave polarization confined to surface of Poincare sphere
 - $I^2 = Q^2 + U^2 + V^2$
- Stokes parameters I,Q,U,V
 - defined by George Stokes (1852)
 - form complete description of wave polarization
 - NOTE: above true for 100% polarized monochromatic wave!

Linear Polarization

- Linearly Polarized Radiation: V = 0
 - Linearly polarized flux:

$$P = \sqrt{Q^2 + U^2}$$

– Q and U define the linear polarization position angle:

$$\tan 2\psi = U / Q$$

U < 0

U > 0

Simple Examples

If V = 0, the wave is linearly polarized. Then,
 If U = 0, and Q positive, then the wave is vertically polarized, Ψ=0°

– If U = 0, and Q negative, the wave is horizontally polarized, Ψ =90°

- If Q = 0, and U positive, the wave is polarized at Ψ = 45°

- If Q = 0, and U negative, the wave is polarized at Ψ = -45°.

Illustrative Example: Non-thermal Emission from Jupiter

- Apr 1999 VLA 5 GHz data
- D-config resolution is 14"
- Jupiter emits thermal radiation from atmosphere, plus polarized synchrotron radiation from particles in its magnetic field
- Shown is the I image (intensity) with polarization vectors rotated by 90° (to show B-vectors) and polarized intensity (blue contours)
- The polarization vectors trace Jupiter's dipole
- Polarized intensity linked to the lo plasma torus

Why Use Stokes Parameters?

- Tradition
- They are scalar quantities, independent of basis XY, RL
- They have units of power (flux density when calibrated)
- They are simply related to actual antenna measurements.
- They easily accommodate the notion of partial polarization of non-monochromatic signals.
- We can (as I will show) make images of the I, Q, U, and V intensities directly from measurements made from an interferometer.
- These I,Q,U, and V images can then be combined to make images of the linear, circular, or elliptical characteristics of the radiation.

Non-Monochromatic Radiation, and Partial Polarization

- Monochromatic radiation is a myth.
- No such entity can exist (although it can be closely approximated).
- In real life, radiation has a finite bandwidth.
- Real astronomical emission processes arise from randomly placed, independently oscillating emitters (electrons).
- We observe the summed electric field, using instruments of finite bandwidth.
- Despite the chaos, polarization still exists, but is not complete partial polarization is the rule.
- Stokes parameters defined in terms of mean quantities:

Stokes Parameters for Partial Polarization

$$I = \langle E_x^2 \rangle + \langle E_y^2 \rangle = \langle E_r^2 \rangle + \langle E_l^2 \rangle$$
$$Q = \langle E_x^2 \rangle - \langle E_y^2 \rangle = 2 \langle E_r E_l \cos \delta_{rl} \rangle$$
$$U = 2 \langle E_x E_y \cos \delta_{xy} \rangle = 2 \langle E_r E_l \sin \delta_{rl} \rangle$$
$$V = 2 \langle E_x E_y \sin \delta_{xy} \rangle = \langle E_r^2 \rangle - \langle E_l^2 \rangle$$

Note that now, unlike monochromatic radiation, the radiation is not necessarily 100% polarized.

 $I^2 \ge Q^2 + U^2 + V^2$

Summary – Fundamentals

- Monochromatic waves are polarized
- Expressible as 2 orthogonal independent transverse waves
 - − elliptical cross-section → polarization ellipse
 - 3 independent parameters
 - choice of basis, e.g. linear or circular
- Poincare sphere convenient representation
 - Stokes parameters I, Q, U, V
 - I intensity; Q,U linear polarization, V circular polarization
- Quasi-monochromatic "waves" in reality
 - can be partially polarized
 - still represented by Stokes parameters

Antenna Polarization

Measuring Polarization on the sky

- Coordinate system dependence:
 - I independent
 - V depends on choice of "handedness"
 - V > 0 for RCP
 - Q,U depend on choice of "North" (plus handedness)
 - Q "points" North, U 45 toward East
- Polarization Angle Ψ
 - $\Psi = \frac{1}{2} \tan^{-1} (U/Q)$ (North through East)
 - also called the "electric vector position angle" (EVPA)
 - by convention, traces E-field vector (e.g. for synchrotron)
 - B-vector is perpendicular to this

