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ABSTRACT

Greisen & Calabretta (2002, A&A, 395, 1061) describe a generalized method for specifying the coordinates of FITS data samples. Following
that general method, Calabretta & Greisen (2002, A&A, 395, 1077) describe detailed conventions for defining celestial coordinates as they
are projected onto a two-dimensional plane. The present paper extends the discussion to the spectral coordinates of wavelength, frequency,
and velocity. World coordinate functions are defined for spectral axes sampled linearly in wavelength, frequency, or velocity, linearly in the
logarithm of wavelength or frequency, as projected by ideal dispersing elements, and as specified by a lookup table.

Key words. methods: data analysis – techniques: image processing – techniques: radial velocities – techniques: spectroscopic –
astronomical data bases: miscellaneous

1. Introduction

The present paper is the third in a series of papers that estab-
lishes methods by which information about the physical coor-
dinates of FITS data may be transferred along with the binary
image, random groups, and table data. In “Paper I” Greisen
& Calabretta (2002) describe a revised method for transferring
coordinate information in the FITS header and outline some
rules governing the values assigned to the new standard header
keywords. In “Paper II” Calabretta & Greisen (2002) specify
the conventions necessary to define celestial coordinates in a
two-dimensional projection of the sky. This paper defines the
parameters and conventions needed to specify spectral infor-
mation including frequency, wavelength, and velocity. In addi-
tion to these basic conversions, a world coordinate function is
defined to describe ideal optical dispersers of several common
types. Several concepts that were suggested by spectroscopic
issues are generalized to apply to all types of coordinate axes.
These are a generalized description of non-linear algorithms,
the -LOG and -TAB non-linear algorithms, and an axis-naming
keyword. In “Paper IV”, Calabretta et al. (2005) specify meth-
ods to describe the distortions inherent in the image coordinate
systems of real astronomical data.

Paper I describes the computation of the world or phys-
ical coordinates as a multi-step process. The vector of pixel
offsets from the reference point is multiplied by a linear

transformation matrix and then scaled to physical units.
Mathematically, this is given by

xi = si qi = si

N∑
j=1

mi j

(
p j − r j

)
, (1)

where p j are pixel coordinates, r j are pixel coordinates of the
reference point given by CRPIX j, mi j is a linear transformation
matrix given either by PC i_ j or CD i_ j, N is the dimensionality
of the WCS representation given by NAXIS or WCSAXES, and si

is a scaling given either by CDELT i or by 1.0.
The final step in the computation is the conversion of these

linear relative coordinates into the actual physical coordinates.
The conventions to be applied to spectral axes, i.e. to frequency,
wavelength, and velocity axes, are described in this paper.

2. Coordinate definition

At this stage in the discussion, we consider the spectral world
coordinate at the reference point on all other axes. This covers
the relatively simple case in which the spectral world coordi-
nate is not dependent on the other world coordinates. Methods
to describe deviations from this assumption due to the choice
of spectral reference system are discussed in Sect. 7, while in-
strumental distortions are discussed briefly in Sect. 9 and, in
more detail, in Paper IV.

Spectral coordinates are commonly given in units
of frequency, wavelength, velocity, and other parameters
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Fig. 1. Conventional velocities as a function of true radial velocity for selected values of the transverse velocity. The apparent radial velocity
�/c is plotted in the left panel, the radio velocity V/c is plotted in the center panel, and the optical velocity Z/c is plotted in the right panel.
Note that, at a transverse velocity of 0.9c, the red shift z always exceeds 1. Note that each family of curves intersects the axis of zero velocity
measure at the same values of �t because the redshift is zero for these combinations of �t and �r. Thus, regardless of the value of �t , for any
given redshift the velocity measures agree on whether the object appears to be receding or approaching. However, the object may appear to
be receding at high speed even when it is actually approaching at high speed, though the converse is never true. At transverse velocities of
�t/c >

√
2/2(≈0.71) all of the velocity measures are positive (receding) regardless of whether the object is actually receding or approaching.

Furthermore, for �r/c below −0.5, the faster the object approaches, the smaller the transverse velocity required to make it appear to be receding!

proportional to these three. The coordinate types discussed here
are then frequency, wavelength, and “apparent radial velocity”
denoted by the symbols ν, λ, and �. There are also three con-
ventional velocities frequently used in astronomy. These are
the so-called “radio” velocity, “optical” velocity, and redshift,
denoted here by V, Z, and z and given by V = c(ν0 − ν)/ν0,
Z = c(λ−λ0)/λ0 and z = Z/c. The velocities are defined so that
an object receding from the observer has a positive velocity.
We assume throughout that each image has at most one spec-
tral coordinate axis; a similar limit on celestial coordinates was
assumed in Paper II.

As discussed by Lindegren & Dravins (2003), the appar-
ent radial velocity to be described here is itself a conventional
velocity. The shift of a spectral line from its rest frequency is
caused by a variety of effects, not just the Doppler shift due
to a radial motion. The time dilation of an object moving with
respect to the observer causes a spectral shift, even if that mo-
tion is entirely transverse. Gravitational fields at the radiating
object and along the line of sight to the observer will shift the
observed frequency. Furthermore, the apparent spectroscopic
velocity may be produced at a peculiar point in the object,
e.g. upwelling convective cells, rather than at the center of mass
of the object. It may also be affected by absorption in interven-
ing material and in particular by the cosmic redshift. We will
use the term “apparent radial velocity” here simply to refer
to that pseudo-physical velocity described by the equations

presented here. The apparent radial velocity then is a sum of
all spectroscopic effects presented as if they were solely a ra-
dial velocity. While this may be sufficiently accurate for many
uses, observers wishing to achieve very high accuracies should
consult Lindegren & Dravins, and references therein, closely.

The effect of a transverse velocity deserves a little more
discussion. As given by Lang (1974),

λ = λ0
c + �r√

c2 − �2r − �2t
, (2)

where �r is the true radial velocity, �t is the true transverse ve-
locity, c is the speed of light, and miscellaneous effects such
as gravitational redshifts are assumed negligible. Even at or-
dinary astronomical velocities, this has a measurable effect; a
transverse velocity of 100 km s−1 produces an apparent velocity
of 17 m s−1. The effects of transverse velocities such as might
be found in astronomical jet sources on the apparent radial, ra-
dio, and optical conventional velocities are illustrated in Fig. 1.
When the transverse velocity is zero, radio velocity ranges from
−∞ to +c, optical velocity from −c to +∞, and apparent radial
velocity is �r when �t = 0. Because of all of the other processes
that shift the observed frequency, it is inappropriate to propose
keywords to describe true velocities at this time. Additional dis-
cussion of this matter is deferred to Appendix A.

For the purposes of this section and the next, we con-
sider those spectral axes at a single celestial coordinate that are
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Table 1. Spectral coordinate type codes, (characters 1–4 of CTYPEka).

Code Name Symbol Associate Default

variable units

FREQ Frequency ν ν Hz

ENER Energy E ν J

WAVN Wavenumber κ ν m−1

VRAD Radio velocity V ν m s−1

WAVE Vacuum wavelength λ λ m

VOPT Optical velocity Z λ m s−1

ZOPT Redshift z λ –

AWAV Air wavelength λa λa m

VELO Apparent radial velocity � � m s−1

BETA Beta factor (�/c) β � –

linearly sampled in wavelength, frequency, or apparent radial
velocity. The radio and optical “velocities” are directly pro-
portional to frequency and wavelength, respectively, and thus
do not constitute additional cases for the type of sampling.
Frequency and wavelength axes may also be regularly sam-
pled in their logarithm. Wavelengths are sometimes given “in
air” rather than in vacuum and denoted here by λa. This non-
linear distinction is discussed in Sect. 4. Frequency may also
be described in energy (=hν) units and in Kaysers (“wave num-
ber” =1/λ) units.

Following the convention of Papers I and II, the first four
characters of CTYPEka specify1 the coordinate type, the fifth
character is ‘-’ and the next three characters specify a prede-
fined algorithm for computing the world coordinates from in-
termediate physical coordinates. When k is the spectral axis,
the first four characters shall be one of the codes shown in
Table 1. The mathematical symbols we will use for the codes
and their default units are also listed. Units are specified with
the CUNITka keyword. Standard values for unit strings are de-
fined in Paper I. The IAU-standard prefixes for scaling the units
are described in Paper I and should be used with all coordinate
types, except that the dimensionless ones are not scaled.

The non-linear algorithm in use is specified by the final
3 characters of CTYPEka. In spectral codes, the first of the three
characters specifies the physical parameter type in which the
data are regularly sampled, the second character is 2, and the
third character specifies the physical parameter type in which
the coordinate is expressed. Non-linear algorithm codes, the
last four to be introduced later, are summarized in Table 2.
When the algorithm in use is linear, the last four characters
of CTYPEka shall be blank. The original FITS paper by Wells
et al. (1981) contained a number of suggestions for the values
of CTYPE i. Those suggestions are to be superseded by the con-
ventions of this paper and of Papers I and II.

The relationships between the basic physical quantities ν, λ,
and � are shown in Table 3. The symbols λ0 and ν0 are the

1 While Papers I and II use the generic intermediate axis number i,
we use here the axis number k as the spectral intermediate axis num-
ber. The single-character version code a was introduced in Paper I. It
has values blank and A through Z.

Table 2. Non-linear algorithm codes, (characters 6–8 of CTYPEka).

Regularly

Code sampled in Expressed as

F2W Frequency Wavelength

F2V Frequency Apparent radial velocity

F2A Frequency Air wavelength

W2F Wavelength Frequency

W2V Wavelength Apparent radial velocity

W2A Wavelength Air wavelength

V2F Apparent radial velocity Frequency

V2W Apparent radial velocity Wavelength

V2A Apparent radial velocity Air wavelength

A2F Air wavelength Frequency

A2W Air wavelength Wavelength

A2V Air wavelength Apparent radial velocity

LOG logarithm Any 4-letter coordinate type

GRI detector Any from Table 1

GRA detector Any from Table 1

TAB not regular Any 4-letter coordinate type

rest wavelength and frequency, respectively, of the spectral line
used to associate velocity with observed wavelength and fre-
quency. The relationships between the derived quantities and
the basic quantities with which they are associated are shown
in Table 4. Derivatives are included in both tables since they
will be needed in the coordinate computation.

3. Basic coordinate computation

This section describes the computation of coordinates that are
sampled linearly or logarithmically in a coordinate of similar
type, and of coordinates that are sampled linearly in a coordi-
nate of different type. The intermediate world coordinate for
spectral axis k, given by Eq. (1), will be denoted, for conve-
nience, by

w ≡ xk. (3)

The final world coordinate will be denoted by S . At the refer-
ence point, it has the value S r, which is defined by the keyword
CRVALka.

3.1. Linear coordinates

Linear coordinates are represented in CTYPEka by characters
1–4 containing any code in column one of Table 1 and charac-
ters 5–8 blank. The world coordinate value for spectral axis k
is computed with the above definitions and Eq. (1) as

S = S r + w. (4)

As a general rule, non-linear coordinate systems will be con-
structed so that they satisfy Eq. (4) to first order at the reference
point.
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3.2. Logarithmic coordinates

Data are often sampled in logarithmic increments in one or
more coordinates. For example, spectra are sometimes sampled
in logarithmic increments of wavelength or frequency. With
this type of sampling, the source motion, expressed as V, Z,
or z, shifts the “pixel” coordinates of spectral features by the
same amount over the whole image. This allows relative veloc-
ities between spectra to be determined using cross-correlation
methods in the pixel arrays.

For logarithmic axes, the last four characters shall be
‘-LOG’. While there are only three logarithmic coordinates
commonly used in spectroscopy, namely FREQ-LOG, WAVE-LOG
and AWAV-LOG, it would be unwise to forbid any coordinate
type with the -LOG non-linear algorithm. Many such combina-
tions may have little physical meaning or be intractable math-
ematically, but these are simply reasons to be cautious when
using -LOG. This algorithm is evaluated simply

S = S r ew/S r . (5)

This form of the logarithm satisfies the requirement that
dS
dw

∣∣∣
r
= 1 so that Eq. (4) is satisfied to first order at points near

the reference point. Thus S ≈ S r+w. This form of the logarith-
mic algorithm also has the desirable attribute that the units of
the coordinate (S ), reference coordinate, and scale are the same
and are of a simple form. The units for CRVALka, CDELTka, and
CDk_ ja are specified by the CUNITka keyword as defined in
Paper I. These quantities are in normal, non-logarithmic units
such as ‘Hz’ for FREQ-LOG and ‘m’ for WAVE-LOG. The pre-
fixes and alternate units described in Paper I may be used, such
as ‘MHz’ and ‘Angstrom’.

Logarithmic quantities are frequently expressed as log
base 10 rather than as natural logarithms. For such data, the
CDELTka and CDk_ ja will need to compensate by including a
factor of ln(10).

Table 3. Basic spectral transformation equations.

ν =
c
λ

(6) dν
dλ
= − c

λ2
(7)

ν = ν0
c − �√
c2 − �2

(8)
dν
d�
= − cν0

(c + �)
√

c2 − �2
(9)

λ =
c
ν

(10) dλ
dν
= − c

ν2
(11)

λ = λ0
c + �√
c2 − �2

(12)
dλ
d�
=

cλ0

(c − �)√c2 − �2
(13)

� = c
ν2

0 − ν2

ν2
0 + ν

2
(14)

d�
dν
= − 4cνν2

0

(ν2 + ν2
0)2

(15)

� = c
λ2 − λ2

0

λ2 + λ2
0

(16)
d�
dλ
=

4cλλ2
0

(λ2 + λ2
0)2

(17)

Table 4. Extended spectral transformation equations.

