------------------------------------------------------------------------ merritt.tex ApJ, 2006, in press Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 8bit X-MailScanner-Information: Please contact postmaster@aoc.nrao.edu for more information X-MailScanner: Found to be clean X-MailScanner-SpamCheck: not spam, SpamAssassin (score=2.68, required 5, autolearn=disabled, OBSCURED_EMAIL 1.68, SARE_OEM_OBFU 1.00) X-MailScanner-SpamScore: ss X-MailScanner-From: merritt@astro.rit.edu astro-ph/0510498 \documentclass[12pt,preprint2]{emulateapj} \usepackage{pslatex} \usepackage[T1]{fontenc} \usepackage[latin1]{inputenc} \setcounter{tocdepth}{3} \usepackage{subfigure} \usepackage{amsmath} \usepackage{graphicx,graphics} \usepackage{amssymb} \usepackage[english]{babel} \newcommand{\vdag}{(v)^\dagger} \newcommand{\myemail}{skywalker@galaxy.far.far.away} \newcommand{\gap}{\;\rlap{\lower 2.5pt \hbox{$\sim$}}\raise 1.5pt\hbox{$>$}\;} \newcommand{\lap}{\;\rlap{\lower 2.5pt \hbox{$\sim$}}\raise 1.5pt\hbox{$<$}\;} \newcommand{\beq}{\begin{equation}} \newcommand{\eeq}{\end{equation}} \newcommand{\mh}{M_\bullet} \newcommand{\Lsolar}{L_\odot} \newcommand{\msun}{M_\odot} \newcommand{\rsun}{\radius_\odot} \newcommand{\lsun}{\luminosity_\odot} \newcommand{\vh}{V} \shorttitle{Cusp Generation} \shortauthors{Merritt \& Szell} \begin{document} \title{Dynamical Cusp Regeneration} \author{David Merritt and Andras Szell} \affil{Department of Physics, Rochester Institute of Technology, Rochester, NY 14623} \begin{abstract} After being destroyed by a binary supermassive black hole, a stellar density cusp can regrow at the center of a galaxy via energy exchange between stars moving in the gravitational field of the single, coalesced hole. We illustrate this process via high-accuracy $N$-body simulations. Regeneration requires roughly one relaxation time and the new cusp extends to a distance of roughly one-fifth the black hole's influence radius, with density $\rho \sim r^{-7/4}$; the mass in the cusp is of order 10\% the mass of the black hole. Growth of the cusp is preceded by a stage in which the stellar velocity dispersion evolves toward isotropy and away from the tangentially-anisotropic state induced by the binary. We show that density profiles similar to those observed at the center of the Milky Way and M32 can regenerate themselves in several Gyr following infall of a second black hole; the presence of density cusps at the centers of these galaxies can therefore not be used to infer that no merger has occurred. We argue that $\rho\sim r^{-7/4}$ density cusps are ubiquitous in stellar spheroids fainter than $M_V\approx -18.5$ that contain supermassive black holes, but the cusps have not been detected outside of the Local Group since their angular sizes are less than $\sim 0.1''$. We show that the presence of a cusp implies a lower limit of $\sim 10^{-4}$ yr$^{-1}$ on the rate of stellar tidal disruptions, and discuss the consequences of the cusps for gravitational lensing and the distribution of dark matter on sub-parsec scales. \end{abstract} \section{Introduction} Mass distributions near the centers of early-type galaxies are well described as power laws, $\rho\sim r^{-\gamma}$, with indices $\gamma$ that change gradually with radius. At their innermost resolved radii, most galaxies have $0.5\lap\gamma\lap 2.$, with the steeper slopes characteristic of fainter galaxies \citep{virgo-VI}. If a supermassive black hole is present, the orbits of stars will be strongly influenced at distances less than $\sim r_h= GM_\bullet/\sigma^2 \approx 10$ pc $(M_\bullet/10^8M_\odot)(\sigma/200 {\rm km\ s}^{-1})^{-2}$, the black hole's gravitational influence radius. Most galaxies are spatially unresolved on these small scales; two clear exceptions are the nucleus of the Milky Way, for which number counts extend inward to $\sim 0.002 r_h$ \citep{genzel-03}, and M32, which is resolved down to a radius of $\sim 0.2 r_h$ \citep{lauer-98}. Both galaxies exhibit steep density slopes, $\gamma\approx 1.5$, at $r\lap r_h$. Outside of the Local Group, only giant ellipticals have sufficiently large black holes that $r_h$ can be resolved; the nuclear luminosity profiles in these galaxies are also power laws but very flat, $\gamma \lap 1$. Many distributions of stars are possible around a black hole, but under two circumstances, the stellar distribution at $r\lap r_h$ is predictable. (1) If the black hole has been present for a time longer than $T_r$, the relaxation time in the nucleus, exchange of energy between stars will drive the stellar distribution toward a collisional steady state; assuming a single stellar mass and ignoring physical collisions between stars, this steady state has $\rho\sim r^{-7/4}$ at $r\lap r_h$ \citep{bw-76}. (2) If the nucleus formed via the merger of two galaxies each with its own supermassive black hole, the two black holes will displace of order their combined mass in the process of forming a tightly-bound pair \citep{mm-01}, producing a low-density core. The first mechanism may be responsible for the steep density profiles observed at the centers of the Milky Way and M32, since both galaxies have central relaxation times of order $10^9$ yr and both are near enough that linear scales of order $r_h$ are well resolved. The second mechanism may explain the very flat central profiles of luminous E galaxies \citep{milos-02,ravin-02}; the central relaxation times of these galaxies are much longer than $10^{10}$ yr and the stellar distribution would be expected to remain nearly unchanged after the two black holes had coalesced into one. In this paper we point out that both outcomes are possible. A galaxy may form via mergers, but at the same time, its central relaxation time following the merger may be shorter than $10^{10}$ yr. In this circumstance, the cusp of stars around the black hole is first destroyed by the massive binary, then is regenerated via encounters between stars in the gravitational field of the single, coalesced hole. The result is a steep inner density profile in a galaxy that had previously experienced the scouring effects of a massive binary. To the extent that {\it all} stellar spheroids experienced mergers -- if only in the distant past -- this picture is probably generic, applying even to small dense systems like M32 and to the bulges of spiral galaxies like the Milky Way. Understanding the conditions under which a previously-destroyed density cusp can spontaneously regenerate is crucial if one wishes to interpret the present-day luminosity profiles of galaxies as fossil relics of their merger histories \citep{volonteri-03}. We use $N$-body simulations (\S2) to follow first the destruction (\S3) and then the spontaneous regeneration (\S4) of density cusps around black holes. The two most important free parameters in this problem are the mass ratio $q\equiv M_2/M_1$ of the binary black hole, and the slope $\gamma$ of the initial density cusp surrounding the larger hole. We present results for several combinations of $q$ and $\gamma$ (Table 1). Our conclusion is that collisional, Bahcall-Wolf density cusps should be ubiquitous in stellar spheroids fainter than $M_V\approx -18.5$ that contain massive black holes, essentially regardless of their merger histories. However these cusps have gone undetected in galaxies outside the Local Group because they are unresolved. In \S 5 we discuss a number of consequences of the presence of the cusps. \begin{table*} \begin{center} \caption{Parameters of the $N$-body integrations \label{tbl-2}} \begin{tabular}{ccccccc|ccccc} \tableline\tableline Run & $\gamma$ & $M_2/M_1$ & $r_{h_{1}}$ & $r_{h_{12}}$ & $T_r(r_{h_{12}})$ & $a_h$ & $r_h'$ & $T_r(r_h')$ & $T_r(0.2r_h')$ & $T_{gap}$ & $r_h''$\\ \tableline 1 & $0.5$ & $0.5$ & $0.264$ & $0.326$ & $1170.$ & $0.0181$ & $0.39$ & $1420.$ & $620$ & $79.$ & $0.38$ \\ 2 & $0.5$ & $0.25$ & $0.264$ & $0.296$ & $1010.$ & $0.0119$ & $0.35$ & $1210.$ & $420$ & $48.$ & $0.34$ \\ 3 & $0.5$ & $0.1$ & $0.264$ & $0.278$ & $916.$ & $0.00573$ & $0.32$ & $1070.$ & $390$ & $22.$ & $0.31$ \\ &&&&&&&&& \\ 4 & $1.0$ & $0.5$ & $0.165$ & $0.210$ & $599.$ & $0.0116$ & $0.28$ & $870.$ & $300$ & $48.$ & $0.27$ \\ 5 & $1.0$ & $0.25$ & $0.165$ & $0.188$ & $499.$ & $0.00751$ & $0.23$ & $640.$ & $270$ & $26.$ & $0.23$ \\ 6 & $1.0$ & $0.1$ & $0.165$ & $0.174$ & $441.$ & $0.00360$ & $0.20$ & $520.$ & $220$ & $11.$ & $0.20$ \\ &&&&&&&&& \\ 7 & $1.5$ & $0.5$ & $0.0795$ & $0.107$ & $217.$ & $0.00594$ & $0.17$ & $420.$ & $160$ & $23.