Optics – Cassegrain radio telescope

• Paraboloid illuminated by feedhorn:

Optics – telescope response

- Reflections
 - turn RCP ⇔ LCP
 - E-field (currents) allowed only in plane of surface
- "Field distribution" on aperture for E and B planes:

Example – simulated VLA patterns

 EVLA Memo 58 "Using Grasp8 to Study the VLA Beam" W. Brisken

Linear Polarization

Circular Polarization cuts in R & L

Example – measured VLA patterns

 AIPS Memo 86 "Widefield Polarization Correction of VLA Snapshot Images at 1.4 GHz" W. Cotton (1994)

Circular Polarization

Linear Polarization

Polarization Reciever Outputs

- To do polarimetry (measure the polarization state of the EM wave), the antenna must have two outputs which respond differently to the incoming elliptically polarized wave.
- It would be most convenient if these two outputs are proportional to either:
 - The two linear orthogonal Cartesian components, ($\rm E_{X},\, E_{Y})$ as in ATCA and ALMA
 - The two circular orthogonal components, (E_R, E_L) as in VLA
- Sadly, this is not the case in general.
 - In general, each port is elliptically polarized, with its own polarization ellipse, with its p.a. and ellipticity.
- However, as long as these are different, polarimetry can be done.

Polarizers: Quadrature Hybrids

- We've discussed the two bases commonly used to describe polarization.
- It is quite easy to transform signals from one to the other, through a real device known as a 'quadrature hybrid'.

- To transform correctly, the phase shifts must be exactly 0 and 90 for all frequencies, and the amplitudes balanced.
- Real hybrids are imperfect generate errors (mixing/leaking)
- Other polarizers (e.g. waveguide septum, grids) equivalent

Polarization Interferometry

Four Complex Correlations per Pair

- Two antennas, each with two differently polarized outputs, produce four complex correlations.
- From these four outputs, we want to make four Stokes Images.

Outputs: Polarization Vectors

- Each telescope receiver has two outputs
 - should be orthogonal, close to X,Y or R,L
 - even if single pol output, convenient to consider both possible polarizations (e.g. for leakage)
 - put into vector

$$\vec{E}(t) = \begin{pmatrix} E_R(t) \\ E_L(t) \end{pmatrix}$$
 or $\vec{E}(t) = \begin{pmatrix} E_X(t) \\ E_Y(t) \end{pmatrix}$

Correlation products: coherency vector

 Coherency vector: outer product of 2 antenna vectors as averaged by correlator

$$\vec{v}_{ij} = \left\langle \vec{E}_{i} \otimes \vec{E}_{j}^{*} \right\rangle = \left\langle \left(\begin{bmatrix} E^{p} \\ E^{q} \\ \end{bmatrix}_{i} \otimes \left(\begin{bmatrix} E^{p} \\ E^{q} \\ \end{bmatrix}_{j}^{*} \right) \right\rangle = \left(\left\langle \begin{bmatrix} E^{p} \\ E^{p} \\ e^{i} \\ E^{p} \\ e^{i} \\ E^{q} \\ e^{i} \\ E^{q} \\ e^{i} \\ e$$

- these are essentially the uncalibrated visibilities \boldsymbol{v}
 - circular products RR, RL, LR, LL
 - linear products XX, XY, YX, YY
- need to include corruptions before and after correlation

Polarization Products: General Case

$$v^{pq} = \frac{1}{2}G_{pq}\{I[\cos(\Psi_p - \Psi_q)\cos(\chi_p - \chi_q) + i\sin(\Psi_p - \Psi_q)\sin(\chi_p + \chi_q)] + Q[\cos(\Psi_p + \Psi_q)\cos(\chi_p + \chi_q) + i\sin(\Psi_p + \Psi_q)\sin(\chi_p - \chi_q)] - iU[\cos(\Psi_p + \Psi_q)\sin(\chi_p - \chi_q) + i\sin(\Psi_p + \Psi_q)\cos(\chi_p + \chi_q)] - V[\cos(\Psi_p - \Psi_q)\sin(\chi_p + \chi_q) + i\sin(\Psi_p - \Psi_q)\cos(\chi_p - \chi_q)]\}$$

What are all these symbols?
v^{pq} is the complex output from the interferometer, for polarizations p and q from antennas 1 and 2, respectively.
Ψ and χ are the antenna polarization major axis and ellipticity for states p and q.
I,Q, U, and V are the Stokes Visibilities describing the polarization state of the astronomical signal.

