Two epochs VLBA Imaging of Sgr A* at 86 GHz

Zhi-Qiang Shen Shanghai Astronomical Observatory

At 30

In collaboration with

- K. Y. Lo (NRAO)
- J.-H. Zhao (CfA)
- M. Miyoshi (NAOJ)
- P. T. P. Ho (CfA)
- M.-C. Liang (Caltech/ASIAA)

At 30

Sgr A*
 - as a gravitational source

- dark mass $\sim 3 \times 10^{6} \mathrm{M}_{\text {sun }}$ within a radius of 15 mas $=120 \mathrm{AU}=2000 \mathrm{R}_{\text {sch }}$ (motions of *s like S0-2)
- $\mathrm{M}_{\text {SgrA* }}>4 \times 10^{5} \mathrm{M}_{\text {sun }}$
(motions of Sgr A^{*} itself)

Sor Dis

Sgr A*
 - as a radiative source

- X-ray flaring of 200 - 900 sec rise/fall timescales
=> $7-30 R_{\text {sch }}$ or 0.05-0.2 mas
(Chandra and XMM-Newton)
- IR flares of 30-40 min
=> 5 AU ($80 \mathrm{R}_{\text {sch }}$) or 0.6 mas (VLT and Keck)

Bod Qa
VLBI Observations of Sgr A＊
－Interstellar scattering effect dominates the cm－VLBI images of SgrA＊by λ^{2}－law， with an apparent E－W elongated shape
－need for the mm－VLBI

Bod MMm-VLBI Observations of Sgr A*

- The mm-VLBI plagued by 2 facts
© southerly Dec of SgrA* (- 30°)
® northern lat. for most mm-VLBI antennas

At 30

800 Q Uptime plot of VLBA Observations of Sgr A*

Experiment code: SgrA*

VIBA SC
VLBA_HN
VLBA_NL
VLBA_FD
VLBALA

GBT VIBA
SGRA
zshen 16-Mar-2004 10:31

Bor 0^{x}
Mm-VLBI Observations of Sgr A*

- The mm-VLBI plagued by 2 factssoutherly Dec of SgrA* (- 30 $)$northern lat. for most mm-VLBI antennas
\mathbf{x} lack of spatial resolution in N-S (= minor axis)
\mathbf{x} severe atmospheric effects on data calibration
(large and variable opacity, short and variable $\mathrm{T}_{\text {coh }}$)
+ compromised sensitivity at mm-band (high Tsys: >100 K at zenith; low antenna efficiency: < 45\%)

How to improve

- During the observations
\square dynamic scheduling -> best weather condition
\square compact SiO masers for amp cal and pointing
- During the data analysis
- closure amplitudes to constrain the model-fitting

At 30

${ }^{80 \mathrm{O}} 1 \mathrm{st}$ epoch 3mm VLBA

 Observation- Nov 3, 2002 (dynamic since Feb 2001)
- 512 Mbps (highest recording rate)
- Frequent pointing check (every 15 min)
- Very good detections among 5 antennas (FD/KP/LA/OV/PT), plus some to NL
- First 3mm VLBI image of SgrA*

1st epoch 3mm VLBA Observation

- Very good detections among 5 antennas (KD/KP/LA/OV/PT), plus some to NL

At 30

1st epoch 3mm Observation

- First 3mm VLBI image of SgrA*

\oplus unresolved (no extended structure) \rightarrow single component
\oplus zero closure phases
$\oplus \sim$ E-W elongated emission \rightarrow consistent with $\lambda \geqslant 7 \mathrm{~mm}$ data

$$
\chi^{2}=\sum_{t} \sum_{i j} w_{i j}\left|A_{i j}^{o b s}(t)-G_{i}(t) G_{j}(t) A_{i j}^{\bmod }(t)\right|^{2}
$$

here, the visibility amplitude $A_{i j}$ is used,
"good observable" - the closure amplitude $C_{i j k l}=\frac{A_{i j} A_{k l}}{A_{i k} A_{j i}}$
is conserved by assuming an antenna-dependent

At 30

Bias Correction

- The measured visibility amplitude <Z> has a positive bias with respect to the true amplitude A

$$
\begin{array}{ll}
<Z>\approx A\left(1+\frac{\sigma^{2}}{2 A^{2}}\right) & (\text { strong signal }: A \gg \sigma) \\
<Z>\approx \sigma \sqrt{\frac{\pi}{2}}\left(1+\frac{A^{2}}{4 \sigma^{2}}\right) & (\text { weak signal }: A \ll \sigma)
\end{array}
$$

here, σ is the rms deviation of a single component of the complex noise vector. This is big at low SNR $\leqslant 3$, but can be corrected (see Thompson, Moran, \& Swenson 1986)

However, it is difficult to estimate the unbiased $\mathbf{C}_{\mathrm{ijkl}}$ and thus to treat its formal error properly if we fit the closure amplitude directly (see Trotter, Moran, \& Rodriguez 1998).