$ & $0.17$ \\ \tableline \end{tabular} \end{center} \end{table*} \section{Models and Methods} We started by constructing Monte-Carlo realizations of steady-state galaxy models having Dehnen's (1993) density law, with an additional, central point mass representing a black hole. The Dehnen-model density follows $\rho(r) \propto r^{-\gamma}$ at small radii, and the isotropic phase-space distribution function that reproduces Dehnen's $\rho(r)$ in the presence of a central point mass is non-negative for all $\gamma\ge 0.5$; hence $\gamma=0.5$ is the flattest central profile that can be adopted if the initial conditions are to represent an isotropic, steady state. We considered initial models with $\gamma=(0.5,1.0,1.5)$. The mass $M_1$ of the central ``black hole'' was always $0.01$, in units where the total mass in stars $M_{gal}$ was one; the Dehnen scale length $r_D$ and the gravitational constant $G$ were also unity. The $N$-body models so constructed were in a precise steady state at time zero. Destruction of the cusp was achieved by introducing a second ``black hole'' into this model, which spiralled into the center, forming a binary with the first (more massive) hole and displacing stars. Three values were used for the mass of the smaller hole: $M_2/M_1\equiv q =(0.5,0.25,0.1)$. The smaller hole was placed initially at a distance $1.6$ from the center, with a velocity roughly $1/2$ times the circular velocity at that radius; a non-circular orbit was chosen in order to speed up the orbital decay. After the orbit of the smaller black hole had decayed via dynamical friction against the stars, it formed a tight binary with the more massive hole, with a relative orbit close to circular. An estimate of the semi-major axis $a_h$ at which the binary first becomes ``hard'' is $a_h = G \mu/4\sigma^2$ where $\mu\equiv M_1M_1/(M_1+M_2)$ is the reduced mass. The precise meaning of ``hard'' is debatable; the definition just given defines a ``hard'' binary as one whose binding energy per unit mass, $|E|/(M_1+M_2)$, exceeds $2\sigma^2$. While simple, this definition contains the ill-defined quantity $\sigma$, which is a steep function of position near the black hole(s). We followed \cite{wang-05} and used the alternative definition \begin{equation} a_h \equiv {\mu\over M_1+M_2}{r_{h_{12}}\over 4} = {q\over (1+q)^2}{r_{h_{12}}\over 4}, \label{eq:ah} \end{equation} with $r_{h_{12}}$ the gravitational influence radius defined below. In practice, $a_h$ so defined was found to be roughly (within a factor $\sim 2$) the value of the semi-major axis at which the binary hardening rate $(d/dt)(1/a)$ first became approximately constant. Decay was allowed to continue until the binary semi-major axis had reached a value of $a_h/5\approx qr_h/20$. At this point, the two black holes were replaced by a single particle of mass $M_{12}=M_1+M_2$, with position and velocity given by the center of mass of the binary. The $N$-body integration was then continued for a time roughly equal to the relaxation time $T_r(r_h')$ defined below. The most suitable time at which to merge the two black holes was not clear {\it a priori}; our choice is of order the separation at which gravitational-wave emission would induce coalescence in $\sim 10^{10}$ yr \citep{living-05}, but in fact we expect that other processes like interaction of the binary with ambient gas may drive the final coalescence in real galaxies, and it is not clear at what separation these processes are likely to dominate the evolution. The ratio $(M_1+M_2)/M_{gal}\approx 0.01$ in our models is roughly a factor ten larger than the ratio of black hole mass to galaxy mass in real spheroids \citep{mf-01a,marconi-03}. This is acceptable as long as we are careful to present masses and radii in units scaled to $M_1+M_2$ when making comparisons with real galaxies. Table 1 gives a number of parameters associated with the $N$-body integrations. The gravitational influence radius $r_h$ was defined as the radius containing a mass in stars equal to twice the mass $M_\bullet$ of the central black hole. This definition, while superior to $GM_\bullet/\sigma^2$, is somewhat ambiguous in our $N$-body models, given that the effective mass of the central object, and the distribution of the stars, both change with time. We accordingly defined four different influence radii. (1) At the start of the integrations, the larger black hole, of mass $M_1$, was located at the center of the galaxy. Its influence radius $r_{h_{1}}$ was computed by setting $M_\bullet = M_1$ and using the $t=0$ stellar distribution. (2) After the smaller black hole has fallen in to a distance $\lap r_{h_{1}}$ from the larger hole, the appropriate value of $M_\bullet$ becomes $M_1+M_2$. We defined the associated influence radius to be $r_{h_{12}}$, which we computed ignoring the changes that had occurred in the stellar distribution since $t=0$. (3) The third influence radius, $r_h'$, was computed by setting $M_\bullet=M_1+M_2$, but this mass was compared with the stellar distribution at the end of the binary evolution phase, after the phase of cusp destruction. (4) Finally, $r_h''$ is the influence radius at the end of the second phase of integration, after a Bahcall-Wolf cusp has formed around the single black hole. As Table 1 shows, $r_h''$ is only slightly smaller than $r_h'$ since the regenerated cusp contains a mass that is small compared with $M_\bullet$. \begin{figure*} \centering \includegraphics[scale=0.70,angle=-90.]{fig_profs.ps} \caption{Cusp destruction. Solid lines are stellar density profiles just before the two ``black holes'' were combined into one. Dashed lines show the initial models. $q=M_2/M_1$ is the binary mass ratio. \label{fig:profs} } \end{figure*} The relaxation times $T_r$ in Table 1 were computed from the standard expression (eq. 2-62 of Spitzer 1987), setting $\ln\Lambda = \ln(\sigma^2r_{h12}/2Gm_\star)$, with $\sigma$ the 1D stellar velocity dispersion at $r_{h12}$ and $m_\star=N^{-1}$ the mass of an $N$-body particle. This definition of $\Lambda$ is equivalent to equating $b_{max}$, the maximum impact parameter for encounters in Chandrasekhar's theory, with $r_h$ \citep{preto-04}. Table 1 gives values of $T_r$ evaluated at two of the four influence radii defined above. $T(r_{h_{12}})$ was computed using the structural parameters of the initial galaxy model, while $T_r(r_h')$ was computed using estimates like those in Figures~\ref{fig:profs} and~\ref{fig:kinem}. of the stellar density and velocity dispersion in the evolved models. We also give $T_r(0.2rh')$; the motivation for this is given below. The final time scale in Table 1, $T_{gap}$, is defined below (equation {\ref{eq:tgap}) and is an estimate of the time required for the angular-momentum gap created by the binary to be refilled; $T_{gap}$ varied between $\sim T_r(r_h)/20$ and $\sim T_r(r_h)/50$. The power-law cusps in our initial models were motivated by the approximately power-law dependence of luminosity density on radius observed near the centers of many early-type galaxies \citep{virgo-VI}. Since the observations often do not resolve $r_h$, the stellar distribution at $r\lap r_h$ in some galaxies might be different than the inward extrapolation of the power laws that are fit to larger radii. For instance, galaxies with sufficiently short relaxation times are expected to have $\rho\sim r^{-7/4}$ density cusps like the ones that form in our $N$-body models at late times. Other galaxies may have compact stellar nuclei \citep{virgo-VIII}. We did not include such dense features in our initial models: first, because the associated mass would have been small compared with the mass removed by the binary; and second, because doing so would have more than doubled the computational effort due to the short time steps required for stars initially near the black holes. All $N$-body integrations used $N=0.12\times 10^6$ particles and were carried out on a GRAPE-6 special-purpose computer. The $N$-body integrator is described in \cite{msm-05}. This algorithm is an adaptation of {\tt NBODY1} \cite{Aarseth:99} to the GRAPE-6; it uses a fourth-order Hermite integration scheme with individual, adaptive, block time steps \citep{Aarseth:03}. For the majority of the particles, the forces and force derivatives were calculated via a direct-summation scheme on the GRAPE-6, using the particle advancement scheme described in \cite{bms-05} with an accuracy parameter of $\eta=0.01$ and zero softening. Close encounters between the black holes, and between black holes and stars, require prohibitively small time steps in such a scheme and were regularized using the chain regularization routine of Mikkola and Aarseth \citep{MA:90,MA:93}. A detailed description of the chain algorithm, including the results of performance tests, are given in \cite{msm-05}. \begin{figure*} \centering \includegraphics[scale=0.7,angle=-90.]{fig_mdefofa.ps} \caption{Mass deficits, computed as described in the text, during the binary phase of the integrations; $a=a(t)$ is the binary semi-major axis and $a_h$ is defined in equation (\ref{eq:ah}). $q=M_2/M_1$ is the binary mass ratio. \label{fig:mdef} } \end{figure*} Our initial conditions (one black hole at the center, a smaller black hole orbiting about it) are not as realistic as in simulations that follow both merging galaxies from the start (e.g. \cite{mm-01}, \cite{merritt-02}), but are superior to simulations that drop one or two black holes into a pre-existing galaxy that contains no black hole (e.g. \cite{quinlan-97,nakano-99a,nakano-99b}). We ignore the radiation recoil that would accompany the final coalescence of the two black holes, displacing the remnant hole temporarily from its central location and increasing the size of the core \citep{merritt-04b,boylan-04}. We also ignore processes like loss of stars into the black hole(s), stellar tidal disruptions, and stellar collsions, all of which might affect the form of the final density profile. \begin{figure*} \centering \includegraphics[scale=0.7,angle=-90.]