ν = ν0

(
1 − V

c

)
(18)

dν
dV
= − ν0

c
(19)

V = c
ν0 − ν
ν0

(20)
dV
dν
= − c

ν0
(21)

ν = E/h (22)
dν
dE
= 1/h (23)

E = hν (24)
dE
dν
= h (25)

ν = cκ (26)
dν
dκ
= c (27)

κ = ν/c (28)
dκ
dν
= 1/c (29)

λ = λ0

(
1 +

Z
c

)
(30)

dλ
dZ
=
λ0

c
(31)

Z = c
λ − λ0

λ0
(32)

dZ
dλ
=

c
λ0

(33)

λ = λ0(1 + z) (34)
dλ
dz
= λ0 (35)

z =
λ − λ0

λ0
(36)

dz
dλ
=

1
λ0

(37)

� = cβ (38)
d�
dβ
= c (39)

β = �/c (40)
dβ
d�
= 1/c (41)

3.3. Coordinate axis names

The generality of this algorithm, and the -TAB algorithm to
be introduced below, suggest the need for a more general
description of the coordinate than may be indicated in the first
four letters in the value of CTYPEka. We hereby reserve the
keyword

CNAME ia (character-valued)

to provide a description of a particular coordinate in up to
68 characters. Its default value will be all blank. For binary
table vectors, the keyword will be iCNAna, while for pixel lists
it will be TCNAna, where i is the intermediate world coordinate
axis number and n is the table column number to which the
keyword applies. This keyword may be used with standard axis
types such as GLON/GLAT or FREQ, but will be of greatest value
with non-standard axis types such as, hypothetically, CTYPE i =
‘TFPY-LOG’meant to indicate “log of Y position in telescope
focal plane”, which would be recorded in the CNAME ia card for
that axis. This keyword provides a name for an axis in a partic-
ular WCS, while the WCSNAMEa keyword names the particular
WCS as a whole.
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3.4. Non-linear spectral coordinates

We now consider the case where an axis is linearly sampled in
spectral variable X, but is to be expressed in terms of variable S .

3.4.1. Spectral algorithm codes

Given the large number of spectral variables in Table 1 it
is clear that there are very many pairwise combinations; in
general, the relationship between any pair may be non-linear.
However, each of the spectral variables in Table 1 is linearly
related to one or other of ν, λ, λa, or �. Thus we may restrict X
to one of these four basic variables.

Even with this restriction on X there are still many possible
combinations of X and S . In order to reduce the number still
further we introduce an intermediate variable, denoted by P,
that is the basic variable, ν, λ, λa, or �, with which S is asso-
ciated via a linear relation. This associate variable is listed for
each spectral variable in Col. 4 of Table 1. Thus the sequence
of transformations may be summarized as

p j → xk (≡ w)→ X � P→ S

where the non-linear transformation, indicated by the wiggly
arrow, is between X and P.

Table 3 lists the equations, X = X(P), and their inverses,
P = P(X), linking the basic spectral types ν, λ, and � (dis-
cussion of λa is deferred to Sect. 4). These equations are gen-
erally non-linear. Likewise, Table 4 lists the linear relations,
S = S (P), and their inverses, P = P(S ), linking each spectral
variable with its associate. When S is one of the basic types,
ν, λ, λa, or �, then P ≡ S and S (P) is identity.

Thus the functional relationship between S and X is speci-
fied via intermediate variable P as S (X) = S (P(X)) with inverse
X(S ) = X(P(S )). Since S (P) is linear, P and X must always dif-
fer, otherwise P(X) would be identity with the result that S (X)
would be linear, contrary to the assumption of a non-linear axis.

Non-linear spectral coordinate codes are constructed on
this basis by combining the spectral coordinate type code for S
from Table 1 with the non-linear spectral algorithm code in
Table 2. The first letter of the algorithm code defines X as
frequency (F), wavelength (W), air wavelength (A), or appar-
ent radial velocity (V), and the third letter likewise defines P.
For example, in ZOPT-F2W, X is Frequency, P is Wavelength,
and the non-linear conversion between the two (F2W) is de-
fined in Table 3, Eq. (10). The desired spectral coordinate S is
redshift (ZOPT), and this is related to associate variable P, the
Wavelength, by the linear equation given in Table 4, Eq. (36).

It is apparent from the foregoing that it is possible to con-
struct invalid spectral CTYPE coordinate codes. For example,
ZOPT-F2V is unrecognized since z is associated with λ, not �.
That is not to say that this code could not be interpreted in
principle – after all, equations linking z and � could have been
included in Table 4 – simply that it is not recognized in prac-
tice. The associate variable, P, was introduced in the first place
to reduce the possible number of combinations and adding new
ones like this would defeat that purpose. This is particularly
relevant to the software implementation; ZOPT-F2V would tell

software to chain its ν – � function with a � – z function but, in
general, the latter function will not have been defined.

3.4.2. Spectral algorithm chain

Consider now the computation of spectral coordinate S for an
axis that is linearly sampled in X. The statement that an axis is
linearly sampled in X simply means that

X = Xr + w
dX
dw

, (42)

where dX/dw is constant. This constant is determined by
imposing the requirement that

dS
dw

∣∣∣∣∣
r
= 1, (43)

so that Eq. (4) is satisfied to first order at points near the
reference point:

S ≈ S r + w. (44)

Thus

dX
dw
=

dP
dS

∣∣∣∣∣
r
/

dP
dX

∣∣∣∣∣
r
, (45)

which gives dX/dw as a function of Xr, dP/dS being constant
and dP/dX a function of X. Given that the functions S = S (P)
and P = P(X) are known, as are their inverses X = X(P) and
P = P(S ), then the equation for S as a function of w may be
obtained from Eqs. (42) and (45)

S (w) = S

(
P

(
X(P(S r)) + w

dP
dS

∣∣∣∣∣
r
/

dP
dX

∣∣∣∣∣
r

))
, (46)

where S r is given by CRVALka.
Equation (46) suggests a three-step algorithm chain:

1. Compute X at w using Eq. (42); Xr = X(P(S r)) and dX/dw
are constants that need be computed once only, the latter
obtained from Eq. (45) as a function of Xr.

2. Compute P from X using the appropriate equation from
Table 3.

3. Compute S from P using the appropriate equation from
Table 4.

The inverse computation by which the intermediate coordi-
nate w is computed for a given value of S is effected by travers-
ing the algorithm chain in the reverse direction. The inverse
equations required are all listed in Tables 3 and 4. The inverse
of Eq. (42) is, trivially,

w = (X − Xr) /
dX
dw
· (47)

3.4.3. Example non-linear calculation

As an example of a non-linear coordinate computation, con-
sider a ZOPT-F2W axis. F in the F2W code indicates that the axis
is linearly sampled in frequency, but it is to be expressed in
terms of redshift as indicated by the spectral coordinate type of
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Table 5. Sample non-linear coordinate combinations, where w, the intermediate coordinate of Eq. (3), has a different meaning for each of these
equations It has units given by the spectral coordinate type code as listed in Table 1.

FREQ-W2F ν =

(
νr

νr − w
)
νr (48)

VELO-W2V v = c
A2
λ − 1

A2
λ + 1

(49) where Aλ ≡ c2 − v2
r + cw

(c − vr)
√

c2 − v2
r

(50)

VRAD-W2F V =
Vr(c − Vr) + cw

c − Vr + w
(51)

WAVE-F2W λ =

(
λr

λr − w
)
λr (52)

VELO-F2V v = c
A2
ν − 1

A2
ν + 1

(53) where Aν ≡ c2 − v2
r − cw

(c + vr)
√

c2 − v2
r

(54)

VOPT-F2W Z =
Zr(c + Zr) + cw

c + Zr − w (55)

ZOPT-F2W z =
zr(1 + zr) + w

1 + zr − w (56)

WAVE-V2W λ = λ0

√
1 + Bλ

1 − Bλ

(57) where Bλ ≡
λ4

r − λ4
0 + 4λ2

0λrw

(λ2
0 + λ

2
r )2

(58)

FREQ-V2F ν = ν0

√
1 − Bν

1 + Bν

(59) where Bν ≡
ν4

0 − ν4
r − 4ν2

0νrw

(ν2
0 + ν

2
r )2

(60)

VOPT-V2W Z = c

⎛⎜⎜⎜⎜⎝
√

1 + DZ

1 − DZ
− 1

⎞⎟⎟⎟⎟⎠ (61) where DZ ≡ Y4
Z − 1 + 4YZw/c

(1 + Y2
Z)2

(62) with YZ ≡ 1 + Zr/c (63)

ZOPT. Table 1 indicates that redshift is associated with wave-
length, hence the W in F2W is correct. Of the X, P, and S vari-
ables in the preceding section, the axis is linear in frequency
so X is ν, the associated variable is wavelength, so P is λ, and
the required variable is redshift, so S is z.

Since CRVALka for the ZOPT-F2W axis would be recorded
as a redshift, zr, this must first be converted to frequency by
applying Eqs. (34),

λr = λ0(1 + zr)

and (6),

νr =
c
λr
=

c
λ0(1 + zr)

·

This provides Xr for Eq. (42). Then dν/dw (i.e. dX/dw) is ob-
tained from Eqs. (35) and (11) evaluated at the reference point:

dν
dw
=

dλ
dz

∣∣∣∣∣
r
/

dλ
dν

∣∣∣∣∣
r
= λ0 /

−c

ν2
r
= −ν

2
r

ν0
·

Redshift may now be computed for any given value of w. The
first step is to compute ν (i.e. X) at w using Eq. (42):

ν = νr + w
dν
dw
·

In this instance w will be a redshift. Then λ (i.e. P) may be
computed from ν using Eq. (10) from Table 3:

λ = c/ν.

The third and final step is to compute z (i.e. S ) from λ using
Eq. (36) from Table 4:

z =
λ − λ0

λ0
·

It is also possible to combine the three steps into a single equa-
tion, although there are many pair-wise combinations of spec-
tral variables and for some the combined equations may be
quite cumbersome. For the sake of illustration, consider the
above equations for the ZOPT-F2W axis. Equation (42) becomes

ν =
c

λ0(1 + zr)
− cw
λ0(1 + zr)2

·

Substituting this in the equations for λ and z and simplifying
we obtain

z =
zr(1 + zr) + w

1 + zr + w
·

A representative sample of these direct translation equations is
shown in Table 5. They are useful in showing the nature of the
coordinate non-linearity.

One thing to notice about the equations of Table 5 is that
the meaning of w differs for each. For example, Eq. (55) may
not be obtained from Eq. (56) simply by multiplying both sides
by c: in Eq. (56) w is a redshift (ZOPT), whereas in Eq. (55) it
is an optical velocity (VOPT).
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3.4.4. Coordinate parameters

Aside from CRVALka, the coordinate computations of Sect. 3.4
require one extra parameter when evaluating the F2V, V2F, W2V,
V2W, A2V, and V2A non-linear algorithms, namely the rest fre-
quency or wavelength of the spectral-feature of interest. These
are fundamental physical parameters so, rather than use the
PV i_ma parameters defined in Paper I, which would tend to
disguise them, the special floating-valued keywords

RESTFRQa (floating-valued),

and
RESTWAVa (floating-valued),

are hereby reserved for the purpose. They are represented by
symbols ν0 and λ0, respectively. Their units are ‘Hz’ and ‘m’
respectively, fixed to save having additional keywords to define
them. RESTWAVa is for wavelengths in vacuum only. One or
the other of these keywords must be included for the above-
mentioned algorithm codes; usually RESTFRQa would be given
for F2V and V2F, and RESTWAVa for the others. FITS writers
should always write one or other of these when it is meaningful
to do so, even for algorithm codes such as F2W or W2A that do
not require them.

Keyword RESTFREQ has been used in previous FITS files
and should be recognized as equivalent to RESTFRQ.

4. Air wavelengths

The wavelengths so far discussed are measured in vacuum.
However, dispersion coordinates for UV, optical, and IR spectra
at λ > 200 nm are commonly given as wavelengths in air. The
relative difference between the two varies between 0.028% and
0.032% across this range. To identify wavelengths measured
in dry air at standard temperature and pressure rather than in
vacuo, we introduce the coordinate type AWAV for which the
reference value and increment must be expressed accordingly.

The two measures of wavelength are related by

λ = n(λa)λa, (64)

where λ is the wavelength in vacuum, λa is the wavelength in
air, and n(λa) is the index of refraction of dry air at standard
temperature and pressure. This varies non-linearly with wave-
length. The standard relation given by Cox (2000) is mathemat-
ically intractable and somewhat dated. The International Union
of Geodesy and Geophysics (1999) adopted the rather simpler
formula2

n(λa) = 1 + 10−6

(
287.6155+

1.62887

λ2
a
+

0.01360

λ4
a

)
, (65)

where λa is the wavelength in micrometers. This formula suf-
fices for conversions from air to vacuum when no more than

2 The quoted formulæ apply only at normal optical wavelengths. In
the UV and IR spectral domains, atmospheric absorption lines cause
refractivity to be a strong, weather dependent function of frequency.
See, for example, Mathar (2004).

0.25 parts per million accuracy is required. The derivative,
which may be required in Eq. (45), is

dλ
dλa
= 1 + 10−6

(
287.6155− 1.62887

λ2
a
− 0.04080

λ4
a

)
· (66)

While the inversion of Eq. (65) is algebraically intractable, the
vacuum wavelength may be used to evaluate Eq. (65) since it
differs so little from the air wavelength. The resulting error in
the index of refraction amounts to 1:109, and this is less than
than the accuracy of the empirical formula. Thus,

λa = λ/n(λ). (67)

As usual, an axis that is linearly sampled and expressed in air
wavelengths is described with a CTYPEka of ‘AWAV’ and eval-
uated with Eq. (4).