G is the gain, which falls out in calibration.

WE WILL ABSORB FACTOR 1/2 INTO GAIN!!!!!!!

Coherency vector and Stokes vector

- Maps (perfect) visibilities to the Stokes vector s
- Example: circular polarization (e.g. VLA)

$$\vec{v}_{circ} = \mathbf{S}_{circ} \,\vec{s} = \begin{pmatrix} v^{RR} \\ v^{RL} \\ v^{LR} \\ v^{LL} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & i & 0 \\ 0 & 1 & -i & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} I+V \\ Q+iU \\ Q-iU \\ I-V \end{pmatrix}$$

Example: linear polarization (e.g. ALMA, ATCA)

$$\vec{v}_{lin} = \mathbf{S}_{lin}\vec{s} = \begin{pmatrix} v^{XX} \\ v^{XY} \\ v^{YX} \\ v^{YX} \\ v^{YY} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & i \\ 0 & 0 & 1 & -i \\ 1 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} I \\ Q \\ U \\ U \\ V \end{pmatrix} = \begin{pmatrix} I+Q \\ U+iV \\ U-iV \\ I-Q \end{pmatrix}$$

Corruptions: Jones Matrices

- Antenna-based corruptions
 - pre-correlation polarization-dependent effects act as a matrix muliplication. This is the Jones matrix:

$$\vec{E}^{out} = \mathbf{J}\vec{E}^{in} \qquad \mathbf{J} = \begin{pmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{pmatrix} \quad \vec{E} = \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$$

- form of J depends on basis (RL or XY) and effect
 - off-diagonal terms J₁₂ and J₂₁ cause corruption (mixing)
- total **J** is a string of Jones matrices for each effect

$$\mathbf{J} = \mathbf{J}_F \, \mathbf{J}_E \, \mathbf{J}_D \, \mathbf{J}_P$$

• Faraday, polarized beam, leakage, parallactic angle

Parallactic Angle, P

- Orientation of sky in telescope's field of view
 - Constant for equatorial telescopes
 - Varies for alt-az telescopes
 - Rotates the position angle of linearly polarized radiation (R-L phase)

$$\mathbf{J}_{P}^{RL} = \begin{pmatrix} e^{i\phi} & 0\\ 0 & e^{-i\phi} \end{pmatrix}; \ \mathbf{J}_{P}^{XY} = \begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix}$$

- defined per antenna (often same over array)

 $\phi(t) = \arctan\left(\frac{\cos(l)\sin(h(t))}{\sin(l)\cos(\delta) - \cos(l)\sin(\delta)\cos(h(t))}\right)$ l = latitude, h(t) = hour angle, δ = declination

- P modulation can be used to aid in calibration

Visibilities to Stokes on-sky: RL basis

 the (outer) products of the parallactic angle (P) and the Stokes matrices gives

$$\vec{v} = \mathbf{J}_P \mathbf{S} \vec{s}$$

• this matrix maps a sky Stokes vector to the coherence vector representing the four perfect (circular) polarization products:

Circular Feeds: linear polarization in cross hands, circular in parallel-hands

Visibilities to Stokes on-sky: XY basis

• we have

$$\begin{pmatrix} v^{XX} \\ v^{XY} \\ v^{YX} \\ v^{YX} \\ v^{YY} \end{pmatrix} = \begin{pmatrix} \cos(\phi_i - \phi_j) & \cos(\phi_i + \phi_j) & -\sin(\phi_i + \phi_j) & i\sin(\phi_i - \phi_j) \\ -\sin(\phi_i - \phi_j) & \sin(\phi_i + \phi_j) & \cos(\phi_i + \phi_j) & i\cos(\phi_i - \phi_j) \\ \sin(\phi_i - \phi_j) & \sin(\phi_i + \phi_j) & \cos(\phi_i + \phi_j) & -i\cos(\phi_i - \phi_j) \\ \cos(\phi_i - \phi_j) & -\cos(\phi_i + \phi_j) & -\sin(\phi_i + \phi_j) & i\sin(\phi_i - \phi_j) \end{pmatrix} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix}$$