{fig_kinem.ps} \caption{Stellar velocity dispersions at the end of the binary phase, in the integrations with $M_2/M_1=0.5$. Solid lines: $\sigma_r$; dashed lines: $\sigma_t$. The binary creates a tangentially-biased velocity distribution near the center by preferentially ejecting stars on radial orbits. Arrows indicate the black hole influence radius $r_h'$. \label{fig:kinem} } \end{figure*} \section{Cusp Destruction} After formation of a hard binary at $a\approx a_h$, the binary's binding energy continues to increase as the two massive particles eject stars via the gravitational slingshot \citep{saslaw-74,mv-92,quinlan-96}. As in a number of recent studies \citep{bms-05,msm-05}, we found that the hardening rates were nearly independent of time, $s\equiv (d/dt)(1/a) \approx $ const., for $ar_h$.) Figure~\ref{fig:tr} reveals that the brightest spheroids, $M_V\lap -20$, have central relaxation times that always greatly exceed $10^{10}$ yr. In these galaxies, a low-density core created by a binary supermassive black hole would persist for the age of the universe. However $T_r(r_h)$ drops with decreasing luminosity, falling below $10^{10}$ yr for $M_V\gap -18$. The Milky Way bulge falls on the relation defined by the more distant galaxies, which is reassuring given the uncertainties in its luminosity. (We adopted a bulge blue absolute magnitude of $M_B=-17.6$ from \cite{marconi-03} and assumed $M_V=M_B-0.9$.) However M32 appears to be shifted from the relation defined by the other galaxies, as if it is the dense core of a once much brighter galaxy. This possibility has often been raised in the past \citep{king-62,faber-73,nieto-87}. \begin{figure} \centering \includegraphics[scale=0.45]{fig_tr.ps} \caption{Estimates of the relaxation time at the black hole's influence radius, $r_h$, in the sample of early-type galaxies modelled by \cite{wang-04}. Black hole masses were computed from the $M_\bullet-\sigma$ relation \citep{mf-01b}, except in the case of the Milky Way, for which $M_\bullet=3.7\times 10^6M_\odot$ was assumed \citep{ghez-05}. The stellar mass was set equal to $0.7M_\odot$ when computing $T_r$. Horizonal axis is absolute visual magnitude of the galaxy or, in the case of the Milky Way, the stellar bulge. The size of the symbols is proportional to $\log_{10}(\theta_{r_h}/\theta_{obs})$, where $\theta_{r_h}$ is the angular size of the black hole's influence radius and $\theta_{obs}$ is the observational resolution. Filled symbols have $\theta_{r_h}>\theta_{obs}$ ($r_h$ resolved) and open circles have $\theta_{r_h}<\theta_{obs}$ ($r_h$ unresolved). Values of $T_r(r_h)$ in the unresolved galaxies should be considered approximate since the luminosity profiles in these galaxies are not well known at $r 0.1''$ implies $M_\bullet \gap 6\times 10^8M_\odot$; however such massive black holes would almost certainly sit in galaxies with central relaxation times longer than $10^{10}$ yr (Figure~\ref{fig:tr}) and a cusp would not have formed. If we assume that black holes like the ones in the Milky Way and M32 (i.e. $M_\bullet\approx 3\times 10^6M_\odot$) are the most massive to be associated with collisionally-relaxed nuclei, then the associated cusps could be resolved to a distance of $\sim 0.7$ Mpc, roughly the distance to M32 -- consistent with the statement made above that the cusp in M32 is only barely resolved. Hence, collisional cusps are unlikely to be observed in galaxies beyond the Local Group. Unresolved density cusps might appear as pointlike nuclei, particularly in dE galaxies which have low central surface brightnesses. Pointlike nuclei are in fact nearly ubiquitous in elliptical galaxies as faint as $M_V\approx -18$, disappearing for $M_V\gap -13$ \citep{vdb-86}. Luminosities of the nuclei are observed to average $\sim 0.003$ times that of their host galaxies, albeit with considerable scatter \citep{virgo-VIII}. As shown in \S4, Bahcall-Wolf cusps entrain a mass of order $0.1M_\bullet$. If the ratio of black hole mass to stellar mass that characterizes bright galaxies, $M_\bullet/M_{gal}\approx 0.0013$ \citep{mf-01a}, also holds for dE galaxies, the luminosity associated with the cusps would be only $\sim 10^{-4}L_{gal}$, too small to explain the majority of the observed nuclei. On the other hand, essentially nothing is known about the masses (or even the existence) of black holes in spheroids fainter than $M_V=-18$ (with the exception of M32, probably a special case) and it is possible that $M_\bullet \gap 10^{-3}M_{gal}$ in these galaxies. It is intriguing to speculate that the disappearance of pointlike nuclei in dE galaxies fainter than $M_V\approx -13$ might signal the disappearance of the black holes. We note that the nuclear cusps of the Milky Way and M32 extend approximately as power laws out to radii far beyond $r_h$. Even these more extended cusps would be unresolved beyond the Local Group and might contain enough light to explain the pointlike nuclei. The black holes in the Milky Way and M32 are among the smallest with dynamically-determined masses \citep{ff-05}. If smaller black holes do not exist, Figure~\ref{fig:tr} suggests that Bahcall-Wolf cusps might be present only in a small subset of spheroids containing black holes with masses $10^6\msun\lap M_\bullet\lap 3\times 10^6\msun$. However it has been argued that some late-type spirals host AGN with black hole masses as low as $\sim 10^4M_\odot$ \citep{ho-04}. If so, Figure~\ref{fig:tr} suggests that Bahcall-Wolf cusps would be present around these black holes. The presence of cores, or ``mass deficits,'' at the centers of bright elliptical galaxies has been taken as evidence of past merger events \citep{milos-02,ravin-02,graham-04}. Mass deficits are observed to disappear in galaxies fainter than $M_V\approx -19.5$ \citep{milos-02}. Could this be due to cusp regeneration? Figure~\ref{fig:tr} suggests an alternative explanation. Galaxies fainter than $M_V= -19.5$ are mostly unresolved on scales of $r_h$, which is also the approximate size of a core created by a binary supermassive black hole. The lack of mass deficits in galaxies with $M_V\gap -19.5$ probably just reflects a failure to resolve the cores in these galaxies. \subsection{Black Hole Feeding Rates} The low-luminosity galaxies most likely to harbor Bahcall-Wolf cusps (Figure~\ref{fig:tr}) are the same galaxies that would dominate the overall rate of stellar tidal disruptions, assuming of course that they contain black holes \citep{wang-04}. Published estimates of $\dot N$, the rate of stellar disruptions, in such low-luminosity galaxies \citep{su-99,mt-99,wang-04} have almost always been based on an inward extrapolation of luminosity profiles measured at $r>r_h$. In principle, knowing that $\rho(r)$ has the Bahcall-Wolf form near the black hole should allow a more accurate estimate of $\dot N$ in the low-luminosity galaxies that dominate the overall flaring rate. Here we show that the presence of a Bahcall-Wolf cusp implies a lower limit on $\dot N$, of order $10^{-4}$ yr$^{-1}$. The stellar density in the cusp is \beq \rho(r) \approx \rho(r_0)\left({r\over r_0}\right)^{-7/4} \eeq (equation \ref{eq:spike}), with $r_0=\alpha r_h$, $\alpha\approx 0.2$. We can write $\rho(r_0)=KM_\bullet/r_h^3$, where the constant $K$ depends on the form of $\rho(r)$ at $r>r_0$; assuming a $\rho\sim r^{-2}$ power law for $r>r_0$, as in the Milky Way and many other low-luminosity spheroids, we find $K\approx 4.0$. The rate at which stars in the cusp are fed to the black hole is approximately \beq \dot N_{cusp} \approx {4\pi\over m_\star} \int_0^{\alpha r_h} {\rho\over T_r \ln(2/\theta_{lc})} r^2dr \eeq \citep{ls-77,su-99}. Here $\theta_{lc}\approx \sqrt{r_t/r}$ is the angular size of the loss cone at radius $r$ and $r_t$ is the tidal disruption radius, $r_t\approx (M_\bullet/m_\star)^{1/3}r_\star$. This expression assumes that the feeding rate is limited by diffusion, i.e. that the loss cone is ``empty''; an equivalent statement is that $r_{crit}$, the radius above which a star can scatter in and out of the loss cone in one orbital period, is greater than $\alpha r_h$. In the case of the Milky Way black hole, it can be shown that $0.2r_h\alpha r_0\approx 0.7$ pc. In fainter spheroids, the $M_\bullet-\sigma$ relation, combined with equation (\ref{eq:ndot}), implies $\dot N \propto M_\bullet^{-0.4}$ and hence even higher flaring rates. The Bahcall-Wolf solution will break down at radii where the physical collision time is shorter than the diffusion time $\ln(2/\theta_{lc})T_r$. Adopting the standard expression for the collision time, \beq T_{coll} = \left[16\sqrt{\pi}n\sigma r_\star^2(1+\Theta)\right]^{-1} \eeq with $\Theta\equiv Gm_\star/(2\sigma^2r_\star)$ and $n$ the number density of stars, we find that physical collisions begin to affect the stellar distribution at $r\lap 0.08$ pc $\lap 0.023 r_h$ for Solar-type stars in the Galactic nucleus. \subsection{Gravitational Lensing} The central parts of galaxies can act as strong gravitational lenses; the lack of a ``core'' image in observed lens systems implies a lower limit on the stellar density of the lensing galaxy within the central $\sim 10^2$ pc \citep{rusin-01,keeton-03}. Broken power-law density profiles like those in equation (\ref{eq:spike}) have been used to model lensing galaxies \citep{munoz-01,bowman-04}, although the break radii in these studies were chosen to be much larger than the value $r_0\approx 0.2 r_h$ that describes the Bahcall-Wolf cusps (Figure~\ref{fig:all}). However the presence or absence of the cusps should have little effect on the lensing properties of galaxies, because the mass contained within the cusp is small compared with $M_\bullet$, and because even the supermassive black holes contribute only slightly to the lensing signal \citep{rusin-05}. The low-luminosity galaxies that are likely to contain cusps (Figure~\ref{fig:tr}) are also unlikely to act as lenses. \subsection{Dark Matter} The distribution of {\it dark matter} on sub-parsec scales near the center of the Milky Way and other galaxies is relevant to the so-called ``indirect detection'' problem, in which inferences are drawn about the properties of particle dark matter based on measurements of its self-annihililation by-products \citep{mpla-05}. A recent detection of TeV radiation from the Galactic center by the HESS consortium \citep{aharonian-04} is consistent with a particle annihilation signal, but only if the dark matter density in the inner few parsecs is much higher than predicted by an inward extrapolation of the standard, $\Lambda$CDM halo models \citep{hooper-04}. One possibility is that the dark matter forms a steep ``spike'' around the black hole \citep{gs-99}. Particle dark matter would not spontaneously form a Bahcall-Wolf cusp since its relaxation time is extremely long. However, once a cusp forms in the {\it stars}, scattering of dark matter particles off of stars would redistribute the dark matter in phase space on a time scale of order $T_r(r_h)$, the star-star relaxation time \citep{merritt-04}. The ultimate result is a $\rho \sim r^{-3/2}$ density cusp in the dark matter \citep{gnedin-04}, but with possibly low normalization, particularly if the dark matter distribution was previously modified by a binary black hole \citep{merritt-02}. The $N$-body techniques applied here would be an effective way to address this problem. \acknowledgments We thank P. Cot\'e, L. Ferrarese, C. Keeton, S. Portegies Zwart, A. Robinson, and D. Rusin for helpful comments. R. Genzel kindly provided the Galactic center number count data that are reproduced in Figure~\ref{fig:MW}. This work was supported by grants AST-0071099, AST-0206031, AST-0420920 and AST-0437519 from the NSF, grant NNG04GJ48G from NASA, and grant HST-AR-09519.01-A from STScI. \begin{thebibliography}{} \bibitem[Aarseth(1999)]{Aarseth:99} Aarseth, S.