

Two epochs VLBA Imaging of Sgr A* at 86 GHz

Zhi-Qiang Shen Shanghai Astronomical Observatory

In collaboration with

- K. Y. Lo (NRAO)
- J.-H. Zhao (CfA)
- M. Miyoshi (NAOJ)
- P. T. P. Ho (CfA)
- M.-C. Liang (Caltech/ASIAA)

Sgr A* - as a gravitational source

- dark mass ~ 3 x 10⁶ M_{sun} within a radius
 of 15 mas = 120 AU = 2000 R_{sch}
 (motions of *s like S0-2)
- $M_{SgrA^*} > 4 \times 10^5 M_{sun}$
 - (motions of Sgr A* itself)

- X-ray flaring of 200 900 sec rise/fall timescales => 7 - 30 R_{sch} or 0.05 - 0.2 mas
 (Chandra and XMM-Newton)
- IR flares of 30 40 min => 5 AU (80 R_{sch}) or 0.6 mas (VLT and Keck)

Correlated radio/X-ray variation (Zhao et al 04')
 => r_{Radio} > r_{X-ray} = 7 R_{sch} or 0.05 mas

Son VLBI Observations of Sgr A*

- Interstellar scattering effect dominates the cm-VLBI images of SgrA* by λ^2 - law, with an *apparent* E-W elongated shape
- need for the mm-VLBI

Mm-VLBI Observations of Sgr A*

- The mm-VLBI plagued by 2 facts
- southerly Dec of SgrA* (~ 30°)
- Northern lat. for most mm-VLBI antennas

Solution Uptime plot of VLBA Observations of Sgr A*

Son (u,v) coverage of VLBA Observations of Sgr A*

^ໃງ Mm-VLBI Observations of Sgr A*

- The mm-VLBI plagued by 2 facts southerly Dec of SgrA* (~ - 30°)
- northern lat. for most mm-VLBI antennas
- Iack of spatial resolution in N-S (= minor axis)
 severe atmospheric effects on data calibration (large and variable opacity, short and variable T_{coh})

+ compromised sensitivity at mm-band (high Tsys: >100 K at zenith; low antenna efficiency: < 45%)

How to improve

- During the observations
- dynamic scheduling -> best weather condition
- compact SiO masers for amp cal and pointing
- During the data analysis
- closure amplitudes to constrain the model-fitting

Son 1st epoch 3mm VLBA Observation

- Nov 3, 2002 (dynamic since Feb 2001)
- 512 Mbps (highest recording rate)
- Frequent pointing check (every 15 min)
- Very good detections among 5 antennas (FD/KP/LA/OV/PT), plus some to NL

First 3mm VLBI image of SgrA*

Model-fitting using the closure amplitude constraints

• χ^2 – *minimization* algorithm

$$\chi^{2} = \sum_{t} \sum_{ij} w_{ij} |A_{ij}^{obs}(t) - G_{i}(t)G_{j}(t)A_{ij}^{mod}(t)|^{2}$$

here, the visibility amplitude $A_{\pm i}$ is used,

"good observable" - the closure amplitude

$$C_{ijkl} = \frac{A_{ij} A_{kl}}{A_{ik} A_{jl}}$$

is conserved by assuming an antenna-dependent gain G_i only. This is equivalent to the use of closure quantities!

Bias Correction

The measured visibility amplitude <Z> has a positive bias with respect to the true amplitude A $< Z > \approx A \left(1 + \frac{\sigma^2}{2A^2} \right)$ (strong signal : A >> σ)

here, σ is the rms deviation of a single component of the complex noise vector. This is big at low SNR \leq 3, but can be corrected (see Thompson, Moran, & Swenson 1986)

 $< Z > \approx \sigma \sqrt{\frac{\pi}{2} \left(1 + \frac{A^2}{4\sigma^2} \right)}$ (weak signal: $A << \sigma$)

However, it is difficult to estimate the unbiased C_{ijkl} and thus to treat its formal error properly if we fit the closure amplitude directly (see Trotter, Moran, & Rodriguez 1998).

Model-fitting procedure

$$\chi^2$$
 – *minimization* algorithm

- Bias correction to the measured visibility amplitude A_{ij}(t)
- Determination of the antenna-based gain G_i from the observed visibility amplitude A and the given model Å at each time t
- Somparison of χ^2 for different model \tilde{A} to get the best fit model
- Error estimate from the χ^2 distribution 1 σ (68.3% confidence): χ^2 (min) -> χ^2 (min) + χ^2 (min) / N_{dof}

Application to DA193

DA193: EVN+Sh+Ur+Hart (Nov 7, 1997)

Standard VLBI selfcalibration imaging and model-fitting

0.82 x 0.64 mas @ 111°

🥏 Our procedure

0.82 x 0.48 mas @ 108°

^{Son®}[↑]1st epoch 3mm Observation

Minor axis: 0.13 (+0.05 / -0.13) mas and PA: 79° (+12° / -33°)

Contour plot showing the Confidence intervals of 68.3% and 90.0%.