- and for identical parallactic angles ϕ between antennas:

$$v^{XX}
v^{XY}
v^{YX}
v^{YX}
v^{YY}
v^{YY}
V^{YY}
V
$$v^{XY}
v^{YY}
V
(I + Q \cos 2\phi - U \sin 2\phi)
Q \sin 2\phi + U \cos 2\phi + iV
Q \sin 2\phi + U \cos 2\phi - iV
I - Q \cos 2\phi + U \sin 2\phi)$$$$

Linear Feeds: linear polarization in all hands, circular only in cross-hands

Basic Interferometry equations

- An interferometer naturally measures the transform of the sky intensity in *uv*-space convolved with aperture
 - cross-correlation of aperture voltage patterns in uv-plane
 - its tranform on sky is the primary beam A with FWHM ~ λ /D

$$V(\mathbf{u}) = \int d^2 \mathbf{x} A(\mathbf{x} - \mathbf{x}_p) I(\mathbf{x}) e^{-2\pi i \mathbf{u} \cdot (\mathbf{x} - \mathbf{x}_p)} + \mathbf{n}$$
$$= \int d^2 \mathbf{v} \widetilde{A}(\mathbf{u} - \mathbf{v}) \widetilde{I}(\mathbf{v}) e^{2\pi i \mathbf{v} \cdot \mathbf{x}_p} + \mathbf{n}$$

- The "tilde" quantities are Fourier transforms, with convention:

$$\widetilde{T}(\mathbf{u}) = \int d^2 \mathbf{x} \, e^{-i2\pi \mathbf{u} \cdot \mathbf{x}} \, T(\mathbf{x}) \quad \mathbf{x} = (l, m) \leftrightarrow \mathbf{u} = (u, v)$$
$$T(\mathbf{x}) = \int d^2 \mathbf{u} \, e^{i2\pi \mathbf{u} \cdot \mathbf{x}} \, \widetilde{T}(\mathbf{u})$$

Polarization Interferometry : Q & U

• Parallel-hand & Cross-hand correlations (circular basis) – visibility k (antenna pair ij, time, pointing x, channel v, noise n): $V_{k}^{RR}(\mathbf{u}_{k}) = \int d^{2}\mathbf{v} \widetilde{A}_{k}^{RR}(\mathbf{u}_{k} - \mathbf{v}) [\widetilde{I}_{v}(\mathbf{v}) + \widetilde{V}_{v}(\mathbf{v})] e^{2\pi i \mathbf{v} \cdot \mathbf{x}_{k}} + \mathbf{n}_{k}^{RR}$ $V_{k}^{RL}(\mathbf{u}_{k}) = \int d^{2}\mathbf{v} \widetilde{A}_{k}^{RL}(\mathbf{u}_{k} - \mathbf{v}) [\widetilde{Q}_{v}(\mathbf{v}) + i\widetilde{U}_{v}(\mathbf{v})] e^{-i2\phi_{k}} e^{2\pi i \mathbf{v} \cdot \mathbf{x}_{k}} + \mathbf{n}_{k}^{RL}$ $V_{k}^{LR}(\mathbf{u}_{k}) = \int d^{2}\mathbf{v} \widetilde{A}_{k}^{LR}(\mathbf{u}_{k} - \mathbf{v}) [\widetilde{Q}_{v}(\mathbf{v}) - i\widetilde{U}_{v}(\mathbf{v})] e^{i2\phi_{k}} e^{2\pi i \mathbf{v} \cdot \mathbf{x}_{k}} + \mathbf{n}_{k}^{LR}$ $V_{k}^{LR}(\mathbf{u}_{k}) = \int d^{2}\mathbf{v} \widetilde{A}_{k}^{LR}(\mathbf{u}_{k} - \mathbf{v}) [\widetilde{Q}_{v}(\mathbf{v}) - i\widetilde{U}_{v}(\mathbf{v})] e^{i2\phi_{k}} e^{2\pi i \mathbf{v} \cdot \mathbf{x}_{k}} + \mathbf{n}_{k}^{LR}$ $V_{k}^{LL}(\mathbf{u}_{k}) = \int d^{2}\mathbf{v} \widetilde{A}_{k}^{LL}(\mathbf{u}_{k} - \mathbf{v}) [\widetilde{I}_{v}(\mathbf{v}) - \widetilde{V}_{v}(\mathbf{v})] e^{2\pi i \mathbf{v} \cdot \mathbf{x}_{k}} + \mathbf{n}_{k}^{LR}$