$308 \mathrm{D}^{3}$

Model-fitting procedure

- χ^{2} - minimization algorithm
- Bias correction to the measured visibility amplitude $\mathrm{A}_{\mathrm{ij}}(\mathrm{t})$
- Determination of the antenna-based gain G_{i} from the observed visibility amplitude A and the given model $\tilde{\mathrm{A}}$ at each time t
- Comparison of χ^{2} for different model $\tilde{\mathrm{A}}$ to get the best fit model
- Error estimate from the χ^{2} distribution
$1 \sigma(68.3 \%$ confidence $): \chi^{2}(\mathrm{~min})->\chi^{2}(\mathrm{~min})+\chi^{2}(\mathrm{~min}) / N_{\text {dof }}$

Application to DA193

- DA193 (z=2.365)

GPS source

VLBI calibrator At 30

Application to DA193

DA193: VLBI calibrator

DA193 C band (8 IF)

D. Briggs thesis (1995) DR = 115,000:1
fit with a single Gaussian
0.904×0.514 mas @109.5 ${ }^{\circ}$

Application to DA193

- DA193: EVN+Sh+Ur+Hart (Nov 7, 1997)
- Standard VLBI selfcalibration imaging and model-fitting 0.82×0.64 mas @ 111°
- Our procedure
0.82×0.48 mas @ 108°

800 @"1st epoch 3mm Observation

- major axis: 0.21 (+0.02 / -0.01) mas

At 30

1st epoch 3mm Observation

- Minor axis: 0.13 (+0.05 / -0.13) mas and PA: $79^{\circ}\left(+12^{\circ} /-33^{\circ}\right)$

Contour plot showing the Confidence intervals of 68.3% and 90.0%.

Surface plot of Chi^2 as a function of both minor axis and PA (major axis $=0.21$ mas).

800 @"1st epoch 3mm Observation

- Model fitting:
\checkmark Single elliptical Gaussian

major axis: $\quad 0.21(+0.02 /-0.01)$ mas
 minor axis: $\quad 0.13(+0.05 /-0.13)$ mas
 position angle: $\quad 79^{\circ}\left(+12^{\circ} /-33^{\circ}\right)$

\checkmark Best Circular Gaussian
FWHM: 0.20-0.21 mas

${ }^{8} \mathrm{O}^{1} \mathrm{a}^{*} 2$ nd epoch 3mm VLBA Observation

－Observations on Sept 28， 2003
$\checkmark 512 \mathrm{Mbps}$ ；pointing check every 15 min
x gust＠OV，tape（recording，playback）＠KP，PT
Image（preliminary）

Boc $0^{4} 2$ nd epoch 3 mm Observation

- Model fitting:
\checkmark Single elliptical Gaussian

major axis: 0.21 (+0.01 / -0.01) mas
 minor axis: $0.00-0.13 \mathrm{mas}$
 position angle: $\quad 87^{\circ}\left(+12^{\circ} /-9^{\circ}\right)$

\checkmark Best Circular Gaussian
FWHM: 0.20 mas

Discussion

- Apparent SgrA* structure at 3mm: elongated roughly along E-W with a major axis size of 0.21 mas

	Elliptical Gaussian Model (major,minor,pa)	circular
1999 Apr, CMVA (Doeleman et al 2001)	$0.34(+/-0.14), 0.17(+/-0.02), 22(+/-20)$	$0.18(+/-0.02)$
2002 Nov, VLBA	$0.21(+0.02 /-0.01), 0.13(+0.05 /-0.13), 79(+13 /-33)$	$0.20-0.21$
2003 Sept, VLBA	$0.21(+0.01 /-0.01), 0.00-0.13, \quad 87(+12 /-9)$	0.20

Discussion

- Intrinsic structure of SgrA* emission

The best ever measurement in Nov 2002 shows a 3σ deviation from the extrapolated scattering angle of $0.175+/-0.003$ mas along the major axis. If confirmed, this indicates an intrinsic size of 0.116 mas , or $\sim 1 \mathrm{AU} @ 8 \mathrm{kpc}$, or $\sim 17 \mathrm{Rsch}\left(3 \times 10^{6} \mathrm{M}_{\text {sun }}\right)$.