~J.\ 1999, \pasp, 111, 1333 \bibitem[Aarseth(2003)]{Aarseth:03} Aarseth, S.~J.\ 2003, \apss, 285, 367 \bibitem[Aharonian et al.(2004)]{aharonian-04} Aharonian, F., et al.\ 2004, \aap, 425, L1 \bibitem[Alexander(1999)]{alexander-99} Alexander, T. 1999, \apj, 527, 835 \bibitem[Bahcall \& Wolf(1976)]{bw-76} Bahcall, J. N. \& Wolf, R. A. 1976, \apj, 209, 214 %\bibitem[Bahcall \& Wolf(1977)]{bw-77} % Bahcall, J. N. \& Wolf, R. A. 1977, % \apj, 216, 883 \bibitem[Baumgardt et al.(2004)]{2004ApJ...613.1133B} Baumgardt, H., Makino, J., \& Ebisuzaki, T.\ 2004, \apj, 613, 1133 \bibitem[Baumgardt et al.(2004)]{2004ApJ...613.1143B} Baumgardt, H., Makino, J., \& Ebisuzaki, T.\ 2004, \apj, 613, 1143 % \bibitem[Begelman, Blandford, \& Rees(1980)]{bbr-80} % Begelman, M. C., Blandford, R. D. \& Rees, M. J. 1980, % \nat, 287, 307 \bibitem[Berczik, Merritt \& Spurzem(2005)]{bms-05} Berczik, P., Merritt, D. \& Spurzem, R. 2005, astro-ph/0507260 \bibitem[Bertone \& Merritt(2005)]{mpla-05} Bertone, G., \& Merritt, D.\ 2005, Modern Physics Letters A, 20, 1021 \bibitem[Bowman et al.(2004)]{bowman-04} Bowman, J.~D., Hewitt, J.~N., \& Kiger, J.~R.\ 2004, \apj, 617, 81 \bibitem[Boylan-Kolchin et al.(2004)]{boylan-04} Boylan-Kolchin, M., Ma, C.-P., \& Quataert, E.\ 2004, \apjl, 613, L37 \bibitem[Cohn \& Kulsrud(1978)]{ck-78} Cohn, H., \& Kulsrud, R. M. 1978, \apj, 226, 1087 \bibitem[Cot\'e et al.(2005)]{virgo-VIII} Cot\'e, P., Piatek, S., Ferrarese, L., P., Jord\'an, A., Merritt, D., Peng, E. W., Hasegan, M., Blakeslee, J. P., Mei, S., West, M. J., Milosavljevi\'c, M., \& Tonry, J. L. 2005, submitted to The Astrophysical Journal. \bibitem[Dehnen(1993)]{dehnen-93} Dehnen, W. 1993, \mnras, 265, 250 %\bibitem[Eisenhauer et al.(2003)]{eisenhauer-03} % Eisenhauer, E., Sch\"odel, R., Genzel, R., Ott, T., Tecza, M., % Abuter, R., Eckart, A., \& Alexander, T. 2003, % \apj, 597, L121 \bibitem[Faber(1973)]{faber-73} Faber, S. M. 1973, \aj, 179, 423 %\bibitem[Faber et al.(1997)]{faber-97} % Faber, S. M. et al. 1997, % AJ, 114, 1771 \bibitem[Ferrarese et al.(2005)]{virgo-VI} Ferrarese, L. Cot\'e, P., Jord\'an, A., Peng, E. W., Blakeslee, J. P., Piatek, S., Mei, S., Merritt, D., Milosavljevi\'c, M., Tonry, J. L., \& West, M. J. 2005, submitted to The Astrophysical Journal. \bibitem[Ferrarese \& Ford(2005)]{ff-05} Ferrarese, L., \& Ford, H.\ 2005, Space Science Reviews, 116, 523 \bibitem[Ferrarese \& Merritt(2000)]{fm-00} Ferrarese, L., \& Merritt, D. 2000, \apj, 539, L9 \bibitem[Frank \& Rees(1976)]{fr-76} Frank, J., \& Rees, M. J. 1976, \mnras, 176, 633 \bibitem[Gebhardt et al.(1996)]{gebhardt-96} Gebhardt, K. et al. 1996, \aj, 112, 105 \bibitem[Genzel et al.(2003)]{genzel-03} Genzel, R., Schödel, R., Ott, T., Eisenhauer, F., Hofmann, R., Lehnert, M., Eckart, A., Alexander, T., Sternberg, A., Lenzen, R., Clénet, Y., Lacombe, F., Rouan, D., Renzini, A., \& Tacconi-Garman, L. E. \apj, 594, 812 \bibitem[Ghez et al.(2005)]{ghez-05} Ghez, A. M., Salim, S., Hornstein, S. D., Tanner, A., Lu, J. R., Morris, M., Becklin, E. E., \& Duch\^ene, G. 2005, \apj, 620, 744 \bibitem[Gnedin \& Primack(2004)]{gnedin-04} Gnedin, O.~Y., \& Primack, J.~R.\ 2004, Physical Review Letters, 93, 061302 \bibitem[Gondolo \& Silk(1999)]{gs-99} Gondolo, P., \& Silk, J.\ 1999, Physical Review Letters, 83, 1719 \bibitem[Graham(2004)]{graham-04} Graham, A. W. 2004, \apj, 613, L33 \bibitem[Hills(1983)]{hills-83} Hills, J. G. 1983, AJ, 88, 1269 \bibitem[Ho(2004)]{ho-04} Ho, L. 2004, in Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies, ed. L. C. Ho (Cambridge: Cambridge Univ. Press), p. 292 \bibitem[Hooper et al.(2004)]{hooper-04} Hooper, D., de la Calle Perez, I., Silk, J., Ferrer, F., \& Sarkar, S.\ 2004, Journal of Cosmology and Astro-Particle Physics, 9, 2 \bibitem[Keeton(2003)]{keeton-03} Keeton, C.~R.\ 2003, \apj, 582, 17 %\bibitem[Kent(1992)]{kent-92} % Kent, S.~M.\ 1992, \apj, 387, 181 \bibitem[King(1962)]{king-62} King, I. R. 1962, \aj, 67, 471 \bibitem[Lauer et al.(1998)]{lauer-98} Lauer, T. et al. 1998, AJ, 116, 2263 \bibitem[Lightman \& Shapiro(1977)]{ls-77} Lightman, A. P. \& Shapiro, S. L. 1977, \apj, 211, 244 \bibitem[Magorrian et al.(1998)]{magorrian-98} Magorrian, J. et al. 1998, \aj, 115, 2285 \bibitem[Magorrian \& Tremaine(1999)]{mt-99} Magorrian, J. \& Tremaine, S. 1999, \mnras, 309, 447 \bibitem[Marconi \& Hunt(2003)]{marconi-03} Marconi, A. \& Hunt, L. K. 2003, \apj, 589, L21 %\bibitem[Merritt(2001)]{merritt-01} % Merritt, D. 2001, % \apj, 556, 245 %\bibitem[Merritt(2004)]{merritt-04a} % Merritt, D. 2004a, % ``Single and Binary Black Holes and their % Influence on Nuclear Structure,'' in % Carnegie Observatories Astrophysics Series, Vol. 1: % Coevolution of Black Holes and Galaxies, ed. L. C. Ho % (Cambridge: Cambridge Univ. Press) \bibitem[Merritt(2004)]{merritt-04} Merritt, D.\ 2004, Physical Review Letters, 92, 201304 \bibitem[Merritt \& Ferrarese(2001)]{mf-01a} Merritt, D. \& Ferrarese, L. 2001, \mnras, 320, L30 \bibitem[Merritt \& Ferrarese(2001)]{mf-01b} Merritt, D. \& Ferrarese, L. 2001, in ASP Conf. Ser. 249, The Central Kiloparsec of Starbursts and AGN: The La Palma Connection, ed. J. H. Knapen et al. (San Francisco: ASP), 335 \bibitem[Merritt, Mikkola \& Szell(2005)]{msm-05} Merritt, D., Mikkola, S. \& Szell, A. 2005, in preparation \bibitem[Merritt \& Milosavljevic(2005)]{living-05} Merritt, D. \& Milosavljevic, M. 2005, ``Massive Black Hole Binary Evolution,'' Living Reviews in Relativity \bibitem[Merritt et al.(2004b)]{merritt-04b} Merritt, D., Milosavljevic, M., Favata, M., Hughes, S. A. \& Holz, D.E. 2004, \apj, 607, L9 \bibitem[Merritt et al.(2002)]{merritt-02} Merritt, D., Milosavljevic, M., Verde, L. \& Jimenez, R. 2002, \prl, 88, 191301 \bibitem[Merritt \& Tremblay(1994)]{mt-94} Merritt, D. \& Tremblay, B. 1994, \aj, 108, 514 \bibitem[Merritt \& Wang(2005)]{wang-05} Merritt, D. \& Wang, J. 2005, \apj, 621, L101 \bibitem[Mikkola \& Aarseth(1990)]{MA:90} Mikkola, S., \& Aarseth, S.~J.\ 1990, Celestial Mechanics and Dynamical Astronomy, 47, 375 \bibitem[Mikkola \& Aarseth(1993)]{MA:93} Mikkola, S., \& Aarseth, S.~J.\ 1993, Celestial Mechanics and Dynamical Astronomy, 57, 439 \bibitem[Mikkola \& Valtonen(1992)]{mv-92} Mikkola, S., \& Valtonen, M. J.\ 1992, \mnras, 259, 115 \bibitem[Milosavljevic \& Meritt(2001)]{mm-01} Milosavljevic, M. \& Merritt, D. 2001, \apj, 563, 34 \bibitem[Milosavljevic \& Meritt(2003)]{mm-03} Milosavljevic, M. \& Merritt, D. 2003, \apj, 596, 860 \bibitem[Milosavljevic et al.(2002)]{milos-02} Milosavljevic, M., Merritt, D., Rest, A., \& van den Bosch, F. C. 2002, \mnras, 331, 51 \bibitem[Mu{\~n}oz et al.(2001)]{munoz-01} Mu{\~n}oz, J.~A., Kochanek, C.~S., \& Keeton, C.~R.\ 2001, \apj, 558, 657 \bibitem[Murphy, Cohn \& Durisen(1991)]{murphy-91} Murphy, B. W., Cohn, H. N. \& Durisen, R. H. 1991, \apj, 370, 60 \bibitem[Nakano \& Makino(1999a)]{nakano-99a} Nakano, T. \& Makino, J. 1999a, \apj, 510, 155 \bibitem[Nakano \& Makino(1999b)]{nakano-99b} Nakano, T. \& Makino, J. 1999b, \apj, 525, L77 \bibitem[Nieto \& Prugniel(1987)]{nieto-87} Nieto, J.-L. \& Prugniel, P. 1987, \aa, 186, 30 \bibitem[Preto, Merritt \& Spurzem(2004)]{preto-04} Preto, M., Merritt, D. \& Spurzem, R. 2004, \apj, 613, L109 \bibitem[Quinlan(1996)]{quinlan-96} Quinlan, G. D. 1996, New Astron. 1, 35 \bibitem[Quinlan \& Hernquist(1997)]{quinlan-97} Quinlan, G. D. 1997, New Astron. 2, 533 \bibitem[Ravindranath, Ho \& Filippenko(2002)]{ravin-02} Ravindranath, S., Ho, L. C. \& Filippenko, A. V. 2002, \apj, 566, 801 \bibitem[Rest et al.(2001)]{rest-01} Rest, A. et al. 2001, \aj, 121, 2431 \bibitem[Rusin et al.(2005)]{rusin-05} Rusin, D., Keeton, C.~R., \& Winn, J.~N.\ 2005, \apjl, 627, L9 \bibitem[Rusin \& Ma(2001)]{rusin-01} Rusin, D., \& Ma, C.-P.\ 2001, \apjl, 549, L33 \bibitem[Saslaw, Valtonen \& Aarseth(1974)]{saslaw-74} Saslaw, W. C., Valtonen, M. J., \& Aarseth, S. J. 1974, \apj, 190, 253 \bibitem[Spitzer(1987)]{spitzer-87} Spitzer, L.\ 1987, ``Dynamical Evolution of Globular Clusters'' (Princeton: Princeton University Press) \bibitem[Syer \& Ulmer(1999)]{su-99} Syer, D. \& Ulmer, A. 1999, \mnras, 306, 35 %\bibitem[Szell, Merritt \& Mikkola(2005)]{smm-05} % Szell, A., Merritt, D. \& Mikkola, S. 2005, % in Nonlinear Dynamics in Astronomy \& Physics, % ed. S. T. Gottesman, J.-R. Buchler \& M. E. Mahon, % Ann. N. Y. Acad. Sci. 1045, 225 %\bibitem[Tremaine et al.(1994)]{tremaine-94} % Tremaine, S. et al. 1994, % AJ, 107, 634 \bibitem[Valluri et al.(2005)]{valluri-05} Valluri, M., Ferrarese, L., Merritt, D. \& Joseph, C. L. 2005, \apj, 628, 137 \bibitem[Valluri, Merritt \& Emsellem(2004)]{valluri-04} Valluri, M., Merritt, D., \& Emsellem, E. 2004, \apj, 602, 66 \bibitem[van den Bergh(1986)]{vdb-86} van den Bergh, S. 1986, \aj, 91, 271 \bibitem[Volonteri et al.(2003)]{volonteri-03} Volonteri, M., Madau, P., \& Haardt, F.\ 2003, \apj, 593, 661 \bibitem[Wang \& Merritt(2004)]{wang-04} Wang, J. \& Merritt, D. 2004, \apj, 600, 149 %\bibitem[Whittle(1992)]{whittle-92} % \apjs, 79, 49 \bibitem[Young(1977)]{young-77} Young, P. J. 1977, \apj, 215, 36 %\bibitem[Young, Shields \& Wheeler(1977)]{ysw-77} % Young, P. J., Shields, G. R., \& Wheeler, J. C. 1977, % \apj, 212, 367 \bibitem[Yu(2002)]{2002MNRAS.331..935Y} Yu, Q.