 where kernel A is the aperture cross-correlation function, φ is the parallactic angle, and Q+iU=P is the complex linear polarization

$$\widetilde{P}(\mathbf{v}) = \widetilde{Q}(\mathbf{v}) + i\widetilde{U}(\mathbf{v}) = \left|\widetilde{P}(\mathbf{v})\right| e^{i2\varphi(\mathbf{v})}$$

- the phase of **P** is ϕ (the R-L phase difference)

Example: RL basis imaging

- Parenthetical Note:
 - can make a pseudo-I image by gridding RR+LL on the Fourier half-plane and inverting to a real image
 - can make a pseudo-V image by gridding RR-LL on the Fourier half-plane and inverting to real image
 - can make a pseudo-(Q+iU) image by gridding RL to the full Fourier plane (with LR as the conjugate) and inverting to a complex image
 - does not require having full polarization RR,RL,LR,LL for every visibility
- More on imaging (& deconvolution) tomorrow!

Polarization Leakage, D

- Polarizer is not ideal, so orthogonal polarizations not perfectly isolated
 - Well-designed systems have d < 1-5% (but some systems >10% \otimes)
 - A geometric property of the antenna, feed & polarizer design
 - frequency dependent (e.g. quarter-wave at center v)
 - · direction dependent (in beam) due to antenna
 - For *R*,*L* systems
 - parallel hands affected as d•Q + d•U, so only important at high dynamic range (because Q,U~d, typically)
 - cross-hands affected as d•l so almost always important

$$\mathbf{J}_{D}^{pq} = \begin{pmatrix} 1 & d^{p} \\ d^{q} & 1 \end{pmatrix}$$

Leakage of q into p (e.g. L into R)

Leakage revisited...

- Primary on-axis effect is "leakage" of one polarization into the measurement of the other (e.g. R ⇔ L)
 - but, direction dependence due to polarization beam!
- Customary to factor out on-axis leakage into D and put direction dependence in "beam"
 - example: expand RL basis with on-axis leakage

$$\hat{V}_{ij}^{RR} = V_{ij}^{RR} + d_i^R V_{ij}^{LR} + d_j^{*R} V_{ij}^{RL} + d_i^R d_j^{*R} V_{ij}^{LL}$$

$$\hat{V}_{ij}^{RL} = V_{ij}^{RL} + d_i^R V_{ij}^{LL} + d_j^{*L} V_{ij}^{RR} + d_i^R d_j^L V_{ij}^{LR}$$

- similarly for XY basis

Example: RL basis leakage

In full detail: •

"true" signal

$$\begin{split} V_{ij}^{RR} &= \int_{sky} E_{ij}^{RR} (l,m) [(\mathbf{I} + \mathbf{V}) e^{i(\chi_i - \chi_j)} & \text{2nd order:} \\ &+ d_i^R e^{-i(\chi_i + \chi_j)} (\mathbf{Q} - i\mathbf{U}) + d_j^{*R} e^{i(\chi_i + \chi_j)} (\mathbf{Q} + i\mathbf{U}) \\ &+ d_i^R d_j^{*R} e^{-i(\chi_i - \chi_i)} (\mathbf{I} - \mathbf{V})] (l,m) e^{-i2t(u_{ij}l + v_{ij}m)} dl dm \\ V_{ij}^{RL} &= \int_{sky} E_{ij}^{RL} (l,m) [(\mathbf{Q} + i\mathbf{U}) e^{i(\chi_i + \chi_j)} & \text{1st order:} \\ &+ d_i^R (\mathbf{I} - \mathbf{V}) e^{-i(\chi_i - \chi_j)} + d_j^{*L} (\mathbf{I} + \mathbf{V}) e^{i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i + \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} + d_j^{*L} (\mathbf{I} + \mathbf{V}) e^{i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i + \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} + d_j^{*L} (\mathbf{I} + \mathbf{V}) e^{i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i - \chi_j)} & \text{1st order:} \\ &+ d_i^R d_j^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i -$$