Algorithm codes for the non-linear conversions are A2F,
A2W, A2V, and their complements, F2A, W2A, and V2A as
listed in Table 2. Use of the three-step procedure described in
Sect. 3.4 would require λa as a function of each of the other
spectral variables, together with their inverses and derivatives.
Thus it is much simpler to handle air wavelengths as a sepa-
rate, extra step in the algorithm chain. For example, to compute
world coordinates for VRAD-A2V, the value of CRVALka would
first have to be converted from radio velocity to air wavelengths
via Eqs. (18), (10), and (67), and dλa/dw for Eq. (45) would be
obtained from Eqs. (19), (7), and (66). Then, the value of λa

computed for w via Eq. (42) would be transformed to vacuum
wavelengths via Eq. (64), and then to radio velocity via Eqs. (6)
and (20).

5. Dispersed spectra

One common form of spectral data is produced by imaging the
light from a disperser. The wavelengths of the light at some
position in the image are related to the position and wavelength
of the light in the field of view illuminating the disperser; the
relation is defined by the physics of the disperser. In general
the light received at a pixel in the detector is a superposition
of different wavelengths from different points in the field of
view. However, if the field of view is limited spatially, usually
by aperture masks and fiber optics, each pixel receives light
from only a small range of wavelengths. It is then possible to
define a world coordinate function relating pixel position and
effective wavelength. This is the basis of many astronomical
spectrographs.

In the following section we use the physical relation appli-
cable to the dispersers commonly used in astronomical spec-
trographs to define a world coordinate function for comput-
ing spectral coordinates. The relation applies to the simple,
though common, case of single dispersers. More complex spec-
trographs with multiple dispersers, such as those using multiple
passes through prisms, are not described by the methods of this
section. The equations developed below also assume that the
radiation enters perpendicular to the face of the prism, a condi-
tion not met by some widely used spectrometers. Alternatives
to using this ideal world coordinate function, based on the
physics of simple dispersers, are the table lookup described in
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ρ α

α

Grism

G-1

Incident
ray for
transmission
grating,
prism, or
grism

Incident ray for reflection
grating (collimation axis)

Reference ray (λr)
γr

Diffracted/refracted ray (λ)

γ(λ) Camera axis (focal length f)

θ

ξ(λ)

Reference
point

Detector

Fig. 2. Geometry of gratings, prisms, and grisms. This simplified representation omits the collimation and focusing optics. Dashed lines mark
ray paths in the plane of the figure – the “dispersion plane”. The normal to the grating/exit prism face and the normal to the detector plane are
each projected onto the dispersion plane, and angles α, γ, and θ are measured with respect to these projected normals. Usually the incident
ray for a prism or grism is perpendicular to the entry face so that α is equal to the prism angle, ρ. Angle γ is wavelength-dependent, and
consequently so is the offset ξ in the dispersion direction on the detector. The intermediate spectral world coordinate, w, is proportional to ξ.
Reference wavelength λr follows the reference ray defined by γr and illuminates the reference point at w = ξ = 0. The normal to the detector
plane is shown tilted by angle θ from the reference ray though typically this angle is zero. The grating spacing G−1 is indicated.

Sect. 6 and empirical function fits provided by the the distortion
function mechanism described in Paper IV.

We require that the dispersion occurs along just one di-
rection on the detector and that the intermediate coordinates
are computed so that only one world coordinate axis corre-
sponds to wavelength. Paper IV describes how distortions and
effects of the aperture shape can be removed to satisfy this
requirement. The distortion correction is also used to remove
aberrations causing departures from the ideal physical behav-
ior of the dispersers assumed here.

The dispersers we consider are gratings, prisms, and
grisms, which are a combination of a prism with a grating
within or on the surface of the prism. Gratings may be re-
flecting or transmissive and may be fabricated with surface
relief rulings, holographic surface relief patterns, and holo-
graphic volume phase patterns. In the discussion we use the
terms grooves, lines, and ruling to refer to the periodic diffrac-
tion structures that produce the interference. By combining the
two physical equations for interference and refraction a single
world coordinate function covers all these cases with appropri-
ate choice of parameters.

5.1. The grism coordinate function
This section defines a world coordinate function using the basic
laws of refraction and interference. It is beyond the scope of
this discussion to give the full background for the laws and
concepts underlying dispersive spectroscopy. Of the many texts
on the subject, a standard reference is Astronomical Optics by
Schroeder (1999).

Spectroscopic dispersers are based on interference and re-
fraction effects which are naturally described in terms of wave-
length. Moreover, they are most often used in the regime where
wavelength is commonly the spectral coordinate. For these rea-
sons the grism function is defined in terms of wavelength.
The function assumes that all of the dispersion occurs at one
place. This is why combinations of dispersers, other than a sin-
gle grism, are not described by this function. This assumption

means that for prisms and grisms the function is rigorously cor-
rect only when the light enters perpendicular to the face of the
prism and the grating is at the exit face. However, even when
these conditions are not exactly met the function may still be a
good approximation with slight adjustments of the parameters.

5.1.1. The grism equation

The basic physical relationship between the wavelength, λ, the
angle of incidence of the light, α, and the diffracted/refracted
angle, γ, is given by a combination of the grating interference
equation and Snell’s law of refraction3:

Gmλ
cos ε

= n(λ) sinα + sin γ, (68)

where G is the grating ruling density, m is the interference or-
der, and n(λ) is the wavelength-dependent index of refraction
of the prism material. For a pure prism the order m is zero and
for a reflection or transmission grating n(λ) is the unit func-
tion. The plane containing α and γ is the dispersion plane, il-
lustrated in Fig. 2, and the angles are measured relative to the
projection in the dispersion plane of the normal to the grating
or exit prism face. Usually the normal does lie in the disper-
sion plane, but small values of ε, the angle between the normal
and the dispersion plane, are sometimes used for instrumental
design reasons.

By convention, the angles of incidence and diffrac-
tion/refraction are measured from the normal to the beam and α
is always measured positive in the anticlockwise direction. The
sign changes on either side of the normal and this determines
the sign of γ. Thus, for the reflection grating in Fig. 2, α > 0
and γ < 0, and vice versa for a transmission grating, prism, or
grism.

Reflection grating geometry is sometimes defined by the
angle φ measured from the camera axis to the collimator axis

3 Also known as Descartes’ Law of Sines; see for example,
http://wikipedia.org/wiki/Snells_law
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and the tilt t of the bisector relative to the grating normal. If φ
and t obey the same sign convention as α, then α = φ/2 + t.

In spectrographs with prisms or grisms the requirement that
the incident light be normal to the prism entry face means that
α is equal to the prism angle (ρ in Fig. 2). Even for oblique
entry, identifying α with the prism angle is often a good initial
approximation.

The requirement that the diffraction and refraction occur at
one point means that α is fixed and independent of wavelength.
The variation of γ with wavelength then defines the relation be-
tween wavelength and position ξ on the detector. The reference
wavelength λr is the wavelength at the reference point corre-
sponding to the zero point of ξ and the intermediate spectral
world coordinate w.

The prism’s dispersive power derives from the variation of
its index of refraction with wavelength. While this variation
depends on the material and is generally non-linear, it is suffi-
cient to approximate it by a first-order Taylor expansion about
the reference wavelength, λr:

n(λ) ≈ nr + n′r (λ − λr), (69)

where we have written nr as a shorthand for n(λr), and likewise
n′r for dn/dλ|r. Combining Eqs. (68) and (69) yields the grism
equation

λ =
(nr − n′rλr) sinα + sin γ

Gm/ cos ε − n′r sinα
, (70)

where the denominator must not be zero, though Gm, n′r, and α
may be zero in different types of spectrographs.

In order to define a world coordinate function we need λ
as a function of the intermediate world coordinate, w, which
is proportional to ξ. Since Eq. (70) gives λ as a function of γ
it remains to determine the relationship between γ and ξ. First
note that Eq. (70) evaluated at λ = λr provides

γr = sin−1 (Gmλr/ cos ε − nr sinα) , (71)

the exit angle of the reference ray for which w = ξ = 0, as in
Fig. 2.

Figure 2 shows angle θ, which is measured from the ref-
erence ray to the camera axis using the same sign convention
as γ, i.e. if γ is clockwise-positive as for a grism then so is θ.
Normally θ would be zero, but it is included here to provide a
small correction. Depending on the sign convention for γ, sim-
ple geometry for a flat detector gives

γ = γr + θ + tan−1(±ξ/ f − tan θ), (72)

where f is the effective focal length of the camera. The
plus sign is taken when the sign convention for γ is such
that ξ increases as γ increases, and the minus sign otherwise.
Section 5.1.3 discusses the resolution of this potential sign am-
biguity.

5.1.2. GRI coordinate axes

In keeping with the preceding sections we wish to define gen-
eral grating, prism, and grism world coordinate representations
such as WAVE-GRI, FREQ-GRI, etc.

Bearing in mind that the grism equation, Eq. (70), is ex-
pressed in terms of wavelength, then given a FREQ-GRI axis,
for example, it would be straightforward to convert the refer-
ence frequency, νr, given by CRVALk, from frequency to wave-
length via λ = c/ν. However, it would not be valid to convert
the intermediate spectral world coordinate, w, from frequency
to wavelength like this because it is not a true frequency. While
it may be a close approximation near the reference point it de-
viates at points away from it.

Thus, interpretation of an axis such as FREQ-GRI neces-
sarily involves a procedure similar to that of Sect. 3.4, and to
apply that methodology we need a parameter, the grism param-
eter, Γ, that is a known function of the spectral variables and for
which the axis is linearly sampled; this will substitute for X in
Eq. (42). Since ξ is proportional to w

ξ = σw, (73)

where σ is a constant. Combining this with Eq. (72) we have

tan(γ − γr − θ) = − tan θ ± wσ/ f . (74)

Thus the grism parameter may be identified as

Γ = tan(γ − γr − θ), (75)

and this satisfies Eq. (42) at the reference point:

Γr = − tan θ. (76)

The grism parameter has a simple geometrical interpretation in
Fig. 2; it is the offset on the detector from the point of intersec-
tion of the camera axis measured in units of the effective focal
length, f .

Following Sect. 3.4 (with X replaced by Γ), we have

Γ = Γr + w
dΓ
dw

(77)

where dΓ/dw is constant:

dΓ
dw
=

dΓ
dP

∣∣∣∣∣
r

dP
dS

∣∣∣∣∣
r

dS
dw

∣∣∣∣∣
r
· (78)

As before, S is the spectral variable in which the axis, and
hence w, is expressed, and P is the basic variable, ν, λ, λa, or �,
with which S is most closely associated. Recognized spectral
variables and their associates are listed in Table 1. When S is
one of the basic types, ν, λ, λa, or �, as is often the case, then
P ≡ S whence dP/dS |r = 1.

As previously, we require that CDELT i or CD i_ j be set so
that
dS
dw

∣∣∣∣∣
r
= 1 (79)

(exactly how this is done is addressed in Sect. 5.1.3). Since we
only have Γ directly in terms of γ we may use

dΓ
dP

∣∣∣∣∣
r
=

dΓ
dλ

∣∣∣∣∣
r

dλ
dP

∣∣∣∣∣
r
, (80)

where dΓ/dλ|r itself may be deduced from the derivatives of
Eqs. (75) and (70):

dΓ
dλ

∣∣∣∣∣
r
=

dΓ
dγ

∣∣∣∣∣
r
/

dλ
dγ

∣∣∣∣∣
r

=
Gm/ cos ε − n′r sinα

cos γr cos2 θ
· (81)
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Table 6. Grism parameters, their default values, and required units.

Keyword Default Units

PVk_0a = G 0 m−1

PVk_1a = m 0

PVk_2a = α 0 deg

PVk_3a = nr 1

PVk_4a = n′r 0 m−1

PVk_5a = ε 0 deg

PVk_6a = θ 0 deg

Combining Eqs. (78) to (81) we have

dΓ
dw
=

Gm/ cos ε − n′r sinα

cos γr cos2 θ

dλ
dP

∣∣∣∣∣
r

dP
dS

∣∣∣∣∣
r
, (82)

where dλ/dP|r and dP/dS |r come from Tables 3 and 4 respec-
tively. In the common case where S , and hence P, is wavelength
then dλ/dP|r and dP/dS |r are both unity.

The foregoing provides everything needed to compute Γ
from w, and this forms the first step of a five-step algorithm
chain for computing S from w:

1. Compute Γ at w using Eq. (77). Γr and dΓ/dw are constants
that need be computed once only; Γr from Eq. (76) and
dΓ/dw from Eq. (82) using the appropriate equations from
Tables 3 and 4.

2. Compute γ from Γ using the inverse of Eq. (75):

γ = tan−1(Γ) + γr + θ. (83)

3. Compute the wavelength λ from γ via Eq. (70).
4. Compute P from λ using the appropriate equation from

Table 3.
5. Compute S from P using the appropriate equation from

Table 4.

If S , and hence P, is wavelength then the last two steps are not
performed.

As usual, the inverse computation is effected by traversing
the algorithm chain in the reverse direction. The inverse equa-
tions required for the backward steps have already been given
except that for Eq. (70):

γ = sin−1(λ(Gm/ cos ε − n′r sinα)

−(nr − n′rλr) sinα), (84)

and also the inverse of Eq. (77) which is trivial.
Grism parameters required for these calculations are pro-

vided by the PVk_ma keywords defined in Table 6, with γr

given by Eq. (71), and λr computed from the coordinate refer-
ence value, CRVALk, by the appropriate equations from Tables 3
and 4. Default values for missing parameters are also defined in
the table. Generally only the first three parameters will appear
for gratings and the first five for grisms.

5.1.3. Determination of the grism scale

A question raised above was how CDELT i or CD i_ j may be set
by a WCS composer so that dS/dw|r = 1.

From Eqs. (1) and (3)

w = skqk (85)

so

sk =
dw
dqk
=

dw
dS

∣∣∣∣∣
r

dS
dP

∣∣∣∣∣
r

dP
dλ

∣∣∣∣∣
r

dλ
dqk

∣∣∣∣∣
r
· (86)

Now, dw/dS |r = 1 by design, dS/dP|r and dP/dλ|r come from
Tables 4 and 3 respectively, and dλ/dqk|r is the wavelength
dispersion (e.g. in nm/pixel) measured at the reference point
and this is an instrumental parameter. Thus we have everything
needed to compute sk. When S is wavelength, then all but the
last factor in Eq. (86) is unity, and sk = dλ/dqk|r.