\ 2002, \mnras, 331, 935 %\bibitem[Zhao, Haehnelt \& Rees(2002)]{zhao-02} % Zhao, H., Haehnelt, M. G., \& Rees, M. J. 2002, % \nat, 7, 385 \end{thebibliography} \end{document} %% This is emulateapj.cls, version Oct 10, 2003 %% For the latest version check http://hea-www.harvard.edu/~alexey/emulateapj %% %% 2/9/03: MAJOR CHANGE: This is a complete rewrite of emulateapj. It adds %% the use of single-column floats (figures, tables and footnotes) in the %% two-column mode. All standard LaTeX/AASTeX environments such as %% {figure}, {table}, {figure*}, {table*} and {deluxetable} (and %% {deluxetable*} added here) should work as expected. Enjoy. %% %% %% `emulateapj' is a LaTeX2e class to emulate the Astrophysical Journal %% (ApJ) page layout. The page length of the resulting document is very %% close to that in ApJ when Times fonts are used instead of the LaTeX %% default CM fonts (see below). %% %% If a manuscript is prepared for ApJ submission using the standard AAS %% (American Astronomical Society) LaTeX macros and the `aastex' style (see %% instructions for authors on the ApJ web site), the only thing required %% from the user should be to replace \documentclass{aastex} with %% \documentclass{emulateapj}, and perhaps resize figures as desired and %% replace {deluxetable} with {deluxetable*} %% (possible minor problems are described below). %% %% emulateapj requires revtex4.cls. If you don't have it already, it can be %% downloaded from http://publish.aps.org/revtex4/ (it's a small package). %% Other extrnal packages used are latexsym, graphicx, amssymb, longtable, %% epsf. They should already be present in the modern TeX distributions; if %% not, download them from www.ctan.org. %% %% To switch to the Times font, use the accompanying file apjfonts.sty (see %% the site above): %% \usepackage{apjfonts}. Alternatively, e.g., use the standard %% \usepackage{mathptmx}, the only difference is in math and Greek symbols. %% %% Alexey Vikhlinin %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Release notes (02/09/03): %% %% 1) This is a complete rewrite of emulateapj. The package is now %% based on revtex instead of aastex + multicol. Some inconsistencies with %% aastex may have been missed, so please don't hesitate to report them. %% %% 2) The {deluxetable} environment is re-implemented (the problem with the %% the aastex's deluxetable is it does not float). There is also a new %% environment {deluxetable*} (absent in aastex) to set a floating table %% two-column wide. These were not thoroughly tested, so please report any %% problems. Known problems: %% (a) \rotate doesn't work (too difficult to implement). Place the table %% at the end of the paper after references, inside {turnpage} environment %% (\begin{turnpage}\begin{deluxetable} ... \end{deluxetable}\end{turnpage}) %% %% 3) Multi-page tables cannot be set properly inside the main text; you %% need to move the table to the end of the paper (after the references) and %% issue the command \LongTables before it. %% %% 4) By default, deluxetables are typeset with \footnotesize. If you want %% to use a different size, use, e.g., \tabletypesize{\normalsize} _outside_ %% the deluxetable environment. If you need to increase interline spacing %% in the tables, use \def\arraystretch{1.XXX} also _outside_ deluxetables. %% %% 5) Option `onecolumn' (as in \documentclass[onecolumn]{emulateapj}) %% sets the whole paper (except the reference section) in one column %% as done by the ApJ for papers with long equations. %% %% 6) Options `apj' and `apjl' (\documentclass[apj]{emulateapj}) change the %% spacing of the references (the default is ApJL wide spacing). %% %% 7) By default, appendix subsections are not numbered: %% APPENDIX %% Derivation of Equations %% If you want them numbered (`A. Derivation of Equations'), use the option %% \documentclass[numberedappendix]{emulateapj} %% %% 8) By default, the comment in the upper-left corner of the title page and %% under the abstract will say "Draft version \today". There are additional %% commands \journalinfo{} and \submitted{} (the latter is equivalent to the %% aastex \slugcomment{} which also works) to change those comments. Used %% alone, \submitted{} will act on both those places. %% %% 9) The \title command sets the entire title, including math, in upper %% case. If this is undesirable, use \lowercase{} macro, e.g., %% \title{UPPER CASE OK HERE \lowercase{$a+b=c$}}. %% %% 10) On the last page where the references start, there may be problems %% with placement of footnotes. There is a command \lastpagefootnotes which %% can be issued somewhere before those footnotes. It will result in the %% remaining footnotes set together at the end of the text, properly %% adjusted. %% %% 11) There may be problems with single-column figure placements on the %% last page; try moving the figure around or explicitly specifying [t] %% placement. There may also be minor column misalignments on %% complicated pages with footnotes, sections, etc.; these are too difficult %% to fix. %% %% 12) Any footnotes in the paper title should be set as %% \title{Title\footnotemark[1]} \footnotetext[1]{text} (with foootnotetext %% outside the title), rather that simply a \footnote{}. %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% changes since 2/9/3: %% %% 2/14/3: fixed several bugs in deluxetable and footnotes inside the title. %% %% 3/3/3: Table caption is made in two lines. works only in {table} or %% {table*}, but not in {deluxetable} %% %% 3/3/3: Redefine p@subsection etc. for ApJ-style cross-references. %% %% 3/16/3: Define \tablerefs %% %% 3/25/3: Fix two-column references in the onecolumn mode (see %% \set@column@hsize{2}) %% %% 4/9/3: Change the definition of \tablenotemark. It is less general but %% works in the table caption. Also, put the body of deluxetable* %% inside a minipage to fix table footnotes. %% %% 5/14/3: Change section title font sizes. They are now different for 'apj' %% and 'apjl' options %% %% 7/8/3: redefine NAT@sort@cites after loding revtex4 to prevent citations %% from being sorted %% %% 7/15/3: Fix \and in the author list %% %% 7/17/3: Make \colhead to center column titles by default %% %% 7/27/3: Redefile \@biblabel to remove the numbered list from thebibliography %% %% 9/08/3: Further fixes to cutinhead: define @ptabularcr and use LT@cols %% %% 10/08/3: Copy definitions for \anchor and \url from aastex. %% %% 10/10/3: define \paragraph, \subparagraph. suppress section numbering %% below \subsection %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Copyright 2000-2003 Alexey Vikhlinin %% %% The first version of this package was written by Maxim Markevitch. %% Pieces of AASTeX style are used. %% %% This program can be redistributed and/or modified under the terms %% of the LaTeX Project Public License available from CTAN archives in %% directory macros/latex/base/lppl.txt. This means you are free to use and %% distribute this package; however, if you modify anything, please change the %% file name and remove the authors email address. %% %% Alexey Vikhlinin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\emulapj@ver{10/10/03} \ProvidesClass{emulateapj} \newif\if@two@col \DeclareOption{twocolumn}{\@two@coltrue} \DeclareOption{onecolumn}{\@two@colfalse} \newlength{\bibbaselineskip}\setlength{\bibbaselineskip}{3.075mm} \DeclareOption{numberedappendix}{ \def\AppendixApjSectionMarkInTitle#1{#1.\ } } \DeclareOption{apj}{ \setlength{\bibbaselineskip}{2.7mm} \def\apjsecfont{\small} \def\secnum@size{\small} \def\subsecnum@size{\normalsize} } \DeclareOption{apjl}{ \setlength{\bibbaselineskip}{3.075mm} \def\apjsecfont{\footnotesize} \def\secnum@size{\small} \def\subsecnum@size{\small} } \def\AppendixApjSectionMarkInTitle#1{\relax} \DeclareOption{numberedappendix}{ \def\AppendixApjSectionMarkInTitle#1{#1.\ } } \def\center@table@notes{% \def\@spew@tblnotes{% \centerline{\begin{minipage}{\pt@width}\spew@tblnotes\end{minipage}}% }% } \def\left@just@table@notes{% \def\@spew@tblnotes{\spew@tblnotes}% } \left@just@table@notes \ExecuteOptions{apjl,twocolumn} \ProcessOptions \let\@startsection@from@latex=\@startsection \if@two@col \LoadClass[twocolumn,nofootinbib,showkeys,twoside,floatfix]{revtex4} \else \LoadClass[nofootinbib,showkeys,twoside,floatfix]{revtex4} \fi % Restore natbib package without sorting. \def\NAT@sort{0} \def\NAT@sort@cites#1{\edef\NAT@cite@list{#1}} \RequirePackage{latexsym}% \RequirePackage{graphicx}% \RequirePackage{amssymb}% \RequirePackage{longtable}% \newcommand{\bibstyle@aas}{\bibpunct{(}{)}{;}{a}{}{,}}% \@citestyle{aas}% \let\@startsection=\@startsection@from@latex \def\baselinestretch{1.02} \AtBeginDocument{\def\arraystretch{1.0}} \RequirePackage{epsf,graphicx} %%%%%%%% The following code is taken from size10.clo; it fixes %%%%%%%% aastex's definition of type sizes \renewcommand\normalsize{% \@setfontsize\normalsize\@xpt{10.56} \abovedisplayskip 2.2mm \@plus2\p@ \@minus5\p@ \abovedisplayshortskip \z@ \@plus3\p@ \belowdisplayshortskip 6\p@ \@plus3\p@ \@minus3\p@ \belowdisplayskip \abovedisplayskip \let\@listi\@listI} \normalsize \renewcommand\small{% \@setfontsize\small\@ixpt{9.68}% \abovedisplayskip 8.5\p@ \@plus3\p@ \@minus4\p@ \abovedisplayshortskip \z@ \@plus2\p@ \belowdisplayshortskip 4\p@ \@plus2\p@ \@minus2\p@ \def\@listi{\leftmargin\leftmargini \topsep 4\p@ \@plus2\p@ \@minus2\p@ \parsep 2\p@ \@plus\p@ \@minus\p@ \itemsep \parsep}% \belowdisplayskip \abovedisplayskip } \renewcommand\footnotesize{% \@setfontsize\footnotesize\@viiipt{8.36}% \abovedisplayskip 6\p@ \@plus2\p@ \@minus4\p@ \abovedisplayshortskip \z@ \@plus\p@ \belowdisplayshortskip 3\p@ \@plus\p@ \@minus2\p@ \def\@listi{\leftmargin\leftmargini \topsep 3\p@ \@plus\p@ \@minus\p@ \parsep 2\p@ \@plus\p@ \@minus\p@ \itemsep \parsep}% \belowdisplayskip \abovedisplayskip } \renewcommand\scriptsize{\@setfontsize\scriptsize\@viipt\@viiipt} \renewcommand\tiny{\@setfontsize\tiny\@vpt\@vipt} \renewcommand\large{\@setfontsize\large\@xiipt{14}} \renewcommand\Large{\@setfontsize\Large\@xivpt{18}} \renewcommand\LARGE{\@setfontsize\LARGE\@xviipt{22}} \renewcommand\huge{\@setfontsize\huge\@xxpt{25}} \renewcommand\Huge{\@setfontsize\Huge\@xxvpt{30}} \setlength\smallskipamount{3\p@ \@plus 1\p@ \@minus 1\p@} \setlength\medskipamount{6\p@ \@plus 2\p@ \@minus 2\p@} \setlength\bigskipamount{12\p@ \@plus 4\p@ \@minus 4\p@} \setlength\headheight{12\p@} \def\@listi{\leftmargin\leftmargini \parsep 4\p@ \@plus2\p@ \@minus\p@ \topsep 8\p@ \@plus2\p@ \@minus4\p@ \itemsep4\p@ \@plus2\p@ \@minus\p@} \let\@listI\@listi \@listi \def\@listii {\leftmargin\leftmarginii \labelwidth\leftmarginii \advance\labelwidth-\labelsep \topsep 4\p@ \@plus2\p@ \@minus\p@ \parsep 2\p@ \@plus\p@ \@minus\p@ \itemsep \parsep} \def\@listiii{\leftmargin\leftmarginiii \labelwidth\leftmarginiii \advance\labelwidth-\labelsep \topsep 2\p@ \@plus\p@\@minus\p@ \parsep \z@ \partopsep \p@ \@plus\z@ \@minus\p@ \itemsep \topsep} \def\@listiv {\leftmargin\leftmarginiv \labelwidth\leftmarginiv \advance\labelwidth-\labelsep} \def\@listv {\leftmargin\leftmarginv \labelwidth\leftmarginv \advance\labelwidth-\labelsep} \def\@listvi {\leftmargin\leftmarginvi \labelwidth\leftmarginvi \advance\labelwidth-\labelsep} % **************************************************** % * TWO AND SINGLE ONE COLUMN STYLES: AV * % **************************************************** % %%%%% include atbeginend.sty by AV: % Copy \begin and \end to \BeginEnvironment and \EndEnvironment \let\BeginEnvironment=\begin \let\EndEnvironment=\end %% \ifundefined from TeXbook \def\IfUnDef#1{\expandafter\ifx\csname#1\endcsname\relax} % Null command needed to eat its argument \def\NullCom#1{} \def\begin#1{% % if defined \BeforeBeg for this environment, execute it \IfUnDef{BeforeBeg#1}\else\csname BeforeBeg#1\endcsname\fi% \IfUnDef{AfterBeg#1}% This is done to skip the command for environments % which can take arguments, like multicols; YOU MUST NOT % USE \AfterBegin{...}{...} for such environments! \let\SaveBegEnd=\BeginEnvironment% \else % Start this environment \BeginEnvironment{#1}% % and execute code after \begin{environment} \csname AfterBeg#1\endcsname \let\SaveBegEnd=\NullCom \fi \SaveBegEnd{#1} } \def\end#1{% % execute code before \end{environment} \IfUnDef{BeforeEnd#1}\else\csname BeforeEnd#1\endcsname\fi% % close this environment \EndEnvironment{#1} % and execute code after \begin{environment} \IfUnDef{AfterEnd#1}\else\csname AfterEnd#1\endcsname\fi% } \long\def\BeforeBegin#1#2{\expandafter\gdef\csname BeforeBeg#1\endcsname {#2}} \long\def\BeforeEnd #1#2{\expandafter\gdef\csname BeforeEnd#1\endcsname {#2}} \long\def\AfterBegin #1#2{\expandafter\gdef\csname AfterBeg#1\endcsname {#2}} \long\def\AfterEnd #1#2{\expandafter\gdef\csname AfterEnd#1\endcsname{#2}} %%%% end of atbeginend.sty % **************************************** % * PAGE LAYOUT * % **************************************** % Page size, spacing parameters, etc. \textwidth=7.1in \columnsep=0.3125in \parindent=0.125in \voffset=-20mm \hoffset=-7.5mm \topmargin=0in \headheight=.15in \headsep=0.5in \oddsidemargin=0in \evensidemargin=0in \parskip=0cm %\tolerance=600 % 3x "normal" value; cuts down on overfull complaints %% AV,MM, to have 64 lines per column, with textheight 25cm: \textheight=64\baselineskip %\textheight=\baselinestretch\textheight \ifdim\textheight>25.2cm\textheight=25.0cm\fi \let\tighten=\relax \let\tightenlines=\tighten \let\singlespace=\relax \let\doublespace=\relax \def\eqsecnum{ \@newctr{equation}[section] \def\theequation{\hbox{\normalsize\arabic{section}-\arabic{equation}}}} %% running heads: \def\lefthead#1{\gdef\@versohead{#1}} \lefthead{\relax} \def\righthead#1{\gdef\@rectohead{#1}} \righthead{\relax} \let\shorttitle=\lefthead % New AASTEX commands \let\shortauthors\righthead % New AASTEX commands %% MM Create "apjheads" page style: \def\ps@apjheads{\let\@mkboth\markboth \def\@evenfoot{} \def\@evenhead{\lower9mm\hbox to\textwidth{ \rm\thepage\hfil \rm\@rectohead \hfil}}} \def\@oddfoot{} \def\@oddhead{\lower9mm\hbox to\textwidth{ \hfil\rm\@versohead\hfil \rm\thepage}} \@twosidetrue \ps@apjheads %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % TITLE PAGE % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \long\def\frontmatter@title@above{ \vspace*{-\headsep}\vspace*{\headheight} \footnotesize {\footnotesize\textsc{\@journalinfo}}\par {\scriptsize Preprint typeset using \LaTeX\ style emulateapj v.\ \emulapj@ver}\par\vspace*{-\baselineskip}\vspace*{0.625in} }% \def\frontmatter@title@produce{% \begingroup \frontmatter@title@above \frontmatter@title@format \@title \@ifx{\@title@aux\@title@aux@cleared}{}{% \expandafter\frontmatter@footnote\expandafter{\@title@aux}% }% \par %% \class@warn{Unused short title ignored}% \frontmatter@title@below \endgroup }% \renewcommand\title[2][]{% \def\@title{\uppercase{#2}}% \def\@shorttitle{#1}% \let\@AF@join\@title@join }% \def\frontmatter@title@format{\normalsize\centering} \def\frontmatter@title@below{\vspace*{-2.63\baselineskip\vspace*{0.25in}}}% \def\frontmatter@above@affilgroup{\vspace*{0.25in}}% \def\frontmatter@authorformat{\small\scshape\centering}% \def\frontmatter@affiliationfont{\normalfont\footnotesize}% \def\frontmatter@finalspace{\vspace*{-\baselineskip}\vspace*{0.375in}} \def\@separator{\\}% \def\frontmatter@footnote#1{% \begingroup \@booleanfalse\temp@sw \def\@tempa{#1}% \let\@tempb\@empty \def\@TBN@opr{\y@match\@tempa}% \@FMN@list \temp@sw{% \expandafter\frontmatter@footnotemark \expandafter{\@tempb}% }{% \def\@thefnmark{\relax} \frontmatter@footnotetext{#1} }% \endgroup }% \newcounter{front@matter@foot@note}\setcounter{front@matter@foot@note}{0} \def\frontmatter@above@affiliation{\vspace*{0.5mm}}% \renewcommand\affiliation[1]{% \move@AU\move@AF% \begingroup% \@affiliation{\hspace*{2mm}#1}% }% \let\affil=\affiliation \def\altaffilmark#1{\textsuperscript{#1}} \def\altaffiltext#1#2{\altaffiliation{\hspace*{3mm}\textsuperscript{#1}~#2}\stepcounter{front@matter@foot@note}} \let\old@foot@note@mark=\footnotemark \let\old@foot@note@text=\footnotetext \def\footnotemark[#1]{\altaffilmark{#1}} \def\footnotetext[#1]#2{\altaffiltext{#1}{#2}} % ABSTRACT \def\frontmatter@abstractfont{\normalsize}% \def\frontmatter@abstractwidth{6in} \def\frontmatter@preabstractspace{0.0\baselineskip} \def\frontmatter@postabstractspace{0.0\baselineskip} \def\abstractname{ABSTRACT} \long\def\frontmatter@abstractheading{% \vspace*{-\baselineskip}\vspace*{1.5pt} \centerline{\itshape\footnotesize\@submitted} \vspace*{0.13189in} \begingroup \centering \abstractname \vskip 1mm \par \endgroup \everypar{\rightskip=0.5in\leftskip=\rightskip}\par }% % Redefine the LaTeX \and command for this style. \def\and{\author{\vspace*{-0.2in}and\vspace*{-0.558cm}}\noaffiliation} \def\@listand{\@ifnum{\@tempcnta=\tw@}{\andname\space}{}}% % **************************************** % * KEYWORDS * % **************************************** \def\@keys@name{\textit{Subject headings:}\/~\mbox{}}% \newlength{\keys@width} \def\frontmatter@keys@format{\vspace*{0.5mm}% \settowidth{\keys@width}{\normalsize\@keys@name}% \rightskip=0.5in\leftskip=\rightskip\parindent=0pt% \hangindent=\keys@width\hangafter=1\normalsize}% \def\@keywords@produce#1{% \showKEYS@sw{% \begingroup% \frontmatter@keys@format% \@keys@name#1\par \endgroup }{% \@if@empty{#1}{}{% \class@warn{If you want your keywords to appear in your output, use document class option showkeys}% }% }% }% \let\subjectheadings=\keywords % **************************************** % * FOOTNOTES * % **************************************** % Modify code from revtex: \def\@xfootnotemark@ltx[#1]{% \begingroup % \csname c@\@mpfn\endcsname #1\relax \unrestored@protected@xdef\@thefnmark{#1}% \endgroup \H@@footnotemark }% % Modify code from LaTeX to fix footnotes: \def\@xfootnotenext[#1]{% \begingroup % \csname c@\@mpfn\endcsname #1\relax \unrestored@protected@xdef\@thefnmark{#1}% \endgroup \@footnotetext} % Footnotes on the last page: user issues \lastpagefootnotes. It catches all % footnotes and issues them before \begin{refernces} or % \begin{\thebibliography} at the end of right column. \newcounter{lastfootnote} \setcounter{lastfootnote}{0} \long\gdef\lastfootnote{\mbox{}} \let\orig@footnote=\footnote \long\def\lastpagefootnotes{ \long\def\footnote##1{\refstepcounter{lastfootnote}\footnotemark\g@addto@macro\lastfootnote{\\[\footnotesep]\refstepcounter{footnote}\mbox{}\hspace*{3mm}\textsuperscript{\thefootnote}~##1}} \BeforeBegin{references}{\addtocounter{footnote}{-\c@lastfootnote}\vspace*{-\baselineskip}\vspace*{\skip\footins}\bgroup\footnotesize\lastfootnote\par\egroup} \BeforeBegin{thebibliography}{\addtocounter{footnote}{-\c@lastfootnote}\vspace*{-\baselineskip}\vspace*{\skip\footins}\bgroup\footnotesize\lastfootnote\par\egroup} \AfterEnd{references}{\let\footnote=\orig@footnote} \AfterEnd{thebibliography}{\let\footnote=\orig@footnote} } \let\lastpagefootnote=\lastpagefootnotes % this command is copied from the original revtex, but adds space above % footnote (if any) above the references. \@namedef{balance@2}{% \expandafter\balance@two\csname col@1\endcsname\@outputbox % Avoid a bug by preventing a restore when leaving this group \global\setbox\csname col@1\endcsname\box\csname col@1\endcsname \@ifvoid\footbox{}{% \global\setbox\footbox\vbox{% \setbox\z@\box\@tempboxa \let\recover@footins\relax \balance@two\footbox\@tempboxa \vskip\skip\footins \hb@xt@\textwidth{\box\footbox\hfil\box\@tempboxa}% }% }% }% \skip\footins 4.5mm plus 1mm minus 1mm \footnotesep 0pt \let\footnoterule\relax \def\@makefntext#1{\mbox{}\hspace*{3mm}\@makefnmark~#1} \def\notetoeditor#1{}% % We do not need notes to editor in the preprint \def\placetable#1{}% % We do not need notes to editor in the preprint \def\placefigure#1{}% % We do not need notes to editor in the preprint % **************************************** % * SECTIONS * % **************************************** \setcounter{secnumdepth}{2} \newif\if@firstsection \@firstsectiontrue \def\section{% \if@firstsection\@firstsectionfalse \maketitle\setcounter{footnote}{\thefront@matter@foot@note} \let\footnotetext=\old@foot@note@text \let\footnotemark=\old@foot@note@mark \fi \@startsection{section}{1}{\z@}{9pt plus 2pt minus 1pt}{4pt}{\apjsecfont\center}} \def\subsection{\@startsection{subsection}{2}{\z@}{9pt plus 1pt minus 1pt}{4pt}% {\normalsize\itshape \center}} \def\subsubsection{\@startsection{subsubsection}{3}{\z@}% {2ex plus 1ex minus .2ex}{1ex plus .2ex}{\normalsize\it \center}} \def\paragraph{\@startsection{paragraph}{4}{\z@}% {1.5ex plus 1ex minus .2ex}{-0.5\parindent}{\small\it}} \def\subparagraph{\@startsection{subparagraph}{5}{\z@}% {1ex plus 1ex minus .2ex}{-0.5\parindent}{\small\it}} \def\thesection{\@arabic{\c@section}} \def\thesubsection{\thesection.