New Mexico Tech

Example: linearized leakage

• RL basis, keeping only terms linear in I,Q±iU,d:

$$V_{ij}^{RL} = (\mathbf{Q} + i\mathbf{U})e^{-i(\phi_i + \phi_j)} + \mathbf{I}(d_i^R e^{i(\phi_i - \phi_j)} + d_j^{*L} e^{-i(\phi_i - \phi_j)})$$
$$V_{ij}^{LR} = (\mathbf{Q} - i\mathbf{U})e^{i(\phi_i + \phi_j)} - \mathbf{I}(d_i^L e^{-i(\phi_i - \phi_j)} + d_j^{*R} e^{i(\phi_i - \phi_j)})$$

• Likewise for XY basis, keeping linear in I,Q,U,V,d,sin(ϕ_i - ϕ_i)

$$V_{ij}^{XY} = \operatorname{Qsin}(\phi_{i} + \phi_{j}) + \operatorname{Ucos}(\phi_{i} + \phi_{j}) + i \operatorname{V} + [(d_{i}^{X} + d_{j}^{*Y}) \cos(\phi_{i} - \phi_{j}) - \sin(\phi_{i} - \phi_{j})]\operatorname{I}$$
$$V_{ij}^{YX} = \operatorname{Qsin}(\phi_{i} + \phi_{j}) + \operatorname{Ucos}(\phi_{i} + \phi_{j}) + i \operatorname{V} + [(d_{i}^{Y} + d_{j}^{*X}) \cos(\phi_{i} - \phi_{j}) + \sin(\phi_{i} - \phi_{j})]\operatorname{I}$$

WARNING: Using linear order will limit dynamic range!

Ionospheric Faraday Rotation, F

• Birefringency due to magnetic field in ionospheric plasma

• can come from different Faraday depths \rightarrow tomography

Antenna voltage pattern, E

- Direction-dependent gain and polarization
 - includes primary beam
 - Fourier transform of cross-correlation of antenna voltage patterns
 - includes polarization asymmetry (squint)

$$\mathbf{J}_{E}^{pq} = \begin{pmatrix} e^{pp}(l',m') & e^{pq}(l',m') \\ e^{qp}(l',m') & e^{qq}(l',m') \end{pmatrix}$$

- includes off-axis cross-polarization (leakage)
 - convenient to reserve D for on-axis leakage
- important in wide-field imaging and mosaicing
 - when sources fill the beam (e.g. low frequency)

Summary – polarization interferometry

- Choice of basis: CP or LP feeds
 - usually a technology consideration
- Follow the signal path
 - ionospheric Faraday rotation F at low frequency
 - direction dependent (and antenna dependent for long baselines)
 - parallactic angle P for coordinate transformation to Stokes
 - antennas can have differing PA (e.g. VLBI)
 - "leakage" D varies with v and over beam (mix with E)
- Leakage
 - use full (all orders) D solver when possible
 - linear approximation OK for low dynamic range
 - beware when antennas have different parallactic angles

Polarization Calibration & Observation

So you want to make a polarization image...