It is the correct choice of sign for dλ/dqk|r that resolves the
sign ambiguity in Eq. (74).

5.1.4. GRA: grisms in air

Thus far we have ignored the distinction between vacuum and
air wavelengths in the discussion of grism world coordinates.
In fact, the λ variable that appears in the grism equation may be
either, and in general n(λ) in Eq. (68) is the index of refraction
of the prism material with respect to the surrounding medium,
either air or vacuum.

If the dispersion takes place in vacuum, as it does, for ex-
ample, in a spectrograph on a spacecraft, then the grism equa-
tion is correct for vacuum wavelengths; if in air, it is correct for
air wavelengths and λ in Sects. 5.1.1, 5.1.2, and 5.1.3 should
be replaced everywhere by λa. Then as discussed in Sect. 4,
the computation of quantities such as dλa/dP|r in Eq. (82) is
best handled by using the vacuum wavelength, λ, as an inter-
mediary, effectively introducing an extra step into the algorithm
chain.

In order to distinguish between grisms operated in air and
in vacuum we hereby reserve the use of GRI exclusively for
vacuum operation and introduce GRA for operation in dry air at
standard temperature and pressure.

Note that for real spectrographs operated in air at an ob-
servatory, the actual wavelength system that GRA describes is
for air at the local conditions. The coordinate value and incre-
ment at the reference point are normally adjusted to the val-
ues at standard conditions during calibration. If the accuracy
of the wavelength measurement requires it, any further correc-
tion between wavelength at local conditions and wavelength at
standard conditions may be accomplished via the methods of
Paper IV.

5.2. AWAV-GRA examples

This section illustrates application of the GRA world coordi-
nate function with three real-world examples of spectral images
from Kitt Peak National Observatory (KPNO) spectrographs
(Figs. 3–5). Each spectrum is of an arc calibration lamp that
produces emission lines of known wavelength. The position of
each line in the image along the spectral world coordinate axis
is measured by centroiding on the spectral line profile and iden-
tified with the known rest wavelength to create a list of pixel
positions and wavelengths.
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CTYPE1 = ‘AWAV-GRA’ / Grating dispersion function
CUNIT1 = ‘Angstrom’ / Dispersion units
CRPIX1 = 1801.7 / [pixel] Reference pixel
CRVAL1 = 5225.2 / [Angstrom] Reference value
CDELT1 = -0.4334 / [Angstrom/pixel] Dispersion
PV1_0 = 3.16E5 / [m^(-1)] Grating density
PV1_1 = 1 / Diffraction order
PV1_2 = 13.9 / [deg] Incident angle

Fig. 3. KPNO Coudé Feed spectrograph with a long focal length and
a 3K CCD.

CTYPE1 = ‘AWAV-GRA’ / Grating dispersion function
CUNIT1 = ‘Angstrom’ / Dispersion units
CRPIX1 = 944.8 / [pixel] Reference pixel
CRVAL1 = 5136.8 / [Angstrom] Reference value
CDELT1 = -0.1287 / [Angstrom/pixel] Dispersion
PV1_0 = 3.16E5 / [m^(-1)] Grating density
PV1_1 = 11 / Diffraction order
PV1_2 = 64.8 / [deg] Incident angle

Fig. 4. KPNO Hydra Fiber Bench Spectrograph using an echelle grat-
ing in 11th order with a 2K CCD.

Each example figure shows plots of the positions and wave-
lengths for a particular spectrograph. The pixel positions are
plotted along the bottom axis. Rather than plot the wavelengths
directly, where it would be difficult to see the shape of the
curve, the difference or correction between the known (air)
wavelengths and the simple linear world coordinate function
AWAV (λa = S r + w) are shown. The corrections are plotted
along the left axes. In these examples the wavelength units are
consistently Angstroms.

CTYPE1 = ‘AWAV-GRA’ / Grating dispersion function
CUNIT1 = ‘Angstrom’ / Dispersion units
CRPIX1 = 719.8 / [pixel] Reference pixel
CRVAL1 = 7245.2 / [Angstrom] Reference value
CDELT1 = 2.956 / [Angstrom/pixel] Dispersion
PV1_0 = 4.50E5 / [m^(-1)] Grating density
PV1_1 = 1 / Diffraction order
PV1_2 = 27.0 / [deg] Incident angle
PV1_3 = 1.765 / Reference refraction
PV1_4 = -1.077E6 / [m^(-1)] Refraction deriv

Fig. 5. KPNO MARS spectrograph with a 450 lines/mm volume phase
holographic grism and a 2K CCD.

The top axis is labeled with simple AWAV linear coordinates.
The right axis divides the wavelength correction by CDELT1,
the linear dispersion at the reference pixel. This represents the
shift, in pixels, of the wavelengths on the detector relative to
where they would occur in a spectrograph with a linear disper-
sion relation.

The departure of the data points from zero indicate the mag-
nitude of the world coordinate errors that would occur by using
the simple linear AWAV world coordinate function. The solid
lines in the figures are the difference between the wavelengths
produced by the AWAV-GRA grating coordinate function and the
linear AWAV coordinate function evaluated at the pixel positions
in the image.

The usefulness of the ideal grating coordinate function is
that the curves go through the measured data points with an ap-
propriate choice of parameters. The parameters are essentially
those known for the spectrograph and disperser with small ad-
justments to some of the parameters to produce the best fit to
the calibration data. (These small adjustments may be viewed
as corrections for the simplifications in the optical model.) In
these examples the dispersion function represented by the grat-
ing world coordinate relation is as good as typically provided
by empirical polynomial functions. Higher order effects due to
aberrations are corrected by the distortion correction methods
defined in Paper IV.

A close reading of the equations above will reveal that
the seven grism parameters listed in Table 6 are not inde-
pendent. We have chosen these parameters because of their
physical meaning. However, the independent parameters are
Gm/ cos(ε), nr sin(α), n′r sin(α), and θ. It is these combinations
of parameters which must be used in fitting data.
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Each figure shows the arc line measurements, the coordi-
nate function curve, and the relevant world coordinate key-
words used to produce the curve. Not all of the WCS keywords
are shown.

The first example shows the behavior of a long focal length
spectrograph with a reflection grating used at a low angle of
incidence. Because of the long focal length the deviation from
linearity is relatively small though still clearly significant. The
grating has a density of 316 lines/mm and is used in first order
to produce a spectrum centered near 5225.2 Å with a dispersion
of 0.43 Å/pixel.

The next example uses a 316 lines/mm echelle reflection
grating, a grating designed for use at large angles from the
grating normal, operated in a higher order. It is used to pro-
duce a spectrum centered near 5136.8 Å with a dispersion of
0.13 Å/pixel. The departure from linearity is in the opposite
sense from the other examples because the echelle grating is
used with the diffracted angle at a greater angle than the inci-
dence angle. The higher order results in a fairly large departure
from a linear WCS.

The last example illustrates use of a grism. However, this is
not the more common grism with a ruled grating on the output
face and the input face oriented normal to the incident beam.
Instead, the grating is sandwiched in the middle of the prism.
The prism is oriented with the beam entering and leaving the
prism at equal angles to the faces resulting in a straight through
configuration as with a standard grism.

Another unusual feature of this grism is that it uses a vol-
ume phase holographic (VPH) grating. While the intensity
response is different from a surface relief grating (ruled or
holographic) the dispersion behavior is the same.

The full optical equation is complex even in this symmetric
configuration, but as shown in the figure using the GRA func-
tion, a very good description of the coordinates can be ob-
tained.

The prism has a 27◦ angle with an index of refraction of
1.764 near the reference wavelength. The grating has an equiv-
alent interference pattern of 450 lines/mm. Using these values
and adjusting the derivative of the index of refraction produces
Fig. 5.

6. Coordinates by table lookup

There are numerous instances in which a physical coordinate
is well defined at each pixel along an image axis, but the re-
lationship of the coordinate values between pixels cannot be
described by a simple functional form. An obvious example
of this would be a three-dimensional image consisting of a se-
quence of two-dimensional images of an astronomical object
recorded at an arbitrary sequence of times determined in part by
weather and time assignment committees. As another example,
the calibration of some spectrographs, such as those employing
a diode array detector, is represented best by a list of frequen-
cies or wavelengths for each pixel on the spectral axis rather
than some functional form.

6.1. xxxx-TAB non-linear algorithm

To support such representations for primary images and im-
age extensions, we define a table-lookup form for the value of
CTYPE ia as xxxx-TAB, where xxxx are four letters representing
the type of coordinate, e.g. TIME or FREQ. As in Paper I, which
established the “4–3” convention for CTYPE i, the coordinate
xxxx is a “real” coordinate, such as FREQ, not an intermediate
coordinate, such as FREQ-F2W, requiring an additional linear
or non-linear algorithm in order to be converted into a physical
coordinate.

6.1.1. -TAB indexing concepts

Consider first the case of a single (one-dimensional) coordi-
nate axis. The -TAB algorithm uses a list of coordinate values,
the coordinate array, to record coordinate values of the appro-
priate type for the coordinate axis. A second list of the same
length, the indexing vector, may be used in addressing the co-
ordinate array. The indexing vector provides one level of indi-
rection which may be used to vary the sampling frequency of
the coordinate array along the coordinate axis. The coordinate
could then be sampled at smaller intervals over that portion of
the range in which the instrument is more non-linear and sam-
pled more coarsely over regions in which it is better behaved.
The indexing algorithm, based on linear interpolation, is de-
fined in Sect. 6.1.2. If the indexing vector is absent, it is taken
to have values 1, 2, 3, . . . ,K, where K is the number of values
in the coordinate array. See Sect. 6.2.2 for an example of the
use of the indexing vector.

The concept described above covers separable (one-
dimensional) axes only. It may be extended simply to M non-
separable axes so long as the indexing vectors for each of the M
axes are separable. M coordinate values are required for each
of the possible index positions. Therefore, the coordinates will
be in a single (1 + M)-dimensional array. This coordinate ar-
ray will have dimensions (M,K1,K2, . . .KM), where Km is the
maximum value of the index on axis m + 1 of the coordinate
array. For simplicity, degenerate axes are forbidden; therefore,
Km > 1. The indexing vectors for each of the M axes each
contain a one-dimensional array of length Km.

The data in the indexing vectors must be monotonically in-
creasing or decreasing, although two adjacent index values in
the vector may have the same value. However, it is not valid
for an index value to appear more than twice in an index vec-
tor, nor for an index value to be repeated at the start or at the
end of an index vector. Furthermore, repeated index values are
allowed only in the case of one-dimensional separable axes.
(See the following section for a discussion of the reasons for
these limitations and how interpolation is done in such cases;
see also Sect. 6.2.3 for an example of equal index values and
further discussion of interpolation.) Application programs must
not sort the index and coordinate arrays since this makes the
relative order of the two equal index values indeterminate. The
requirement for monotonic index values should eliminate any
need for sorting. Note that it does not imply any ordering of the
values in the coordinate array.
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-TAB without an indexing vector

ψm = CRVALi +
N∑

j=1
CDi_ j (pj − CRPIX j)

single-row table PSi_0

ψm is a direct index into table cell coordinate array

PSi_1
C1 C2 C3 C4 C5 C6 C7 . . . CK

-TAB with an indexing vector

ψm = CRVALi + CDELTi
N∑

j=1
PCi_ j (pj − CRPIX j)

single-row table PSi_0

Find index Υm by interpolating ψm in table cell indexing vector Ψk

PSi_2 PSi_1
Ψ1Ψ2Ψ3Ψ4Ψ5Ψ6Ψ7 . . . ΨK C1 C2 C3 C4 C5 C6 C7 . . . CK

Υm selects point in table
cell coordinate array CΥm

Fig. 6. -TAB logic flow with and without an indexing vector. The coor-
dinate array subscript m associated with intermediate world coordinate
axis i is specified with keyword PV i_3. In the case of an independent
-TAB axis it would have value 1. Note that ψm is computed either with
the CD i_ j form of the linear transformation matrix or the PC i_ j plus
CDELT i form.

6.1.2. Computing -TAB coordinate values

The indexing algorithm is illustrated schematically in Fig. 6
for the one-dimensional case. In the general case, to determine
the M non-separable coordinate values Cm, one first determines
the M indices, ψm for addressing the appropriate location in the
table. If intermediate world coordinate axis i is associated with
the mth axis in the coordinate array, one evaluates

ψm = xi + CRVAL ia, (87)

where xi is computed following the prescriptions of Eq. (1).
Using linear interpolation, if necessary, in the indexing vector
for intermediate world coordinate axis i, one determines the
location, Υm, corresponding to ψm. Then the coordinate value,
Cm, of type specified by the first four characters of CTYPE ia,
is that at location (m,Υ1,Υ2, . . .ΥM) in the coordinate array,
again using linear interpolation as needed.

In detail, the algorithm for computing Υm, and thence Cm,
is as follows. Scan the indexing vector, (Ψ1,Ψ2, . . .), sequen-
tially starting from the first element, Ψ1, until a successive
pair of index values is found that encompass ψm (i.e. such that
Ψk ≤ ψm ≤ Ψk+1 for monotonically increasing index values or
Ψk ≥ ψm ≥ Ψk+1 for monotonically decreasing index values
for some k). Then, when Ψk � Ψk+1, interpolate linearly on the
indices

Υm = k +
ψm − Ψk

Ψk+1 −Ψk
, (88)

which yields an index into the coordinate array. However, if
Ψk = Ψk+1(= ψm) then the result is undefined.