\@arabic{\c@subsection}} \def\thesubsubsection{\thesubsection.\@arabic{\c@subsubsection}} \def\theparagraph{\thesubsubsection.\@arabic{\c@paragraph}} \def\p@section {} \def\p@subsection {} \def\p@subsubsection {} \def\p@paragraph {} \def\p@subparagraph {} \def\sec@upcase#1{\uppercase{#1}} \def\subsec@upcase#1{\relax{#1}} % % How the section number will appear in the section title - AV \def\ApjSectionMarkInTitle#1{#1.\ } \def\ApjSectionpenalty{0} \def\@sect#1#2#3#4#5#6[#7]#8% {\@tempskipa #5\relax \ifdim \@tempskipa >\z@ \begingroup #6\relax \ifnum #2>\c@secnumdepth \def \@svsec {}\else \refstepcounter{#1} \edef \@svsec {\ApjSectionMarkInTitle {\csname the#1\endcsname}}\fi \@hangfrom {\hskip #3\relax \ifnum #2=1\secnum@size {\rm\@svsec~}% \else \subsecnum@size {\rm\@svsec~}\fi }% {\interlinepenalty \@M \ifnum #2=1\sec@upcase{#8}% \else \subsec@upcase{#8}\fi\par}\endgroup \csname #1mark\endcsname {#7}\addcontentsline{toc}{#1}% {\ifnum #2>\c@secnumdepth \else \protect \numberline {\csname the#1\endcsname }\fi #7}% \else \ifnum #2>\c@secnumdepth \def \@svsec {}\else \refstepcounter{#1} \edef \@svsec {\ApjSectionMarkInTitle {\csname the#1\endcsname}}\fi \def \@svsechd {#6\hskip #3% \ifnum #2=1\secnum@size{\rm\@svsec~}\else\subsecnum@size{\rm\@svsec~}\fi% \ifnum #2=1\sec@upcase{#8}\else\subsec@upcase{#8}\fi% \ifnum #2=4\hskip 0.4ex{\rm ---}\fi% \csname #1mark\endcsname {#7}\addcontentsline{toc}{#1}% {\ifnum #2>\c@secnumdepth \else \protect \numberline {\csname the#1\endcsname }\fi #7}}\fi \@xsect {#5} \penalty \ApjSectionpenalty %-refstepcounter is now within a group. So \@currentlabel, which is normally %-set by \refstepcounter is hidden within a group. Need to set it manually. \protected@edef\@currentlabel{\csname p@#1\endcsname\csname the#1\endcsname} } \def\@ssect#1#2#3#4#5{\@tempskipa #3\relax \ifdim \@tempskipa>\z@ \begingroup #4\@hangfrom{\hskip #1}{\interlinepenalty \@M \sec@upcase{#5}\par}\endgroup \else \def\@svsechd{#4\hskip #1\relax \sec@upcase{#5}}\fi \@xsect{#3} % MM: \penalty \ApjSectionpenalty} \def\acknowledgments{\vskip 5.8mm plus 1mm minus 1mm} \let\acknowledgements=\acknowledgments % second spelling % **************************************** % * APPENDIX * % **************************************** \renewenvironment{appendix}[0]{ \onecolumngrid \vskip 10pt plus 2pt minus 1pt \noindent\mbox{}\hfill{\small APPENDIX}\hfill\mbox{}\par \nopagebreak\medskip\@nobreaktrue\def\ApjSectionpenalty{\@M} \@firstsectionfalse \setcounter{section}{0} \setcounter{subsection}{0} \setcounter{equation}{0} % \setcounter{figure}{0} % \setcounter{table}{0} % \def\fnum@figure{Figure \Alph{section}\thefigure:} % \def\fnum@table{Table \Alph{section}\thetable:} \def\thesection{\Alph{section}} \def\theequation{\hbox{\Alph{section}\arabic{equation}}} \def\thefigure{\thesection\@arabic\c@figure} \def\thetable{\thesection\@arabic\c@table} % % Do not use appendix numbers in the titles \def\ApjSectionMarkInTitle{\AppendixApjSectionMarkInTitle} \def\section{\setcounter{equation}{0}\@startsection {section}{1}{\z@} {10pt}{5pt}{\centering\scshape}} % % }{} % **************************************** % * BIBLIOGRAPHY * % **************************************** \renewenvironment{references}[0]{ \onecolumngrid \par \vspace*{10pt plus 3pt} \noindent \makebox[\textwidth][c]{\footnotesize REFERENCES} \par \vspace*{4pt plus 3pt} \set@column@hsize{2}\twocolumngrid \parindent=0cm \parskip=0cm \def\baselinestretch{1.0} \footnotesize \baselineskip=\baselinestretch\bibbaselineskip plus 1pt minus 1pt \interlinepenalty \@M \hyphenpenalty=10000 \frenchspacing % AV - to get right spacing after ``et al.'' \def\refpar{\par\hangindent=1.2em\hangafter=1}} { \onecolumngrid } % redefine thebibliography % redefine thebibliography % remove numbers from the reference list \def\@biblabel#1{\relax} \newdimen\bibindent \renewenvironment{thebibliography}[1]{ \onecolumngrid \par \vspace*{10pt plus 3pt} \noindent \makebox[\textwidth][c]{\footnotesize REFERENCES} \par \vspace*{4pt plus 3pt} \set@column@hsize{2}\twocolumngrid \list{}% { \parindent=0pt \parskip=0pt \parsep=0pt % AV \bibindent=0pt % \def\baselinestretch{1.0} \footnotesize \baselineskip=\bibbaselineskip \interlinepenalty \@M % AV \frenchspacing % AV - to get right spacing after ``et al.'' \hyphenpenalty=10000 \itemindent=-1.0em % \itemsep=0pt % \listparindent=0pt % \settowidth\labelwidth{0pt} % \labelsep=0pt % \leftmargin=1.0em \advance\leftmargin\labelsep %%% \usecounter{enumiv}% \let\p@enumiv\@empty \renewcommand\theenumiv{\relax}}% \sloppy\clubpenalty4000\widowpenalty4000% \sfcode`\.\@m} {\def\@noitemerr {\@latex@warning{Empty `thebibliography' environment}}% \endlist \onecolumngrid } % %% AV: \def\reference{\@ifnextchar\bgroup {\@reference} {\@latexerr{Missing key on reference command} {Each reference command should have a key corresponding to a markcite somewhere in the text}}} \def\@reference#1{\refpar} %% subtitle header and journal info: \def\submitted#1{\gdef\@submitted{#1}} \def\journalinfo#1{\gdef\@journalinfo{#1}} \def\subtitle{ \vspace*{-12mm} \noindent {\scriptsize {\sc \@journalinfo} \\ Preprint typeset using \LaTeX\ style emulateapj v.\ \emulapj@ver} } \let\slugcomment\submitted % slugcomment == submitted \submitted{Draft version \today} \journalinfo{\@submitted} %% AV: allow figures to take the whole page \renewcommand{\topfraction}{1.0} \renewcommand{\bottomfraction}{1.0} \renewcommand{\textfraction}{0.0} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Equations % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % EQNARRAY with reduced spacing around tab characters - AV \def\eqnarray{% \stepcounter{equation}% \def\@currentlabel{\p@equation\theequation}% \global\@eqnswtrue \setlength{\arraycolsep}{0.25\arraycolsep} \m@th \global\@eqcnt\z@ \tabskip\@centering \let\\\@eqncr $$\everycr{}\halign to\displaywidth\bgroup \hskip\@centering$\displaystyle\tabskip\z@skip{##}$\@eqnsel &\global\@eqcnt\@ne\hskip \tw@\arraycolsep \hfil${##}$\hfil &\global\@eqcnt\tw@ \hskip \tw@\arraycolsep $\displaystyle{##}$\hfil\tabskip\@centering &\global\@eqcnt\thr@@ \hb@xt@\z@\bgroup\hss##\egroup \tabskip\z@skip \cr } % **************************************** % * TABLES AND FIGURES * % **************************************** \def\@arstrut@hline@clnc{0.5\p@}% % Klootch: magic number \setcounter{topnumber}{7} \setlength{\belowcaptionskip}{0pt} \setlength{\abovecaptionskip}{5pt} \setlength{\textfloatsep}{-\baselineskip} \addtolength{\textfloatsep}{12mm plus 10mm minus 10mm} \setlength{\dbltextfloatsep}{-\baselineskip} \addtolength{\dbltextfloatsep}{12mm plus 10mm minus 10mm} \renewcommand{\topfraction}{1.0} \renewcommand{\bottomfraction}{1.0} \renewcommand{\textfraction}{0.0} \renewcommand{\dbltopfraction}{1.0} % Copyed from revtex4.cls; without it, captions are centered \def\@xfloat@prep{% \let\footnote\footnote@latex \def\@mpfn{mpfootnote}% \def\thempfn{\thempfootnote}% \c@mpfootnote\z@ \let\@footnotetext\@mpfootnotetext \let\H@@footnotetext\@mpfootnotetext \let\@makefntext\@mpmakefntext }% \long\def\@makecaption#1#2{% \noindent\begin{minipage}{0.9999\linewidth} %% \noindent is needed because %% otherwise minipage + parindent does not fit into the line and spurious %% vertical skip appear after caption \if\csname ftype@\@captype\endcsname 2 \vskip 2ex\noindent \centering\small\scshape #1\par #2\par\medskip \else \vskip \abovecaptionskip\footnotesize\noindent #1 #2\par\vskip \belowcaptionskip \fi \end{minipage} } %%%%%%%%%%%% FIX \cutinhead \def\@ptabularcr{\\} \newcommand\cutinhead[1]{% \noalign{\vskip 1.5ex}% \hline \@ptabularcr \noalign{\vskip -1.5ex}% \multicolumn{\LT@cols}{c}{#1}% \@ptabularcr \noalign{\vskip .8ex}% \hline \@ptabularcr \noalign{\vskip -2ex}% }% \newcommand\figcaption{\@testopt{\@xfigcaption}{}}% %% suggested by Joern Wilms wilms@astro.uni-tuebingen.de %% wilms@rocinante.colorado.edu \def\@figcaption#1{{\def\@captype{figure}\caption{\footnotesize #1}}} \def\@xfigcaption[#1]#2{{\def\@captype{figure}\caption{\footnotesize #2}}} \def\thefigure{\@arabic\c@figure} \def\fnum@figure{{\footnotesize\scshape ~~Fig.\space\thefigure.---}} \def\thetable{\@arabic\c@table} %%% Table captions without making a floating table \def\tabcaption{\@ifnextchar[{\@xtabcaption}{\@tabcaption}} \def\@tabcaption#1{{\def\@captype{table}\caption{#1}}} \def\@xtabcaption[#1]#2{{\def\@captype{table}\caption{#2}}} \def\fnum@table{\scshape Table~\thetable} % \let\fnum@ptable=\fnum@table % \def\fnum@ptablecont{{\centering{\scshape Table~\thetable}---{\itshape % Continued}}}% \def\tabletypesize#1{\def\table@hook{#1}\gdef\@table@type@size{#1}} \tabletypesize{\footnotesize} \let\tablefontsize=\tabletypesize % for compatibility with old documents % \long\def\@make@caption@text#1#2{% % {\small\centering#1{\scshape #2}\par\vskip1.4ex} % }% \long\def\@makecaption@plano@cont#1#2{% {\small \centering#1\par}\vskip1.4ex\relax }% %% Commands from aastex.cls: \newcommand\objectname{\@testopt\@objectname{[]}}% \def\@objectname[#1]#2{#2}% \newlength{\plot@width} \def\eps@scaling{1.0}% \newcommand\epsscale[1]{\def\eps@scaling{#1}}% \newcommand\plotone[1]{% \centering \leavevmode \setlength{\plot@width}{0.85\linewidth} \includegraphics[width={\eps@scaling\plot@width}]{#1}% }% \newcommand\plottwo[2]{% \centering \leavevmode \setlength{\plot@width}{0.425\linewidth} \includegraphics[width={\eps@scaling\plot@width}]{#1}% \hfil \includegraphics[width={\eps@scaling\plot@width}]{#2}% }% \newcommand\plotfiddle[7]{% \centering \leavevmode \vbox\@to#2{\rule{\z@}{#2}}% \includegraphics[% scale=#4, angle=#3, origin=c ]{#1}% }% \newcommand\figurenum[1]{% \def\thefigure{#1}% \let\@currentlabel\thefigure \addtocounter{figure}{\m@ne}% }% \newcommand\phn{\phantom{0}}% \newcommand\phd{\phantom{.