- Making polarization images
 - follow general rules for imaging
 - image & deconvolve I, Q, U, V planes
 - Q, U, V will be positive and negative
 - V image can often be used as check
- Polarization vector plots
 - EVPA calibrator to set angle (e.g. R-L phase difference) $\Phi = \frac{1}{2} \tan -1 U/Q$ for E vectors
 - B vectors ⊥ E
 - plot E vectors (length given by P)
- Leakage calibration is essential
- See Tutorials on Friday

Strategies for leakage calibration

- Need a bright calibrator! Effects are low level...
 - determine antenna gains independently (mostly from parallel hands)
 - use cross-hands (mostly) to determine leakage
 - do matrix solution to go beyond linear order
- Calibrator is unpolarized
 - leakage directly determined (ratio to I model), but only to an overall complex constant (additive over array)
 - need way to fix phase δ_p - δ_q (*ie.* R-L phase difference), e.g. using another calibrator with known EVPA
- Calibrator of known (non-zero) linear polarization
 - leakage can be directly determined (for I,Q,U,V model)
 - unknown p-q phase can be determined (from U/Q etc.)

Other strategies

- Calibrator of unknown polarization
 - solve for model IQUV and D simultaneously or iteratively
 - need good parallactic angle coverage to modulate sky and instrumental signals
 - in instrument basis, sky signal modulated by $e^{\imath 2\chi}$
- With a very bright strongly polarized calibrator
 - can solve for leakages and polarization per baseline
 - can solve for leakages using parallel hands!
- With no calibrator
 - hope it averages down over parallactic angle
 - transfer D from a similar observation
 - usually possible for several days, better than nothing!
 - need observations at same frequency

Parallactic Angle Coverage at VLA

- fastest PA swing for source passing through zenith •
 - to get good PA coverage in a few hours, need calibrators between declination +20° and +60°

Finding polarization calibrators

- Standard sources ullet
 - planets (unpolarized if unresolved)
 - 3C286, 3C48, 3C147 (known IQU, stable)
 - sources monitored (e.g. by VLA)
 - other bright sources (bootstrap)