In the case where an index value is equal to ψm, the algo-
rithm above will find the interval Ψk < ψm = Ψk+1 for mono-
tonically increasing index values orΨk > ψm = Ψk+1 for mono-
tonically decreasing index values, except when ψm = Ψ1. Since
two consecutive index values may be equal, the index follow-
ing the matched index must be examined. If Ψk+2 = Ψk+1 = ψm

(or Ψ2 = Ψ1 = ψm), then Υm and Cm are undefined.
Linear interpolation via Eq. (88) applies for ψm in the

range Ψ1 to ΨK inclusive. Outside this range, for K > 1, linear
extrapolation is allowed for values of ψm such that Ψ1 − (Ψ2 −
Ψ1)/2 ≤ ψm < Ψ1 or ΨK < ψm ≤ ΨK + (ΨK − ΨK−1)/2 for
monotonic increasing index values, and forΨ1+ (Ψ1−Ψ2)/2 ≥
ψm > Ψ1 orΨK > ψm ≥ ΨK − (ΨK−1−ΨK)/2 for monotonic de-
creasing index values. Extrapolation is also allowed for K = 1
with ψm in the range Ψ1 − 0.5 ≤ ψm ≤ Ψ1 + 0.5 (noting that Ψ1

should be equal to 1 in this case) whence Υm = ψm.
The value ofΥm derived from ψm must lie in the range 0.5 ≤

Υm ≤ K + 0.5. These extrapolation limits permit assignment of
coordinates to the regions of the pixels on the boundary of the
array which are outside of the centers of the boundary pixels
but within the conceptual “edge” of the boundary pixels. In the
case of a single separable coordinate with 1 ≤ k ≤ Υm < k+1 ≤
K, the coordinate value is given by

Cm = Ck + (Υm − k) (Ck+1 −Ck) . (89)

For Υm such that 0.5 ≤ Υm < 1 or K < Υm ≤ K + 0.5 linear
extrapolation is permitted, with Cm = C1 when K = 1.

Conceptually, to compute the change in coordinate value
between Ψk and Ψk+1, in the case when Ψk+2 = Ψk+1 and/or
Ψk−1 = Ψk, difference the two values of Cm obtained for
ψm = Ψk+1 − ε and ψm = Ψk + ε in the limit that ε goes to
zero. In practice, the computation is straightforward and it is
not necessary to take limits.

The inverse computation, in which one determines a ψm

given a coordinate Cm, is relatively straightforward, at least in
the case of a single separable coordinate. One scans the coor-
dinate vector from the start looking for a pair of values that
encompass Cm. Having found a pair, one must then check the
indexing vector. If the two index values are unequal, then the
correct pair has been found. Otherwise the search must be con-
tinued. When a correct coordinate pair has been found, the in-
verse of Eq. (89) is applied to determine Υm. The inverse of
Eq. (88) then yields ψm.

It is understood that the general keywords CUNITma,
CRDERma, and CSYERma apply to the output coordinate Cm

rather than the -TAB coordinate keywords CRVAL ia et al.
Similarly, if the table lookup determines celestial coordinates,
the general keywords RADESYSa and EQUINOXa apply to the
output celestial coordinates rather than the input -TAB coordi-
nates.

6.1.3. -TAB implementation, parameters,
and requirements

Standard FITS binary tables extensions (XTENSION =
‘BINTABLE’) will be used to hold the coordinate array in
a single cell of a column of a one-row table. The length of
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Table 7. Parameter keywords used for the -TAB algorithm.

Keyword Use Default

PS i_0a table extension name (EXTNAME) —

PV i_1a table version number (EXTVER) 1

PV i_2a table level number (EXTLEVEL) 1

PS i_1a column name for the coordinate

array (TTYPEn1) —

PS i_2a column name for the indexing

vector (TTYPEn2) no index

PV i_3a axis number (m) in array PS i_1a 1

this array is given in the FITS table header by the repeat
count in the TFORMn keyword, where n is the number of the
column containing the coordinate array. The dimensions of the
coordinate array will be given in the FITS table header by the
keyword TDIMn set to ‘(M, K1, K2, . . . KM)’, where n is
the column containing the coordinate array. Note in particular
that if M = 1 the coordinate array is formally two-dimensional
though the first axis is degenerate. The repeat count in the
TFORMn keyword value is the product of M and all the Km.
The indexing vectors for each of the M axes, if present, will
occupy separate columns, each containing a one-dimensional
array of length Km.

The BINTABLE extension containing the coordinate array
must be in the same FITS file as the data that reference it.

The parameters required by -TAB are the table extension
name (EXTNAME), the table version number (EXTVER), the ta-
ble level number (EXTLEVEL), the column name for the co-
ordinate array (TTYPEn1), the column name for the indexing
vector (TTYPEn2), and the axis number m associated with in-
termediate world coordinate axis i in the coordinate array. The
keywords used for this purpose are PS i_0a, PV i_1a, PV i_2a,
PS i_1a, PS i_2a, and PV i_3a, respectively. These are summa-
rized in Table 7. For images, PS i_0a has no default; for ta-
bles a missing or blank PS i_0a is taken to be the current table
(see below). PV i_1a and PV i_2a both have a default value of 1.
PS i_1a never has a default; it must be present and be assigned
a value actually occurring in table PS i_0a. If PS i_2a is missing
or has a value of all blanks, the indexing vector is taken to be
a list of integers from 1 to Km and ψm becomes a direct index
of axis PV i_3a in the array specified by PS i_1a. If PV i_2a is
present and assigned a value, then that value must actually oc-
cur in table PS i_0a. Note that the values given to PS i_1a and
PS i_2a are not case sensitive since the FITS Standard (Hanisch
et al. 2001) states that “String comparisons with the values of
TTYPEn keywords should not be case sensitive.”

The use of -TAB for M related axes requires the header
to specify the array PS i_1a to be the same for each of the M
axes. The dimensions of this array must be given in the header
as (M,K1,K2, . . . ,KM). These dimensions determine the max-
imum range of the array index (1 to Km) for each axis. The
indexing vectors for each of the M axes, if present, will occupy
separate columns, each containing a one-dimensional array of
length Km. The M values of PV i_3a must account for all M

axes. If any of these conditions are not met, the result is unde-
fined.

If a FITS file contains multiple XTENSION HDUs (header-
data units) with the specified EXTNAME, EXTLEVEL, and
EXTVER, then the result of the WCS table lookup is undefined.
If the specified FITS BINTABLE contains no column, or multi-
ple columns, with the specified TTYPEn, then the result of the
WCS table lookup is undefined. The specified FITS BINTABLE
must contain only one row.

No units conversions are to be performed. CUNIT i must be
the same as TUNITn of the binary table, where n is the column
number corresponding to PS i_1a.

We recommend strongly that the value chosen for EXTNAME
always begin with the four letters WCS-. If this is done, generic
programs will recognize the table as part of the WCS portion
of the data and will be less likely to separate the table from the
rest of the WCS.

The -TAB implementation is more complicated than most
other WCS conventions because the coordinate system is not
completely defined by keywords in a single FITS header.
Software that supports -TAB must be able to gather all the nec-
essary WCS parameters that are in general distributed over two
FITS HDUs and in the body of the WCS extension table. The
producers of FITS data products should consider the capabili-
ties of the likely recipients of their files when deciding whether
or not to use the -TAB convention, and in general should use
it only in cases where other simpler WCS conventions are not
adequate.

6.1.4. -TAB usage in tables

Binary table extensions containing array data columns may
need a table-lookup function for coordinate values. Seemingly
the most convenient form of -TAB would be one in which the
-TAB array(s) are also table cells in the same row as the data
array. However, a separate coordinate table would be more eco-
nomical if it applied to data arrays in multiple rows. The -TAB
keywords for such tables are iCTYPna, iSn_0a, iVn_1a, iVn_2a,
iSn_1a, and iSn_2a, where n is the column number of the array
of data and i is the intermediate world coordinate axis number.
If iSn_0a is missing or blank, the present binary table is taken
to be the coordinate lookup table. In that case, the coordinate
array(s) are taken to be single-cell arrays in the same row as the
data array and keywords iVn_1a and iVn_2a are ignored.

Strictly speaking, the -TAB representation is not required
for binary or ASCII table extensions containing only one data
value per cell because each of the coordinate values associated
with the datum may be stored in separate columns. However,
-TAB does provide a convenient method of solving one of the
problems pertaining to such tables, namely identifying the data
column. If the table contains a column of data and another one
or more columns of coordinate values pertaining to those data,
then one can define the coordinates of the data column as being
of type -TAB. In this case, the critical keywords are iCTYPna
to declare the coordinate axis type and iSn_1a to identify the
corresponding coordinate column. Since the data value col-
umn contains only one value, the coordinate column should
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only contain one value. Then, the usual coordinate keywords
(jCRPXn / jCRPna, ijPCna, ijCDna, iCDLTn / iCDEna) may be
omitted since their defaults yield the desired result that output
index pixel equals the input data pixel (both of which are 1 in
the assumed case). Note too that tables of this type – one value
per table cell – may be in either ASCII or binary table form.

6.2. -TAB examples

To illustrate the use of -TABwith two non-separable axes, let us
consider a specific example of a four-dimensional image array.
Assume that axes 1 and 3 are handled either linearly or by one
of the non-linear single-axis cases (including -TAB). However,
assume that axes 2 and 4 require table lookup in a mutually
dependent fashion. Thus i = 2 for m = 1 and i = 4 for m = 2
and the required keywords are
PS2_0 = ‘WCS-TAB’ PS4_0 = ‘WCS-TAB’
PV2_1 = 1 PV4_1 = 1
PV2_2 = 1 PV4_2 = 1
PS2_1 = ‘COORDS’ PS4_1 = ‘COORDS’
PS2_2 = ‘INDEX2’ PS4_2 = ‘INDEX4’
PV2_3 = 1 PV4_3 = 2

where the first four keyword pairs must match exactly and the
last two pairs must have different values.

A real example that could use this particular algorithm is
represented by a spectral image of a portion of the sky taken
with a single radio telescope. The observer commands the tele-
scope to point at a regular grid of coordinates, but, due to wind
loading and other pointing errors, the telescope achieves the
commanded positions only approximately. The actual celestial
coordinates observed are, however, accurately measured. These
data could then be represented usefully as a two-dimensional
array of spectra, but accurate celestial coordinates for each
spectrum could be found only by a 2-dimensional table lookup.

Since there has been no generally agreed upon FITS for-
mat for spectral data with explicit wavelengths assigned to each
pixel, data providers have resorted to defining their own for-
mats. Examples from the Hubble Space Telescope and the Very
Large Array are shown below, recast into the -TAB algorithm.

6.2.1. -TAB examples: HST data

Two types of Hubble Space Telescope data serve as examples
of the -TAB algorithm. The two cases illustrate the evolution
from simple images to the more powerful constructs provided
by FITS extensions and binary tables. The purpose of dis-
cussing these formats is not to explain the HST formats, but
to illustrate a couple of types of data that can be represented by
the -TAB algorithm. Therefore, some details of these formats
are ignored.

The early HST spectrographs, FOS and GHRS, adopted a
format based only on simple FITS images. The basic concept
is that the spectral flux values are given in one image and the
vacuum wavelengths, in Angstroms, are given as the pixel val-
ues in another image. The two are associated by filenames. The
filenames have the same basename, but different filename ex-
tensions for an exposure. To represent these spectra with a FITS
WCS based on the -TAB method, while continuing to use an

Table 8. WCS keywords in the spectral image for FOS and GHRS
example.

CTYPE1 = ‘WAVE-TAB’ / Coordinate type

CUNIT1 = ‘Angstrom’ / Coordinate units

PS1_0 = ‘WCS-TAB’ / Coord table extension name

PS1_1 = ‘WAVELENGTH’ / Coord table column name

Table 9. WCS keywords in the STIS table for two of the spectral
columns.

1CTYP4 = ‘WAVE-TAB’ / Coordinate type

1CUNI4 = ‘Angstrom’ / Coordinate units

1S4_1 = ‘WAVELENGTH’ / Coords for gross spectrum

1CTYP5 = ‘WAVE-TAB’ / Coordinate type

1CUNI5 = ‘Angstrom’ / Coordinate units

1S5_1 = ‘WAVELENGTH’ / Coords background spectrum

image representation for the spectral fluxes, one replaces the
separate wavelength image with a table extension.

Table 8 shows the minimum WCS keywords required in the
primary image header. The PS1_0 keyword value defines the
coordinate table to be in a binary table extension with name
‘WCS-TAB’. The coordinate table extension consists of one
column, named ‘WAVELENGTH’, and one row. The array val-
ues and length correspond to the original image format.

Other WCS keywords defined in Paper I would also be in-
cluded as needed. The intermediate coordinate transformation
must produce indexing values equal to the pixel coordinate in
the image. Since the defaults for these keywords are defined in
Paper I to produce pixel coordinates, it is not strictly necessary
to include these keywords.

The second generation HST spectrograph, STIS, adopted a
binary table format very close to one of those defined for the
-TAB algorithm. In the STIS one-dimensional extracted echelle
format each exposure is stored in a separate binary table. The
extracted data from an exposure consist of a number of echelle
orders each of which is stored in a separate row. The wave-
lengths and various associated “spectra” are array elements in
different columns. An associated spectrum is an array of a sin-
gle type data quantity such as fluxes, errors, or data quality
flags.

To convert this format to the -TAB representation only re-
quires adding the 1CTYPn and 1Sn_1 keywords to specify the
coordinate type and coordinate column name for each spectral
column n. There are six types of spectral quantities for each
order: gross, background, net, flux, error, and data quality flag.
So there must be six pairs of keywords. Since the same wave-
length column applies to each of the spectra, the keyword val-
ues are repeated six times, but with different column numbers
in the keywords. Table 9 shows the WCS keywords for two of
the spectral columns. The 1Sn_0 keywords are omitted, signi-
fying that the coordinate array column is in the same table as
the spectra.