Surface plot of Chi 2 as a function of both minor axis and PA (major axis = 0.21 mas).

Model fitting:

Single elliptical Gaussian major axis: 0.21 (+0.02 / -0.01) mas minor axis: 0.13 (+0.05 / -0.13) mas

position angle: 79° (+12°/-33°)

Best Circular Gaussian FWHM: 0.20-0.21 mas

[ິ]່ນ 2nd epoch 3mm VLBA Observation

- Observations on Sept 28, 2003
 - 512 Mbps; pointing check every 15 min
- gust @OV, tape (recording,playback)@KP, PT

Son[®] 2nd epoch 3mm Observation

Model fitting:

Single elliptical Gaussian major axis: 0.21 (+0.01 / -0.01) mas minor axis: 0.00 - 0.13 mas position angle: 87° (+12° / -9°)

Apparent SgrA* structure at 3mm: elongated roughly along E-W with a major axis size of 0.21 mas

	Elliptical Gaussian Model (major,minor,pa)	circular
1999 Apr, CMVA	0.34(+/-0.14), 0.17(+/-0.02), 22(+/-20)	0.18(+/-0.02)
(Doeleman et al 2001)		
2002 Nov, VLBA	0.21(+0.02/-0.01), 0.13(+0.05/-0.13), 79(+13/-33)	0.20 - 0.21
2003 Sept, VLBA	0.21(+0.01/-0.01), 0.00-0.13, 87(+12/-9)	0.20

Intrinsic structure of SgrA* emission

The best ever measurement in Nov 2002 shows a 3σ deviation from the extrapolated scattering angle of 0.175 +/- 0.003 mas along the major axis. If confirmed, this indicates an intrinsic size of 0.116 mas, or ~1 AU @ 8 kpc, or ~17 Rsch (3 x 10⁶ M_{sun}).

Intrinsic Tb ~ $1.5 \times 10^{10} \text{ K}$ (non-thermal origin)

لاتورالیت Discussion – 7mm data

Epoch	Ctr Freq(+BW) GHz (+ MHz)	S (Jy)	Major axis (mas)	Minor axis (mas)	Minor axis P.A Reduced (mas) (degree) chi^2		SC- HN	Notes
19 <mark>94.32</mark>	43.151 (64)	1.4	0.72 +/- 0.01	0.39 +/- 0.07	78 +/- 2	1.11	yes	
19 <mark>94.75</mark>	43.151 (64)	1.3	0.72 +/- 0.01	0.42 +/- 0.03	79 +/- 1	1.17	yes	Bower & Backer 1998
19 <mark>97.12</mark>	43.213 (32)	1.0	0.71 +/- 0.01	0.42 +/- 0.05	74 +/- 2	2.89	no	Lo et al 1998; dual pol
19 <mark>99.31</mark>	43.135 (32)	1.0	0.69 +/- 0.01	0.33 +/- 0.04	83 +/- 1	0.97	yes	1.26 x 0.44 @ 7º
1999.39	43.135 (32)	1.5	0.71 +/- 0.01	0.44 +/- 0.02	79 +/- 1	1.59	yes	1.35 x 0.48 @ 11º
1999.41	43.135 (32)	1.5	0.75 +/- 0.01	0.49+/- 0.05	70 +/- 3	0.85		
	39.135 (32)	1.6	0.86 +/- 0.01	0.54+/- 0.03	78 +/- 1	1.54		39 GHz
Б	45.135 (32)	1.5	0.66 +/- 0.01	0.42 +/- 0.04	75 +/- 3	1.31		45 GHz
2001.58	42.8-43.1 (32)	0.9	0.74 +/- 0.01	0.47 +/- 0.14	77 +/- 6	3.41	yes	