http://www.vla.nrao.edu/astro/calib/polar/

VLBA Polarization Calibration Resources - Mozilla Edit View Go Bootmarks Tools Window Help									- 🗆 X	
S S Search Search									1001	
Iome Bookmarks & WebMail & Contact & People & Yellow Pages & Download & Find Sites Channels										
National Radio Astronomy Observatory										
D Home > VLA > Tools for Astronomers > Polarization Calibration Resources										
VLA/VLBA Polarization Calibration Page Steve Myers & Greg Taylor NRAO, Socorro										
▼ VLAV/LBA Polarization Calibration Database 2003 - Mozilla										
	Elle Edit Ale	3W GU BUU	kmarks <u>T</u> uuis	Window Helb						
-	6,0	00	http:	://www.vla.nrao.edu/	/astro/calib/polar/2003/		_	S	earch	°0
	2136+006	Bookmarks S B	♦ WebMail 20031205	Contact 🛇 People	Vellow Pages V Do 10005.95 ± 6.25	ownload 👒 Find Sites 139.21 ± 0.52	Channels 1.39 ± 0.01	-154.90 ± 0.15	20031205	8.859 ±
	2136+006	В	20031219	10.129 ± 0.021	10124.86 ± 13.68	102.56 ± 1.52	1.01 ± 0.02	-161.12 ± 2.38	20031219	8.791 ±
	2136+006	MEAN	all	10.122 ± 0.113	10120.24 ± 112.97	119.32 ± 11.78	1.18 ± 0.12	-155.36 ± 5.36	all	8.747 ±
					220	2+422 C BAND				
	2202+422	D	20030206	2.269 ± 0.002	2268.28 ± 8.43	125.50 ± 1.22	5.53 ± 0.03	-17.99 ± 0.98	20030206	2.094 ±
WS:	2202+422	D	20030308	2.044 ± 0.002	2042.52 ± 1.27	117.19 ± 0.10	5.74 ± 0.00	-21.31 ± 1.22	20030308	0.000 ±
New: T	2202+422	D	20030419	2.122 ± 0.004	2120.92 ± 10.57	99.93 ± 0.00	4.71 ± 0.02	-15.07 ± 0.02	20030419	2.165 ±
broken	2202+422	A	20030527	2.016 ± 0.003	2015.67 ± 0.18	97.05 ± 0.99	4.81 ± 0.05	-22.52 ± 0.01	20030527	2.062 ±
New:Th	2202+422	A	20030609	2.017 ± 0.004	2016.40 ± 1.76	96.02 ± 0.85	4.76 ± 0.04	-18.00 ± 0.33	20030609	2.167 ±
the Gal	2202+422	A	20030630	2.081 ± 0.003	2080.76 ± 0.05	94.24 ± 0.67	4.53 ± 0.03	-17.84 ± 0.60	20030630	2.362 ±
A list o not ava	2202+422	A	20030707	2.101 ± 0.007	2100.35 ± 1.64	104.18 ± 0.61	4.96 ± 0.03	-18.78 ± 1.30	20030707	2.291 ±
Models	2202+422	A	20030809	2.381 ± 0.002	2380.58 ± 2.59	97.25 ± 0.14	4.09 ± 0.01	-0.64 ± 2.18	20030809	2.750 ±
and 3C , details.	2202+422	A	20030821	2.401 ± 0.004	2400.15 ± 0.32	94.36 ± 0.14	3.93 ± 0.01	-6.39 ± 0.90	20030821	2.860 ±
	2202+422	A	20030905	2.341 ± 0.007	2340.07 ± 4.48	85.74 ± 0.02	3.66 ± 0.01	-0.42 ± 1.56	20030905	2.873 ±
A reco	2202+422	A	20030914	2.536 ± 0.006	2534.40 ± 2.73	89.88 ± 0.71	3.55 ± 0.02	-13.02 ± 0.94	20030914	2.792 ±
04	2202+422	В	20031102	2.450 ± 0.002	2448.52 ± 3.37	83.19 ± 0.01	3.40 ± 0.00	-9.12 ± 0.39	20031102	2.645 ±
	2202+422	В	20031117	2.288 ± 0.003	2286.56 ± 0.36	97.28 ± 0.44	4.25 ± 0.02	-18.17 ± 1.44	20031117	2.397 ±
	2202+422	В	20031205	2.514 ± 0.004	2512.90 ± 2.89	109.69 ± 0.26	4.37 ± 0.02	-15.73 ± 0.11	20031205	2.814 ±
	2202+422	В	20031219	2.478 ± 0.004	2474.81 ± 0.29	127.94 ± 0.12	5.17 ± 0.01	-13.50 ± 0.20	20031219	2.707 ±
	2202+422	MEAN	all	2.269 ± 0.184	2268.19 ± 183.41	101.30 ± 12.93	4.50 ± 0.68	-13.90 ± 6.65	all	2.498 ±
				2253+161 C BAND						
	2253+161	D	20030206	12.154 ± 0.012	12148.38 ± 31.90	488.79 ± 2.39	4.02 ± 0.01	2.54 ± 0.74	20030206	10.751 ±
	2253+161	D	20030308	11.728 ± 0.013	11721.95 ± 14.16	455.86 ± 4.99	3.89 ± 0.05	3.21 ± 2.32	20030308	0.000 ±
	2253+161	D	20030419	11.677 ± 0.023	11669.28 ± 34.96	449.99 ± 4.89	3.86 ± 0.05	-3.47 ± 1.59	20030419	10.921 ±
	2253+161	A	20030527	11.240 ± 0.025	11220.39 ± 19.04	434.76 ± 2.30	3.87 ± 0.03	4.45 ± 0.24	20030527	10.120 ±
	2253+161	A	20030609	11 124 + 0.031	1111479 + 1218	461.61 + 1.77	415 + 0.02	7.68 + 0.49	20030609	10 119 +

Ne

Example: D-term calibration

• D-term calibration effect on RL visibilities (should be Q+iU):

Example: D-term calibration

• D-term calibration effect in image plane :

Bad D-term solution

Good D-term solution

Summary – Observing & Calibration

- Follow normal calibration procedure (previous lecture)
- Need bright calibrator for leakage D calibration
 - best calibrator has strong known polarization
 - unpolarized sources also useful
- Parallactic angle coverage useful
 - necessary for unknown calibrator polarization
- Need to determine unknown *p*-*q* phase
 - CP feeds need EVPA calibrator for R-L phase
 - if system stable, can transfer from other observations
- Special Issues
 - observing CP difficult with CP feeds
 - wide-field polarization imaging (needed for EVLA & ALMA)