As noted for the FOS and GHRS format, additional WCS
keywords are included as needed and the intermediate coordi-
nate transformation values may be absent since this defines an
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Table 10. Sample coordinate table. Each displayed column is actually
a one-cell array of the (single-row) table.

iSn_2 iSn_1

1 ν1

N1 ν1 + (N1 − 1) δ1

N1 + 1 ν2

N1 + N2 ν2 + (N2 − 1) δ2

N1 + N2 + 1 ν3

N1 + N2 + N3 ν3 + (N3 − 1) δ3

. . . . . .∑L−1
1 N� + 1 νL∑L

1 N� νL + (NL − 1) δL

indexing by pixel coordinate. In the STIS data, the units of the
wavelength array are vacuum Angstroms so the 1CUNIn key-
word would be required.

6.2.2. -TAB example: radio interferometry

Radio interferometry data are now best represented in binary
tables with each row representing the visibility at one time on
one antenna pair with a vector of data representing the complex
values for all polarizations and frequencies observed. These
telescopes often allow the user to observe N� regularly-sampled
spectral channels starting from L arbitrarily chosen interme-
diate frequencies (IFs). Furthermore, this spectral data pattern
may be used with one receiver and, a few minutes later, with
other receivers at very different frequencies. Because of the
great flexibility in the choice of the IFs and receivers, the fre-
quencies present in the data may only be described by a table.
Because that description is very repetitive, we choose to put it
in a table separate from the visibility table.

We can construct a single column table of all
∑L
�=1 N� fre-

quencies observed. However, by using a second column for an
indexing vector, we can take advantage of the regular sam-
pling of the N� spectral channels. If we set iCRVLn, iCDLTn,
and iCRPXn (for binary table format) or CRVAL i, CDELT i, and
CRPIX i (for random groups and image formats) to one, then
Table 10 may represent the actual frequencies, where ν� is the
frequency of channel 1 in IF � and δ� is the increment in fre-
quency between the regularly sampled channels of IF �. This
example is shown graphically in Fig. 7.

6.2.3. -TAB examples: multiple exposures
and sampling

In general, the FITS WCS papers do not consider the pro-
cess by which the physical effects represented by the values
in the FITS array have been measured. The measurable quan-
tity may have been sampled over regions small enough to be
considered as points in a widely separated grid of world coor-
dinates. Alternatively, the measurable quantity may have been
integrated across overlapping adjacent regions. The FITS WCS
papers do not indicate whether it is valid to presume that the

multiple spectral channels
at each of multiple base frequencies

frequency

#
ν

1
ν1

7 8
ν2

11 12
ν3

18 19
ν4

25 26
ν5

30

-TAB parameters and values

CRVALi = CRPIXi = CDELTi = PCi_i = 1
single-row table PSi_0

values in the cell of the indexing vector PSi_2 =

1, 7, 8, 11, 12, 18, 19, 25, 26, 30

corresponding values
in the cell of the coordinate array PSi_1 =

ν1, ν1 + 6δ1, ν2, ν2 + 3δ2, ν3, ν3 + 6δ3, ν4, ν4 + 6δ4, ν5, ν5 + 4δ5

Fig. 7. Example taken from radio interferometry using -TAB with an
indexing vector. The FITS keywords shown are suitable for the ran-
dom groups format. The observation is made at a number of frequen-
cies, with a number N� of regularly spaced δ� spectral channels begin-
ning from each of a number of arbitrary base frequencies ν�. The use
of an indexing vector reduces the number of values in the table from
one array of 30 to two arrays of 10 each. In a real case the number of
spectral channels would be significantly larger, making the space sav-
ings significant. In this example, pixel pj = 6 produces ψm = 6. This
lies at Υm = 1 5

6 . The resulting coordinate is then 1
6ν1 +

5
6 (ν1 + 6δ1)

which, as one would expect, equals ν1 + 5δ1. Note that this example
involves only a single independent -TAB axis, so that PV i_3 = m ≡ 1.

values in adjacent array elements represent physically adjacent
quantities, nor do they indicate whether it is valid to interpolate
the WCS across the extent of an array element.

Some world coordinate axes are defined to have integral
values with conventional meanings (e.g. COMPLEX, STOKES).
Interpolating a world coordinate value across the extent of a
FITS array element along the direction of an axis which is con-
ventionally defined to be integral would clearly be inappropri-
ate. Nevertheless, for other types of world coordinate axes in
traditional FITS arrays, the adjacent elements in the NAXIS-
dimensional array can often be presumed to represent adjacent
locations in a measurement continuum. This adjacency is rele-
vant, for example, to image display programs when the image is
magnified so that one FITS array element extends across mul-
tiple display pixels. In such cases a FITS display program may
attempt to interpolate WCS values across the extent of an ar-
ray element. With CTYPEk values other than -TAB this is com-
monly done by linear interpolation between the presumably
adjacent array elements. However for coordinate axes where
the CTYPEk is described by the xxxx-TAB non-linear algorithm
there can be no presumption of adjacency.

Notwithstanding these caveats, the use of -TAB does per-
mit specification of changes in the coordinate value across the
extent of a single array element. Consider a sequence of two-
dimensional images of the sky which have been re-gridded
such that the pixel array for each image shares the same 2-D
WCS for celestial coordinates. A single 3-D FITS array can
hold such a sequence of 2-D images. If the same instrument
produced each of the images on different dates then the third
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Table 11. Top: keywords in main FITS header for -TAB example, bottom: table keywords and sample arrays for that example.

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

NAXIS = 3 / 2-d celestial coord, 1-d multiple exposure
NAXIS3 = 4 / radio, infrared, optical, x-ray
WCSAXES = 4 / multiple exposures in bandpass and time
WCSNAME = ‘Multi-wavelength, multi-epoch’
CTYPE3 = ‘WAVE-TAB’ / spectral axis by table look-up
CTYPE4 = ‘TIME-TAB’ / temporal axis by table look-up
CNAME3 = ‘Bandpass’
CNAME4 = ‘Observation Date’
CUNIT3 = ‘m’ / wavelengths in meters
CUNIT4 = ‘a’ / observation dates in years
CRPIX3 = 0.5 / spectral bin initial edge of initial pixel
CRPIX4 = 1 / temporal bins are at begin/end time
CDELT3 = 1 / spectral index array is one unit per bin
CDELT4 = 1 / temporal index array is one unit per bin
CRVAL3 = 0.5 / spectral reference is center of radio exposure
CRVAL4 = 0 / temporal reference is start of radio exposure
PC3_3 = 1 / 3rd pixel axis increments 3rd image coord axis
PC3_4 = 0
PC4_3 = 1 / 3rd pixel axis increments 4th image coord axis
PC4_4 = 1 / 4th pixel axis is degenerate (1 point)
PS3_0 = ‘WCS-table’
PS3_1 = ‘WaveCoord’
PS3_2 = ‘WaveIndex’
PS4_0 = ‘WCS-table’
PS4_1 = ‘TimeCoord’
PS4_2 = ‘TimeIndex’

EXTNAME = ‘WCS-table’
EXTVER = 1
EXTLEVEL= 1

TUNIT2 = ‘m’ TUNIT4 = ‘a’
TFORM1 = ‘8E’ TFORM2 = ‘8D’ TFORM3 = ‘8E’ TFORM4 = ‘8D’
TTYPE1 = ‘WaveIndex’ TTYPE2 = ‘WaveCoord’ TTYPE3 = ‘TimeIndex’ TTYPE4 = ‘TimeCoord’
-------------------- -------------------- -------------------- --------------------
(0.5, (0.21106114, (0.0, (1997.84512,
1.5, 0.21076437, 1.0, 1997.84631,
1.5, 2.0E-6, 1.0, 1993.28451,
2.5, 2.2E-6, 2.0, 1993.28456,
2.5, 500.0E-9, 2.0, 2001.59234,
3.5, 650.0E-9, 3.0, 2001.59239,
3.5, 1.24E-9, 3.0, 2002.18265,
4.5) 2.48E-9) 4.0) 2002.18301)

dimension might be purely temporal. Alternatively, if differ-
ent instruments (radio, IR, optical, X-ray) produced each of the
images then the third dimension might be spectral. In practice,
however, images in such a spectral 3-D image will typically
also have different observation dates, so the image will actu-
ally span four dimensions of world coordinates.

Akin to the example of a long slit spectrum in Paper II,
the WCS of this four-dimensional case can be represented by
the 3-D array. This fourth dimension could be represented
with NAXIS = 4 and NAXIS4 = 1, or with NAXIS = 3 and
WCSAXES = 4. Whether the sequence of images is temporal

or spectral, it is certain that the exposure duration or the spec-
tral bandpass have a non-zero extent and the -TAB represen-
tation does provide the ability to communicate the start and
end times of an observation, or the minimum and maximum
wavelengths of an observation. For this example the WCS key-
words are shown in Table 11, where the keywords relating
to axes 1 and 2 are omitted because they are simply celes-
tial coordinates as described by Paper II. In this example, note
the clever use of the PC matrix to cause the fourth coordinate
axis to depend on the third pixel axis, but not the degenerate
fourth pixel axis. FITS writers can use details such as these to
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communicate how a display program might provide meaning-
ful world coordinates at locations across an array element4.

In order to provide coordinate values across the entire ar-
ray element, the coordinate values on the boundaries between
the array elements are multiply defined. Such a result should be
expected for array elements representing non-adjacent physical
values. It is evident in this case that the order of the index ar-
rays should not be permuted during the coordinate lookup. The
lower portion of Table 11 shows a subset of the content of the
table(s) referred to by PS3_0 and PS4_0. The four columns
in the figure are meant to illustrate the association of table
header keywords and table values. In the FITS file, the key-
words would appear in the table header along with many other
keywords while the four arrays of values would appear in four
cells of the one-row binary table.

The indexing vectors in the table of Table 11 illustrate the
reason to allow two values within the indexing vector to be
identical. The rules for the linear interpolation within such vec-
tors are clear. One must select the two index locations having
values immediately surrounding ψm. Thus in the present exam-
ple, if the time coordinate has ψm = 1.1, the third and fourth
index and coordinate values are interpolated. The output time
coordinate is

1993.28451 +
1.1 − 1.0
2.0 − 1.0

(1993.28456− 1993.28451).

The result of the table look up is undefined if the ψm is equal to
the repeated value in the indexing vector.

7. Coordinate reference frames

Frequencies, wavelengths, and apparent radial velocities are
always referred to some selected standard of rest (reference
frame), and while they are measured, of necessity, in the ob-
server’s rest frame, they may also be corrected to some other
frame5. The velocity correction is computed from the vector
dot product of the direction vector and the relative velocity
vector of the two reference frames. In addition, the corrections
from topocentric, the frame in which the observations are usu-
ally made, to geocentric and then to barycentric or heliocentric
are dependent on the dot product with time-variable velocity
vectors. As a consequence, the “velocity” with respect to the
reference frame depends on direction. Differential effects over
a field of view may be important in some high precision ap-
plications; for example, they may amount to 5 km s−1 for the
Local Group correction over a field of one degree. In another
example, observations of Galactic CO over two-degree fields
separated by two degrees failed to align by two spectral chan-
nels (Mangum et al. 2000).

If a frequency, wavelength or apparent radial velocity asso-
ciated with an image plane has been corrected to some other

4 The precise interpretation of CTYPEk keywords that describe TIME
is deferred to a possible future paper on temporal coordinates in FITS.

5 Proper relativistic formulæ should be used; see Gibbs & Tao
(1997) or Rindler (1982). Better yet, observers should consider using
standard software described by Lindegren and Dravins (2003) to per-
form the conversion from topocentric coordinate to the standardized
Barycentric Celestial Reference System.

frame by transforming the CRVALka et al. values, then differ-
ential errors may arise at points away from the reference point.
For example, it is normal in radio astronomy to observe a field
while holding constant the velocity of the reference point with
respect to the local standard of rest. See Sect. 10.2 for a more
detailed discussion of the complications inherent in such data.

Nonetheless, each image plane shares a constant topocen-
tric frequency (or apparent radial velocity). The velocity (and
frequency and wavelength) with respect to the local standard
of rest is then a function of celestial coordinate within the im-
age. In order to denote this, we introduce two character-valued
keywords. The first,

SPECSYSa (character-valued)

describes the reference frame in use for the spectral-axis coor-
dinate(s). The second,

SSYSOBSa (character − valued)

describes the spectral reference frame that is constant over
the range of the non-spectral world coordinates and has de-
fault value ‘TOPOCENT’. The recognized values are given in
Table 12. In this table, the magnitude column gives the approx-
imate magnitude of the velocity vector that defines the partic-
ular reference frame and the � and b columns give the stan-
dard Galactic longitude and latitude of the reference frame,
Blaauw et al. (1960). This table includes the traditional helio-
centric system which the authors believe should be deprecated.
It has frequently been misused as an alias for barycentric and
would, if high accuracy is desired, require the observing date
in order to allow conversions between it and the other systems.
The table also includes the WMAP microwave background
dipole as a velocity system. Since, as the data are refined over
time, this system will change, its use at present should be re-
stricted to situations for which it is particularly appropriate and
the parameters used should be well commented. The radio-
astronomy example described above has SPECSYS = ‘LSRK’
and SSYSOBS = ‘TOPOCENT’ indicating that the spectral axis
is expressed as a kinematic Local Standard of Rest velocity,
but that each right ascension by declination image plane is at a
constant topocentric spectral coordinate.

Many spectrometers suffer from a significant variation in
their spectral coordinate as a function of celestial coordinate.
Such variations are the primary subject of Paper IV, while the
concepts of this work refer to images produced by, or corrected
to, an ideal spectrometer. In general we recommend that the
frame corrections will get folded into the instrumental ones
and that the image produced after the Paper IV corrections will
have identical SSYSOBS and SPECSYS. This is not required, but
would certainly simplify matters.