Intrinsic $\mathrm{Tb} \sim 1.5 \times 10^{10} \mathrm{~K}$ (non-thermal origin)

Discussion - 7mm data

Epoch	Ctr Freq(+BW) GHz (+ MHz)	$\begin{gathered} \mathrm{S} \\ (\mathrm{Jy}) \end{gathered}$	Major axis (mas)	Minor axis (mas)	$\begin{gathered} \text { P.A } \\ \text { (degree) } \end{gathered}$	Reduced chi^2	$\begin{aligned} & \mathrm{SC}- \\ & \mathrm{HN} \end{aligned}$	Notes
1994.32	43.151 (64)	1.4	$0.72+/-0.01$	$0.39+/-0.07$	$78+/-2$	1.11	yes	
1994.75	43.151 (64)	1.3	$0.72+/-0.01$	$0.42+/-0.03$	$79+/-1$	1.17	yes	Bower \& Backer 1998
1997.12	43.213 (32)	1.0	$0.71+/-0.01$	$0.42+/-0.05$	$74+/-2$	2.89	no	Lo et al 1998; dual pol
1999.31	43.135 (32)	1.0	$0.69+/-0.01$	$0.33+/-0.04$	$83+/-1$	0.97	yes	1.26×0.44 @ 7°
1999.39	43.135 (32)	1.5	$0.71+/-0.01$	0.44 +/- 0.02	$79+/-1$	1.59	yes	1.35×0.48 @ 11 ${ }^{\circ}$
1999.41	43.135 (32)	1.5	$0.75+/-0.01$	0.49+/- 0.05	$70+/-3$	0.85		
	39.135 (32)	1.6	$0.86+/-0.01$	0.54+/- 0.03	$78+/-1$	1.54		39 GHz
\square	45.135 (32)	1.5	$0.66+/-0.01$	$0.42+/-0.04$	$75+/-3$	1.31		45 GHz
苟001.58	42.8-43.1 (32)	0.9	$0.74+/-0.01$	$0.47+/-0.14$	$77+/-6$	3.41	yes	

Average over 7 epochs: major 0.72 +/- 0.02 mas minor $0.42+/-0.04$ mas

Boa Q^{3}

Discussion - 7mm data

At 30

Bod ${ }^{4 *}$ Discussion - past SgrA* size measurements

Table 1. Summary of published $\operatorname{Sgr} \mathrm{A}^{\star}$ size measurements