}}% \newcommand\phs{\phantom{$-$}}% \newcommand\phm[1]{\phantom{#1}}% \let\la=\lesssim % For Springer A&A compliance... \let\ga=\gtrsim \newcommand\sq{\mbox{\rlap{$\sqcap$}$\sqcup$}}% \newcommand\arcdeg{\mbox{$^\circ$}}% \newcommand\arcmin{\mbox{$^\prime$}}% \newcommand\arcsec{\mbox{$^{\prime\prime}$}}% \newcommand\fd{\mbox{$.\!\!^{\mathrm d}$}}% \newcommand\fh{\mbox{$.\!\!^{\mathrm h}$}}% \newcommand\fm{\mbox{$.\!\!^{\mathrm m}$}}% \newcommand\fs{\mbox{$.\!\!^{\mathrm s}$}}% \newcommand\fdg{\mbox{$.\!\!^\circ$}}% \newcommand\farcm@mss{\mbox{$.\mkern-4mu^\prime$}}% \let\farcm\farcm@mss \newcommand\farcs@mss{\mbox{$.\!\!^{\prime\prime}$}}% \let\farcs\farcs@mss \newcommand\fp{\mbox{$.\!\!^{\scriptscriptstyle\mathrm p}$}}% \newcommand\micron{\mbox{$\mu$m}}% \def\farcm@apj{% \mbox{.\kern -0.7ex\raisebox{.9ex}{\scriptsize$\prime$}}% }% \def\farcs@apj{% \mbox{% \kern 0.13ex.% \kern -0.95ex\raisebox{.9ex}{\scriptsize$\prime\prime$}% \kern -0.1ex% }% }% \renewcommand\case[2]{\mbox{$\frac{#1}{#2}$}}% \renewcommand\slantfrac{\case}% \newcommand\onehalf{\slantfrac{1}{2}}% \newcommand\onethird{\slantfrac{1}{3}}% \newcommand\twothirds{\slantfrac{2}{3}}% \newcommand\onequarter{\slantfrac{1}{4}}% \newcommand\threequarters{\slantfrac{3}{4}}% \newcommand\ubvr{\mbox{$U\!BV\!R$}}%% UBVR system \newcommand\ub{\mbox{$U\!-\!B$}}% % U-B \newcommand\bv{\mbox{$B\!-\!V$}}% % B-V \renewcommand\vr{\mbox{$V\!-\!R$}}% % V-R \newcommand\ur{\mbox{$U\!-\!R$}}% % U-R \newcommand\ion[2]{#1$\;${\small\rmfamily\@Roman{#2}}\relax}% \newcommand\nodata{ ~$\cdots$~ }% \newcommand\diameter{\ooalign{\hfil/\hfil\crcr\mathhexbox20D}}% \newcommand\degr{\arcdeg}% \newcommand\Sun{\sun}% \newcommand\Sol{\sun}% \newcommand\sun{\odot}% \newcommand\Mercury{\astro{\char1}}% Mercury symbol, "1" \newcommand\Venus{\astro{\char2}}% Venus symbol, "2" \newcommand\Earth{\earth}% \newcommand\Terra{\earth}% \newcommand\earth{\oplus}% \newcommand\Mars{\astro{\char4}}% Mars symbol, "4" \newcommand\Jupiter{\astro{\char5}}% Jupiter symbol, "5" \newcommand\Saturn{\astro{\char6}}% Saturn symbol, "6" \newcommand\Uranus{\astro{\char7}}% Uranus symbol, "7" \newcommand\Neptune{\astro{\char8}}% Neptune symbol, "8" \newcommand\Pluto{\astro{\char9}}% Pluo symbol, "9" \newcommand\Moon{\astro{\char10}}% Moon symbol, "M" \newcommand\Luna{\Moon}% \newcommand\Aries{\astro{\char11}}% \newcommand\VEq{\Aries}% vernal equinox (Aries) \newcommand\Taurus{\astro{\char12}}% \newcommand\Gemini{\astro{\char13}}% \newcommand\Cancer{\astro{\char14}}% \newcommand\Leo{\astro{\char15}}% \newcommand\Virgo{\astro{\char16}}% \newcommand\Libra{\astro{\char17}}% \newcommand\AEq{\Libra}% autumnal equinox (Libra) \newcommand\Scorpius{\astro{\char18}}% \newcommand\Sagittarius{\astro{\char19}}% \newcommand\Capricornus{\astro{\char20}}% \newcommand\Aquarius{\astro{\char21}}% \newcommand\Pisces{\astro{\char22}}% \newcommand\anchor[2]{#2}% \renewcommand\url{\@dblarg\@url}% \def\@url[#1]{\anchor{#1}}% \let\jnl@style=\rmfamily \def\ref@jnl#1{{\jnl@style#1}}% \newcommand\aj{\ref@jnl{AJ}}% % Astronomical Journal \newcommand\araa{\ref@jnl{ARA\&A}}% % Annual Review of Astron and Astrophys \renewcommand\apj{\ref@jnl{ApJ}}% % Astrophysical Journal \newcommand\apjl{\ref@jnl{ApJ}}% % Astrophysical Journal, Letters \newcommand\apjs{\ref@jnl{ApJS}}% % Astrophysical Journal, Supplement \renewcommand\ao{\ref@jnl{Appl.~Opt.}}% % Applied Optics \newcommand\apss{\ref@jnl{Ap\&SS}}% % Astrophysics and Space Science \newcommand\aap{\ref@jnl{A\&A}}% % Astronomy and Astrophysics \newcommand\aapr{\ref@jnl{A\&A~Rev.}}% % Astronomy and Astrophysics Reviews \newcommand\aaps{\ref@jnl{A\&AS}}% % Astronomy and Astrophysics, Supplement \newcommand\azh{\ref@jnl{AZh}}% % Astronomicheskii Zhurnal \newcommand\baas{\ref@jnl{BAAS}}% % Bulletin of the AAS \newcommand\jrasc{\ref@jnl{JRASC}}% % Journal of the RAS of Canada \newcommand\memras{\ref@jnl{MmRAS}}% % Memoirs of the RAS \newcommand\mnras{\ref@jnl{MNRAS}}% % Monthly Notices of the RAS \renewcommand\pra{\ref@jnl{Phys.~Rev.~A}}% % Physical Review A: General Physics \renewcommand\prb{\ref@jnl{Phys.~Rev.~B}}% % Physical Review B: Solid State \renewcommand\prc{\ref@jnl{Phys.~Rev.~C}}% % Physical Review C \renewcommand\prd{\ref@jnl{Phys.~Rev.~D}}% % Physical Review D \renewcommand\pre{\ref@jnl{Phys.~Rev.~E}}% % Physical Review E \renewcommand\prl{\ref@jnl{Phys.~Rev.~Lett.}}% % Physical Review Letters \newcommand\pasp{\ref@jnl{PASP}}% % Publications of the ASP \newcommand\pasj{\ref@jnl{PASJ}}% % Publications of the ASJ \newcommand\qjras{\ref@jnl{QJRAS}}% % Quarterly Journal of the RAS \newcommand\skytel{\ref@jnl{S\&T}}% % Sky and Telescope \newcommand\solphys{\ref@jnl{Sol.~Phys.}}% % Solar Physics \newcommand\sovast{\ref@jnl{Soviet~Ast.}}% % Soviet Astronomy \newcommand\ssr{\ref@jnl{Space~Sci.~Rev.}}% % Space Science Reviews \newcommand\zap{\ref@jnl{ZAp}}% % Zeitschrift fuer Astrophysik \renewcommand\nat{\ref@jnl{Nature}}% % Nature \newcommand\iaucirc{\ref@jnl{IAU~Circ.}}% % IAU Cirulars \newcommand\aplett{\ref@jnl{Astrophys.~Lett.}}% % Astrophysics Letters \newcommand\apspr{\ref@jnl{Astrophys.~Space~Phys.~Res.}}% % Astrophysics Space Physics Research \newcommand\bain{\ref@jnl{Bull.~Astron.~Inst.~Netherlands}}% % Bulletin Astronomical Institute of the Netherlands \newcommand\fcp{\ref@jnl{Fund.~Cosmic~Phys.}}% % Fundamental Cosmic Physics \newcommand\gca{\ref@jnl{Geochim.~Cosmochim.~Acta}}% % Geochimica Cosmochimica Acta \newcommand\grl{\ref@jnl{Geophys.~Res.~Lett.}}% % Geophysics Research Letters \renewcommand\jcp{\ref@jnl{J.~Chem.~Phys.}}% % Journal of Chemical Physics \newcommand\jgr{\ref@jnl{J.~Geophys.~Res.}}% % Journal of Geophysics Research \newcommand\jqsrt{\ref@jnl{J.~Quant.~Spec.~Radiat.~Transf.}}% % Journal of Quantitiative Spectroscopy and Radiative Trasfer \newcommand\memsai{\ref@jnl{Mem.~Soc.~Astron.~Italiana}}% % Mem. Societa Astronomica Italiana \newcommand\nphysa{\ref@jnl{Nucl.~Phys.~A}}% % Nuclear Physics A \newcommand\physrep{\ref@jnl{Phys.~Rep.}}% % Physics Reports \newcommand\physscr{\ref@jnl{Phys.~Scr}}% % Physica Scripta \newcommand\planss{\ref@jnl{Planet.~Space~Sci.}}% % Planetary Space Science \newcommand\procspie{\ref@jnl{Proc.~SPIE}}% % Proceedings of the SPIE \let\astap=\aap \let\apjlett=\apjl \let\apjsupp=\apjs \let\applopt=\ao \renewcommand\nodata{ ~$\cdots$~ }% \newcommand\ulap[1]{\vbox\@to\z@{{\vss#1}}}% \newcommand\dlap[1]{\vbox\@to\z@{{#1\vss}}}% \gdef\@tablecaption{} \def\tablecaption#1{\gdef\@tablecaption{#1}} % \newcommand\tablehead[1]{% % \gdef\pt@head{% % \hline\hline % \relax\\[-1.7ex]% % #1\hskip\tabcolsep % \\[.7ex]% % \hline % \relax\\[-1.5ex]% % }% % }% \def\LT@endpbox{% \@finalstrut\@arstrutbox \egroup \the\LT@p@ftn \global\LT@p@ftn{}% \hfil} \def\LT@makecaption#1#2#3{% \LT@mcol\LT@cols c{\hbox to\z@{\hss\parbox[t]\LTcapwidth{% \sbox\@tempboxa{#2.~~#3}% \ifdim\wd\@tempboxa>\hsize #2.~~#3% \else \hbox to\hsize{\hfil\box\@tempboxa\hfil}% \fi \endgraf\vskip\baselineskip}% \hss}}} \global\let\tablenotemark\relax \global\def\tablenotemark#1{\textsuperscript{\normalfont #1}} %\global\def\tablenotemark#1{\footnotemark[#1]} \global\let\tablenotetext\relax \global\def\tablenotetext#1#2{\footnotetext[#1]{#2}} \def\startdata{} \def\tablehead#1{ \kill \caption{\@tablecaption}\\ \hline \hline\\[-1.7ex] #1\hskip\tabcolsep\\[.7ex] \hline\\[-1.5ex] \endfirsthead \caption[]{\@tablecaption --- \emph{Continued}}\\ \hline \hline\\[-1.7ex] #1\hskip\tabcolsep\\[.7ex] \hline\\[-1.5ex] \endhead \hline \endfoot } \def\colhead#1{\multicolumn{1}{c}{#1}} \newenvironment{deluxetable}[1]{ \begin{table} \def\nl{\\} \def\tabcolsep{5pt} \let\caption=\LT@caption \begin{longtable}{#1} }{\gdef\pt@width{\LTcapwidth}\end{longtable}\@spew@tblnotes\end{table}} \newenvironment{deluxetable*}[1]{ \begin{table*} \def\nl{\\} \def\tabcolsep{5pt} \let\caption=\LT@caption \begin{minipage}{0.999\linewidth} \begin{longtable*}{#1} }{\gdef\pt@width{\LTcapwidth}\end{longtable*}\@spew@tblnotes% \end{minipage}% \end{table*}} \def\LongTables{ \renewenvironment{deluxetable}[1]{ % \def\table@hook{\@table@type@size} \def\nl{\\} \def\tabcolsep{5pt} \let\caption=\LT@caption \begin{longtable}{##1} }{\gdef\pt@width{\LTcapwidth}\end{longtable}\@spew@tblnotes} \renewenvironment{deluxetable*}[1]{ % \def\table@hook{\@table@type@size} \def\nl{\\} \def\tabcolsep{5pt} \let\caption=\LT@caption \begin{longtable*}{##1} }{\gdef\pt@width{\LTcapwidth}\end{longtable*}\@spew@tblnotes} } \def\tableheadfrac#1{} \def\tablewidth#1{} \newcount\pt@column \newcount\pt@ncol \newcommand\tablecolumns[1]{% \pt@column=#1\relax \pt@ncol=#1\relax \global\let\pt@addcol\@empty }% \def\cutinhead@ppt#1{% \noalign{\vskip 1.5ex}% \hline \@ptabularcr \noalign{\vskip -2ex}% Style Note: in apj, it is -1.5ex \multicolumn{\pt@ncol}{c}{#1}% \\ \noalign{\vskip .8ex}% \hline \\ \noalign{\vskip -2ex}% }% \newcommand\sidehead[1]{% \noalign{\vskip 1.5ex}% \multicolumn{\pt@ncol}{@{\hskip\z@}l}{#1}% \\ \noalign{\vskip .5ex}% }% %\def\startdata{\relax} \def\enddata{\relax} \gdef\tblnote@list{} \gdef\tblref@list{} \newcommand\tablecomments[1]{\gdef\tblnote@list{\@tablecom{#1}}}% \newcommand\tablerefs[1]{\gdef\tblref@list{\@tableref{#1}}}% \def\@tablecom#1{% \vspace*{\abovecaptionskip} \par {\parbox{\linewidth}{\hskip1em\rmfamily {\scshape Note}. --- #1}\par}% }% \def\@tableref#1{% \vspace*{\abovecaptionskip} \par {\parbox{\linewidth}{\hskip1em\rmfamily {\scshape References}. --- #1}\par}% }% \def\spew@tblnotes{% \@ifx@empty\tblref@list{}{% \@tablenotes{\tblref@list}% \global\let\tblref@list\@empty }% \@ifx@empty\tblnote@list{}{% \@tablenotes{\tblnote@list}% \global\let\tblnote@list\@empty } }% \def\@tablenotes#1{% \par \footnoterule% {\@table@type@size#1}% }% -- David MERRITT Department of Physics 54 Lomb Memorial Drive Rochester Institute of Technology Rochester, NY 14623-5604 Phone: 585-475-7973 Web: http://astrophysics.rit.edu/ E-mail: merritt@astro.rit.edu