It is not appropriate for this work to define the parameters
of the recognized rest frames. The parameters needed to com-
pute geocentric frequencies/velocities from topocentric are the
sidereal time (or Earth rotation angle) and the observatory lo-
cation. The observing date is needed to convert from geocentric
to barycentric coordinates. The new keywords

MJD-AVG (floating-valued)
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Table 12. Recognized values for SPECSYSa, SSYSOBSa, and SSYSSRCa.

Value Definition Magnitude � b Reference

TOPOCENT Topocentric 0.0 km s−1 – –

GEOCENTR Geocentric 0.5 – –

BARYCENT Barycentric 30 – – Stumpff (1980)

HELIOCEN Heliocentric 30 – – Stumpff (1980)

LSRK Local standard of rest (kinematic) 20 † 56 23 Delhaye (1965), Gordon (1976)

LSRD Local standard of rest (dynamic) 16.6 53 25 Delhaye (1965)

GALACTOC Galactocentric 220 90 0 Kerr & Lynden-Bell (1986)

LOCALGRP Local Group 300 90 0 de Vaucouleurs (1976)

CMBDIPOL Cosmic microwave background dipole 368 263.85 48.25 Bennett et al. (2003)

SOURCE Source rest frame any – –

† LSRK is normally quoted as right ascension 18 hours, declination 30 degrees (1900).

and
DATE-AVG (character-valued)

are reserved to give a representative time for the whole obser-
vation, suitable for calculating proper motion, apparent place,
local apparent sidereal time, velocity with respect to the center
of the Earth and barycenter, etc. The DATE-AVG keyword shall
be expressed in the manner described by Hanisch et al. (2001)
for the DATE-OBS keyword. If both keywords are present, they
must agree to adequate accuracy or the result is undefined. If
both keywords are absent, DATE-OBSmay be used to determine
the representative time, although DATE-OBS refers to the begin-
ning of an observation and hence is not entirely suitable. For
high-precision applications, a time system to apply to MJD-AVG
must be defined in the manner proposed by Bunclark & Rots
(1997). Note also that, for long integrations, no single time is
adequate for computing proper motion, sidereal time, and the
like.

Astronomers have traditionally quoted telescope positions
using terrestrial longitude, latitude, and height, but, for com-
putation of topocentric velocity, these values are immediately
converted into a geocentric Cartesian triple. A precise con-
version from longitude, latitude, and height, however, requires
knowledge of the geodetic datum in which they are expressed.
There are about 1000 geodetic datums in use. These are de-
scribed by the United States Department of Defense (2000) in
a printed document also available over the Internet. Some of
the datums deviate from geocentricity by over a kilometer.

Rather than burden FITS with these details of geodetic tra-
dition, three new keywords

OBSGEO-X (floating-valued)

OBSGEO-Y (floating-valued)

OBSGEO-Z (floating-valued)

are reserved to define a representative location for the observa-
tion in a standard terrestrial reference frame. The location val-
ues should be right-handed, geocentric, Cartesian coordinates
valid at the epoch of MJD-AVG or DATE-AVG. Position errors of
several kilometers should have negligible impact on the com-
putation of the diurnal velocity correction, so for this purpose

geodetic accuracy is not a requirement. However, it should be
possible to provide coordinates with an accuracy of 1m or bet-
ter based on a recent satellite-based geodetic reference frame
and we recommend that FITS writers do so. Although it is be-
yond the scope of this paper to define particular terrestrial ref-
erence frames or tectonic models, only frames based on the
ITRS (McCarthy & Petit 2004) are suitable for high-precision
applications. Most post-1980 reference frames, including GPS,
agree with recent versions of the ITRF to about 0.1 m. Web
sites
http://earth-info.nga.mil/GandG/
http://www.ngs.noaa.gov/TOOLS/XYZ/xyz.html

provide general geodetic information and a solution based on
the outputs of almost any hand-held GPS unit, respectively.
These references, together with information about the origin
of the traditional telescope position, should allow the determi-
nation of the keyword values defined in this paper.

It may be helpful for the FITS writer to provide information
on the relative radial velocity between the observer and the se-
lected standard of rest in the direction of the celestial reference
coordinate. The keyword

VELOSYSa (floating-valued)

is hereby reserved for this purpose; its units shall be m s−1.
CUNITka is not used since the WCS version a might not be
expressed in velocity units.

The frame of rest defined with respect to the source
(SOURCE) is useful for comparing internal apparent radial ve-
locities in objects at different redshifts. This allows the FITS
writer to apply all the cosmological and other model-dependent
corrections, leaving a coordinate local to the object. For this
frame of rest, it is necessary to define the velocity with respect
to some other frame of rest. The keywords

ZSOURCEa (floating-valued)

and
SSYSSRCa (character-valued)

are hereby reserved; they should be used to document the
adopted value for this systemic velocity of the source.
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Table 13. New spectral keywords including forms for use in tables. All table keywords except the coordinate name have the same form for the
BINTABLE vector image format and the pixel list format.

Primary BINTABLE Pixel Type Sect. Keyword

Array list Description

CNAME ia iCNAna TCNAna character 3.3 Coordinate axis name

RESTFRQa RFRQna floating 3.4.4 Line rest frequency (Hz)

RESTFREQ — floating 3.4.4 Line rest frequency alternate for primary array only

RESTWAVa RWAVna floating 3.4.4 Line rest wavelength in vacuum (m)

SPECSYSa SPECna character 7 Spectral reference frame (from Table 12)

SSYSOBSa SOBSna character 7 Spectral reference frame fixed during observation (from Table 12)

MJD-AVG MJDAn floating 7 Average date of observation (Julian date−2400000.5)

DATE-AVG DAVGn character 7 Average date/time of observation

OBSGEO-X OBSGXn floating 7 Observation X (m)

OBSGEO-Y OBSGYn floating 7 Observation Y (m)

OBSGEO-Z OBSGZn floating 7 Observation Z (m)

VELOSYSa VSYSna floating 7 Radial velocity wrt standard of rest (m s−1)

ZSOURCEa ZSOUna floating 7 Redshift of source for SOURCE cases (unitless)

SSYSSRCa SSRCna character 7 Spectral reference frame for SOURCE cases (from Table 12)

VELANGLa VANGna floating A Angle of true velocity from tangent to line of sight

ZSOURCEa is a unitless redshift; SSYSSRCa specifies the ref-
erence frame for this parameter and may have any value
in Table 12 except SOURCE. The new floating-valued and
character-valued keywords hereby reserved are listed6 in
Table 13 along with the other keywords defined in this paper.

8. Alternate FITS image representations: pixel list
and vector column elements7

The use of coordinate keywords to describe a multi–
dimensional vector in a single element of a FITS binary table
(Cotton et al. 1995), and a tabulated list of pixel coordinates in
a FITS ASCII (Harten et al. 1988) or binary table was discussed
in Papers I and II. In this section, we extend those discussions
to the keywords specific to spectral coordinates. This conven-
tion is considered an integral part of the full world coordinates
convention.

8.1. Keyword naming convention
Table 13 lists the corresponding set of coordinate system key-
words for use with each type of FITS image representation. The
keywords defined in this paper and their allowed values are ap-
plicable to all three image storage formats. The following notes
apply to the naming conventions used in Table 13:

– a is a 1-character coordinate version code and may be
blank (primary) or any single uppercase character from A
through Z.

6 The frame and velocity keywords in Table 13 apply to terres-
trial observers only. Observations from spacecraft require additional
description of their motions – either a position and velocity or an
ephemeris. The required keywords and/or tables for this are beyond
the scope of this paper.

7 Suggested by contributions from William Pence, Arnold Rots,
and Lorella Angelini of the NASA Goddard Space Flight Center,
Greenbelt, MD 20771.

– n is an integer table column number without any leading
zeros (1–999).

– i is a one-digit integer axis number (1–9).

When using the BINTABLE vector image format, if the table
only contains a single image column or if there are multiple
image columns but they all have the same value for any of the
keywords in Table 13 except CNAME ia, then the simpler form
of the keyword name, as used for primary arrays, may be used.
For example, if all the images in the table have the same loca-
tion, then one may use one set of OBSGEO-X, OBSGEO-Y, and
OBSGEO-Z keywords rather than multiple OBSGXn, OBSGYn,
and OBSGZn keywords. If both forms of these keywords ap-
pear, then column-specific values are applied to the specified
columns and the non-specfic values are applied to all other
columns. (Note, however, that the WCS keywords defined for
tables in Papers I and II must always be specified using the
more complex keyword name with the column number suffix
and the axis number prefix.)

9. Spectral coordinate variation with other
coordinates

There are instruments having spectral coordinates that are
a function of other coordinates in the resulting image, e.g.
celestial position. For example, optical astronomers use imag-
ing Michelson interferometers and scanning Fabry-Perot in-
struments to produce three-dimensional images with two celes-
tial and one spectroscopic coordinate. Because the path length
through such instruments increases off the optical axis of the
telescope, the observed wavelength is a function of celestial
coordinate in each plane of the image cube. In general, this is a
subject reserved for Paper IV since such instruments almost al-
ways have lesser distortions that need to be parameterized and
corrected along with the path length correction.
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One particularly difficult case should be mentioned here.
Objective prism instruments produce data in which the image
of each object in the field has been spread out into a spectrum.
Thus the output image is the convolution of the sky with both
a spatial point-spread-function and a spectral dispersive point-
spread function, both in the two dimensions of the output im-
age. The methods used to specify coordinates described in the
present paper and in Papers I and II are unable to handle such
complex data. However, rather than ignore the world coordi-
nates entirely, writers of such images should consider provid-
ing the celestial coordinates that would be correct for the image
if it had been taken at a single representative wavelength. That
wavelength would be specified in a third WCS axis. Alternate
axis descriptions could then be used to specify the same in-
formation for other wavelengths. Multi-order echelle spectro-
graphs also produce images in which multiple spectral orders
overlap each other as well as the celestial axes and, hence, their
coordinates cannot be described by the methods of Papers II
and III.

Analysis of both objective prism and echelle spectrograph
images can produce tables of spectra that are easily described
by the present methods.

10. Example

10.1. Basic spectral-line header

Let us consider an example. The partial FITS header in
Table 14 was produced for data from the Very Large Array.
The FITS WCS standard states that all WCS keywords must
be reproduced for the alternate descriptions, but those for non-
spectral axes have been omitted for the sake of brevity and
clarity. We have also updated the keywords to the standards of
Papers I, II, and III. We will derive additional header keywords
that could also have been written. These are shown in Table 15,
again leaving out axes 1 and 2 of the alternate WCS versions.

The spectral-line cube is regularly sampled in frequency
and the primary description is of a linear frequency axis (from
the CTYPE3 keyword value ‘FREQ’). CRVAL3 and CRPIX3
record that the 63-channel spectrum was centered with chan-
nel 32 at 1.37835117405GHz, some 42 MHz from the rest
frequency (RESTFRQ = 1.420405752GHz) of neutral hydrogen
(HI), the line under investigation. As indicated by the SPECSYS
keyword, it is shown as if it had been observed at a constant
topocentric frequency. For the moment, let us assume that the
observations were made over a short interval and that this is
correct.

As allowed by Paper I, we use alternate axis description
letter codes in a mnemonic fashion. Using Z for optical, the
first alternate axis description for the spectral axis reflects
the observer’s request that a Doppler shift be applied to the
HI line frequency appropriate for a source with a barycen-
tric optical-convention velocity of 9120 km s−1. Combining
Eqs. (30) and (6), we get

ν = ν0/(1 + Z/c),

whence the barycentric HI rest frequency shifts to
1.37847122 GHz, some 120 kHz greater than the topocentric

Table 14. Example image header.

123456789 123456789 123456789 123456789 123456789

SIMPLE = T

BITPIX = -32

NAXIS = 3

NAXIS1 = 1024

NAXIS2 = 1024

NAXIS3 = 63

EXTEND = T / Tables may follow

OBJECT = ‘3C353’

TELESCOP= ‘VLA’

DATE-OBS= ‘1998-09-29’ / Start obs

BUNIT = ‘Jy/beam’

EQUINOX = 2.000000000E+03

DATAMAX = 5.080558062E-01

DATAMIN = -1.179690361E-01

WCSNAME = ‘TopoFreq’

CTYPE1 = ‘RA---SIN’

CRVAL1 = 2.60108333333E+02

CDELT1 = -2.777777845E-04

CRPIX1 = 512.0

CUNIT1 = ‘deg’

CTYPE2 = ‘DEC--SIN’

CRVAL2 = -9.75000000000E-01

CDELT2 = 2.777777845E-04

CRPIX2 = 513.0

CUNIT2 = ‘deg’

CTYPE3 = ‘FREQ’

CRVAL3 = 1.37835117405E+09

CDELT3 = 9.765625000E+04

CRPIX3 = 32.0

CUNIT3 = ‘Hz’

OBSGEO-X= -1.601185365E+06 / [m]

OBSGEO-Y= -5.041977547E+06 / [m]

OBSGEO-Z= 3.554875870E+06 / [m]

MJD-AVG = 51085.979

SPECSYS = ‘TOPOCENT’

RESTFRQ = 1.420405752E+09 / [Hz]

RADESYS = ‘FK5’

CNAME3Z = ‘Barycentric optical velocity’

RESTWAVZ= 0.211061139 / [m]

CTYPE3Z = ‘VOPT-F2W’

CRVAL3Z = 9.120000E+06

CDELT3Z = -2.1882651E+04

CRPIX3Z = 32.0

CUNIT3Z = ‘m/s’

SPECSYSZ= ‘BARYCENT’

SSYSOBSZ= ‘TOPOCENT’

frequency given by CRVAL3. The difference, of course, simply
reflects the instantaneous relative velocity of the barycentric
and topocentric reference frames at the time of observation.
Using standard software (the STARLINK program rv), with
the observatory position defined by OBSGEO-X, Y, Z, at the
time indicated by MJD-AVG, and for the source at (J2000)
right ascension and declination 17h20m26s, −00◦58′30′′
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Table 15. Additional keywords for example header.