Average over 7 epochs: major 0.72 +/- 0.02 mas

நா

minor 0.42 +/- 0.04 mas P.A. 77 +/- 3 deg

Boo Discussion - past SgrA* size measurements

Epoch	$\mathbf{S}_{\mathrm{VLBI}}$	$ heta_{ m major}$	$ heta_{ ext{minor}}$	Axial Ratio	P.A.	References
(yrs)	(Jy)	(mas)	(mas)	$(\theta_{ m minor}/\theta_{ m major})$	(°)	
) 95.0			
			$\lambda = 35.6 \text{ mm}$			
1997.10	$0.73 {\pm} 0.10$	$18.0 {\pm} 1.53$	$9.88 {\pm} 1.68$	$0.55 {\pm} 0.14$	78 ± 6	Lo et al. (1998)
$1991.90 \ldots$		$17.5 {\pm} 0.5$	8.5 ± 1.0	$0.49 {\pm} 0.06$	87 ± 5	Lo et al. (1993)
1983.36		$16.1 {\pm} 0.3$	16.1	1.0		Marcaide et al. (1992)
1983.35		15.5 ± 0.1		$0.55 {\pm} 0.25$	98 ± 15	Lo et al. (1985)
1982.30		17.4 ± 0.5		0.53 ± 0.10	82 ± 6	Jauncey et al. (1989)
$1978.07 \ldots$	0.7	18 ± 2	18	1.0		Lo et al. (1981)
$1976.18 \ldots$	$0.9 {\pm} 0.06$	14 ± 2	14	1.0		Lo et al. (1977)
1975.38	$0.6 {\pm} 0.1$	$<\!20.0$		1.0		Lo et al. (1975)
1974.50		17.0	17.0	1.0		
			$\lambda = 13.5 \text{ mm}$			
1997.10	$0.74 {\pm} 0.04$	2.70 ± 0.15	1.50 ± 0.59	0.56 ± 0.25	81 ± 11	Lo et al. (1998)
1992.85	1.05 ± 0.10	2.67 ± 0.15	1.63 ± 0.41	0.61 ± 0.12	79 ± 10	Marcaide et al. (1999)
1991.49	0.98 ± 0.05	2.6 ± 0.2	1.3	0.5	87	Lo et al. (1993)
1991.47	1.07 ± 0.15	2.60 ± 0.20	1.30 ± 0.88	0.5 ± 0.3	80 ± 15	Alberdi $et al.$ (1993)
1985.11	1.2 ± 0.4	1.8 ± 0.09	1.8	1.0		Marcaide et al. (1992)
1983.47	$0.98{\pm}0.05$	$2.2{\pm}0.2$	1.21 ± 1.21	$0.55 {\pm} 0.5$	87 ± 30	Lo et al. (1985)
			$\lambda = 6.9 \text{ mm}$			
1007 10	1.03 ± 0.01	0.70 ± 0.01	0.58 ± 0.07	0.83 ± 0.11	87+8	L_{0} at $2l$ (1998)
1997.10	1.03 ± 0.01 1.28 ± 0.10	0.70 ± 0.01 0.76±0.04	0.55 ± 0.07	0.03 ± 0.11 0.73 ±0.10	77 ± 7	Bower & Backer (1008)
1002.62	2.10 ± 0.10	0.70 ± 0.04 0.74 ±0.03	0.35 ± 0.11 0.40 ± 0.20	0.75 ± 0.10 0.54 ±0.20	90 ± 10	Backer et al. (1993)
1992.02	1.42 ± 0.10	0.74 ± 0.03 0.75±0.08	0.40±0.20	1.0	90±10	Krichbaum at al. (1993)
1552.40	1.42±0.10	0.10±0.00) - 2 5 mm	1.0		Krienbaum et al. (1555)
			$\lambda = 3.0 \text{ mm}$			
$1999.27 \ldots$	1.4	$0.34{\pm}0.14$	$0.17 {\pm} 0.02$	$0.50 {\pm} 0.26$	22 ± 20	Doeleman $et al. (2001)$
	1.4	$0.18 {\pm} 0.02$	0.18	1.0		Doeleman $et al. (2001)$
1995.18	$1.80 {\pm} 0.30$	$0.19 {\pm} 0.03$	0.19	1.0		Krichbaum et al. (1998)
1994.25	$1.40 {\pm} 0.20$	$0.15 {\pm} 0.05$	0.15	1.0		Rogers et al. (1994)
$1993.27 \ldots$	1.25 ± 0.35	$0.22 {\pm} 0.19$	0.22	1.0		Krichbaum et al. (1999)

Table 1. Summary of published Sgr A^{*} size measurements

Discussion - reanalysis of the archived VLBI data

λ (cm)	major (mas)	minor (mas)	p.a. (deg)	Resolution	Notes
				(mas x mas @ deg)	
6.03	43.0 +2.5 /-1.0			21 x 12 @ 4	
					Only 1 epoch data!
3.56	17.5 +0.5/-1.0	8.50 +/- 1.0	87 +/- 3	12.5 x 6.5 @ 5	
1.96	5.33 +/- 0.07	2.70 +0.30/-0.44	83 +/- 3	9.5 x 3.9 @ 26	
					1 epoch only!
1.35	2.53 +0.06/-0.05	1.45 +0.23/-0.38	83 +4/-5	6.4 x 2.3 @ 24	
0.69	0.72 +/- 0.02	0.42 +/- 0.04	77 +/- 3	1.6 x 0.5 @ 10	Errors from the scatter
					of 7 epochs data
0.35	0.21 +0.02/-0.01		79 +12/-33	1.1 x 0.3 @ 9	Minor axis poor

Scattering law revisited

- First 3mm VLBA image of Sgr A* shows an E-W elongated structure, consistent with the morphology observed at other longer λ .
- A 3 σ deviation from the extrapolated scattering angle of 0.175 mas at 3mm (from the current 1.43 λ²) may suggest an intrinsic size of 1 AU along E-W at 3mm.
- Investigation of the archived multi-wavelength data suggests a slightly smaller scattering effect of 1.39 λ ².
- The current scattering law needs to be re-examined with more measurements at both short (mm) and long (cm) wavelengths.