Epoch (yrs)	$\mathrm{S}_{\text {VLbi }}$ (Jy)	$\begin{aligned} & \theta_{\text {major }} \\ & (\mathrm{mas}) \end{aligned}$	$\begin{aligned} & \theta_{\text {minor }} \\ & (\text { mas }) \end{aligned}$	Axial Ratio $\left(\theta_{\text {minor }} / \theta_{\text {major }}\right)$	P.A. $\left({ }^{\circ}\right)$	References
$\underline{\lambda}=35.6 \mathrm{~mm}$						
1997.10	0.73 ± 0.10	18.0 ± 1.53	9.88 ± 1.68	0.55 ± 0.14	78 ± 6	Lo et al. (1998)
1991.90		17.5 ± 0.5	8.5 ± 1.0	0.49 ± 0.06	87 ± 5	Lo et al. (1993)
1983.36		16.1 ± 0.3	16.1	1.0		Marcaide et al. (1992)
1983.35		15.5 ± 0.1		0.55 ± 0.25	98 ± 15	Lo et al. (1985)
1982.30		17.4 ± 0.5		0.53 ± 0.10	82 ± 6	Jauncey et al. (1989)
1978.07	0.7	18 ± 2	18	1.0		Lo et al. (1981)
1976.18	0.9 ± 0.06	14 ± 2	14	1.0		Lo et al. (1977)
1975.38	0.6 ± 0.1	<20.0		1.0		Lo et al. (1975)
1974.50		17.0	17.0	1.0		
$\underline{\lambda} \underline{\underline{~}}$ 13.5 mm						
1997.10	0.74 ± 0.04	2.70 ± 0.15	1.50 ± 0.59	0.56 ± 0.25	81 ± 11	Lo et al. (1998)
1992.85	1.05 ± 0.10	2.67 ± 0.15	1.63 ± 0.41	0.61 ± 0.12	79 ± 10	Marcaide et al. (1999)
1991.49	0.98 ± 0.05	2.6 ± 0.2	1.3	0.5	87	Lo et al. (1993)
1991.47	1.07 ± 0.15	2.60 ± 0.20	1.30 ± 0.88	0.5 ± 0.3	80 ± 15	Alberdi et al. (1993)
1985.11	1.2 ± 0.4	1.8 ± 0.09	1.8	1.0		Marcaide et al. (1992)
1983.47	0.98 ± 0.05	2.2 ± 0.2	1.21 ± 1.21	0.55 ± 0.5	87 ± 30	Lo et al. (1985)
$\underline{\lambda}=6.9 \mathrm{~mm}$						
1997.10	1.03 ± 0.01	0.70 ± 0.01	0.58 ± 0.07	0.83 ± 0.11	87 ± 8	Lo et al. (1998)
1994.75	1.28 ± 0.10	0.76 ± 0.04	0.55 ± 0.11	0.73 ± 0.10	77 ± 7	Bower \& Backer (1998)
1992.62	2.10 ± 0.10	0.74 ± 0.03	0.40 ± 0.20	0.54 ± 0.29	90 ± 10	Backer et al. (1993)
1992.40	1.42 ± 0.10	0.75 ± 0.08	0.75	1.0		Krichbaum et al. (1993)
$\underline{\underline{\lambda}=3.5 \mathrm{~mm}}$						
1999.27	1.4	0.34 ± 0.14	0.17 ± 0.02	0.50 ± 0.26	22 ± 20	Doeleman et al. (2001)
	1.4	0.18 ± 0.02	0.18	1.0		Doeleman et al. (2001)
1995.18	1.80 ± 0.30	0.19 ± 0.03	0.19	1.0		Krichbaum et al. (1998)
1994.25	1.40 ± 0.20	0.15 ± 0.05	0.15	1.0		Rogers et al. (1994)
1993.27	1.25 ± 0.35	0.22 ± 0.19	0.22	1.0		Krichbaum et al. (1999)

Bod Discussion - reanalysis of the archived VLBI data

$\lambda(\mathrm{cm})$	major (mas)	minor (mas)	p.a. (deg)	Resolution $(\mathrm{mas} \times \mathrm{mas} @ \mathrm{deg})$	Notes
6.03	$43.0+2.5 /-1.0$		$21 \times 12 @ 4$	Only 1 epoch data!	
3.56	$17.5+0.5 /-1.0$	$8.50+/-1.0$	$87+/-3$	$12.5 \times 6.5 @ 5$	
1.96	$5.33+/-0.07$	$2.70+0.30 /-0.44$	$83+/-3$	$9.5 \times 3.9 @ 26$	
1.35	$2.53+0.06 /-0.05$	$1.45+0.23 /-0.38$	$83+4 /-5$	$6.4 \times 2.3 @ 24$	1 epoch only!
0.69	$0.72+/-0.02$	$0.42+/-0.04$	$77+/-3$	$1.6 \times 0.5 @ 10$	Errors from the scatter of 7 epochs data
0.35	$0.21+0.02 /-0.01$		$79+12 /-33$	$1.1 \times 0.3 @ 9$	Minor axis poor

At 30

Scattering law revisited
d

Summary

- First 3mm VLBA image of Sgr A* shows an E-W elongated structure, consistent with the morphology observed at other longer λ.
- A 3σ deviation from the extrapolated scattering angle of 0.175 mas at 3 mm (from the current $1.43 \lambda^{2}$) may suggest an intrinsic size of 1 AU along E-W at 3mm.
- Investigation of the archived multi-wavelength data suggests a slightly smaller scattering effect of $1.39 \lambda^{2}$.
- The current scattering law needs to be re-examined with more measurements at both short (mm) and long (cm) wavelengths.