123456789 123456789 123456789 123456789 123456789

VELOSYSZ= 26.108E+03 / [m/s]

CNAME3F = ‘Barycentric frequency’

CTYPE3F = ‘FREQ’

CRVAL3F = 1.37847121643E+09

CDELT3F = 9.764775E+04

CRPIX3F = 32.0

CUNIT3F = ‘Hz’

SPECSYSF= ‘BARYCENT’

SSYSOBSF= ‘TOPOCENT’

VELOSYSF= 26.108E+03 / [m/s]

CNAME3W = ‘Barycentric wavelength’

CTYPE3W = ‘WAVE-F2W’

CRVAL3W = 0.217481841062

CDELT3W = -1.5405916E-05

CRPIX3W = 32.0

CUNIT3W = ‘m’

SPECSYSW= ‘BARYCENT’

SSYSOBSW= ‘TOPOCENT’

VELOSYSW= 26.108E+03 / [m/s]

RESTFRQR= 1.420405752E+09 / [Hz]

CNAME3R = ‘Barycentric radio velocity’

CTYPE3R = ‘VRAD’

CRVAL3R = 8.85075090419E+06

CDELT3R = -2.0609645E+04

CRPIX3R = 32.0

CUNIT3R = ‘m/s’

SPECSYSR= ‘BARYCENT’

SSYSOBSR= ‘TOPOCENT’

VELOSYSR= 26.108E+03 / [m/s]

CNAME3V = ‘Barycentric apparent radial velocity’

RESTFRQV= 1.420405752E+09 / [Hz]

CTYPE3V = ‘VELO-F2V’

CRVAL3V = 8.98134229811E+06

CDELT3V = -2.1217551E+04

CRPIX3V = 32.0

CUNIT3V = ‘m/s’

SPECSYSV= ‘BARYCENT’

SSYSOBSV= ‘TOPOCENT’

VELOSYSV= 26.108E+03 / [m/s]

indicated by CRVAL1 and CRVAL2, it may be verified that the
topocentric correction amounts to 26.108 km s−1. Now this
correction between reference frames is a true velocity and thus
the relativistic formula, Eq. (8), should be used, whereupon
the frequency recorded by CRVAL3 may be obtained. The
frequency decreases as the observer moves away from the
source position.

With CRVALZ set to 9.12 × 106 m s−1 it remains to compute
CDELT3Z. This is obtained by transforming CDELT3 from the
topocentric to the barycentric frame with Eq. (8) expressed as

∆ν = ∆ν0
c − �√
c2 − �2

,

whence the frequency increment becomes 97.64775 kHz.
Using Eq. (11) the corresponding wavelength increment is as
recorded by CDELT3Z in Table 14. While SPECSYSZ is set to
‘BARYCENT’, SSYSOBSZ records the fact that the observation
was actually made from the ‘TOPOCENT’ frame.

The correction for the observatory’s motion due to the
Earth’s rotation and orbital motion with respect to the barycen-
ter amounted to 26.108 km s−1 in the direction of the source. As
illustrated in Table 15, this velocity shift can be represented in
the FITS header with the new keyword VELOSYS.

The barycentric frequency may be used as another alternate
axis description. The reference frequency and frequency incre-
ment for SPECSYSF = ‘BARYCENT’ have already been com-
puted above. The relevant keywords have axis description F
(for frequency) in Table 15.

The frequency description may be translated into a wave-
length description simply using Eqs. (10) and (11), shown in
Table 15 using axis description W (for wavelength).

The frequency description with respect to the BARYCENT
may also be expressed simply as a radio velocity (also regu-
larly sampled) using Eqs. (20) and (21). This is shown as axis
description version R (for radio).

A apparent radial velocity description (version V for veloc-
ity) requires the use of Eq. (14) for the reference value and
Eq. (15) for the increment.

10.2. Real-world complications

An assumption made throughout this paper, particularly in
Sect. 7, is that data are provided with at least celestial coor-
dinate information in addition to the spectral coordinates dis-
cussed here. The normal method of providing such data is with
the full set of coordinate keywords including WCSAXES with
a value of at least 3 (for two celestial and one spectral axis)
even if only one celestial position was observed. For spectra
in tables, it would be possible to have simple columns for the
celestial coordinates, labeled as such. But, as discussed at the
end of Sect. 6.1.4, this simple case may still use the full WCS
nomenclature in order to associate the coordinate columns with
the data column.

One important assumption made in Sect. 10.1 was that the
topocentric velocity does not change significantly during the
course of the observation. We now consider the consequences
if this assumption is violated. In this we are interested in partic-
ular with three-dimensional “data cubes” containing multiple
samples on each of two spatial axes and one spectral axis.

For some instruments, it may be possible to correct the data
for each short exposure to a consistent WCS and then combine
exposures to improve the sensitivity. For example, single-dish
radio telescopes observe a single direction at a time, allowing
the spectral axis in each observed spectrum to be scaled and
resampled before it is added into a three-dimensional image.
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For this type of instrument it is a relatively simple matter to
correct for topocentric motion.

However, other instruments observe multiple directions si-
multaneously and also routinely combine multiple exposures
to form an image. While the error over a single exposure may
be negligible, images made by aperture synthesis radio tele-
scopes, for example, are often based on multiple exposures
taken months apart. These exposures are usually made with dif-
ferent array configurations, which may change on a timescale
of months, in order to sample the Fourier space adequately for
imaging and deconvolution. Therefore, these data are affected
not only by the rotation of the Earth but also by its motion
around the Sun which usually is not negligible.

As a specific example, the actual observation on which
Sect. 10.1 is based required an integration time of several hours.
During this time the observing frequency was adjusted for the
topocentric Doppler shift so that the barycentric frequency at
the map center remained constant. This ensured that the spec-
tral feature of interest, associated with a source near the map
center, remained in the same spectral channel. However, this
means that the primary spectral axis description, based as it is
in the topocentric frame, is not strictly correct. It was used in
this data as an aid to interferometric analysis, the resulting error
being considered negligible, but strictly speaking a barycentric
frequency reference frame, the F alternative WCS in the header,
is the correct one.

Even so, the barycentric frame is only strictly correct at
the map center since the topocentric Doppler correction varies
across the field-of-view; the correction is computed as the dot
product of the observatory’s velocity vector and a unit direction
vector which, of course, varies across the field. This gives rise
to a differential error that is greatest when the velocity vector
is orthogonal to the direction to the source and least when it is
parallel or anti-parallel. In other words, the differential correc-
tion is greatest when the correction is zero, and least when the
correction is greatest.

For diurnal rotation the worst case differential error occurs
for a telescope at the equator observing a source on the lo-
cal meridian. For an angular offset, γ, from the tracking cen-
ter the maximum differential error is � sin γ which amounts to
8.7 m s−1 for γ = 1◦. The worst case change in the differen-
tial error over the course of 12 hours occurs for an equatorial
telescope observing a field at the north or south point on the
horizon; it is 2� sin γ or 17.5 m s−1 for γ = 1◦. If data from
exposures separated by several months are combined then the
Earth’s 30 km s−1 orbital velocity scales up the worst-case error
to 1.0 km s−1 for γ = 1◦. Note that, in the example of Sect. 10.1,
the barycentric correction is close to the maximum value so the
differential correction is nearly at its minimum.

The relevance of the SSYSOBSa keyword immediately be-
comes apparent in this context. It records the reference frame
in which the frequency has no spatial variation; in other frames
the reference frequency and frequency increment are only
strictly correct at the reference point. While SSYSOBSa will
most often indicate the topocentric frame, it is possible to regrid
(resample) the spectral data by applying a position-dependent
shift-and-scale so that SSYSOBSa has some other value.

Differential Doppler effects are often neglected for contem-
porary observations made with small angular fields or modest
spectral resolution. However, instruments now under develop-
ment will be capable of significantly greater sensitivity over
wider fields-of-view and/or spectral resolution and hence will
need to consider the effects discussed here.

11. Summary

The new keywords required for spectral coordinate sys-
tems are summarized in Table 13. SPECSYSa, SSYSOBSa,
SSYSSRCa, and ZSOURCEa are used to specify velocity ref-
erence frames; MJD-AVG, DATE-AVG, OBSGEO-X, OBSGEO-Y,
OBSGEO-Z, VELOSYSa, and ZSOURCEa enable conversion be-
tween these standards of rest; and RESTFRQa, RESTFREQ, and
RESTWAVa define the spectral line for which velocities are mea-
sured. Variants of these keywords for use with tabular data are
also defined.

These new keywords and their allowed values, along with
new values for the standard header keywords formalized by
Paper I, and the associated algorithms and methods introduced
here allow an accurate description of spectral coordinates in
FITS images. Wavelength, frequency, apparent radial velocity
and oft-used quantities that are linearly related to them, such as
redshift, energy, and radio velocity, may now be expressed as
functions of pixel coordinate along an axis regularly sampled
in wavelength, frequency, or apparent radial velocity.

A non-linear algorithm is also provided for spectral dis-
persers commonly used at optical wavelengths: gratings,
prisms, and the combination of the two, grisms. Although de-
veloped for ideal dispersers, it was shown to apply quite well
to real-world dispersers with suitable fine adjustment of the in-
strumental parameters.

The multi-dimensional -TAB table lookup algorithm devel-
oped for wavelength calibration will be useful for much more
than just spectral axes. Several others of the methods intro-
duced here are also completely general; logarithmic (-LOG)
coordinates, and the CNAME ia keyword. The mathematical for-
malism described in Sect. 3.4 for constructing one-dimensional
non-linear coordinate systems also has wide validity.

Appendix A: Relativistic space velocities

The discussion of Sect. 2, particularly Fig. 1, indicates the im-
portance of transverse, as well as radial velocities, in spec-
troscopy at significant velocities. To be concrete, consider a
relativistic jet emanating from a distant galaxy. In principle, the
galaxy’s systemic, cosmological redshift can be measured sep-
arately and used to correct the jet’s observed redshift thereby
providing its kinematic redshift (i.e. associated with a true
velocity) in the reference frame of the galaxy.

Clearly knowledge of the velocity is fundamental in study-
ing jet kinematics and dynamics. However, it can only be com-
puted from the kinematic redshift if the jet’s orientation angle
is known. Note that the equations involving velocity in Table 3
are actually only correct if the transverse velocity is zero. For
example, Eq. (12) is just a special case of Eq. (2). This is why
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the velocity is always referred to in the paper as being “appar-
ent.”

There are instances where the orientation angle may be in-
ferred by geometry (e.g. by the observed tilt of an accretion
disk) or by modelling. Defining the orientation angle as θ we
have

�r = �s sin θ, (A.1)

�t = �s cos θ, (A.2)

�s =

√
�2r + �

2
t , (A.3)

where �r is the radial velocity, �t is the transverse velocity, and
�s ≥ 0 is the total space velocity. The orientation angle θ is
defined so that θ = −90◦ is towards the observer, θ = 0 is trans-
verse, and θ = +90◦ is away from the observer. It is beyond
the scope of this paper to describe how θ should be determined
or what exactly it means for particular relativistic observers,
other than that it resolves the kinematic velocity into radial and
tangential components. With these definitions, the equations of
Table 3 are given in Table A.1. Note that for χ > 1 Eqs. (A.8)
and (A.13) have two valid solutions for θ < 0 but none other-
wise. For χ ≤ 1 they have only one valid solution for any value
of θ. Invalid solutions, i.e. those with �s < 0, are the negative of
the valid solution for −θ.

There are other combinations that are of interest, including

sin θ =
ν0

√
c2 − �2s
ν�s

− c
�s
,

=
λ
√

c2 − �2s
λ0�s

− c
�s
·

It would perhaps be more instructive to express these sorts
of equations in terms of the actual radial and transverse

Table A.1. Velocity equations using orientation and total velocity.

ν = ν0

√
c2 − �2s

c + �s sin θ
, (A.4)

dν
d�s
= −cν0

�s + c sin θ

(c + �s sin θ)2
√

c2 − �2s
, (A.5)

λ = λ0
c + �s sin θ√

c2 − �2s
, (A.6)

dλ
d�s
= cλ0

�s + c sin θ
(c2 − �2s )3/2

, (A.7)

�s = c
−χ2 sin θ ± ψ
χ2 + ψ2

, (A.8)

where χ =
ν

ν0
=
λ0

λ
, (A.9)

and ψ =
√

1 − χ2 cos2 θ, (A.10)

d�s
dν
=

1
ν0

d�s
dχ

, (A.11)

d�s
dλ
=
−λ0

λ2

d�s
dχ

, (A.12)

where
d�s
dχ
= −cχ

2ψ sin θ ± (1 + ψ2 sin2 θ)
ψ(χ2 + ψ2)2

· (A.13)

velocities. This is relatively straightforward, but the equations
become even more messy and so we omit them here.

It has been proposed that we introduce a single keyword
to express θ so that we may express velocities in terms of a
true space velocity �s rather than an apparent velocity � as done
throughout this paper. However, astrophysical jets are thought
to be conical in form, to interact along their boundaries with the
external medium, and to change direction, even assuming he-
lical shapes. Thus, there is no single angle θ that can normally
be used to describe all directions in an image and one should
probably not even assume that θ is independent of redshift in
any one direction. For those cases in which a single angle may
be appropriate, such as a spectrum of a spatially limited region
in a relativistic jet, we reserve the keyword

VELANGLa (floating-valued)

with default value +90◦ to express the angle θ in degrees. All
of this discussion has neglected non-velocity redshifts such as
those due to the gravity of the black hole thought to be at the
base of the astrophysical jet. Therefore, we choose to leave the
full expression of internal velocities within a celestial object
to those observers who are armed with both extensive obser-
vations and a detailed model. Apparent velocity is a suitable,
semi-physical concept appropriate to a general FITS standard.
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