

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

TEST OF THE SEMITRANSPARENT VANE CALIBRATION SCHEME

J. Martín-Pintado

Design and construction of the devices S. Navarro, M. Carter (IRAM) **Tests:**

J. Martín-Pintado, (IEM-CSIC), S. Martín, S. Navarro (IRAM)

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

S/T vane calibration scheme

Tcal = f * Tcal(chopper_wheel)

f = losses in the vane measured on astronomical sources

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

Goals of the tests : accuracy of cal scheme

Properties of the vane (done)

- Absorption coefficient (loads and astronomical sources)
- Polarization

Comparison relative calibration dual-load/ S/T vane

Lack of good weather (only few hours in two periods)

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

IRAM 30m telescope receiver cabin schematic

Devices

Rotary actuator (switch time 1 s) 90 and 230 GHz observations Standard calibration system

Position 1 * 2 cm from the receiver

Position 2

* **1.5 m from the receivers**

* Two frequencies: 86 and 230 GHz

* Orthogonal polarization 4

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

Position 1

Position 2

6/19/2003

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

Vane material

First observing run

Dense polystyrene foam

2 cm thickness: Absorption 0.05 at 86 GHz

Second observing run

Dense polystyrene foam (vane #1) 4 cm thickness: Absorption 0.1 at 86 GHz Dense polyurethane foam (vane #2) 3 cm thickness: Absorption 0.2 at 86 GHz

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

Measurements of the absorption coefficient

Using the cold (N2) and the ambient loads

f = (Cold_vane - Cold) / (Amb - Cold)

Final values are the average of 9 measurements

Using astronomical sources (only second run: Saturn and RLeo)

f = 1- (I_vane-on / I_vane-off)
Final values are the average of 14 measurements

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

Position 1

Variations up to 10% due to the location of the vane

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

Position 2

Smaller variations than 10% Absorption goes like v^{1.2-1.3} **but not a single power law** 6/19/2003

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

Variations of < 2%. Systematic effects at this level Influence of stationary waves vane-receiver (position 1) Transmission difficult to measure at a 1% level 10

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

11

86 GHz

Vane 2

215 GHz

Semitransparent vane#2 215 GHz

6/19/2003

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

Vane 1 Polarization 3mm

H. Wiesemeyer & C. Thum

Linear <0.5% (5 σ)

Circular <0.5% (5 σ)

DPTO FÍSICA MOLECULAR

Atacama Large Millimeter Array

CONCLUSIONS

Stability

• The S/T vane could provide a calibration accuracy of 2%

Problems

- Systematic effects
- Difficult (time) to measure the losses on astronomical sources with the required precision (better than 1%)

The S/T vane calibration scheme could provide a calibration system with an accuracy of about 2-3%.

Additional problems

• Ageing of the vane 6/19/2003