Evidence for a Weak Galactic Center Magnetic Field from Diffuse Low Frequency Nonthermal Radio Emission

T. N. LaRosa(1), C. L. Brogan(2), S. N. Shore(3), T. J.. Lazio(4), N. E. Kassim(4), M. E. Nord(4,5)


(1) Department of Biological and Physical Sciences, Kennesaw State University, 1000 Chastain Rd., Kennesaw, GA 30144; ted@avatar.kennesaw.edu
(2) Institute for Astronomy, 640 North A`ohoku Place, Hilo, HI 96720; cbrogan@ifa.hawaii.edu.
(3) Dipartimento di Fisica ``Enrico Fermi'', Università di Pisa and INFN, Sezione di Pisa, largo B. Pontecorvo 3, I-56127 Pisa Italy; shore@df.unipi.it
(4) Remote Sensing Division, Naval Research Laboratory, Washington DC 20375-5351; Joseph.Lazio@nrl.navy.mil; Namir.Kassim@nrl.navy.mil; Michael.Nord@nrl.navy.mil
(5) Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 8713

Paper: ApJL, 2005, in press

EPrint Server: astro-ph/0505244


Abstract:

New low frequency 74 and 330 MHz observations of the Galactic center (GC) region reveal the presence of a large-scale (6\arcdeg* 2\arcdeg) diffuse source of nonthermal synchrotron emission. A minimum energy analysis of this emission yields a total energy of ( phi 4/7f3/7)* 1052 ergs and a magnetic field strength of 6( phi /f)2/7 mu G , (where phi is the proton to electron energy ratio and f is the filling factor of the synchrotron emitting gas). The equipartition particle energy density is 1.2( phi /f)2/7 \evcm , a value consistent with cosmic ray data. However, the derived magnetic field is several orders of magnitude below the 1 mG field commonly invoked for the GC. The shorter electron radiation lifetimes in such a strong field requires that energy be resupplied to the source at an implausibly high rate. Furthermore, a strong magnetic field implies an abnormally low GC cosmic ray energy density. We conclude that the mean magnetic field in the GC region must be weak, of order 10 mu G (at least on size scales > 125'').


Preprints available from the authors at lazio@exeter.nrl.navy.mil , or the raw TeX (no figures) if you click here.

Back to the gcnews home-page.